Now what do I do with this function?

Enrique Pinzón

StataCorp LP

December 08, 2017
Sao Paulo

Initial thoughts

- Nonparametric regression and about effects/questions
- npregress
- Mean relation between an outcome and covariates
- Model birtweight : age, education level, smoked, number of prenatal visits,
- Model wages: age, education level, profession, tenure, ... - $E(y \mid X)$, conditional mean
- Parametric models have a known functional form

- Nonparametric $E(y \mid X)$. The result of using predict

Initial thoughts

- Nonparametric regression and about effects/questions
- npregress
- Mean relation between an outcome and covariates
- Model birtweight : age, education level, smoked, number of prenatal visits,
- Model wages: age, education level, profession, tenure, ... - $E(y \mid X)$, conditional mean
- Parametric models have a known functional form

- Nonparametric $E(y \mid X)$. The result of using predict

Initial thoughts

- Nonparametric regression and about effects/questions
- npregress
- Mean relation between an outcome and covariates
- Model birtweight : age, education level, smoked, number of prenatal visits, ...
- Model wages: age, education level, profession, tenure, ...
- $E(y \mid X)$, conditional mean
- Parametric models have a known functional form

Linear regression:

- Nonparametric $E(y \mid X)$. The result of using predict

Initial thoughts

- Nonparametric regression and about effects/questions
- npregress
- Mean relation between an outcome and covariates
- Model birtweight : age, education level, smoked, number of prenatal visits, ...
- Model wages: age, education level, profession, tenure, ...
- $E(y \mid X)$, conditional mean
- Parametric models have a known functional form

- Nonparametric $E(y \mid X)$. The result of using predict

Initial thoughts

- Nonparametric regression and about effects/questions
- npregress
- Mean relation between an outcome and covariates
- Model birtweight : age, education level, smoked, number of prenatal visits, ...
- Model wages: age, education level, profession, tenure, ...
- $E(y \mid X)$, conditional mean
- Parametric models have a known functional form

$$
\begin{aligned}
\text { Linear regression: } & E(y \mid X)=X \beta \\
\text { Binary: } & E(y \mid X)=F(X \beta) \\
\text { Poisson: } & E(y \mid X)=\exp (X \beta)
\end{aligned}
$$

- Nonparametric $E(y \mid X)$. The result of using predict

Initial thoughts

- Nonparametric regression and about effects/questions
- npregress
- Mean relation between an outcome and covariates
- Model birtweight : age, education level, smoked, number of prenatal visits, ...
- Model wages: age, education level, profession, tenure, ...
- $E(y \mid X)$, conditional mean
- Parametric models have a known functional form

$$
\begin{aligned}
\text { Linear regression: } & E(y \mid X)=X \beta \\
\text { Binary: } & E(y \mid X)=F(X \beta) \\
\text { Poisson: } & E(y \mid X)=\exp (X \beta)
\end{aligned}
$$

- Nonparametric $E(y \mid X)$. The result of using predict

But ...

We had nonparametric regression tools

But ...

We had nonparametric regression tools

- lpoly
- lowess

What happened in the past

```
lpoly bweight mage if (msmoke==0 & medu>12 & fedu>12), ///
    mcolor(%30) lineopts(lwidth(thick))
```


Effects: A thought experiment

I give you the true function

Effects: A thought experiment

I give you the true function

. list $y \mathrm{x}$ a gx in $1 / 10$, noobs

y	x	a	$g x$
13.46181	.7630615	2	12.73349
1.41086	.9241793	1	1.547555
22.88834	1.816095	2	21.43813
10.97789	.8206556	2	13.01466
11.37173	.0440157	2	10.13213
-1938587	1.083093	1	.439635
55.87413	3.32037	2	56.56772
2.94979	.8900821	1	1.804343
-1.178733	-2.342678	0	-2.856946
48.79958	3.418333	0	49.94323

Effects: A thought experiment

I give you the true function

- Do we know what are the marginal effects
- Do we know causal/treatment effects
- Do we know counterfactuals
- It seems cosmetic
- We cannot use margins

Effects: A thought experiment

I give you the true function

- Do we know what are the marginal effects
- Do we know causal/treatment effects
- Do we know counterfactuals
- It seems cosmetic
- We cannot use margins

Effects: A thought experiment

I give you the true function

- Do we know what are the marginal effects
- Do we know causal/treatment effects
- Do we know counterfactuals
- It seems cosmetic
- We cannot use margins

