
Mata, the missing manual

Mata, the missing manual

William Gould

President and Head of Development
StataCorp LP

July 2011, Chicago

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 1 / 94

Mata, the missing manual

Introduction

Mata, the missing manual
Before we begin, . . .

Apologies to Pogue Media and O’Reilly Media,

creators of the fine Missing Manual series,

“the book that should have been in the box”.

(Unrelated to Mata, their web site is http://missingmanuals.com)

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 2 / 94

Mata, the missing manual

Introduction

Introduction

Mata is Stata’s matrix programming language.

StataCorp provides detailed documentation but has failed to
provide any guidance as to when and how to use the language.
This talk addresses StataCorp’s omission. I will discuss

How to include Mata code in Stata ado-files.
When to include Mata code (and when not to).
Mata’s broad concepts.

This talk is the prelude to the Mata Reference Manual.

This talk will be advanced.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 3 / 94

Mata, the missing manual

Introduction

Mata Matters (?)

Cute title of Stata Journal column, title fashioned by Nicholas
J. Cox; content by me.

Why does Mata matter? Because it is an important
development language for Stata.

StataCorp uses it.
sem, mi, xtmixed, etc. were developed using it.

We at StataCorp can better and more quickly write code
using it.

You can, too.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 4 / 94

Mata, the missing manual

Introduction

Problem with Mata Reference Manual
The problem with the Mata Reference manual is that . . .

It tells you all the details

It never tells you how to put it all together.

It gets into the details before it even motivates you.

It’s written at a high level.

. . . and because of that, we developers at StataCorp love this
manual. It gets right to the details that are easy to forget.

We use it constantly.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 5 / 94

Mata, the missing manual

Introduction

Outline

1 Mechanics of including Mata code

We start gently, at the end of NC-151.
We end up discussing big—really big—systems.

2 Appropriate and inappropriate use of Mata

3 Mata concepts

4 Example

5 Back to concepts, this time advanced

6 and Debugging!

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 6 / 94

Mata, the missing manual

Mechanics

do-file

Do-file
script1.do:

version 12

clear all

. . .
(Stata code)
. . .

Called a script.
Used for data management, analysis, housekeeping.
Should do just one of those tasks.
Should be re-runnable.
Exception: housekeeping (deleting old files).
Another do-file will run all the scripts in order.
Stored in c:/myproject.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 7 / 94

Mata, the missing manual

Mechanics

do-file with Stata program

Do-file with Stata program
script2.do:

version 12

clear all

. . .
program myutility

. . .
end

myutility . . .
. . .

Programs are typically short, 1–15 lines.
Programs typically include no parsing; they are specific to the
problem at hand.
Programs often used to perform the same operation on many
variables.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 8 / 94

Mata, the missing manual

Mechanics

do-file with in-line Mata

Do-file with in-line Mata
script3.do:

version 12

clear all

. . .
mata:

. . .
end

. . .

Same as using Mata interactively.
Better: You can modify and debug (do-file is re-runnable).
See “Mata Matters” in SJ for examples.
New putmata and getmata commands make it easy.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 9 / 94

Mata, the missing manual

Mechanics

do-file with Mata function

script4.do:

version 12

clear all

. . .
mata:

function myutility(...)

{

. . .
}

myutility("var1")

myutility("var2")

end

. . .

More advanced form of do-file with in-line Mata, or do-file with
Stata program.
Mata function might take arguments, but regardless, it may have
hardcoded variable names, etc., for the problem at hand.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 10 / 94

Mata, the missing manual

Mechanics

do-files, summary

Do-files, summary

Do-files are used for specific project.

Create a project directory (folder).

Keep your data and do-files in it.

(Perhaps you keep the original data somewhere else.)

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 11 / 94

Mata, the missing manual

Mechanics

Ado-file (simple)

Ado-file (simple)
mycmd.ado:

*! version 1.0.0 wwg 9sep2010

program mycmd

version 12

. . .
end

mycmd does something useful across projects.
Stored in PERSONAL, e.g., C:/ado/personal/
We’re really programming now.

It is the generalization across projects that distinguishes real programs from
mere do-files.

Serious and sophisticated work is sometimes put into project-specific do-files.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 12 / 94

Mata, the missing manual

Mechanics

Ado-file with private subroutine(s)

Ado-file with private subroutine(s)
mycmd.ado:

*! version 1.0.0 wwg 9sep2010

program mycmd

version 12

. . .
mysubroutine . . .
. . .

end

program mysubroutine

. . .
end

l

Always good style, even for simple problems.
Most programmers use too few subroutines.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 13 / 94

Mata, the missing manual

Mechanics

Aside 1

Aside: How to write ado-files, step 1 of 3
mycmd.do:

clear all

program mycmd

version 12

. . .
end

program mysubroutine

. . .
end

sysuse auto /* test subroutines */

mysubroutine ...

assert ...

mycmd ...

/* test mycmd */

assert ...

. . .

l

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 14 / 94

Mata, the missing manual

Mechanics

Aside 1

1 To write mycmd.ado, first write mycmd.do

2 Save in c:/where I’m working/

3 Make it work

4 Don’t even try to test mycmd until subroutines known to work

5 Keep adding to tests at bottom.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 15 / 94

Mata, the missing manual

Mechanics

Aside 1

Aside: How to write ado-files, step 2 of 3
Split mycmd.do into mycmd.ado and testmycmd.do:

mycmd.ado:

*! version 1.0.0 wwg 9sep2010

program mycmd

version 12

. . .
end

program mysubroutine

. . .
end

(File testmycmd.do on next slide.)

