Heterogeneous differences-in-differences in Stata

Heterogeneous differences-in-differences in Stata

Eduardo Garcia Echeverri

Colombian Stata Conference, 2023

Outline

- 1 Heterogeneity in treatment effects
- 2 Model setup
- 3 Estimation in Stata
 - Regression adjusted
 - Inverse-probability weighting
 - Augmented inverse-probability weighting
 - Extended two-way fixed effects
- 4 Aggregation of treatment effects
- 5 Conclusion

Why heterogeneous treatment effects?

Classic differences-in-differences: Treatment effects are obtained by estimating

$$y_{it} = \beta_0 + \beta_1 D_{it} + \gamma_t + \gamma_g + \varepsilon_{it}$$

y_{it}: **Outcome** of interest.

D_{it}: Binary **treatment**.

 γ_t : **Time** fixed effects

 γ_g : **Group** fixed effects. Treatment happens at the **group level**.

 $\beta_1 = ATT$ (average **treatment effect** on the treated)

Why heterogeneous treatment effects?

Classic differences-in-differences: Treatment effects are obtained by estimating

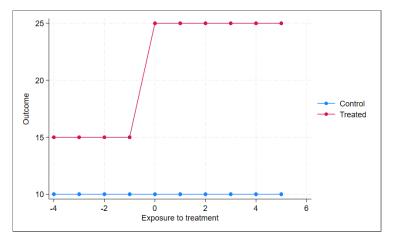
$$y_{it} = \beta_0 + \beta_1 D_{it} + \gamma_t + \gamma_g + \varepsilon_{it}$$

Implicit assumptions:

- ATT is the same irrespective of when unit is treated.
- ATT is constant after unit is treated.

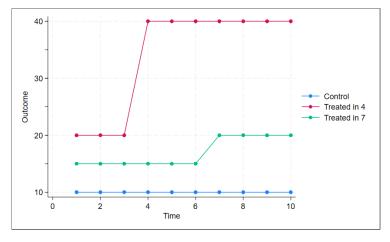
We are assuming homogeneous treatment effects.

Classic differences-in-differences



ATT = DID = difference in treated-difference in control = 10-0 = 10

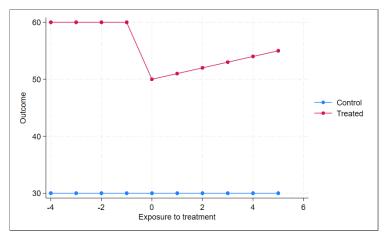
Group (cohort) heterogeneity



$$ATT_{red} = 20$$

$$ATT_{green} = 5$$

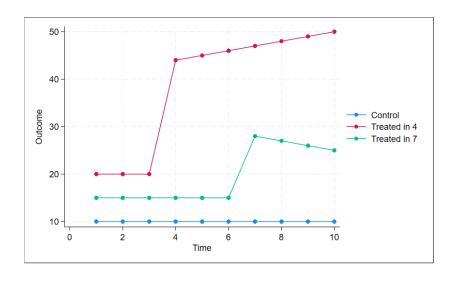
Time heterogeneity



$$ATT_{t=0} = -10$$

$$ATT_{t=5} = -5$$

Time-cohort heterogeneity



Heterogeneous DID

A growing literature has emerged to estimate heterogeneous ATTs:

 Callaway & Sant'Anna (2021), Wooldridge (2021), Chaisemartin and D'Haultfoeuille (2020)...

... and to diagnose/understand treatment effect heterogeneity:

 Borusyak, Jaravel, and Spiess (2018), Goodman-Bacon (2021)...

Many of these features have been incorporated into Stata 18.

- 1 Heterogeneity in treatment effects
- 2 Model setup
- 3 Estimation in Stata
 - Regression adjusted
 - Inverse-probability weighting
 - Augmented inverse-probability weighting
 - Extended two-way fixed effects
- 4 Aggregation of treatment effects
- 5 Conclusion

Outline

- 1 Heterogeneity in treatment effects
- 2 Model setup
- 3 Estimation in Stata
 - Regression adjusted
 - Inverse-probability weighting
 - Augmented inverse-probability weighting
 - Extended two-way fixed effects
- 4 Aggregation of treatment effects
- 5 Conclusion

The heterogeneous DID model

Panel (or **repeated cross-sectional** data) with $\{1, 2..., T\}$ periods:

t: a specific time period.

 D_{it} : 1 if **unit is treated** in period t, 0 otherwise.