Effects: A thought experiment

I give you the true function

- Do we know what are the marginal effects
- Do we know causal/treatment effects
- Do we know counterfactuals
- It seems cosmetic
- We cannot use margins

A detour

margins

Effects: outcome of interest

Data

- crash 1 if crash
- traffic Measure of vehicular traffic
- tickets Number of traffic tickets
- male 1 if male

Probit model and average marginal effects

probit crash tickets traffic i.male

Probit model and average marginal effects

Probit model and average marginal effects

probit crash tickets traffic i.male

Not calculus

```
    . margins, at(traffic=generate(traffic*1.10)) at(traffic=generate(traffic)) ///
\(>\)
                contrast (atcontrast(r) nowald)
Contrasts of predictive margins
Model VCE : OIM
Expression : Pr(crash), predict()
1._at : traffic = traffic*1.10
2._at
    : traffic
    = traffic
\begin{tabular}{c|cccc}
\hline & \multicolumn{4}{|c}{\begin{tabular}{c} 
Delta-method \\
Std. Err.
\end{tabular}} \\
\hline Contrast & [95\% Conf. Interval] \\
\hline (2 vs \(\overline{1})\) & -.0028589 & .0010882 & -.0049917 & -.0007262 \\
\hline
\end{tabular}
```


Probit model and counterfactuals

- margins, dydx(male) Average marginal effects Number of obs Expression : Pr(crash), predict () dy/dx w.r.t. : I.male

Probit model and counterfactuals

More counterfactuals

More counterfactuals

. margins, dydx(tickets)
Average marginal effects Number of obs $=$ N 948
Model VCE : OIM
Expression : Pr(crash), predict()
dy/dx w.r.t. : tickets

	Delta-method			$P>\|z\|$	[95\% Conf.	Interval]
tickets	. 0857818	. 0031049	27.63	0.000	. 0796963	. 0918672

. margins, at(tickets=(0(1)5)) contrast (atcontrast(ar) nowald)
Contrasts of predictive margins
Model VCE : OIM
Expression : Pr(crash), predict()
1._at : tickets $=0$
2._at : tickets $=\quad 1$
3._at : tickets $=\quad 2$
4._at : tickets $=$
5._at : tickets $=$
6._at : tickets $=\quad 5$

	ContrastDelta-method Std. Err.		[95\% Conf.	Interval]
at				
(2 vs 1)	. 0001208	. 0001671	-. 0002067	. 0004484
(3 vs 2)	. 0547975	. 0177313	. 0200448	. 0895502
(4 vs 3)	. 3503763	. 0225727	. 3061346	. 3946179
(5 vs 4)	. 091227	. 0298231	. 0327747	. 1496793
(6 vs 5)	. 37736	. 0283876	. 3217213	. 4329986

marginsplot

margins, at(tickets=(0(1)5))
marginsplot, ciopts(recast(rarea))

Back to nonparametric regression

npregress and nonparametric regression

Nonparametric regression: discrete covariates

Mean function for a discrete covariate

- Mean wage conditional on having a college degree mean wage if collgrad==1
- regress wage collgrad, noconstant
- E(wagel collgrad = 1), nonparametric estimate

Nonparametric regression: discrete covariates

Mean function for a discrete covariate

- Mean wage conditional on having a college degree
- regress wage collgrad, noconstant
- $E($ wage collarad $=1)$, nonnarametric estimate

Nonparametric regression: discrete covariates

Mean function for a discrete covariate

- Mean wage conditional on having a college degree

| . mean wage if collgrad==1
 Mean estimation | | Number of obs $=$ | | 4,795 |
| :--- | ---: | :--- | :--- | :--- | :--- |
| | Mean | Std. Err. | [95\% Conf. Interval] | |
| wage | 8.648064 | .0693118 | 8.512181 | 8.783947 |

- regress wage collgrad, noconstant
- $E($ wage \mid collgrad $=1)$, nonparametric estimate

Nonparametric regression: continuous covariates

Conditional mean for a continuous covariate

- Mean wage conditional on tenure, measured in years
- E (nagel tenure $=5.583333$)
- Take observations near the value of 5.583333 and then take an average
- |tenure: $-5.583333 \mid \leq h$
- h is a small number referred to as the bandwidth

Nonparametric regression: continuous covariates

Conditional mean for a continuous covariate

- Mean wage conditional on tenure, measured in years
- $E($ wage|tenure $=5.583333)$
- Take observations near the value of 5.583333 and then take an average
- |tenure ${ }_{i}-5.583333 \mid \leq h$
- h is a small number referred to as the bandwidth