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 16 / 94

Mata, the missing manual

Mechanics

Aside 1

Aside: How to write ado-files, step 2 of 3
mycmd.do:

see previous screen

testmycmd.do:

clear all

sysuse auto /* test mycmd */

mycmd ...

assert ...

. . .

Split mycmd.do into two files
Save in c:/where I’m working/
Make it work

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 17 / 94

Mata, the missing manual

Mechanics

Aside 1

Aside: how to write ado-files, step 3 of 3

1 Move mycmd.ado to PERSONAL (e.g., c:/ado/personal/)

2 Move testmycmd.do to c:/mycerts/

3 Add “do testmycmd” to c:/mycerts/master.do

4 Make it work

5 Optionally remove c:/where I’m working/

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 18 / 94

Mata, the missing manual

Mechanics

transition

Back to the main topic . . .
We left off with Ado-file with private subroutine, meaning an
ado-file subroutine.

Next is Ado-file with Mata subroutine.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 19 / 94

Mata, the missing manual

Mechanics

Ado-file with Mata subroutine

Ado-file with Mata subroutine
*! version 1.0.0 wwg 9sep2010

program mycmd

version 12

. . .
mata: myfunction(...)

. . .
end

version 12

mata:

... myfunction(...)

{
. . .

}
end

(. . . finally)

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 20 / 94

Mata, the missing manual

Mechanics

Ado-file with Mata subroutine

Ado-file with Mata subroutine
I will show you a real example:

Macro varlist contains a list of variables. It might be very,
very long.

I want to display “using . . . ”

If 1 variable, I want “using a”

If 2 variables, I want “using a and b”

if 3 variables, I want “using a, b and c”

. . .

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 21 / 94

Mata, the missing manual

Mechanics

Ado-file with Mata subroutine

Ado-file with Mata subroutine
mycmd.do:

*! version 1.0.0 wwg 9sep2010

program mycmd

version 12

...

mata: st local("toprint", printable("‘varlist’"))

display as txt "{p 0 4 2}"
display as txt "using ‘toprint’"

...

end

version 12

mata:

string scalar printable(string scalar s)

{
. . . next slide . . .

}
end

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 22 / 94

Mata, the missing manual

Mechanics

Ado-file with Mata subroutine

mycmd.ado:

. . . top of file on previous slide . . .

mata:

string scalar printable(string scalar s)

{
real scalar i

string rowvector tokens

string scalar toret

tokens = tokens(s)

if (cols(tokens)<2) return(strtrim(s))

toret = tokens[1]

for (i=2; i<cols(tokens); i++) {
toret = toret + ", " + tokens[i]

}
return(toret + " and " + tokens[cols(tokens)])

}
end

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 23 / 94

Mata, the missing manual

Mechanics

Ado-file with Mata subroutine

Remember the outline . . .
*! version 1.0.0 wwg 9sep2010

program mycmd

version 12

. . .
mata: myfunction(...)

. . .
end

version 12

mata:

... myfunction(...)

{
. . .

}
end

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 24 / 94

Mata, the missing manual

Mechanics

Ado-file with Mata subroutine

Sometimes you don’t need the bottom half!
mycmd.ado:

*! version 1.0.0 wwg 9sep2010

program mycmd

version 12

. . .
mata: st local("macroname", ...)

. . .

. . . ‘macroname’. . .

. . .
end

We use Mata in the ado-file.
We have no Mata subroutine . . .
. . . because we use only Mata built-in functions!

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 25 / 94

Mata, the missing manual

Mechanics

Ado-file with Mata subroutine

No bottom half, example
A popular question on Statalist is

“I have a macro that’s too long for Stata’s string-manipulation
functions. What do I do?”

Answer: Use Mata. Macros are not too long for Mata’s
string-manipulation functions.

Example: ”I need to reverse the string”

(Yes, I know there is a reverse() function among the extended macro
functions.)

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 26 / 94

Mata, the missing manual

Mechanics

Ado-file with Mata subroutine

Solution, reverse the string:
mycmd.ado:

*! version 1.0.0 wwg 9sep2010

program mycmd

version 12

. . .
mata: st local("reversed", strreverse("‘yourmacro’"))

. . .

. . . ‘reversed’. . .

. . .
end

strreverse() is a built-in function of Mata.
Stata macro reversed now contains the reversed contents of
yourmacro.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 27 / 94

Mata, the missing manual

Mechanics

Ultimate ado-file

The ultimate ado-file

The ultimate ado-file contains

The main routine
Stata subroutines
Mata subroutines
Mata sub-subroutines

Sub-subroutines are Mata routines called by other Mata
routines.

We have not discussed when to use Stata and when to use
Mata; we will.

Your ado file should look like this . . .

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 28 / 94

Mata, the missing manual

Mechanics

Ultimate ado-file

Ultimate ado-file
mycmd.ado:

*! version 1.0.0 wwg 9sep2010

program mycmd

version 12 ...

end

Stata subroutines go here

version 12

mata:

Mata subroutines go here

Mata sub-subroutines go here

end

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 29 / 94

Mata, the missing manual

Mechanics

How to write the ultimate ado-file

How to write the ultimate ado-file
Create mycmd.ado as shown above, and create

mycmd.do:

clear all

set matastrict on

do mycmd.ado

sysuse auto, clear

mata: /* test Mata [sub-]subroutines */

assert(...)

. . .
end

/* test Stata subroutines */

assert

/* test mycmd */

assert

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 30 / 94

Mata, the missing manual

Mechanics

How to write the ultimate ado-file

How to write the ultimate ado-file

mycmd.ado and mycmd.do are stored in
c:/where I’m working/

You don’t have to set matastrict on, but if you do not,
budget more time for writing and debugging.

