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Selection and Endogeneity

The “selection problem” can refer to many distinct problems, but we examine
the case where the observational units select their own treatment based on
characteristics they “observe” and we do not (unobservables, in the parlance of
econometrics), the situation in almost all nonexperimental data, leading to
endogeneity of treatment and biased estimates of the impact of treatment. We
frequently have a similar problem in experiments with imperfect compliance,
where an experiment essentially generates observational data.

In a linear model, we can use panel methods to difference away unobservables
that do not vary along some dimension (e.g. person-level characteristics that
do not change over time), or instrumental variables (IV) and regression
discontinuity (RD) methods to deal with other unobservables (see Nichols
2007,2008 for an overview).

A regression with a binary outcome y presents special difficulties. Panel
methods typically require absurdly strong assumptions; the cross-sectional
instrumental variables solution may not be obvious, particularly when the
endogenous regressor of interest is also binary.
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Two Examples

Supplemental Nutrition Assistance Program (SNAP)

Suppose we are interested in the impact of food assistance on the incidence of
very low food security. If we compare those receiving SNAP (food stamps) to
nonrecipients, the recipients look worse off. If we match, reweight, or control
for observables, the recipients still look worse off. If we adopt a panel method,
those about to receive SNAP sometimes look worse off than those who just
started receiving it (Wilde and Nord 2005, Nord and Golla 2009), but this
could be due to the Ashenfelter (1978) dip: applicants tend to be those who
recently experienced a “transitory” dip in well-being and it may be that even if
those starting SNAP receipt had been denied benefits, they would be have been
better off in later months. Some kind of IV strategy seems in order (Ratcliffe
and McKernan 2010).
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Two Examples, cont.

Moving to Opportunity (MTO)

Suppose we are analyzing an experiment that gives public housing residents the
chance to move to a low-poverty neighborhood, and we want to see if that
affects their likelihood of employment three years later: the hypothesis is that
they are adversely affected by lack of job networks, and a new neighborhood
may solve that (Katz et al. 2000,2001; Kling et al. 2004; Kling et al. 2007).
However, only 40 percent of the cases offered the chance take it up, and we
want to know the impact of moving on later employment, not the impact of an
offer (the “intention to treat” analysis, or ITT, which simply compares the
mean outcomes of treatment and control groups). Those who are offered the
chance and take it are different in unobserved ways from those who are offered
the chance and don’t take it; an IV strategy is called for.
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Continuous X

Case with binary outcome and all endogenous regressors continuous: can simply
use official command ivprobit (but see e.g. Altonji, Ichimura, and Otsu 2008
and others on relaxing the normality, linearity, and additivity assumptions).

Description

ivprobit fits probit models where one or more of the regressors are
endogenously determined. By default, ivprobit uses maximum
likelihood estimation. Alternatively, Newey’s minimum chi-squared
estimator can be invoked with the twostep option. Both estimators
assume that the endogenous regressors are continuous and are not
appropriate for use with discrete endogenous regressors. See [R]
ivtobit for tobit estimation with endogenous regressors and [R]
probit for probit estimation when the model contains no endogenous
regressors.

Note: No mention of what to do with a binary outcome and a binary
endogenous variable!
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Binary regressor: general case

Suppose we have a set of individuals who receive treatment (R = 1) or not
(R = 0) and another variable (or set of variables) A that affects the probability
of treatment, and covariates X . Let Z = (X ,A). With a binary outcome Y, we
can write a “threshold model” for some unspecified functions µY and µR with
unobservable error terms υ and ε:

Yi = 1[(µY (Ri ,Xi ) > υi ]

Ri = 1[(µR (Zi ) > εi ]

This model does not encompass every model of interest (the “non-additive
errors” cases) but is already very general; Shaikh and Vytlacil (2011) and
others cited there consider various bounds on average treatment effects under
this general model. If we assume linearity of functions µY and µR and
homoskedastic bivariate normal errors for (υ, ε) ∼ N(0,Σ), we have the
bivariate probit of Heckman (1978). With linearity but weaker assumptions on
error distributions, various semiparametric estimators are possible.
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Generality