Nonparametric regression: continuous covariates

Conditional mean for a continuous covariate

- Mean wage conditional on tenure, measured in years
- $E($ wage \mid tenure $=5.583333)$
- Take observations near the value of 5.583333 and then take an average
- |tenure i $^{-5.583333 \mid \leq h ~}$
- h is a small number referred to as the bandwidth

Nonparametric regression: continuous covariates

Conditional mean for a continuous covariate

- Mean wage conditional on tenure, measured in years
- $E($ wage \mid tenure $=5.583333)$
- Take observations near the value of 5.583333 and then take an average
- |tenure ${ }_{i}-5.583333 \mid \leq h$
- h is a small number referred to as the bandwidth

Nonparametric regression: continuous covariates

Conditional mean for a continuous covariate

- Mean wage conditional on tenure, measured in years
- $E($ wage \mid tenure $=5.583333)$
- Take observations near the value of 5.583333 and then take an average
- \mid tenure $_{i}-5.583333 \mid \leq h$
- h is a small number referred to as the bandwidth

Nonparametric regression: continuous covariates

Conditional mean for a continuous covariate

- Mean wage conditional on tenure, measured in years
- E (wage|tenure $=5.583333$)
- Take observations near the value of 5.583333 and then take an average
- \mid tenure $_{i}-5.583333 \mid \leq h$
- h is a small number referred to as the bandwidth

Graphical example

Graphical example

Graphical example continued

Two concepts

(1) h
(2) Definition of distance between points, $\left|\frac{x_{i}-x}{h}\right| \leq 1$

Kernel weights

$$
u \equiv \frac{x_{i}-x}{h}
$$

Kernel K (u)

Gaussian
Epanechnikov
Epanechnikov2
Rectanaular(Uniform)
Triangular
Biweight
Triweight
Cosine
Parzen

$$
\begin{gathered}
\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{u^{2}}{2}\right) \\
\frac{3}{4 \sqrt{5}}\left(1-\frac{u^{2}}{5}\right) \mathbb{I}(|u| \leq \sqrt{5}) \\
\frac{3}{4}\left(1-u^{2}\right) \mathbb{I}(|u| \leq 1) \\
\frac{1}{2} \mathbb{I}(|u| \leq 1) \\
(1-|u|) \mathbb{I}(|u| \leq 1) \\
\frac{15}{16}\left(1-u^{2}\right)^{2} \mathbb{I}(|u| \leq 1) \\
\frac{35}{32}\left(1-u^{2}\right)^{3} \mathbb{I}(|u| \leq 1) \\
(1+\cos (2 \pi u)) \mathbb{I}\left(|u| \leq \frac{1}{2}\right) \\
\left(\frac{4}{3}-8 u^{2}+8|u|^{3}\right) \mathbb{I}\left(|u| \leq \frac{1}{2}\right) \\
+\frac{8}{3}(1-|u|)^{3} \mathbb{I}\left(\frac{1}{2}<|u| \leq 1\right)
\end{gathered}
$$

Kernel weights

$u \equiv \frac{x_{i}-x}{h}$
Kernel K u)

Gaussian
Epanechnikov
Epanechnikov2
Rectangular(Uniform)
Triangular
Biweight
Triweight
Cosine
Parzen

$$
\begin{gathered}
\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{u^{2}}{2}\right) \\
\frac{3}{4 \sqrt{5}}\left(1-\frac{u^{2}}{5}\right) \mathbb{I}(|u| \leq \sqrt{5}) \\
\frac{3}{4}\left(1-u^{2}\right) \mathbb{I}(|u| \leq 1) \\
\frac{1}{2} \mathbb{I}(|u| \leq 1) \\
(1-|u|) \mathbb{I}(|u| \leq 1) \\
\frac{15}{16}\left(1-u^{2}\right)^{2} \mathbb{I}(|u| \leq 1) \\
\frac{35}{32}\left(1-u^{2}\right)^{3} \mathbb{I}(|u| \leq 1) \\
(1+\cos (2 \pi u)) \mathbb{I}\left(|u| \leq \frac{1}{2}\right) \\
\left(\frac{4}{3}-8 u^{2}+8|u|^{3}\right) \mathbb{I}\left(|u| \leq \frac{1}{2}\right) \\
+\frac{8}{3}(1-|u|)^{3} \mathbb{I}\left(\frac{1}{2}<|u| \leq 1\right) \\
\hline
\end{gathered}
$$