Look at the notes produced by Mata when it compiles your
code, and eliminate them. The notes are not just style issues.
They often indicate conceptual errors on your part.

Sometimes Mata is mistaken; you do intend what Mata has
flagged. Learn about #pragma; see help [m2] pragma. You
can suppress individual notes.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 31 / 94

Mata, the missing manual

Mechanics

Systems

Systems

A system is a set of commands that work together to solve
one problem.

Stata’s mi command is an example of a system.

A system has one or more of the following characteristics

multiple entry points
states
common subroutines

We will postpone discussion of systems to end of talk and
hope we get to it.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 32 / 94

Mata, the missing manual

Substantive

Transition

End mechanics / begin substantive

End of the mechanical comments
. . . but see Systems at end

We begin the substantive
. . . and talk exclusively about Mata.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 33 / 94

Mata, the missing manual

Substantive

When to use which

When to use which

Stata is better for . . .

Parsing standard syntax
Data management
Scripting existing Stata commands
Outputting (usually)
Posting saved results

Mata is better for . . .

Parsing non-standard syntax (including files)
Performing matrix operations
Non-scripting applications
Outputting (when complicated)

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 34 / 94

Mata, the missing manual

Substantive

When to use which

When to use which

Stata is a better scripting language than Mata

Mata is a better programming language than Stata

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 35 / 94

Mata, the missing manual

Substantive

Scripting vs. programming

Scripting versus programming

1 A script is a sequence of steps to be followed one after the
other.

2 In real life, scripts are read and executed by intelligent people.

3 Stata is not intelligent, but it is more intelligent than Mata.
Stata can understand big, broad instructions, along with a few
detailed instructions.

4 With the exception of matrices, Mata doesn’t understand big,
broad instructions. Mata understands details and makes you
spell them out, sometimes in painful detail.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 36 / 94

Mata, the missing manual

Substantive

Scripting vs. programming

Scripting versus programming

1 A script is a sequence of steps to be followed one after the
other.

2 In real life, scripts are read and executed by intelligent people.

3 Stata is not intelligent, but it is more intelligent than Mata.
Stata can understand big, broad instructions, along with a few
detailed instructions.

4 With the exception of matrices, Mata doesn’t understand big,
broad instructions. Mata understands details and makes you
spell them out, sometimes in painful detail.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 36 / 94

Mata, the missing manual

Substantive

Scripting vs. programming

Mata makes you spell out details
Mata makes you spell out details and in return . . .

Mata is fast. In part, that’s because you put the details in the
most efficient order.

Mata can do things Stata can’t do; all you have to do is spell
them out.

Mata has features to make spelling out the details easier.

You need to learn them.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 37 / 94

Mata, the missing manual

Substantive

Scripting vs. programming

When to use which II
I said, “Most programmers use too few subroutines”.

In Stata, there’s an execution-time cost to subroutines.

In Mata, that cost is near zero.

If you are not using subroutines in Stata for reasons of speed,

that’s a sign you should be using Mata.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 38 / 94

Mata, the missing manual

Substantive

Scripting vs. programming

Scripting vs. programming, example
Linear regression

In Stata it’s easy.

Tell Stata you want to regress one variable on others
and over what observations.

In Mata,

You must not only provide the formula,
you must provide lots more; see next slide

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 39 / 94

Mata, the missing manual

Substantive

Scripting vs. programming

Scripting vs. programming, linear regression
Think of the conversation with Mata as going

1 What do you mean by an observation?

2 What do you mean by a variable?

3 Where shall we find this thing you call“data” that is a
collection of “observations” on “variables”?

4 How shall we keep track of these “variables”?
I love integers. Names, you say? Are those like strings?
I have really long strings. Really, however, integers are better.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 40 / 94

Mata, the missing manual

Substantive

Scripting vs. programming

Scripting vs. programming, linear regression
Think of the conversation with Mata as going

1 What do you mean by an observation?

2 What do you mean by a variable?

3 Where shall we find this thing you call“data” that is a
collection of “observations” on “variables”?

4 How shall we keep track of these “variables”?
I love integers. Names, you say? Are those like strings?
I have really long strings. Really, however, integers are better.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 40 / 94

Mata, the missing manual

Substantive

Scripting vs. programming

Scripting vs. programming, linear regression
Think of the conversation with Mata as going

1 What do you mean by an observation?

2 What do you mean by a variable?

3 Where shall we find this thing you call“data” that is a
collection of “observations” on “variables”?

4 How shall we keep track of these “variables”?
I love integers. Names, you say? Are those like strings?
I have really long strings. Really, however, integers are better.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 40 / 94

Mata, the missing manual

Substantive

Scripting vs. programming

Scripting vs. programming, linear regression
What makes the conversation tolerable

Mata can call Stata . . .

. . . so we can use Stata’s concepts.

Still, we specify more details. For instance, . . .

In Stata, you seldom think of row and column numbers.
Row and column numbers are all that Mata understands.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 41 / 94

Mata, the missing manual

Substantive

Mata concepts

Mata concepts

Forget about Stata macros and locals.
Just thinking about them will will mislead you.

Everything is a variable in Mata.
Mata variables have nothing to do with Stata variables.

If it’s not a variable, it’s a function.
There are no other alternatives.

Functions accept arguments (variables).
Functions return results (which you store in variables).

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 42 / 94

Mata, the missing manual

Substantive

Mata concepts

Mata concepts

Forget about Stata macros and locals.
Just thinking about them will will mislead you.