Assuming the “threshold model” or additively separable error, per Heckman
and Vytlacil (2005), also called “weak separability” of the observed regressors
and the unobserved error term, is shown by Shaikh and Vytlacil (2011) to be
equivalent to assuming that the expectations of potential outcomes are weakly
increasing in the error term (Chesher 2005), or assuming the monotonicity
restriction of Imbens and Angrist (1994).
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Binary regressor: simple case

If we do maintain linearity and normality, we can write

Yi = 1[(Ri d + Xi b) > υi ]

Ri = 1[(Zi g) > εi ]

(υ, ε) ∼ N(0,Σ)

where we normally assume there are some variables in Z not in X ; call these A
for variables that influence assignment to treatment but have no direct effect
on the outcome Pr(Y = 1), the bivariate probit analog of excluded
instruments. Then we can estimate in Stata with e.g.:

biprobit (Y=X R) (R=X A)

Austin Nichols Causal inference for binary regression
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Linear models

One approach is merely to estimate a linear probability model using IV (official
ivregress or ivreg2 from SSC), which is advocated by Angrist and Pischke
(2009:198-204) and supported by much real-world experience comparing partial
effects from more plausibly correct models to the partial effects from a linear
probability model (see e.g. Wooldridge 2008, Katz et al. 2000 p.28 fn.34). IV
has the advantage of easily interpreted coefficients measuring effects in the
probability metric, but for those who are used to effect sizes measured in terms
of log odds, it may be a less appealing option. In cases where response to
treatment varies across individuals, Imbens and Angrist (1994) and Angrist,
Imbens, and Rubin (1996) point out that using linear IV gives an estimate of
the average effect of treatment on the treated (ATT or TOT) for “compliers”
(those induced to get treatment by assignment to the treatment group, or who
have R=1 because A=1); see also Abadie (2003).
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Linear and nonlinear models

However, while the linear IV model is a consistent estimator of an average effect
of treatment, it is biased, and its small sample performance may be inferior to
a correctly specified maximum likelihood model. The maximum-likelihood
bivariate probit or biprobit approach (Heckman 1978) is simplest, and we will
focus on it in simulations to follow, but there are also gmm and
semiparametric solutions allowing heteroskedastic and nonnormal errors.
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Common views on biprobit v. ivregress

Angrist and Pischke (2009:201) typify one form of received wisdom on biprobit
and ivregress:

“Bivariate probit probably qualifies as harmless in the sense that it’s
not very complicated and easy to get right using packaged software
routines.”

But constrast Freedman and Sekhon (2010). Angrist and Pischke (2009:202)
again:

“Bivariate probit and other models of this sort can be used to
estimate unconditional average causal effects and/or effects on the
treated. In contrast, 2SLS does not promise you average causal
effects, only local average causal effects.”
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Experiments

The best case scenario for any instrumental variables approach is an
experimental design with incomplete takeup of the treatment by the group
assigned treatment, and no treatment in the control group.

Since assignment status is randomly assigned, the assignment dummy A is
guaranteed to be a valid instrument, and its interaction with any exogenous
variables will also be a valid instrument. However, it may still be a weak
instrument, if takeup is low, but more importantly: the power of any
instrumental variables strategy may be very low.

Power is a huge problem for IV strategies generally; too often researchers make
a significant coefficient insignificant by instrumenting and then conclude the
true effect is zero (even when the original confidence interval is entirely
contained in the new IV confidence interval). For an experimental design, we
typically have the opportunity to examine power before we collect the data–and
to conduct simulations to determine which design is likely to have the greatest
power!
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biprobit

The biprobit approach, thanks to its stronger parametric assumptions, also
allows the calculation of various probabilities using the bivariate normal
distribution, for various marginal effects. However, note that one of its
assumptions is a constant treatment effect d , not di , so that average treatment
effects for any subpopulation are assumed to be the same as for any other
subpopulation or the population (dgp). Still, one can calculate marginal effect
of treatment for a subpopulation of “compliers” as an estimate of LATE. Note
that the sample estimates of ATE or LATE are estimators for two estimands
each: the sample ATE/LATE and the population ATE/LATE.