Discrete bandwidths

- Default

$$
k(.)= \begin{cases}1 & \text { if } \quad x_{i}=x \\ h & \text { otherwise }\end{cases}
$$

- Cell mean

$$
k(.)= \begin{cases}1 & \text { if } \quad x_{i}=x \\ 0 & \text { otherwise }\end{cases}
$$

Bandwidth (bias)

Bandwidth (variance)

Estimation

- Choose bandwidth optimally. Minimize bias-variance trade-off
- Cross-validation (default)
- Improved AIC (IMAIC)
- Compute a regression for every point in data (local linear)
- Computes derivatives and derivative bandwidths
- Compute a mean for every point in data (local-constant)

Example

- citations monthly drunk driving citations
- taxes 1 if alcoholic beverages are taxed
- fines drunk driving fines in thousands
- csize city size (small, medium, large)
- college 1 if college town

Example

- citations monthly drunk driving citations
- taxes 1 if alcoholic beverages are taxed
- fines drunk driving fines in thousands
- csize city size (small, medium, large)
- college 1 if college town

npregress bandwidth

. npregress kernel citations fines

Computing mean function			
Minimizing cross-validation function:			
Iteration 0:	Cross-validation	criterion	35.478784
Iteration 1:	Cross-validation	criterion	4.0147129
Iteration 2:	Cross-validation	criterion	4.0104176
Iteration 3:	Cross-validation	criterion	4.0104176
Iteration 4:	Cross-validation	criterion	4.0104176
Iteration 5:	Cross-validation	criterion	4.0104176
Iteration 6:	Cross-validation	criterion	4.0104006
Computing optimal derivative bandwidth			
Iteration 0:	Cross-validation	criterion	6.1648059
Iteration 1:	Cross-validation	criterion	4.3597488
Iteration 2:	Cross-validation	criterion	4.3597488
Iteration 3:	Cross-validation	criterion	4.3597488
Iteration 4:	Cross-validation	criterion	4.3597488
Iteration 5:	Cross-validation	criterion	4.3597488
Iteration 6:	Cross-validation	criterion	4.3595842
Iteration 7:	Cross-validation	criterion	4.3594713
Iteration 8:	Cross-validation	criterion	4.3594713

npregress output

. npregress kernel citations fines, nolog Bandwidth

	Mean	Effect	
Mean	fines	.5631079	.924924

Local-linear regression

Number of obs $=$

500
E(Kernel obs)
$=$
282
R-squared $=$
0.4380

$$
0.4380
$$

citations	Estimate
Mean citations	22.33999
Effect	
fines	-7.692388

Note: Effect estimates are averages of derivatives.
Note: You may compute standard errors using vce (bootstrap) or reps().

npregress predicted values

variable name storage	display format	value label	variable label
_Mean_citations double	$\% 10.0 \mathrm{~g}$		mean function
_d_Mean_citat_s double	$\% 10.0 \mathrm{~g}$		derivative of mean function w.r.t fines

npgraph

- npgraph

npregress standard errors I

. quietly npregress kernel citations fines, reps(3) seed(111)

- estimates store A
. quietly npregress kernel citations fines, vce(bootstrap, reps(3) seed(111))
- estimates store B
- estimates table A B, se

Variable	A	B
Mean		
Citations	22.339995	22.339995
	.65062763	.65062763
Effect		
fines	-7.6923878	-7.6923878
	.23195785	.23195785

legend: b/se

npregress standard errors II (percentile C.I.)

. npregress
Bandwidth

	Mean	Effect	
Mean			
	fines	.5631079	.924924

Local-linear regression

Number of obs	$=$	500
E (Kernel obs)	$=$	282
R-squared	$=$	0.4380

Bandwidth: cross validation

$$
\mathrm{R} \text {-squared } \quad=\quad 0.4380
$$

citations	Observed Estimate	Bootstrap Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	Percentile [95\% Conf. Interval]	
Mean citations	22.33999	.6506276	34.34	0.000	21.54051	22.74807
Effect						
fines	-7.692388	.2319578	-33.16	0.000	-7.701931	-7.267385

Note: Effect estimates are averages of derivatives.