Everything is a variable in Mata.
Mata variables have nothing to do with Stata variables.

If it’s not a variable, it’s a function.
There are no other alternatives.

Functions accept arguments (variables).
Functions return results (which you store in variables).

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 42 / 94

Mata, the missing manual

Substantive

Mata concepts

Mata concepts

Forget about Stata macros and locals.
Just thinking about them will will mislead you.

Everything is a variable in Mata.
Mata variables have nothing to do with Stata variables.

If it’s not a variable, it’s a function.
There are no other alternatives.

Functions accept arguments (variables).
Functions return results (which you store in variables).

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 42 / 94

Mata, the missing manual

Substantive

Mata concepts

Mata concepts

Forget about Stata macros and locals.
Just thinking about them will will mislead you.

Everything is a variable in Mata.
Mata variables have nothing to do with Stata variables.

If it’s not a variable, it’s a function.
There are no other alternatives.

Functions accept arguments (variables).
Functions return results (which you store in variables).

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 42 / 94

Mata, the missing manual

Substantive

Mata concepts

Mata concepts, continued
It’s a variable or it’s a function, ergo . . .

There are no subroutines, programs, etc., . . .
that role is played by functions.

Functions accept arguments (variables).
Functions optionally return results (which you store in
variables).
A function that returns nothing is said to “return void” or be a
“void function”. What everybody else calls a subroutine.

There are no commands in Mata;
that role is played by functions.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 43 / 94

Mata, the missing manual

Substantive

Mata concepts

Mata concepts, continued
It’s a variable or it’s a function, ergo . . .

There are no subroutines, programs, etc., . . .
that role is played by functions.

Functions accept arguments (variables).
Functions optionally return results (which you store in
variables).
A function that returns nothing is said to “return void” or be a
“void function”. What everybody else calls a subroutine.

There are no commands in Mata;
that role is played by functions.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 43 / 94

Mata, the missing manual

Substantive

Mata concepts

Mata concepts, continued
It’s a variable or it’s a function, ergo . . .

There are no subroutines, programs, etc., . . .
that role is played by functions.

Functions accept arguments (variables).
Functions optionally return results (which you store in
variables).
A function that returns nothing is said to “return void” or be a
“void function”. What everybody else calls a subroutine.

There are no commands in Mata;
that role is played by functions.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 43 / 94

Mata, the missing manual

Substantive

Mata concepts

Mata concepts, continued
It’s a variable or it’s a function, ergo . . .

There is no understanding of Stata by Mata.
That role is played by functions.

Mata has functions that can access Stata.
Use the functions by filling in variables that you pass to them.
Get back results in variables. . .
. . . which you then detail how to use.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 44 / 94

Mata, the missing manual

Substantive

Mata concepts

Mata concepts, continued
It’s a variable or it’s a function, ergo . . .

There is no understanding of Stata by Mata.
That role is played by functions.

Mata has functions that can access Stata.
Use the functions by filling in variables that you pass to them.
Get back results in variables. . .
. . . which you then detail how to use.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 44 / 94

Mata, the missing manual

Substantive

Mata concepts

Mata concepts, continued

Mata variables can contain

numbers (called real and complex)
characters (called strings)
memory addresses (called pointers)
collections of variables (called structures)
collections of functions and variables (called classes)

Regardless of that, Mata variables can be scalars, vectors, row
vectors, column vectors, or matrices.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 45 / 94

Mata, the missing manual

Substantive

Mata concepts

Mata concepts, continued

Mata variables can contain

numbers (called real and complex)
characters (called strings)
memory addresses (called pointers)
collections of variables (called structures)
collections of functions and variables (called classes)

Regardless of that, Mata variables can be scalars, vectors, row
vectors, column vectors, or matrices.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 45 / 94

Mata, the missing manual

Substantive

Mata concepts

Mata concepts, continued

Mata variables can contain numbers, . . .

Mata variables can be scalars, . . .

This means you could have a matrix
each element of which is a collection of functions and variables

each variable of which is a vector of collections of variables
each variable of which is a number or string

You will never want to do that.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 46 / 94

Mata, the missing manual

Substantive

Use of Mata concepts

Use of Mata concepts

Mata functions that you write to be called by Stata typically
return void:

Sometimes they return string scalars and, in the ado-file, you
code mata: st local("macname", ...) to store result in
macname.

Usually, however, I write functions that return void.
I make the first argument of the function a string scalar
containing the name of a Stata macro, scalar, or matrix in
which the result is to be returned, and code the st local() in
my function.

Sometimes I hard code Stata macro, scalar or matrix names in
the Mata function, so the function has no arguments. That’s
considered bad style because it leads to hard-to-find bugs.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 47 / 94

Mata, the missing manual

Substantive

Use of Mata concepts

Use of Mata concepts

Mata functions that you write to be called by Stata typically
return void:

Sometimes they return string scalars and, in the ado-file, you
code mata: st local("macname", ...) to store result in
macname.

Usually, however, I write functions that return void.
I make the first argument of the function a string scalar
containing the name of a Stata macro, scalar, or matrix in
which the result is to be returned, and code the st local() in
my function.

Sometimes I hard code Stata macro, scalar or matrix names in
the Mata function, so the function has no arguments. That’s
considered bad style because it leads to hard-to-find bugs.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 47 / 94

Mata, the missing manual

Substantive

Use of Mata concepts

Use of Mata concepts

Mata functions that you write to be called by Stata typically
return void:

Sometimes they return string scalars and, in the ado-file, you
code mata: st local("macname", ...) to store result in
macname.

