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Stata network analysis

Introduction

What is network analysis?
I Network analysis is an application of network theory, which is a

subfield of graph theory, and is concerned with analyzing relational
data.

I Some questions network analysis tries to address is how important,
or how “central” are the actors in the network and how
concentrated is the network.

I Example usages of network analysis include:
I Determining the importance of a web page using Google’s PageRank.
I Examining communication networks in intelligence and computer

security.
I Solving transportation problems that involve flow of traffic or

commodities.
I Addressing the too-connected-to-fail problem in financial networks.
I Analyzing social relationships between individuals in social network

analysis.
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Outline
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Stata network analysis

Modeling relational data

Definitions

Graph model

I A graph model representing a network G = (V ,E ) consists of a set
of vertices V and a set of edges E .

I |V | equals the number of vertices.
I |E | equals the number of edges.

I An edge is defined as a link between two vertices i and j , not
necessarily distinct, that has vertex i on one end and vertex j on the
other.

I An edge may be directed or undirected and may also be weighted
with differing edge values or have all equal edge values of one in
which case the network is said to be unweighted.
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Stata network analysis

Modeling relational data

Definitions

Special cases

I Special types of vertices and edges exist for which standard graph
algorithms are not designed to handle or there simply does not exist
routines to accommodate such types. Thus the following types of
vertices and edges are currently excluded from analysis:

I Isolated vertex - a vertex that is not attached to any edges.
I Parallel edges - two or more edges that connect the same pair of

vertices.
I Self-loop - an edge connecting vertex i to itself.
I Zero or negative weighted edge.
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Stata network analysis

Modeling relational data

Storing data

Storing relational data

I A variety of storage types are available for capturing relational data:
I Adjacency matrix
I Adjacency list

I Core SGL algorithms use this structure.

I Edge list
I Most suited for storing relational data in Stata, as it allows the use of

options such as if exp and in range.

I Plus others such as the Compressed Sparse Row format for efficient
storage and access.
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Stata network analysis

Modeling relational data

Storing data

Example storage types

1

2

3

4

Undirected unweighted network.
Drawn using NETPLOT (Corten,
2011).

Adjacency matrix Adjacency list Edge list




0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0




Vertex Neighbor(s)

1 2
2 1 3 4
3 2
4 2



1 2
2 3
4 2
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Stata network analysis

Modeling relational data

Using joinby

Creating an edge list using joinby (1)
I We illustrate a method of creating an edge list using the joinby

command and example datasets used in [D] Data-Management
Reference Manual, child.dta and parent.dta.

I Directed edges can represent parent vertices providing care to child
vertices.

. use child, clear
(Data on Children)

. list

family~d child_id x1 x2

1. 1025 3 11 320
2. 1025 1 12 300
3. 1025 4 10 275
4. 1026 2 13 280
5. 1027 5 15 210

1

. use parent, clear
(Data on Parents)

. list

family~d parent~d x1 x3

1. 1030 10 39 600
2. 1025 11 20 643
3. 1025 12 27 721
4. 1026 13 30 760
5. 1026 14 26 668

6. 1030 15 32 684

1
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Stata network analysis

Modeling relational data

Using joinby

Creating an edge list using joinby (2)

. sort family_id

. joinby family_id using child

. list parent_id child_id

parent~d child_id

1. 12 4
2. 12 1
3. 12 3
4. 11 4
5. 11 3

6. 11 1
7. 14 2
8. 13 2

1

1

3

4

11

12

2

13 14

1

3

4

11

12

2

13 14

Drawn using NETPLOT (Corten, 2011).
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Matrix representations

Matrix representations
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Stata network analysis

Matrix representations

Adjacency matrix

Adjacency matrix

I Adjacency matrix A for unweighted networks is defined as a
|V | × |V | matrix with Aij entries being equal to one if an edge
connects vertices i and j and zero otherwise.

I Aii entries are set to zero.

I Matrix A is symmetric if the network is undirected.
I For directed networks, rows of matrix A represent outgoing edges

and columns represent incoming edges.
I The convention of denoting Xij entries as an edge from i to j is

adopted for all matrices.

I For weighted networks, Aij entries are equal to the weight of the
edge connecting vertices i and j .
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Stata network analysis

Matrix representations

Distance matrix

Distance matrix

I Distance matrix D is defined as a |V | × |V | matrix with Dij entries
being equal to the length of the shortest path between vertices i and
j .