Whether we characterize our problem as estimating a sample or population
ATE (or LATE if true mean treatment effects vary by subsample) seemingly
does not affect our choice of estimator, but the mean squared error of an
estimator is defined relative to one of these true effects; the rankings could
change depending on our estimand.
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Calculating ATE

How do we calculate the marginal effect of treatment after biprobit? Three
“obvious” approaches: use margins, use predict to get probabilities, or use
binormal() with predicted linear indices. The last is more correct, but all
should give essentially the same answer.
biprobit (y=x R) (R=x A)

margins, dydx(R) predict(pmarg1) force

loc ATEm=el(r(b),1,1)

predict double xb2, xb2

preserve

ren R TR

g R=0

predict double p0, pmarg1

predict double xb0, xb1

replace R=1

predict double p1, pmarg1

predict double xb1, xb1

g double dp=p1-p0

su dp, mean

loc ATE1=r(mean)

su dp if TR==1, mean

loc TOT1=r(mean)

loc r=e(rho)

gen double pdx=(binormal(xb1,xb2,‘r’)-binormal(xb0,xb2,‘r’))/normal(xb2) if TR==1

su pdx, mean

loc TOT2=r(mean)

qui replace pdx=normal(xb1)-normal(xb0)

su pdx, mean

loc ATE2=r(mean)

* ATE2 same as ATE1 above
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Simulation

Simulation setup: one (or more) excluded binary instrument(s), covariate(s),
various correlation structures, sample sizes, random coefficients,
heteroskedasticity.

mat c=(1,.5,.5 \ .5,1,0 \ .5,0,1)

drawnorm x e z, n(1000) corr(c) clear seed(2)

qui su e

replace e=e/r(sd)

g u=rnormal()

g A=uniform()<.5

g R=A*(x+u>0)

g y=(R/2+e)>0

g y1=R/2+e>0

g y0=e>0

g dy=y1-y0
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ATE=normal(.5)-.5=0.191

ta R dy if A==1, row nokey

| dy

R | 0 1 | Total

-----------+----------------------+----------

0 | 241 0 | 241

| 100.00 0.00 | 100.00

-----------+----------------------+----------

1 | 208 49 | 257

| 80.93 19.07 | 100.00

-----------+----------------------+----------

Total | 449 49 | 498

| 90.16 9.84 | 100.0

ta R y, row nokey

| y

R | 0 1 | Total

-----------+----------------------+----------

0 | 419 324 | 743

| 56.39 43.61 | 100.00

-----------+----------------------+----------

1 | 49 208 | 257

| 19.07 80.93 | 100.00

-----------+----------------------+----------

Total | 468 532 | 1,000

| 46.80 53.20 | 100.00
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MSE

Estimating population ATE, compare MSE of ivprobit for binary treatment,
linear IV, and biprobit, with and without controls for a covariate X that affects
treatment takeup probability and the outcome:
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MSE

With random coefficients (SD=.5):
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MSE

With random coefficients (SD=1):
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MSE

With heteroskedasticity:
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Size of tests

Similar MSE in many cases; patterns are similar for ATE and ATT/TOT,
sample and population estimands. Some indications of finite-sample bias away
from zero in the bivariate probit and toward zero for linear IV. Same pattern
reported in Angrist and Pischke (2009:203).
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Size of tests

Bias and MSE are low for various estimators, and the power curve looks similar
for each. But it bottoms out well above the nominal size, in the range 17 to 20
percent for a test with nominal size 10 percent and in the range 7 to 12
percent for a test with nominal size 5 percent.

I.e. standard errors are underestimated; bootstrap standard errors are also too
small (in many of these settings we should expect no improvement from
bootstrap—imagine resampling with no continuous covariates and stratifying
by A and R). We will reject a true null hypothesis at much higher rates than
our nominal alpha using any of these estimators. One easy solution: adopt a
lower size of test, say 3 percent instead of 5.
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Alternatives

Why would you not want to use biprobit, aside from feeling uncomfortable
about the strong distributional and functional form assumptions? One reason is
that it is a pain to estimate; it frequently takes 10 or 20 times as long as other
similar models and Freedman and Sekhon (2010) disparage the ability of Stata
and R to find the maximum of the likelihood.