- Irreversible treatment: Once treated, unit remains treated.
- No unit is treated at t = 1.

 G_i : **Group** of unit i. When did i **first receive** treatment?

- $G_i = 5$ if unit *i* first received treatment in t = 5.
- $G_i = \infty$ if unit *i* never received treatment.

 X_i : Time-invariant **controls** for unit *i*.

Potential and observed outcomes

- $Y_{i,t}(0)$: **potential outcome** of unit *i* at time *t* if it is **never treated**.
 - If $G_i = \infty$, then $Y_{i,t}(0)$ is **observed**.
 - If $G_i \neq \infty$, then $Y_{i,t}(0)$ is **unobserved**.
- $Y_{i,t}(g)$: **potential outcome** of unit i at time t if it had been **first** treated at time g.
 - If $G_i = g$, then $Y_{i,t}(g)$ is **observed**.
 - If $G_i \neq g$, then $Y_{i,t}(g)$ is **unobserved**.
 - $Y_{i,t}$: **observed outcome** in the data.
 - $Y_{i,t} = Y_{i,t}(0)$ when $G_i = \infty$.
 - $Y_{i,t} = Y_{i,t}(g)$ when $G_i = g$.

Heterogeneous Treatment Effects

Group-time average treatment effects on the treated:

$$ATT(g,t) = \mathbb{E}\big[Y_{i,t}(g) - Y_{i,t}(0)|G_i = g\big]$$

In group g and time t, what was the average effect of being treated?

Up to $(T-1)^2$ different ATTs \Rightarrow rich **heterogeneity!**

Problem: ATT are based on **unobservables** ⇒ **Assumptions**

Assumption 1: No anticipatory effect

Before treatment happens (for t < g),

$$\mathbb{E}\big[Y_{i,t}(g)|X,G_i=g\big]=\mathbb{E}\big[Y_{i,t}(0)|X,G_i=g\big]$$

Outcome doesn't respond in anticipation to the treatment.

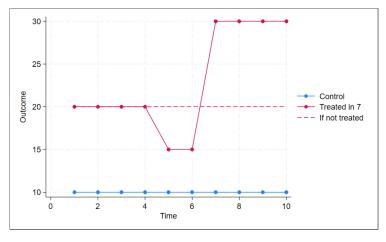
Anticipatory effects bias ATT estimation. For example:

 y_{it} : **Sales** by firms.

 D_{it} : 1 if county **reduces sales tax**, 0 otherwise.

 Firms may sell less today to grow inventories and sell more later.

Anticipatory effects bias DID



$$DID = (30 - 15) - 0 = 30 - 15 = 15 \neq 10 = ATT$$

Assumption 2: Parallel trends with never-treated

After treatment happens $(t \ge g)$,

$$\mathbb{E}\big[Y_{i,t}(0) - Y_{i,t-1}(0) | X, G_i = g\big] = \mathbb{E}\big[Y_{i,t}(0) - Y_{i,t-1}(0) | X, G_i = \infty\big]$$

If group had not been treated, outcome would move as in the never treated group.

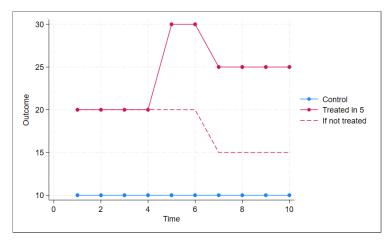
Violations of this assumption bias ATT estimation. For example:

y_{it}: **Sales** by firms.

Dit: 1 if county reduces sales tax, 0 otherwise.

 After decreasing the sales tax, some treated counties increase the corporate income tax.

Non-parallel trends effects bias DID



$$DID = (25 - 20) - 0 = 5 - 0 = 5 \neq 10 = ATT$$

Identification - Callaway, Sant'Anna (2021)

Theorem: Given some **technical conditions**, if **assumptions 1** and 2 hold

 \Rightarrow ATT(g, t) can be **estimated from the data**.

Result also holds if **parallel trends** with **not-yet treated groups**.

Option controlgroup lets you choose the control group

Outline

- 1 Heterogeneity in treatment effects
- 2 Model setup
- 3 Estimation in Stata
 - Regression adjusted
 - Inverse-probability weighting
 - Augmented inverse-probability weighting
 - Extended two-way fixed effects
- 4 Aggregation of treatment effects
- 5 Conclusion

Commands hdidregress and xthdidregress

Estimate ATTs that vary over group/cohort and over time:

- hdidregress for cross-sectional data
- xthdidregress for panel data.

