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Introduction

When comparing multiple treatments, we want to know:

(A) Whether or not each treatment effect is different from zero

(B) Whether or not each treatment effect is different from all others

With k treatments, this involves making a total of

k︸︷︷︸
(A)

+

(
k

2

)
︸︷︷︸
(B)

=

(
k + 1

2

)

unique comparisons (e.g., with 4 treatments, there are a total of 10
comparisons)



We consider the following regression model:

Yt = β0CONTROLt +
k∑

i=1

βiTREATi ,t + Z′tδ + Ut

The (average) treatment effect of the ith treatment is

αi ≡ βi − β0, i = 1, . . . , k ,

so we want to test

(A) αi = 0 (⇔ βi = β0) , for each i ∈ {1, . . . , k}

(B) αi = αj (⇔ βi = βj) , for each unique pair (i , j) ∈ {1, . . . , k}2

or, more simply,�� ��βi = βj , for each unique pair (i , j) ∈ {0, 1, . . . , k}2



NOTE: This is very different from a single joint test:

β0 = . . . = βk

(the alternative here is uninformative)



Simple Example: Teacher Incentives

Field experiment from Muralidharan & Sundararaman (2011)

Considers the effects of k = 2 teacher incentive pay treatments:

Incentives based on test scores of the teacher’s own students
Incentives based on test scores of all students in a teacher’s school

The effects of these interventions are compared to test scores of
students in similar schools (the control group)

Zt includes 49 county dummies and the pre-treatment test score

Standard errors are clustered by school (we use wild cluster bootstrap
when applying our procedure below)

We focus on combined (math and language) test scores; there are a
total of 29,760 obs.



1 Any effect of individual incentive treatment?

Test α1 = 0 (⇔ β1 = β0)

T -stat: 4.84 (pasy = 1.298× 10−6)

2 Any effect of group incentive treatment?

Test α2 = 0 (⇔ β2 = β0)

T -stat: 2.70 (pasy = 0.007)

3 Any difference between individual incentive and group incentive?

Test α1 = α2 (⇔ β1 = β2)

T -stat: 1.91 (pasy = 0.056)



Multiple Testing Problem

Our approach to this multiple testing problem is to seek to control
the familywise error rate (FWER): the probability of finding at least
one spurious difference (Type I error) between the parameters

It is straightforward to modify our procedure to target control of a
less stringent error rate such as the false discovery rate (Benjamini &
Hochberg, 1995)



FWER Error Rates

(A) k independent T -tests at 5% level
(B)

(k
2

)
independent T -tests at 5% level



Graphical Procedure

Utilize procedure of Bennett & Thompson (2017, JASA), which can
be seen as a resampling-based generalization of Tukey’s (1953)
procedure

The approach is to plot each parameter estimate β̂n,i together with
its corresponding uncertainty interval,

[Ln,i (γ),Un,i (γ)] =
[
β̂n,i ± γ × se

(
β̂n,i

)]
,

where γ is chosen to control the FWER

We infer that βi > βj if Ln,i > Un,j



Why not use confidence intervals

Comparisons based on the non-overlap of confidence intervals are not
reliable:

With a single comparison (k = 1), non-overlap of CI’s lead to serve
under-rejection

When the number of comparisons grows, non-overlap of CI’s lead to
over-rejection



Ideal choice of γ

The “ideal” choice of γ is the smallest value satisfying

ProbP {max Ln,i (γ) > minUn,i (γ)}︸ ︷︷ ︸
Probability of at least one non-overlap

≤ α

when all k parameters are equal

This choice is infeasible since P is unknown



Data-driven choice of γ

We choose γ to satisfy the bootstrap analogue of the above condition:

ProbP̂n

{
max L∗n,i (γ) > minU∗n,i (γ)

}
≤ α,

where [
L∗n,i (γ),U∗n,i (γ)