Usually, however, I write functions that return void.
I make the first argument of the function a string scalar
containing the name of a Stata macro, scalar, or matrix in
which the result is to be returned, and code the st local() in
my function.

Sometimes I hard code Stata macro, scalar or matrix names in
the Mata function, so the function has no arguments. That’s
considered bad style because it leads to hard-to-find bugs.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 47 / 94

Mata, the missing manual

Substantive

Use of Mata concepts

Use of Mata concepts

Mata functions that you write to be called by Stata typically
return void:

Sometimes they return string scalars and, in the ado-file, you
code mata: st local("macname", ...) to store result in
macname.

Usually, however, I write functions that return void.
I make the first argument of the function a string scalar
containing the name of a Stata macro, scalar, or matrix in
which the result is to be returned, and code the st local() in
my function.

Sometimes I hard code Stata macro, scalar or matrix names in
the Mata function, so the function has no arguments. That’s
considered bad style because it leads to hard-to-find bugs.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 47 / 94

Mata, the missing manual

Substantive

Use of Mata concepts

Use of Mata concepts

Ignore pointer variables unless you are programming
something taught in a computer science course.

Ignore structures and classes in most “simple” programming
applications. Think of variables as containing numbers or
strings.

If you are programming a system, however,
you should at least be using structures and perhaps classes.

If you do not, you are making your life more difficult than it
needs to be.
Use classes only if you already know something about them or
want to learn about them. Otherwise, structures will suffice.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 48 / 94

Mata, the missing manual

Substantive

Use of Mata concepts

Use of Mata concepts

Ignore pointer variables unless you are programming
something taught in a computer science course.

Ignore structures and classes in most “simple” programming
applications. Think of variables as containing numbers or
strings.

If you are programming a system, however,
you should at least be using structures and perhaps classes.

If you do not, you are making your life more difficult than it
needs to be.
Use classes only if you already know something about them or
want to learn about them. Otherwise, structures will suffice.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 48 / 94

Mata, the missing manual

Substantive

Use of Mata concepts

Use of Mata concepts

Ignore pointer variables unless you are programming
something taught in a computer science course.

Ignore structures and classes in most “simple” programming
applications. Think of variables as containing numbers or
strings.

If you are programming a system, however,
you should at least be using structures and perhaps classes.

If you do not, you are making your life more difficult than it
needs to be.
Use classes only if you already know something about them or
want to learn about them. Otherwise, structures will suffice.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 48 / 94

Mata, the missing manual

Substantive

Advanced concepts

Structures will suffice

Structures are a general programming concept that are not
unique to Mata.

A structure would be better called a box.

You have 10 things laid out on a table which you hand to
assistants to help you perform a task.
For some tasks, assistants need only a few of the things.
For other tasks, they need them all.
You would save yourself time if you put all ten things in a box
and handed the box to your assistants.
In addition, you couldn’t possibly forget to hand over
something an assistant needs.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 49 / 94

Mata, the missing manual

Substantive

Advanced concepts

Structures, example
Here’s an example of a structure (box) that you might find useful
if you were programming linear regression:

struct regression problem

{
string scalar lhs var name

string rowvector rhs var names

real scalar first obs no, last obs no

}

If variable rp were a struct regression problem

rp.lhs var name would be name of the dependent variable
rp.rhs var names would be names of the independent variables

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 50 / 94

Mata, the missing manual

Substantive

Advanced concepts

Structures, example
struct regression problem

{
string scalar lhs var name

string rowvector rhs var names

real scalar first obs no, last obs no

}
...

struct regression problem scalar rp

rp contains four variables.

We can treat rp as if it were a single variable because it is a single
variable.

If we had a routine called get regression results(), we might call it
with a single variable, get regression results(rp).

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 51 / 94

Mata, the missing manual

Substantive

Advanced concepts

Structures, example
rp is a struct regression problem scalar.

We have written get regression results(rp).

We discover that we left something out of our structure!

So we add it:

struct regression problem

{
string scalar lhs var name

string rowvector rhs var names

real scalar first obs no, last obs no

real scalar include intercept // <- new
}

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 52 / 94

Mata, the missing manual

Substantive

Advanced concepts

Structures, example
rp is a struct regression problem scalar.

We have written get regression results(rp).

We discovered that we left something out of our structure!

We added a new variable to our structure.

Now,

We need to modify get regression results() to use new
variable rp.include intercept, but that’s all we need to do!

We do not have to back and change the number of arguments
get regression results() and other functions receive, nor find
all the calls to all the functions and modify them, etc.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 53 / 94

Mata, the missing manual

Substantive

Advanced concepts

Structures, example
Let’s define another structure to hold regression results:

struct regression results

{
real vector b

real matrix V

real scalar r squared

string scalar lhs var name

string rowvector rhs var names

}

Then we could code

rr = get regression results(rp)

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 54 / 94

Mata, the missing manual

Substantive

Advanced concepts

I started off by mentioning how conceptually weak Mata is.

struct regression problem {
string scalar lhs var name

string rowvector rhs var names

real scalar first obs no, last obs no

real scalar include intercept

}

struct regression results {
real vector b

real matrix V

real scalar r squared

string scalar lhs var name

string rowvector rhs var names

}

rr = get regression results(rp)

Not weak at all.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 55 / 94

Mata, the missing manual

Substantive

transition

Debugging code

End of Substantive comments

We begin debugging

We will debug the following Mata routine (which has no bugs):

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 56 / 94

Mata, the missing manual

How to debug code

Debugging code

Debugging a Mata routine
string scalar printable(string scalar s)

{
real scalar i

string rowvector tokens

string scalar toret

tokens = tokens(s)

if (cols(tokens)<2) return(strtrim(s))

toret = tokens[1]

for (i=2; i<cols(tokens); i++) {
toret = toret + ", " + tokens[i]

}
return(toret + " and " + tokens[cols(tokens)])

}

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 57 / 94

Mata, the missing manual

How to debug code

Debugging code

Debugging a Mata routine
string scalar printable(string scalar s)

{
...(declarations omitted)...