Both commands come with four estimators:

- Callaway, Sant'Anna (2021):
 - Regression adjusted
 - Inverse-probability weighting
 - Augmented inverse-probability weighting
- Wooldridge (2021):
 - Extended two-way fixed effects

Regression adjusted estimator

Syntax:

```
xthdidregress ra (ovar [omvarlist]) (tvar) [if] [in] [weight], group(groupvar) [options]
```

ovar: continuous outcome of interest

omvarlist: covariates in the outcome model

tvar: binary treatment

groupvar: categorical variable indicating group level at which

treatment occurs. Required.

The RA estimator

$$ATT(g,t) = \mathbb{E}\left[\frac{G_g}{\mathbb{E}[G_g]}\left(Y_t - Y_{g-1} - m_{g,t}^{nev}(X)\right)\right]$$

 $m_{g,t}^{nev}(X)$: Difference in the control group conditional on X.

•
$$m_{g,t}^{nev}(X) = \mathbb{E}\big[Y_t - Y_{g-1}|X, G_i = \infty\big]$$

The term in orange is the difference in the differences between group g and the control group.

Heuristically

Algorithm:

- 1. keep if time is t or g-1
- 2. keep if cohort is g or C
- 3. generate $\Delta Y = Y_t Y_{g-1}$
- 4. regress ΔY on X for the group C and predict $\hat{m}_{g,t}^{nev}(X)$
- 5. generate $\widehat{TE} = \Delta Y \hat{m}_{g,t}^{nev}(X)$
- 6. summarize \widehat{TE} if cohort is g
- 7. Repeat for each g and t.

Influence function approach in Callaway & Sant'Anna (2021).

Estimation in Stata
Regression adjusted

Example: the RA estimator in Stata

Question: How is the number of registrations of a dog breed in the American Kennel Club affected by that dog breed being the protagonist in a movie?

Data

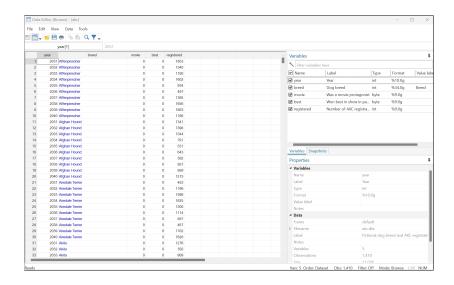
```
. webuse akc, clear
(Fictional dog breed and AKC registration data)
. describe
Contains data from https://www.stata-press.com/data/r18/akc.dta
Observations:
                       1,410
                                              Fictional dog breed and AKC registration data
   Variables:
                                              1 Feb 2023 14:23
Variable
              Storage
                        Display
                                  Value
                        format
                                  lahel
                                              Variable label
                 type
    name
vear
               int
                        %10.0g
                                              Vear
breed
               int
                       %34.0g
                                  Breed
                                              Dog breed
movie
               byte
                       %9.0g
                                              Was a movie protagonist
                                              Won best in show in past 10 years
best
               byte
                       %9.0g
registered
                                              Number of AKC registrations
               int
                        %9.0g
Sorted by: breed
```

Heterogeneous differences-in-differences in Stata

Estimation in Stata

Regression adjusted

Data



Staggered treatment

	Was a movie						
	st	protagon:					
Total	1	0	Year				
141	0	141	2031				
141	0	141	2032				
141	0	141	2033				
141	4	137	2034				
141	4	137	2035				
141	7	134	2036				
141	22	119	2037				
141	22	119	2038				
141	22	119	2039				
141	22	119	2040				
1,410	103	1,307	Total				

Regression adjusted

Output 1

```
. xtset breed year
Panel variable: breed (strongly balanced)
 Time variable: year, 2031 to 2040
         Delta: 1 unit
. xthdidregress ra (registered best) (movie), group(breed)
note: variable _did_cohort, containing cohort indicators formed by treatment variable movie and group variable breed, was added to the dataset.
Computing ATET for each cohort and time:
Cohort 2034 (9): ..... done
Cohort 2036 (9): ..... done
Cohort 2037 (9): ..... done
Treatment and time information
Time variable: vear
Time interval: 2031 to 2040
Control:
              did cohort = 0
Treatment:
              did cohort > 0
                    did cohort
Number of cohorts
Number of obs
                           1190
    Never treated
             2034
             2036
                            30
             2037
                           150
```