]
=
[(
β̂∗n,i − β̂n,i

)
± γ × se

(
β̂∗n,i

)]
,



Teacher Incentives Example: The Overlap Plot
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Gamma − Uncertainty Intervals
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Data-driven choice of γ: 0.497



Plotting Marginal Treatment Effects

Empirical researchers are typically interested only in the α coefficients
(the marginal treatment effects)

Accordingly, we can plot α̂n,i along with the re-centered uncertainty
interval for βi β̂n,i − β̂n,0︸ ︷︷ ︸

α̂n,i

±γ × se
(
β̂n,i

)
We also include the re-centered uncertainty interval for β0β̂n,0 − β̂n,0︸ ︷︷ ︸

0

±γ × se
(
β̂n,0

)



Teacher Incentives Example: Marginal Treatment Effects
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Dotted line corresponds to upper endpoint of re-centered uncertainty
interval for β0



Bennett & Thompson show that, under fairly general conditions, the
procedure:

1 Bounds the FWER by α asymptotically
2 Is consistent in the sense that the ordering of all parameter pairs are

correctly inferred asymptotically

Simulation evidence in both Bennett & Thompson and Thompson &
Webb suggests that the finite sample properties of the procedure are
satisfactory



If the procedure fails to resolve all pairwise comparisons, it may be
possible to do so via a global refinement which is analogous to the
stepdown procedures of Romano & Wolf (2005) and others



A Modified Procedure

The above procedure controls the FWER error rate across all pairwise
comparisons

This approach allows for a (potentially complete) ranking of all the
treatments:

Assuming larger values of outcome variable are “better”, one could
infer that treatment i is the “best” if

Ln,i > Un,j , for all j 6= i

Similarly, one may be able to identify a “second best” treatment, a
“third best” treatment, etc.



While such a complete ranking may occasionally be of value, interest
often centers on identifying only the (first) best treatment

Specifically, we may only want to know whether or not the treatment
effect which is estimated to be the largest is actually statistically
distinguishable from the other treatments effects (and zero)

Such a problem is the focus of multiple comparisons with the best
procedures

Here, we follow BT in developing a modification of the basic overlap
procedure to focus on this problem



Let [1], [2], . . . , [k + 1], be the random indices such that

β̂n,[1] > β̂n,[2] > · · · > β̂n,[k+1]

Note that β[1] is the true value of the parameter which is estimated to
be largest, and not necessarily the largest parameter value

Similarly, Ln,[1] is the lower endpoint of the uncertainty interval
associated with the largest point estimate, which is not necessarily
the largest lower endpoint (the standard error of β̂n,[1] might be
relatively large)



Similar to before, we infer that β[1] is the largest parameter value in
the collection if Ln,[1] > Un,[j] for all j > 1

Our “ideal” choice of γ is the smallest value satisfying

ProbP

{
Ln,[1](γ) > max

j 6=1
Un,[j](γ)

}
≤ α

when all k parameters are equal

A feasible choice of γ is the smallest value satisfying

ProbP̂n

{
L∗n,[1](γ) > max

j 6=1
U∗n,[j](γ)

}
≤ α

This choice of γ will be (weakly) smaller than the choice resulting
from the basic procedure, leading to greater power



Teacher Incentives Example: Modified Overlap Plot

Data-driven choice of γ: 0.316 (compare with 0.497)



Charitable Giving Example

Data comes from field experiment by Karlan & List (2007)

Experiment was designed to examine the effect of matching grants on
charitable giving

Letters sent out to n = 50, 083 previous donors

1/3 of letter recipients belonged to control group

Remaining 2/3 of letter recipients got one of the k = 36 treatments
that varied by

1 Matching ratio: 1:1, 2:1, or 3:1
2 Maximum size of matching grant: $25,000, $50,000, $100,000, or none
3 Amount used as illustration: 1, 1.25, or 1.50 × donor’s prev. max.



Charitable Giving Example