From my own experience estimating millions of biprobit regressions, I can offer:

I Do use the difficult option, which can result in a (circa) threefold speed
improvement.

I Don’t use the from option, which can negate the above speed
improvement.

I Man, would biprobit benefit from some kind of specialized maximizer—it
is slow!
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Alternatives

Another reason not want to use biprobit is that you suspect endogeneity not
only in a single binary regressor; or you want to interact that regressor with
exogenous covariates, creating additional endogenous covariates.

There is a natural generalization of biprobit with more than one endogenous
variable: cmp (Roodman 2009) can handle a variety of models using a
maximum likelihood approach. As with biprobit, one must make strong
functional form and distributional assumptions with this approach.

There is also a gmm approach, if one defines the proper population moments
(Wilde 2008). Or a Bayesian approach (McCarthy and Tchernis 2010). Either
can handle multiple endogenous covariates of various types, with additional
assumptions.

One can also use a semiparametric model; we will examine these in the single
binary regressor case, but they are more easily extended to multiple types of
regressors; see esp. Abrevaya, Hausman, and Khan (2009).
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Heteroskedasticity

The effect of even modest heteroskedasticity on biprobit could be disastrous,
but my simulations indicate that biprobit is remarkably robust to modest
heteroskedasticity, and ivprobit slightly less so. Interestingly, biprobit and
ivprobit are both also remarkably robust to variability in the treatment effect
(random coefficients) in my simulations.

That is, under heteroskedasticity and random coefficients, in the parameter
space I searched, the results are all qualitatively similar, though MSE is higher
when required assumptions are violated.
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Nonnormal errors

Chiburis, Das, and Lokshin (2011) run simulations similar to mine, and find
that when there are no covariates, biprobit outperforms IV for sample sizes
below 5000, and with a continuous covariate, biprobit outperforms IV in all of
their simulations. They note that biprobit performs especially well when the
treatment probability is close to 0 or 1, where linear methods are more likely to
produce infeasible estimates. They further note that results of Bhattacharya,
Goldman, and McCaffrey (2006), who find biprobit robust to non-normality of
error terms, do not hold up for all parameter values, but offer “no clear
guidance on the parameter values under which the expected bias will be worse.”
They also recommend a score test due to Murphy (2007) as a specification test
(see also Chiburis 2010b; Lucchetti and Pigini 2011), which rejects the model
when there is excess kurtosis or skewness in the error distributions. The
impact of pretesting is an important avenue for future research.
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Semiparametric estimators

If we are willing to assume linearity in the basic threshold model, so we have
two linear index functions Xb and Zg , but we are not willing to assume a
homoskedastic bivariate normal error vector, There are a number of
semiparametric estimators, e.g. Abadie (2003), Chiburis (2010a), Shaikh and
Vytlacil (2011), Abrevaya, Hausman, and Khan (2009), some offering point
identification and some bounds on treatment effects. There is also a
semiparametric double-index model proposed by Klein, Shen, and Vella (2010),
who follow Klein and Vella (2005) using a similar semiparametric strategy for a
treatreg type estimator, in turn based on a trick from Klein and Spady (1993):

E [y |X ] = Pr(y = 1|Xb) = Pr(y = 1)
f1(Xb)|y=1

f (Xb)

so that the ratio of two nonparametric estimates of the density of the linear
index Xb gives an estimate of the probability. The Klein and Spady (1993)
estimator attains the Semiparametric Efficiency Bound. See also equation 3(6)
in Efron (2003) and Fix and Hodges (1951), or [MV] discrim knn.
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Higher-order kernels