I A path is defined as a way of reaching vertex j starting from vertex i
using a combination of edges that do not go through a particular
vertex more than once.

I If no path connects vertices i and j , Dij is set to missing.
I Signifies what is sometimes referred to as an infinite path.

I Dii is set to zero.

I For undirected networks, matrix D is symmetric.
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Stata network analysis

Matrix representations

Path matrix

Path matrix

I Path matrix P is defined as a |V | × |V | matrix with Pij entries being
equal to the number of shortest paths between vertices i and j .

I If no paths exist between vertices i and j , Pij is set to zero.

I Pii is set to one.

I P matrix is symmetric for undirected networks.
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Stata network analysis

Matrix representations

Example

Example matrices

1

2

3

4

Undirected unweighted network.
Drawn using NETPLOT (Corten,
2011).

Adjacency matrix Distance matrix Path matrix




0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0







0 1 2 2
1 0 1 1
2 1 0 2
2 1 2 0







1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
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Stata network analysis

Centrality measures

Centrality measures
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Stata network analysis

Centrality measures

Degree centrality

Degree centrality (1)
Undirected network

I Degree centrality measures the importance of a vertex by the
number of connection the vertex has if the network is unweighted,
and by the aggregate of the weights of edges connected to the
vertex if the network is weighted (Freeman, 1978).

I For an undirected network, degree centrality for vertex i is defined as

1

|V | − 1

∑

j(6=i)

Aij (1)

where the leading divisor is adjusted for the exclusion of the j = i
term.
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Stata network analysis

Centrality measures

Degree centrality

Degree centrality (2)
Directed network

I Directed networks may entail vertices having different number of
incoming and outgoing edges, and thus we have out-degree and
in-degree centrality.

I Out-degree centrality for vertex i is defined similarly to equation (1).

I For in-degree, we simply transpose the adjacency matrix:

1

|V | − 1

∑

j( 6=i)

A′ij . (2)

17 / 41
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Centrality measures

Degree centrality

Example

Undirected unweighted network Centrality comparison

A (0.33)

B (0.33)

C (0.50)D (0.33)E (0.50)

F (0.33)

G (0.33)

Centrality Vertex

A
B
F C
G E D

Degree 0.33 0.50 0.33
Closeness
Betweenness
Eigenvector
Katz-Bonacich

Degree centrality in parentheses. Figure from Jackson (2008). Drawn using NETPLOT
(Corten, 2011).
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Centrality measures

Closeness centrality

Closeness centrality

I Closeness centrality provides higher centrality scores to vertices that
are situated closer to members of their component, or the set of
reachable vertices, by taking the inverse of the average shortest
paths as a measure of proximity (Freeman, 1978).

I That is, closeness centrality for vertex i is defined as

(|V | − 1)∑
j(6=i) Dij

, (3)

which reflects how vertices with smaller average shortest path
lengths receive higher centrality scores than those that are situated
farther away from members of their component.
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Centrality measures

Closeness centrality

Example

Undirected unweighted network Centrality comparison

A (0.40)

B (0.40)

C (0.55)D (0.60)E (0.55)

F (0.40)

G (0.40)

Centrality Vertex

A
B
F C
G E D

Degree 0.33 0.50 0.33
Closeness 0.40 0.55 0.60
Betweenness
Eigenvector
Katz-Bonacich

Closeness centrality in parentheses. Figure from Jackson (2008). Drawn using NETPLOT
(Corten, 2011).
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Centrality measures

Betweenness centrality

Betweenness centrality

I Betweenness centrality bestows larger centrality scores on vertices
that lie on a higher proportion of shortest paths linking vertices
other than itself.

I Let Pij denote the number of shortest paths from vertex i to j .

I Let Pij(k) denote the number of shortest paths from vertex i to j
that vertex k lies on.