Output 2

Heterogeneous-treatment-effects regression

Number of obs Number of panels = 141

Estimator:

Regression adjustment Panel variable: breed

Treatment level: breed Control group: Never treated

(Std. err. adjusted for 141 clusters in breed)

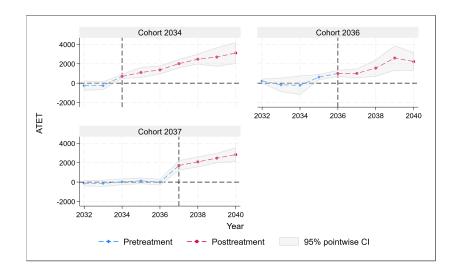
		Robust				
Cohort	ATET	std. err.	z	P> z	[95% conf.	interval]
2034						
year						
2032	-254.8927	266.1024	-0.96	0.338	-776.4439	266.6584
2033	-257.5329	217.9389	-1.18	0.237	-684.6852	169.6194
2034	701.1318	127.0935	5.52	0.000	452.0331	950.2304
2035	1099.044	282.0704	3.90	0.000	546.196	1651.892
2036	1367.632	225.8702	6.05	0.000	924.9343	1810.329
2037	2008.294	237.2396	8.47	0.000	1543.313	2473.275
2038	2472.624	278.2949	8.88	0.000	1927.176	3018.072
2039	2689.615	504.3324	5.33	0.000	1701.142	3678.088
2040	3110.97	568.916	5.47	0.000	1995.915	4226.025
2036						
year						
2032	216.0259	122.9107	1.76	0.079	-24.87472	456.9265
2033	-172.5154	372.0776	-0.46	0.643	-901.7741	556.7433
2034	-218.0495	504.5267	-0.43	0.666	-1206.904	770.8045
2035	621.033	156.1306	3.98	0.000	315.0227	927.0434
2036	999.0781	180.1055	5.55	0.000	646.0779	1352.078
2037	1003.333	250.5916	4.00	0.000	512.1829	1494.484
2038	1556.669	451.6914	3.45	0.001	671.3697	2441.967
2039	2590.674	662.6979	3.91	0.000	1291.81	3889.538
2040	2225.712	486.9917	4.57	0.000	1271.225	3180.198

Regression adjusted

Output 3

037						
year						
2032	-114.582	160.0972	-0.72	0.474	-428.3668	199.2028
2033	-127.9856	183.3941	-0.70	0.485	-487.4315	231.4603
2034	33.40901	168.0312	0.20	0.842	-295.9262	362.7442
2035	130.3495	166.2261	0.78	0.433	-195.4477	456.1468
2036	-10.48288	167.5059	-0.06	0.950	-338.7884	317.8226
2037	1717.016	268.5592	6.39	0.000	1190.65	2243.383
2038	2086.798	278.0215	7.51	0.000	1541.886	2631.71
2039	2473.611	268.186	9.22	0.000	1947.976	2999.246
2040	2835.117	378.6699	7.49	0.000	2092.938	3577.296

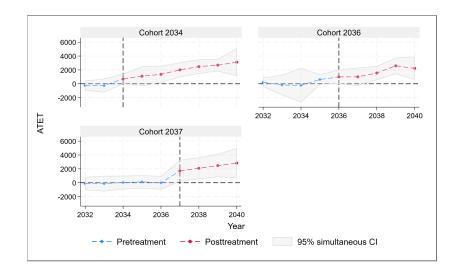
Graphical representation: estat atetplot



Estimation in Stata

Regression adjusted

Simultaneous confidence intervals: estat atetplot, sci



Inverse-probability weighting estimator

Syntax:

ovar: continuous outcome of interest

tmvarlist: covariates in the treatment model

tvar: binary treatment

groupvar: categorical variable indicating group level at which

treatment occurs. Required.

The IPW estimator

$$ATT(g,t) = \mathbb{E}\left[\left(\frac{G_g}{\mathbb{E}\left[G_g\right]} - \frac{\frac{p_g(X)}{1 - p_g(X)}}{\mathbb{E}\left[\frac{p_g(X)}{1 - p_g(X)}\right]}\right)\left(Y_t - Y_{g-1}\right)\right]$$

- $p_g(X)$: **Probability of being in group g** given X and given that observation is either in g or C.
 - Generalized propensity score.

The term in orange is the inverse-probability weight.