"printable() begins; p0, s is"

s

tokens = tokens(s)

if (cols(tokens)<2) return(strtrim(s))

"p2, tokens are"; tokens

toret = tokens[1]

for (i=2; i<cols(tokens); i++) {
toret = toret + ", " + tokens[i]

}

"p3"

return(toret + " and " + tokens[cols(tokens)])

}

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 58 / 94

Mata, the missing manual

How to debug code

Debugging code

Debugging a Mata routine
What I did

I introduced messages that we will see when we execute the
subroutine.

I exploit the fact that in Mata the result of any expression
which is not stored is displayed.

The messages are on the left margin.
They can easily be spotted and so removed later.

I would add more messages—even inside loops—if necessary.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 59 / 94

Mata, the missing manual

How to debug code

Debugging code

Debugging a Stata routine
I can use the same approach in Stata.

Use Stata’s display command.

Problem: quietly will prevent output.
Solution: Use Stata’s display as error.

Problem: capture will prevent all output.
Solution: set output proc inside the capture block.
(Put it on left margin so you remember to remove it later.)

(set output proc is not documented in the manuals)

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 60 / 94

Mata, the missing manual

How to debug code

Debugging code

Locating bugs
Now you know how to debug a routine.

Let’s find the routine that needs debugging:

Problem:

I have a thousand lines of code.

It runs, and somewhere, it produces an error message.

Find the offending line.

You may not use Stata’s set trace on or
Mata’s mata set matalnum on.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 61 / 94

Mata, the missing manual

How to debug code

Debugging code

Locating bugs, related problem

Here’s a related problem

I’m thinking of a number between 1 and 1,000.

You guess and I’ll tell you if you’re right.
If you’re wrong, I’ll say lower or higher.

Everyone in this room knows a strategy that is guaranteed to get
produce the number in 10 or fewer guesses; fewer 25% of the time.

I’ll show you how to get Stata and Mata to say “lower” or
“higher”.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 62 / 94

Mata, the missing manual

How to debug code

Debugging code

Locating bugs
My code:

"p1"

...(500 lines of code)...

"p1.5"

...(500 lines of code)...

"p2"

I will see

p1 and error message
Ergo, the bug lies between p1 and p1.5.

p1, p1.5, and error message
Ergo, the bug lies between p1.5 and p2.

Repeat.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 63 / 94

Mata, the missing manual

Mechanics

transition

We’re done, not
Now I would summarize what I’ve said, except . . .

Remember when we discussed Systems?

Well, we hardly discussed the subject because I was worried about
time.

We’ll discuss it now.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 64 / 94

Mata, the missing manual

Mechanics

Systems

Systems

A system is a set of commands that work together to solve
one problem.

Stata’s mi command is an example of a system.

A system has one or more of the following characteristics

multiple entry points
states
common subroutines

(You’ve seen this slide before)

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 65 / 94

Mata, the missing manual

Mechanics

Systems

Multiple entry points means that there are multiple commands
users type as they work their way through the problem.

The commands might be related

Rather than one complicated command with lots of options,
features are presented as different commands.
Users use only one of the commands, which depending on
problem. Users decide when it is appropriate to use which.
Such systems are called internally related.
Users work their way through a problem using multiple
commands. Such systems are called externally related.

The commands might instead be ordered

Users use all the commands.
E.g., first they set, then they impute, then they estimate.

Or the system might be single entry point but the problem is so
big you want to organize the code as a system.
W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 66 / 94

Mata, the missing manual

Mechanics

Systems

The state of a system refers to information that needs to be
available between subcommands.

In single-entry-point systems, the state is recorded as just like any
other variable. It comes into existence when the command starts,
and is destroyed when it ends.

In multiple-entry-point/related systems, there often is no state; the
user is responsible for deciding when to use which subcommand.

If there is an xyz set command, then there is a state.

In multiple-entry-point/ordered systems, there is a state (even if
there is no xyz set command).

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 67 / 94

Mata, the missing manual

Mechanics

Systems

Where to store states
Where you store states depends . . .

If they are a property of the dataset, e.g., mi, store in
Stata’s dta[] characteristics.

If they are a property of the session, e.g., ml, store in

Stata’s global macros and global scalars
or in Mata’s global structures
and typically not both.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 68 / 94

Mata, the missing manual

Mechanics

Systems

If states are stored in Stata’s dta[] characteristics, . . .

To set them, use

Stata’s char dta[name] . . . command

Mata’s st global(" dta[name]", "...") function.

To use them, use

Stata’s ‘ dta[name]’ macro expansion

Mata’s st global(" dta[name]") function.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 69 / 94

Mata, the missing manual

Mechanics

Systems

If states are stored in Stata’s global macros and scalars, . . .

To set them, use

Stata’s global name . . . and scalar name = . . . commands

Mata’s st global("name", "...") and
st numscalar("name", value) functions.