A more interesting model

. npregress kernel citations fines i.taxes i.csize i.college, reps (200) seed(10)
Bandwidth

		Mean	Effect
Mean			
	fines	.4471373	.6537197
	taxes	.4375656	.4375656
csize	.3938759	.3938759	
college	.554583	.554583	

Local-linear regression			Number of obs E(Kernel obs)		500	
Continuous kernel : epanechnikov					=	224
$\begin{array}{ll}\text { Discrete kernel } & \text { : liracine } \\ \text { Bandwidth } & \text { : cross validation }\end{array}$			R -squared		$=$	0.8010
citations	ObservedEstimate	Bootstrap Std. Err.	z	$P>\|z\|$	[95\%	Percentile
						Interval]
Mean						
citations	22.26306	. 4616724	48.22	0.000	21.39581	23.30278
Effect						
fines	-7.332833	. 3341222	-21.95	0.000	-7.970275	-6.665263
vs						
no tax)	-4.502718	. 4946306	-9.10	0.000	-5.360078	-3.465397
$\begin{aligned} & \text { csize } \\ & \text { (medium } \end{aligned}$						
vs						
small)	5.300524	. 2731374	19.41	0.000	4.723821	5.879301
(large						
small)	11.05053	. 5236424	21.10	0.000	9.942253	12.1252
college (college						
not coll. vs						
not coll..)	5.953188	. 500154	11.90	0.000	4.937102	6.969837

Note: Effect estimates are averages of derivatives for continuous covariates and averages of contrasts for factor covariates.

margins

Another example with margins

$$
y=\left\{\begin{array}{l}
10+x^{3}+\varepsilon \text { if } a=0 \\
10+x^{3}-10 x+\varepsilon \text { if } a=1 \\
10+x^{3}+3 x+\varepsilon \text { if } a=2
\end{array}\right.
$$

Mean and marginal effects

. quietly regress y (c.x\#c.x\#c.x)\#i.a c.x\#i.a
. margins
Predictive margins \quad Number of obs $=1,000$
Model VCE : OLS
Expression : Linear prediction, predict()

	Margin	Delta-method				
Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]			
_cons	12.02269	.0313857	383.06	0.000	11.9611	12.08428

. margins, dydx(*)

\square

2

Mean and marginal effects

. quietly regress y (c.x\#c.x\#c.x)\#i.a c.x\#i.a
. margins
Predictive margins \quad Number of obs $=1,000$
Model VCE : OLS
Expression : Linear prediction, predict()

	Margin	Delta-method				
	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]		
_cons	12.02269	.0313857	383.06	0.000	11.9611	12.08428

. margins, dydx(*)
Average marginal effects Number of obs $=\quad$. \quad, 000
Model VCE : OLS
Expression : Linear prediction, predict()
dy/dx w.r.t. : 1.a 2.a x

	Delta-method dy/dx Std. Err.			$P>\|t\|$	[95\% Conf.	Interval]
a						
1	-9.781302	. 05743	-170.32	0.000	-9.894	-9.668604
2	3.028531	. 0544189	55.65	0.000	2.921742	3.13532
X	3.97815	. 0303517	131.07	0.000	3.91859	4.037711

Note: $d y / d x$ for factor levels is the discrete change from the base level.

npregress estimates

. npregress kernel y x i.a, vce(bootstrap, reps(100) seed(111))
(running npregress on estimation sample)

. 100
Bandwidth

	Mean	Effect	
Mean			
	x	.3630656	.5455175
	a	$3.05 \mathrm{e}-06$	$3.05 \mathrm{e}-06$

Local-linear regression
Continuous kernel : epanechnikov

Number of obs	$=$	1,000
E (Kernel obs)	$=$	363
R-squared	$=$	0.9888

Bandwidth

Y	Observed Estimate	Bootstrap Std. Err.	z	$P>\|z\|$	$\begin{aligned} & \text { Per } \\ {[95 \%} & \text { Con } \end{aligned}$	$\begin{aligned} & \text { ntile } \\ & \text { Interval] } \end{aligned}$
Mean						
	12.34335	. 3195918	38.62	0.000	11.57571	12.98202
Effect						
x	3.619627	. 2937529	12.32	0.000	3.063269	4.143166
a	-9.881542	. 3491042	-28.31	0.000	-10.5277	-9.110781
(2 vs 0)	3.168084	. 2129506	14.88	0.000	2.73885	3.570004

Note: Effect estimates are averages of derivatives for continuous covariates and averages of contrasts for factor covariates.

Function for different values of x

- margins, at(x=(1(.5)3)) reps(100) seed(111)

Funtion at different values of x for all a

. margins a, at (x=(-1(1)3)) reps(100) seed(111)

Conclusion

- Intuition about nonparametric regression
- Details about how npregress
- Importance of being able to ask questions to your model