Heuristically

Algorithm:

- 1. keep if time is t or g-1
- 2. keep if cohort is g or C
- 3. generate $\Delta Y = Y_t Y_{g-1}$
- 4. logit $D_{i,t}$ on X and predict $\hat{p}_g(X)$
- 5. generate inverse-probability weights
- 6. summarize ΔY if cohort is g using weights in 5.
- 7. Repeat for each g and t.

Influence function approach in Callaway & Sant'Anna (2021).

Estimation in Stata

Laugmented inverse-probability weighting

Augmented inverse-probability weighting estimator

Syntax:

```
xthdidregress aipw (ovar [omvarlist]) (tvar [tmvarlist]) [if] [in] [weight],
group(groupvar) [options]
```

ovar: continuous outcome of interest
omvarlist: covariates in the outcome model

tmvarlist: covariates in the treatment model

tvar: binary treatment

groupvar: categorical variable indicating group level at which

treatment occurs. Required.

The AIPW estimator

$$ATT(g,t) = \mathbb{E}\left[\left(\frac{G_g}{\mathbb{E}\left[G_g\right]} - \frac{\frac{p_g(X)}{1 - p_g(X)}}{\mathbb{E}\left[\frac{p_g(X)}{1 - p_g(X)}\right]}\right)\left(Y_t - Y_{g-1} - m_{g,t}^{nev}(X)\right)\right]$$

 $p_g(X)$: **Probability of being in group g** given X and given that observation is either in g or C.

 $m_{g,t}^{nev}(X)$: Difference in the control group conditional on X.

Inverse-probability weight in orange. Augmented term in violet Doubly robust

Heuristically

Algorithm:

- 1. keep if time is t or g-1
- 2. keep if cohort is g or C
- 3. generate $\Delta Y = Y_t Y_{g-1}$
- 4. logit $D_{i,t}$ on X and predict $\hat{p}_g(X)$
- 5. generate inverse-probability weights
- 6. regress ΔY on X for the group C and predict $\hat{m}_{g,t}^{nev}(X)$
- 7. generate $\widehat{TE} = \Delta Y \hat{m}_{g,t}^{nev}(X)$
- 8. summarize \widehat{TE} if cohort is g using weights in 5
- 9. Repeat for each g and t.

Influence function approach in Callaway & Sant'Anna (2021).

Extended two-way fixed effects estimator

Syntax:

```
xthdidregress twfe (ovar [omvarlist]) (tvar) [if] [in] [weight],
group(groupvar) [options]
```

ovar: continuous outcome of interest

omvarlist: covariates in the outcome model

tvar: binary treatment

groupvar: categorical variable indicating group level at which

treatment occurs. Required.

The TWFE estimator

Consider the extended two-way fixed effects regression:

$$Y_{it'} = \eta + \sum_{g=q}^{T} \alpha_g G_{ig} + \sum_{t=q}^{T} \gamma_t f_t + \sum_{g=q}^{T} \sum_{t=q}^{T} \tau_{g,t} D_{it} G_{ig} f_t + \varepsilon_{it'}$$

q: first treatment period

 f_t : 1 if t' = t, 0 otherwise.

$$\tau_{g,t} = ATT(g,t)$$

Remarks:

Covariates would enter fully interacted in the model.

Outline

- 1 Heterogeneity in treatment effects
- 2 Model setup
- 3 Estimation in Stata
 - Regression adjusted
 - Inverse-probability weighting
 - Augmented inverse-probability weighting
 - Extended two-way fixed effects
- 4 Aggregation of treatment effects
- 5 Conclusion

Aggregating treatment effects

You might be interested in exploring heterogeneity just by:

- Cohort
- Time
- Exposure to treatment (event studies)
- Even no heterogeneity at all

Some post-estimation tools come handy in this case.

Suppose you've just fitted a heterogeneous DID model:

```
xthdidregress ra (registered best) (movie), group(breed)
```

Overall aggregation - estat aggregation, overall

Overall ATET					Number of o	bs = 1,410
		(Std.	err. adj	usted for	141 clusters	in breed)
registered	ATET	Robust std. err.	z	P> z	[95% conf.	interval]
movie (1 vs 0)	2093.318	122.5752	17.08	0.000	1853.075	2333.561