To access them, use

Stata’s ‘name’ macro expansion and scalar(name)

pseudofunction

Mata’s st global("name") and st numscalar("name")

functions.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 70 / 94

Mata, the missing manual

Mechanics

Systems

If states are stored in Mata’s global structures, use Mata built-in
functions

crexternal("name")

findexternal("name")

rmexternal("name")

to create, find, and remove the global.

I will explain.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 71 / 94

Mata, the missing manual

Mechanics

Systems

To create a global struct xyz state scalar under the name
xyz state, use this routine which I give you

void create xyz state()

{
pointer(struct xyz state scalar) scalar p

if ((p=crexternal(" xyz state"))==NULL) {
error(" xyz state already exists")

/*NOTREACHED*/

}
*p = xyz state()

}

Call the function—code create xyz state().

The global structure now exists. It will have missing values stored in it,
so next find the global and fill it in.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 72 / 94

Mata, the missing manual

Mechanics

Systems

To find the existing structure, use

pointer(struct xyz state scalar) scalar find xyz state()

{
pointer(struct xyz state scalar) scalar p

if ((p=findexternal(" xyz state"))==NULL) {
error(" xyz state not found")

/*NOTREACHED*/

}
return(p)

}

call by coding

pointer(struct xyz state scalar) scalar p

...

p = find xyz state()

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 73 / 94

Mata, the missing manual

Mechanics

Systems

We just said that to find the existing structure, use . . . and call by
coding

pointer(struct xyz state scalar) scalar p

...

p = find xyz state()

Now I add

Because we are dealing with a global in a general way,
pointers were unavoidable. Sorry.

The only subsequent difference is that you will code
p->element1, p->element2, . . . , where you would have
coded name.element1, name.element2, . . .

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 74 / 94

Mata, the missing manual

Mechanics

Systems

Thus, to create a global structure and initialize it, code,

pointer(struct xyz state scalar) scalar p

...

create xyz state()

p = find xyz state()

p->element1 = ...

p->element2 = ...

...

When you call a subroutine, code
... mysubroutine(p, ...) ...

and write mysubroutine() to receive a pointer(struct xyz state
scalar) scalar.

Call find xyz state() once at every entry point. After that, pass
p to the subroutines you write.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 75 / 94

Mata, the missing manual

Mechanics

Systems

To permanently remove (delete) the global xyz state, code

rmexternal(" xyz state")

and we can even do that from Stata by coding

mata: rmexternal(" xyz state")

Remember, a single structure can contain a lot of variables.
It can even contain other structures!
You can store lots of information under one name.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 76 / 94

Mata, the missing manual

Mechanics

Systems

Aside on using structures
I hate typing

pointer(struct xyz state scalar) scalar

over and over.

So I type

local StataPtr pointer(struct xyz state scalar) scalar

once in Stata and then type ‘StatePtr’ after that.

Watch . . .

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 77 / 94

Mata, the missing manual

Mechanics

Systems

version 12

local StataPtr pointer(struct xyz state scalar) scalar

mata:

void create xyz state()

{
‘StatePtr’ p

if ((p=crexternal(" xyz state"))==NULL) {
error(" xyz state already exists")

/*NOTREACHED*/

}
*p = xyz state()

}

‘StatePtr’ find xyz state()

{
...

}
end

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 78 / 94

Mata, the missing manual

Mechanics

Systems

Aside on typing
You can use macros to define types based on meaning rather than
types based on storage type. This makes your code more readable.

Structures are one way you define concepts. Defining types based
on meaning is another way.

Remember our regression-problem structure?

struct regression problem {
string scalar lhs var name

string rowvector rhs var names

real scalar first obs no, last obs no

real scalar include intercept

}

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 79 / 94

Mata, the missing manual

Mechanics

Systems

Better; variable types based on meaning
local RegrProb struct regression

local Varname string scalar

local Varnames string rowvector

local ObsNo real scalar

local Boolean real scalar

mata:

‘RegrProb’ {
‘Varname’ lhs var name

‘Varnames’ rhs var names

‘Obsno’ first obs no, last obs no

‘Boolean’ include intercept

}
end

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 80 / 94

Mata, the missing manual

Mechanics

Systems

Back to the topic
We took a long, substantive aside on

States

All the different ways they could be stored

Structures

Pointers

A shorthand involving Stata macros to save typing

Using the shorthand to improve readability

We were discussing systems, and in particular, the system xyz . . .

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 81 / 94

Mata, the missing manual

Mechanics

Systems

Systems, the goal
The goal is to write a command with syntax

xyz subcmd1 ...

xyz subcmd2 ...

...

Could be written as one ado-file, xyz.ado.

If the system is big,

might take too long to load
would be more difficult to write
would be more difficult to maintain

Nonetheless, do not disregard the single ado-file approach for
“small” systems.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 82 / 94

Mata, the missing manual

Mechanics

Systems

Big systems, desired organization
The final layout of the system will be

xyz.ado the xyz command switcher
xyz cmd subcmd1.ado xyz subcmd1 processor
xyz cmd subcmd2.ado xyz subcmd2 processor
. . .
xyz whatever1.ado ado-file common subroutine
xyz whatever1.ado
. . .
lxyz.mlib common Mata subroutines, precompiled

Big systems can also have private subroutines, both ado and Mata.