I Then following Anthonisse (1971) and Freeman (1977), betweenness
centrality measure for vertex k is defined as

∑

ij :i 6=j ,k 6∈ij

Pij(k)

Pij
. (4)

I To normalize (4), divide by (|V |−1)(|V |−2), the maximum number
of paths a given vertex could lie on between pairs of other vertices.
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Centrality measures

Betweenness centrality

Example

Undirected unweighted network Centrality comparison

A (0.00)

B (0.00)

C (0.53)D (0.60)E (0.53)

F (0.00)

G (0.00)

Centrality Vertex

A
B
F C
G E D

Degree 0.33 0.50 0.33
Closeness 0.40 0.55 0.60
Betweenness 0.00 0.53 0.60
Eigenvector
Katz-Bonacich

Normalized betweenness centrality in parentheses. Figure from Jackson (2008). Drawn using
NETPLOT (Corten, 2011).
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Stata network analysis

Centrality measures

Eigenvector centrality

Eigenvector centrality (1)

I Eigenvector centrality can provide an indication on how important a
vertex is by having the property of being large if a vertex has many
neighbors, important neighbors, or both (Bonacich, 1972).

I For an undirected network with adjacency matrix A, centrality of
vertex i , xi , can be expressed as

xi = λ−1
∑

j

Aijxj (5)

which can be rewritten as

λx = Ax. (6)

I The convention is to use the eigenvector corresponding to the
dominant eigenvalue of A.
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Stata network analysis

Centrality measures

Eigenvector centrality

Eigenvector centrality (2)

I For directed networks, the general concern is in obtaining a
centrality measure based on how often a vertex is being pointed to
and the importance of neighbors associated with the incoming edges.

I Thus with a slight modification to equation (6), eigenvector
centrality is redefined as

λx = A′x (7)

where A′ is the transposed adjacency matrix.
I There are several shortcomings to the eigenvector centrality:

I A vertex with no incoming edges will always have centrality of zero.
I Vertices with neighbors that all have zero incoming edges will also

have zero centrality since the sum in equation (5),
∑

j Aijxj , will not
have any terms.

I The Katz-Bonacich centrality, a variation of the eigenvector
centrality, seeks to address these issues.
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Centrality measures

Eigenvector centrality

Example

Undirected unweighted network Centrality comparison

A (0.33)

B (0.33)

C (0.45)D (0.38)E (0.45)

F (0.33)

G (0.33)

Centrality Vertex

A
B
F C
G E D

Degree 0.33 0.50 0.33
Closeness 0.40 0.55 0.60
Betweenness 0.00 0.53 0.60
Eigenvector 0.33 0.45 0.38
Katz-Bonacich

Eigenvector centrality in parentheses. Figure from Jackson (2008). Drawn using NETPLOT
(Corten, 2011).
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Centrality measures

Katz-Bonacich centrality

Katz-Bonacich centrality
I The additional inclusion of a free parameter (also referred to as a

decay factor) and a vector of exogenous factors into equation (7):
I Avoids the exclusion of vertices with zero incoming edges.
I Allows connection values to decay over distance.

I Attributed to Katz (1953), Bonacich (1987), and Bonacich and
Lloyd (2001).

I Centrality measure is defined as a solution to the equation

x = αA′x + β (8)

where α is the free parameter and β is the vector of exogenous
factors which can vary or be constant across vertices.

I For the centrality measure to converge properly, absolute value of α
must be less than the absolute value of the inverse of the dominant
eigenvalue of A.

I A positive α allows vertices with important neighbors to have higher
status while a negative α value reduces the status.
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Centrality measures

Katz-Bonacich centrality

Example

Undirected unweighted network Centrality comparison

A (3.99)

B (3.99)

C (5.06)D (4.34)E (5.06)

F (3.99)

G (3.99) Centrality Vertex

A
B
F C
G E D

Degree 0.33 0.50 0.33
Closeness 0.40 0.55 0.60
Betweenness 0.00 0.53 0.60
Eigenvector 0.33 0.45 0.38
Katz-Bonacich* 3.99 5.06 4.34

* Maximum α = 0.43 (0.33 used). Exogenous
factors set to one for all vertices.

Katz-Bonacich centrality in parentheses. Figure from Jackson (2008). Drawn using
NETPLOT (Corten, 2011). 27 / 41
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Clustering coefficient

Clustering coefficient
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Stata network analysis

Clustering coefficient

Introduction

Clustering coefficient

I Clustering coefficient is one way of gauging how tightly connected a
network is.

I The general idea is to consider transitive relations:
I If vertex j is connected to vertex i , and i is connected to k, then j is

also connected to k .