Usually this literature relies on “bias-reducing kernels” or “higher-order kernels”
which have some desirable theoretical properties but can exhibit atrocious
small-sample properties, e.g. because they produce negative estimates for a
density or a probability. The work by Klein et al. instead uses “local
smoothing” with a regular kernel (i.e. a density function symmetric around
zero) and trimming (the trimming essentially removes cases where the
denominator of that ratio of nonparametric estimates of the density of the
linear index Xb may be close to zero).
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Higher-order kernels illustrated
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Semiparametric estimators MSE

The semiparametric estimators, because they do not assume homoskedastic
bivariate normal errors, perform better when those assumptions are violated,
and perform about as well when the assumptions are true. However, there are
not huge differences between any of the estimators, in my simulations.
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Identification without instruments

A similar semiparametric estimator of a double index model can produce a
version of IV with a binary endogenous regressor (the treatreg environment)
where exclusion restrictions are not required (Klein and Vella 2005,2010), but
we instead assume that the functional form of heteroskedasticity is in a family
of linear index functions. Here we assume Xb is the linear index that mean R
depends on (E(R|X ) = F (Xb)), but that the error variance is exp(Zg), so the
two linear indices are again Xb and Zg . An ordinary 2SLS model can include
residuals from the first stage only if they are functions of variables excluded
from the second stage, but the Klein and Vella (2005,2010) estimator relies on
heteroskedasticity for identification. This may sound a bit like a heckman
selection or treatreg model where we rely on functional form for identification,
and no additional excluded variables that determine selection. But can offer
substantially improved performance if the assumption on the functional form of
heteroskedasticity is correct.
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Weak IV

There is now a voluminous literature on the dangers of weak instruments,
mainly inflated size (overrejection of the null) and bias, due to e.g. Bound,
Jaeger, and Baker (1993, 1995), Staiger and Stock (1997), Stock, Wright, and
Yogo (2002), and Stock and Yogo (2005). But we have little evidence related
to nonlinear models. Since the tests proposed by Stock and Yogo (2005)
characterize correlations in the first stage, it is plausible (though unproven)
that they work well for any model with a linear first stage and continuous
excluded instruments. What about a nonlinear first stage, such as the probit of
our current example? Binary excluded instruments?

In our prototypical “best” case scenario, we cannot run a first stage probit,
because A=0 implies R=0. That is, no one gets treated who was not assigned
to treatment, so a probit cannot be used for the general case to assess the
strength of instruments. Various alternatives are possible, but the linear model
is a useful starting point.
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Half assigned to treatment, half take it up

. ta A R

| R

A | 0 1 | Total

-----------+----------------------+----------

0 | 500 0 | 500

1 | 250 250 | 500

-----------+----------------------+----------

Total | 750 250 | 1,000

. ivreg2 y (R=A)

(output omitted)

------------------------------------------------------------------------------

Weak identification test (Cragg-Donald Wald F statistic): 499.000

Stock-Yogo weak ID test critical values: 10% maximal IV size 16.38

15% maximal IV size 8.96

20% maximal IV size 6.66

25% maximal IV size 5.53

Source: Stock-Yogo (2005). Reproduced by permission.

------------------------------------------------------------------------------

Sargan statistic (overidentification test of all instruments): 0.000

(equation exactly identified)

------------------------------------------------------------------------------

Instrumented: R

Excluded instruments: A

------------------------------------------------------------------------------
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Weak IV for biprobit

Note that in the linear model, if the first-stage coefficient for A is one half and
the constant is zero, the Wald F statistic is N/2-1, linear in sample size.
Linearity of the test statistic in sample size makes it appealing for ex ante
power analysis.

Note, second, that the critical values for that first-stage Wald F statistic
determine the expected actual size of a nominal 5 percent test. The critical
value is not 10, as many people still believe, based on work from 15 years ago
(Staiger and Stock 1997). Instead, to have an expected size of not more than
10 percent with a nominal size of 5 percent, we need a first-stage Wald F
statistic of at least 16 (Stock and Yogo 2005), but this seems like too low a
standard; perhaps we really should be aiming for 6 or 7 percent.