Aggregation by cohort

```
    estat aggregation, cohort graph sci
```

ATET over cohort

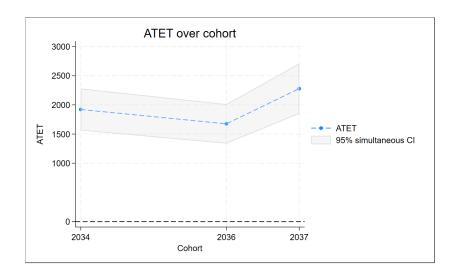
Number of obs = 1,410 Replications = 999

(Std. err. adjusted for 141 clusters in breed)

Cohort	Observed ATET	Bootstrap std. err.	Simult [95% conf.	
2034	1921.33	135.3652	1561.16	2281.5
2036	1675.093	120.9415	1353.3	1996.886
2037	2278.136	175.554	1811.034	2745.238

Note: Simultaneous confidence intervals provide inference across all aggregations simultaneously.

Aggregation by cohort - Graph



Aggregation by time

```
. estat aggregation, time graph sci
```

ATET over time

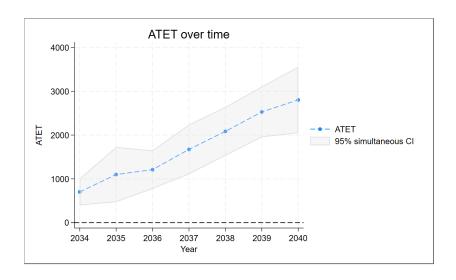
Number of obs = 1,410 Replications = 999

(Std. err. adjusted for 141 clusters in breed)

Time	Observed ATET	Bootstrap std. err.	Simulta [95% conf.	
2034	701.1318	120.8096	388.4994	1013.764
2035	1099.044	263.6189	416.8482	1781.24
2036	1209.68	172.2839	763.8421	1655.518
2037	1672.655	205.9913	1139.589	2205.722
2038	2084.658	216.9237	1523.301	2646.015
2039	2528.847	219.2507	1961.468	3096.227
2040	2802.171	287.8548	2057.258	3547.085

Note: Simultaneous confidence intervals provide inference across all aggregations simultaneously.

Aggregation by time - Graph



Aggregation by exposure

```
. estat aggregation, dynamic graph
```

Duration of exposure ATET

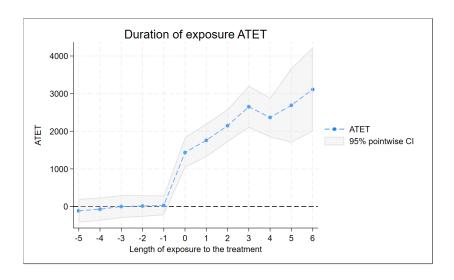
Number of obs = 1,410

(Std. err. adjusted for 141 clusters in breed)

	Robust						
Exposure	ATET	std. err.	Z	P> z	[95% conf.	interval]	
-5	-114.582	160.0972	-0.72	0.474	-428.3668	199.2028	
-4	-70.65034	156.3185	-0.45	0.651	-377.029	235.7283	
-3	9117242	153.0999	-0.01	0.995	-300.982	299.1585	
-2	12.79653	144.8216	0.09	0.930	-271.0486	296.6417	
-1	30.71473	132.8508	0.23	0.817	-229.668	291.0975	
0	1434.409	206.3277	6.95	0.000	1030.014	1838.804	
1	1759.461	224.0229	7.85	0.000	1320.385	2198.538	
2	2147.486	221.903	9.68	0.000	1712.564	2582.408	
3	2651.452	284.8928	9.31	0.000	2093.073	3209.832	
4	2366.805	267.4253	8.85	0.000	1842.661	2890.949	
5	2689.615	504.3324	5.33	0.000	1701.142	3678.088	
6	3110.97	568.916	5.47	0.000	1995.915	4226.025	

Note: Exposure is the number of periods since the first treatment time.

Aggregation by exposure - Graph



Outline

- 1 Heterogeneity in treatment effects
- 2 Model setup
- 3 Estimation in Stata
 - Regression adjusted
 - Inverse-probability weighting
 - Augmented inverse-probability weighting
 - Extended two-way fixed effects
- 4 Aggregation of treatment effects
- 5 Conclusion

Conclusion

- Heterogeneous DID is a powerful tool to better understand treatment effects.
- 2. Easy to implement in Stata 18:
 - xthdidregress for panel data
 - hdidregress for repeated cross section
 - Results displayed as tables or graphs.
- 3. Treatment effects can be aggregated by:
 - Cohort,
 - Time
 - Exposure to treatment
 - Overall

Conclusion

Thank you!

Questions?