I Global clustering coefficients provide indication on the degree of
concentration of the entire network and consists of overall and
average clustering coefficients.

I Overall clustering coefficient is equal to all observed transitive
relations divided by all possible transitive relations in the network.

I Average clustering coefficient involves applying the definition of
overall clustering coefficient at the vertex level, then averaging across
all the vertices.
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Stata network analysis

Clustering coefficient

Overall

Overall clustering coefficient

I For an undirected unweighted adjacency matrix A, overall clustering
coefficient is defined as

co(A) =

∑

i ;j 6=i ;k 6=j ;k 6=i

AjiAikAjk

∑

i ;j 6=i ;k 6=j ;k 6=i

AjiAik

(9)

where the numerator represents the sum over i of all closed triplets
in which transitivity holds, and the denominator represents the sum
over i of all possible triplets.
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Stata network analysis

Clustering coefficient

Local and average

Local and average clustering coefficient

I With a slight modification in notation, local clustering coefficient for
vertex i is defined as

ci (A) =

∑

j 6=i ;k 6=j ;k 6=i

AjiAikAjk

∑

j 6=i ;k 6=j ;k 6=i

AjiAik

(10)

which leads to the average clustering coefficient:

ca(A) =
1

|V |
∑

i

ci (A). (11)

I By convention, ci (A) = 0 if vertex i has zero or only one link.
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Clustering coefficient

Generalized methods

Generalized clustering coefficient
I Building upon the works of Barrat et al. (2004), Opsahl and

Panzarasa (2009) propose generalized methods.
I Clustering coefficients for vertex i based on weighted adjacency

matrix W and corresponding unweighted adjacency matrix A are
calculated as

ci (W) =

∑

j 6=i ;k 6=j ;k 6=i

ωAjk

∑

j 6=i ;k 6=j ;k 6=i

ω
(12)

where ω equals (Wji + Wik)/2 for arithmetic mean,
√
Wji ×Wik for

geometric mean, max(Wji ,Wik) for maximum, and min(Wji ,Wik)
for minimum.

I For unweighted networks, W = A and the four types of clustering
coefficients are all equal.
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Clustering coefficient

Generalized methods

Example

Undirected unweighted network

A (1.00)

B (1.00)

C (0.33)D (0.00)E (0.33)

F (1.00)

G (1.00)

Average clustering coefficient: 0.67
Overall clustering coefficient: 0.55

Local clustering coefficients in parentheses. Figure from Jackson (2008). Drawn using
NETPLOT (Corten, 2011).
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Stata implementation

Stata implementation
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Stata implementation

Using network and netsummarize

network and netsummarize commands

I We demonstrate the use of
network and netsummarize
commands on a dataset of
15th-century Florentine
marriages from Padgett and
Ansell (1993) to compute
betweenness and eigenvector
centrality measures.

I network generates vectors of
betweenness and eigenvector
centralities.

I netsummarize merges
vectors to Stata dataset.

15th-century Florentine marriages
Edge list stored as Stata dataset

. use florentine_marriages, clear
(15th century Florentine marriages
> (Padgett and Ansell 1993))

. list

v1 v2

1. Peruzzi Castellan
2. Peruzzi Strozzi
3. Peruzzi Bischeri
4. Castellan Strozzi
5. Castellan Barbadori

6. Strozzi Ridolfi
7. Strozzi Bischeri
8. Bischeri Guadagni
9. Barbadori Medici

10. Ridolfi Medici

11. Ridolfi Tornabuon
12. Medici Tornabuon
13. Medici Albizzi
14. Medici Salviati
15. Medici Acciaiuol

16. Tornabuon Guadagni
17. Guadagni Lambertes
18. Guadagni Albizzi
19. Albizzi Ginori
20. Salviati Pazzi

1
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Stata implementation

Using network and netsummarize

Computing network centrality measures

. // Generate betweenness centrality.

. network v1 v2, measure(betweenness) name(b,replace)

Breadth-first search algorithm (15 vertices)
----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
...............
Breadth-first search algorithm completed

Betweenness centrality calculation (15 vertices)
----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
...............
Betweenness centrality calculation completed
matrix b saved in Mata

. netsummarize b/((rows(b)-1)*(rows(b)-2)),
> generate(betweenness) statistic(rowsum)

. // Generate eigenvector centrality.