Private subroutines are placed in the individual ado-files.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 83 / 94

Mata, the missing manual

Mechanics

Systems

Big systems, initial organization
To begin, the contents of *.ado and lxyz.mlib will appear in xyz.do.

code.do A single-line do-file containing “do xyz”
xyz.do xyz code, Stata and Mata

xyzcheck.do do-file to check compilation of our code

xyztest1.do do-file to test something about our system
xyztest2.do do-file to test something else about our system
. . .
xyztest.do do file to run all the tests

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 84 / 94

Mata, the missing manual

Mechanics

Systems

Big systems, initial organization
xyz.do:

program xyz

version 12

...

end

(Stata subroutines go here)

version 12

set matastrict on

mata:

(Mata subroutines go here)

end

set matastrict off

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 85 / 94

Mata, the missing manual

Mechanics

Systems

Big systems, initial organization, continued
xyzcheck.do:

clear all

capture log close

log using xyzcheck.log, replace

do code

local rc = rc

log close

exit ‘rc’

do xyzcheck allows you to compile and thus see compile-time
errors.

If no errors, look at xyz.log and search for “note:”.
Resolve them all.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 86 / 94

Mata, the missing manual

Mechanics

Systems

Big systems, initial organization, continued
xyztest1.do:

clear all

run code.do // I use run so I don’t see the output

sysuse auto

...

xyztest2.do, xyztest3,do, . . . , all have the same structure as
xyztest1.do.

They are not really named xyztest1.do, xyztest2.do, . . .

I can run (do) any of the tests in isolation.

I can run all the tests . . .

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 87 / 94

Mata, the missing manual

Mechanics

Systems

Big systems, initial organization, continued
xyztest.do:

do xyztest1

do xyztest2

. . .

I can run (do) any of the tests in isolation.

I can run all the tests by typing
do xyztest

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 88 / 94

Mata, the missing manual

Mechanics

Systems

Why I start like this
The organization is admittedly idiosyncratic, but when I start

I don’t yet have fixed ideas on the exact naming of the global
state variables, or even what they all are.

I fix ideas as I write, and I change my mind.
I can easily make global changes.

I write subroutines which I think will be private, but turn out
to be useful globally. I can move them and easily change their
names.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 89 / 94

Mata, the missing manual

Mechanics

Systems

Why I start like this
The organization is admittedly idiosyncratic, but when I start

I don’t yet have fixed ideas on the exact naming of the global
state variables, or even what they all are.

I fix ideas as I write, and I change my mind.
I can easily make global changes.

I write subroutines which I think will be private, but turn out
to be useful globally. I can move them and easily change their
names.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 89 / 94

Mata, the missing manual

Mechanics

Systems

Why I start like this
The organization is admittedly idiosyncratic, but when I start

I don’t yet have fixed ideas on the exact naming of the global
state variables, or even what they all are.

I fix ideas as I write, and I change my mind.
I can easily make global changes.

I write subroutines which I think will be private, but turn out
to be useful globally. I can move them and easily change their
names.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 89 / 94

Mata, the missing manual

Mechanics

Systems

Why I start like this
The organization is admittedly idiosyncratic, but when I start

I don’t yet have fixed ideas on the exact naming of the global
state variables, or even what they all are.

I fix ideas as I write, and I change my mind.
I can easily make global changes.

I write subroutines which I think will be private, but turn out
to be useful globally. I can move them and easily change their
names.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 89 / 94

Mata, the missing manual

Mechanics

Systems

As I work . . .
As I work, xyz.do evaporates

I promote routines out of file xyz.do and into their own files.

In the case of Stata code, they are promoted to ado-files.

In the case of Mata code, they are promoted to name.mata

files.

I add “do name.ado” or “do name.mata” to file code.do.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 90 / 94

Mata, the missing manual

Mechanics

Systems

Eventually . . .
Eventually, xyz.do is empty and

code.do looks like this

code.do:

do xyz.ado

do xyz cmd subcmd1.ado

...

do sub1.mata
do sub2.mata
. . .

Ado-files may have their own, private Mata subroutines,
but the public Mata subroutines are in *.mata.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 91 / 94

Mata, the missing manual

Mechanics

Systems

How to build a Mata library
Create file mklxyz.do from code.do:

mklxyz.do:

clear all

capture erase lxyz.mata

set matastrict on

do sub1.mata
do sub2.mata
set matastrict off

...

mata:

mata mlib create lxyz

mata mlib add lxyz *(), complete

mata mlib index

end

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 92 / 94

Mata, the missing manual

Mechanics

Systems

We are nearly done
We have files

*.ado move to PERSONAL
lxyz.mlib move to PERSONAL

mklxyz.do move to where you save Mata code
*.mata move to where you save Mata code

code.do make empty, move to where you store test scripts
xyztest.do move to where you store test scripts
xyztest1.do move to where you store test scripts
.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 93 / 94

Mata, the missing manual

Mechanics

Systems

We are done
I ran through that pretty fast.

If you are the type of person who is writing big systems, however, I
think you get the point. You need to get organized and develop
guidelines for yourself.

Since there’s not a chance I will get to this point when presenting
this talk in person, I will not bother with a conclusion.

To those of you who stuck with me all the way to the end, I hope
this was of help.

W. Gould (StataCorp) Mata, the missing manual 14–15 July 2011 94 / 94

	Introduction
	Introduction
	Mechanics
	do-file
	do-file with Stata program
	do-file with in-line Mata
	do-file with Mata function
	do-files, summary
	Ado-file (simple)
	Ado-file with private subroutine(s)
	Aside 1
	transition
	Ado-file with Mata subroutine
	Ultimate ado-file
	How to write the ultimate ado-file
	Systems

	Substantive
	Transition
	When to use which
	Scripting vs. programming
	Mata concepts
	Use of Mata concepts
	Use of Mata concepts
	Advanced concepts
	Advanced concepts
	transition

	How to debug code
	Debugging code

	Mechanics
	transition
	Systems