Third, those critical values were derived via simulation for a single continuous
endogenous variable, and a single continuous excluded instrument, and
therefore are wholly inappropriate for our present case. We already know that a
first-stage Wald F statistic on the order of 500 gives an expected size roughly
twice the nominal size in many of the binary cases.
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Weak IV for biprobit

Note that limiting bias of IV to some percentage of ordinary regression is not
the binding constraint on instrument strength here; rather the incorrect size is
the main issue. If the first-stage Wald F statistic were an adequate measure of
weak instruments, then we could run simulations in order to say: if we want to
ensure size is no more than q percent with a nominal size of 10 percent, with v
excluded binary instruments, then we should observe linear first stage Wald test
statistics for excluded instruments on the order of f (q, v), where f (·) is
determined by simulation.

Unfortunately, in simulations I have run, the rejection rate is not smoothly
declining toward the nominal size in first stage Wald test statistics, and there
are no reliable critical values. A new measure of weak instruments for a binary
first stage with binary instruments seems to be needed.

Austin Nichols Causal inference for binary regression



Introduction
Model choice

Strength of identification
Conclusions
References

Weak instruments
Power analysis

Power analysis for experimental designs

The usual approach to power analysis for social experiments, e.g. in Orr
(1999:115-120), referenced in e.g. Kling et al. (2004, p.14 fn.32), is to
compute the IV estimate as the ratio of an Intention-To-Treat (ITT) parameter
estimate (from a regression of the outcome on the assignment status dummy)
divided by the proportion treated (the parameter from a regression of a
treatment status dummy on the assignment status dummy), assumed
nonstochastic. The ratio comes from the Wald estimator for IV. This is
inappropriate in the binary setting: if we are planning to use biprobit for
analysis, it should used to analyze power. Researchers will commonly claim
that the TOT estimate is twice the ITT estimate where takeup was one half,
which implies they will use a linear model to analyze binary outcomes and
binary treatments. Those extending the ratio approach of IV to power analysis
also typically assume that the takeup rate is a fixed proportion, when it is
clearly stochastic. See for an example Orr (1999:115-120), the MTO literature
(Kling et al. 2004, p.14 fn.32), and Quigley and Raphael (2008) on the power
of the MTO experiment.
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Power analysis for biprobit

It should be clear that calculations of power, or minimum detectable effects, or
required sample sizes, for an experiment or quasi-experiment with a binary
outcome and a binary treatment R instrumented by A, must take into account
the analysis design. It is straightforward to specify assumed effect sizes and
sample sizes, estimation and test and alpha (size of test), then calculate power
in a simulation. For example, suppose we want to achieve power of 80 percent,
using biprobit, and we anticipate we will assign treatment to half of our sample
and only half of those assigned to treatment take it up. We can trace out the
empirical rejection rates.
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Power analysis for biprobit, rejection rates

0
.2

.4
.6

.8
1

0 .5 1 1.5 2
Effect size: ln Odds Ratio

Dependence of rejection rate of no effect on effect size for sample of 1000 obs

Dependence of rejection rate of no effect on effect size for sample of 1400 obs

Dependence of rejection rate of no effect on effect size for sample of 1800 obs

Dependence of rejection rate of no effect on effect size for sample of 2200 obs

Dependence of rejection rate of no effect on effect size for sample of 2600 obs

Dependence of rejection rate of no effect on effect size for sample of 3000 obs
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Power analysis for biprobit, minimum detectable effects

Then interpolate to construct minimum detectable effects at various sample
sizes (assumes use of analytic SE, but bootstrap is similar):
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Conclusions

The first bit of advice in regards to binary regression with a binary endogenous
variable is usually one of:

I Use linear IV, and you’ll get robust consistent estimates of the ATT.

I Use bivariate probit, and you’ll get efficient estimates of the ATE.

Most econometricians would probably prefer a more plausibly correct model
that requires fewer assumptions than either of the above.

My simulations indicate that many alternative models give remarkably precise
estimates, with low MSE for both sample and population treatment effects.
However, I find that the standard errors tend to be dramatically
underestimated, even assuming a well-behaved homoskedastic normal error
term, if instruments are not exceptionally strong. This leads to overrejection of
the null in each model, and we should approach inference in the binary case
very cautiously.
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