. network v1 v2, measure(eigenvector) name(e,replace)
matrix e saved in Mata

. netsummarize e, generate(eigenvector) statistic(rowsum)

1
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Stata implementation

Using network and netsummarize

Data description (1)
. describe, full

Contains data from florentine_marriages.dta
obs: 20 15th century Florentine marriages

> (Padgett and Ansell 1993)
vars: 10 10 Dec 2010 09:45
size: 1,160 (99.9% of memory free)

storage display value
variable name type format label variable label

v1 str9 %9s
v2 str9 %9s
betweenness_source

float %9.0g rowsum of Mata matrix
b/((rows(b)-1)*(rows(b)-2))

betweenness_target
float %9.0g rowsum of Mata matrix

b/((rows(b)-1)*(rows(b)-2))
eigenvector_source

float %9.0g rowsum of Mata matrix e
eigenvector_target

float %9.0g rowsum of Mata matrix e

Sorted by:
Note: dataset has changed since last saved

1
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Stata implementation

Using network and netsummarize

Data description (2)
. list v1 v2 betweenness_source betweenness_target eigenvector_source eigenve
> ctor_target

v1 v2 betwee~e betwee~t eigenv~e eigenv~t

1. Peruzzi Castellan .021978 .0549451 .2757304 .2590262
2. Peruzzi Strozzi .021978 .1025641 .2757304 .3559805
3. Peruzzi Bischeri .021978 .1043956 .2757304 .2828001
4. Castellan Strozzi .0549451 .1025641 .2590262 .3559805
5. Castellan Barbadori .0549451 .0934066 .2590262 .2117053

6. Strozzi Ridolfi .1025641 .1135531 .3559805 .3415526
7. Strozzi Bischeri .1025641 .1043956 .3559805 .2828001
8. Bischeri Guadagni .1043956 .2545788 .2828001 .2891156
9. Barbadori Medici .0934066 .521978 .2117053 .4303081

10. Ridolfi Medici .1135531 .521978 .3415526 .4303081

11. Ridolfi Tornabuon .1135531 .0915751 .3415526 .3258423
12. Medici Tornabuon .521978 .0915751 .4303081 .3258423
13. Medici Albizzi .521978 .2124542 .4303081 .2439561
14. Medici Salviati .521978 .1428571 .4303081 .1459172
15. Medici Acciaiuol .521978 0 .4303081 .1321543

16. Tornabuon Guadagni .0915751 .2545788 .3258423 .2891156
17. Guadagni Lambertes .2545788 0 .2891156 .0887919
18. Guadagni Albizzi .2545788 .2124542 .2891156 .2439561
19. Albizzi Ginori .2124542 0 .2439561 .0749227
20. Salviati Pazzi .1428571 0 .1459172 .0448134

1
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Stata implementation

Using network and netsummarize

Network visualization

Betweenness centrality Eigenvector centrality

Acciaiuol (0.00)

Albizzi (0.21)

Barbadori (0.09)

Bischeri (0.10)

Castellan (0.05)

Ginori (0.00)

Guadagni (0.25)

Lambertes (0.00)

Medici (0.52)

Pazzi (0.00)

Peruzzi (0.02)

Ridolfi (0.11)
Salviati (0.14)

Strozzi (0.10)

Tornabuon (0.09)

Acciaiuol (0.13)

Albizzi (0.24)

Barbadori (0.21)

Bischeri (0.28)

Castellan (0.26)

Ginori (0.07)

Guadagni (0.29)

Lambertes (0.09)

Medici (0.43)

Pazzi (0.04)

Peruzzi (0.28)

Ridolfi (0.34)
Salviati (0.15)

Strozzi (0.36)

Tornabuon (0.33)

Centrality scores in parentheses. Drawn using NETPLOT (Corten, 2011).
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Conclusion

Conclusion

I Different types of matrices, centrality measures, and clustering
coefficients can be generated from information retrieved from
relational data.

I The command network provides access to SGL functions that
generate network measures based on edge list stored in Stata.

I The postcomputation command netsummarize allows the user to
generate standard and customized network measures which are
merged into Stata dataset.

I Future developments include:
I More efficient algorithms.
I Designing functions for additional network measures.
I Optimizing SGL in Mata.
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