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Background

> Markov chain model (MCM) is a widely used modelling approach in
several strands of the literature

o MCM enables analysing dynamic stochastic process within a given
population (future states depend on the past accordingly to some
probabilities)

o Numerous applications in economics (firm dynamics, unemployment, ...),
medicine (illness treatment), sociology (population mobility), ...
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» Heterogeneous behaviours in several cases that are generally unobserved
and cannot be captured by observable agent characteristics

» Some available commands in STATA allow estimating finite mixture
models to capture unobserved heterogeneity

o Official commands (fmm)

o Users written commands (gllamm, Iclogit, ...)

» Impossible to estimate directly a mixture of Markov chain models using
the available commands in STATA



The mixed Markov chain model (MMCM)

» MMCM describes the dynamics of N agents on a finite state space K over
a time period T with heterogeneous transition processes

» Probability density function of MCM
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» Probability density function of MMCM
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The model specification

» Multinomial logit specification of transition probabilities
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» Multinomial logit specification of transition probabilities
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» Probability of type membership
o Fractional multinomial logit for parametric specification
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o Non-parametric estimation implies that P(g; = g) are the same for all
agents



The EM algorithm under incomplete information

» E-step: Compute the probability of belonging to type g
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The EM algorithm under incomplete information

» E-step: Compute the probability of belonging to type g
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» M-step: Maximize the conditional log-likelihood
o Parameters of the transition probabilities
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The mixmcm command

» The generic syntax for mixmcm:

mixmcm depvar [indepvars] [if] [in] [weight], id(varname) timevar(varname) [options]

» The options for mixmcm:
o *id(varname): numeric variable identifying agents

o * timevar(varname): numeric variable identifying time



The mixmcm command

» The generic syntax for mixmcm:

mixmcm depvar [indepvars] [if] [in] [weight], id(varname) timevar(varname) [options]

» The options for mixmcm:
o *id(varname): numeric variable identifying agents
o * timevar(varname): numeric variable identifying time

o ncomponents(#1 #2, selcrit(name) graph(namelist, twoway _options)
force save(filename, replace detail))

o membership(varlist, fmlogit options)
o emiterate(/r(#1 #2, eps) sr(#1 #2) seed(numlist) emlog))

e noconstant: suppress constant term in the specification of transition
probabilities

o constraints(p_ #component _initialstate_finalstate)



Application

» Data come from the free online version of RICA the French
implementation of the FADN on commercial farms from 2000 to 2010

» Some modifications of the data to identify Markov states and to generate
some explanatory variables
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» Data come from the free online version of RICA the French
implementation of the FADN on commercial farms from 2000 to 2010

» Some modifications of the data to identify Markov states and to generate
some explanatory variables

» The ten first lines of the dataset

idnum year  ebexp(€) subex(€) debt(%) education corporate  category

963 2000 36804.39 19798.40 5.35 1 0 medium
963 2001 28861.00 23290.00 5.35 1 0 medium
963 2002 30000.12 25990.33 5.35 1 0 medium
963 2003 5159.31 17527.58 5.35 1 0 medium
1525 2006 58895.00 17542.00 20.40 1 1 large
1525 2007 51726.00 16284.00 20.40 1 1 verylarge
1525 2008 54940.00 26491.00 20.40 1 1 verylarge
1525 2009 51883.00 16015.00 20.40 1 1 verylarge
1525 2010 88685.00 14900.00 20.40 1 1 verylarge
1534 2006 90051.00 78402.00 47.90 1 1 verylarge




Output results

» STATA procedure for estimating the MMCM using RICA French farm
dataset

. use mixmcmdata.dta, clear

. constraint 1 p_*_medium_verylarge = 0
. constraint 2 p_*_verylarge_ medium = 0

. mixmcm category corporate ebexp subex, id(idnum) time(year)
nc(1 4, selcrit(aic3) graph(aic bic caic aic3, ytitle("Criteria") force save(ictable, replace detail))

members(education debt, baseoutcome(_proba_1)) em(Ir(10 100, 0.0001) sr(5 5)) const(1 2)
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» Transition probabilities and type membership parameters
[Tablel]

> Results stored in e() and saved if specified by the user

[logfile] [Table2]
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Future steps

» Adapt constraints to enable estimating the mover-stayer model (with
several mover types)

» Allow for different parametric forms for the mixing distribution (logit,
poisson, ...)

» Enable mixmcm accounting for new entries and exits in the population
under study and estimating their parameters

» Write postestimation commands for mixmcm:
o predict transition probabilities, margins for transition and membership
explanatory variables

o perform projections of the population distribution across the states of space
and over time



Thank you!

legrand.saint-cyr@inra.fr



