Air Pollution Consequences in São Paulo: Evidence for Health

Bruna Guidetti

IPE/USP

Summary

 Objective: Investigating the impacts of air pollution on hospitalizations due to respiratory disease in São Paulo Metropolitan Area.

Motivation:

- Pollutants negatively impact human health, especially of vulnerable groups such as children and elderly.
- There are few evidences for developing countries.
- Frequent episodes of poor air quality in SPMA

Summary

• Problem: Endogeneity of air pollution exposure.

- Solution: Instrumental variables (wind variables)
- Data:
 - Air Pollution: São Paulo Environmental Company (CETESB)
 - ► DATASUS: daily hospitalizations due to respiratory disease.
- Economic Literature: Currie and Neidell (2005), Chay and Greenstone (2003), Neidell (2004), Lewis and Severnini (2015), Hanna and Oliva (2015), Chagas et al. (2016), Schlenker and Walker (2016).

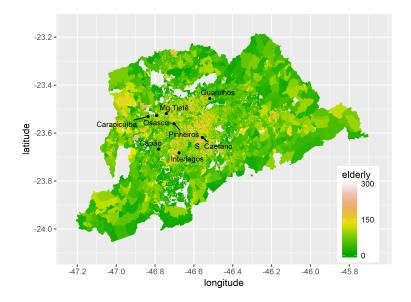
Endogeneity Problem

Pollutants are not randomly allocated

- Avoidance behavior: Neidell(2004) discusses that individuals might avoid activities that expose them to air pollution, in order to reduce negative externalities.
- Economic activity : the level of economic activity, which is positively correlated with air pollution, may cause a negative bias on the pollution impacts on health by income increase (Hanna and Oliva (2015); Herrnstadt e Muehlegger (2015))

Endogeneity Problem

Strategies to deal with endogeneity


- Neidell (2004): amount of smog alerts.
- ► Chay and Greenstone (2003): Clean Air Act Amendments (CAAA).
- Chay and Greenstone (2003): economic recession in United States between 1980 and 1982.
- Hanna and Oliva (2015): closure of an oil refinery in Mexico City Metropolitan Region.
- ▶ Herrnstadt and Muehlegger (2015): wind speed and direction.
- Schlenker and Walker (2016): airport congestion in California

Data construction

CETESB data

- Instrument: wind speed
- Pollutant: NOx (ppb)
- Unit of observation: 8 monitors throughout SPMA from January to June in 2013, on a daily basis.
- Hospitalizations: number of elderly (aged 60 or above) hospitalized due to respiratory disease living within 5km radius around each of the 8 monitors.
- Dependent variable: hospitalization rate per 100,000 elderly.

Monitors

Descriptive Statistics

Table: General Characteristics of the Monitors

	daily hospitalizations						
Monitors	mean	minimum	maximum	total	average hospitalization rate	elderly population	average NOx
Capão Redondo	3,48	0	10	629	4.00	86,919	25.55
Carapicuíba	1.04	0	5	188	2.81	36,932	39.10
Interlagos	3.88	0	12	702	4.28	90,655	29.08
Marginal Tietê	1,25	0	4	226	2.12	58,883	105.19
Osasco	1.28	0	6	232	2.40	53,484	84.67
Guarulhos - Paço Municipal	1.83	0	6	332	2.80	65,576	26.24
Pinheiros	0.99	0	4	179	0.87	114,003	69.47
São Caetano do Sul	4.27	0	12	772	3.09	137,811	44.20

Source: DATASUS, CETESB and Census-2010

Specification

2 stages estimates:

 $log(pollution_{it}) = \alpha + \beta_1 ws_{it} + \beta_2 ws_{it-1} + \theta_i + \mu_t + \epsilon_{it} \text{ (1st stage)}$ $rate_{it} = \gamma + \lambda log(pollution_{it}) + \eta_i + \delta_t + \varepsilon_{it} \text{ (2nd stage)}$

- ► Wind speed:
 - scalar-based: speed average (m/s)
 - vector-based: speed weighted by wind direction

Identification Hypothesis

$$\mathbb{E}(\mathbf{z}_{it}\varepsilon_{it}/\eta_i, \delta_t) = 0$$
, where $\mathbf{z}_{it} = (ws_{it}, ws_{it-1})$

Dependent variables $\log(NO_{\rm M})$					
Dependent variable: $\log(NOx_{it})$					
	(1)	(2)	(3)		
Scalar-based					
WS _{it}	-0.461***	-0.518***	-0.460***		
	(0.072)	(0.060)	(0.049)		
WS _{it-1}	-0.052	-0.114***	-0.040		
	(0.037)	(0.038)	(0.043)		
F	23.164	57.350	50.930		
Sargan (p-value)	0.199	0.363	0.387		
Vector-based	Vector-based				
WSit	-0.357***	-0.354***	-0.309***		
	(0.047)	(0.044)	(0.037)		
ws _{it-1}	-0.092**	-0.089***	-0.056***		
	(0.033)	(0.018)	(0.017)		
F	29.348	52.761	51.855		
Sargan (p-value)	0.266	0.501	0.431		
Monitor fixed effect	No	Yes	Yes		
Time fixed effect	No	No	Yes		
Observations	1267	1267	1267		

Table: First Stage

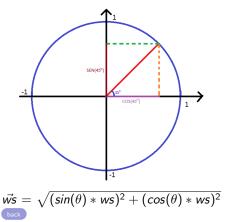
Dependent variable: rate _{it}					
	(1)	(2)	(3)		
Scalar-based					
WSit	0.159	-0.257*	-0.232**		
	(0.171)	(0.134)	(0.108)		
WS _{it-1}	0.256	-0.154	-0.109		
	(0.170)	(0.101)	(0.100)		
Vector-based					
WSit	0.053	-0.222***	-0.200***		
	(0.110)	(0.055)	(0.045)		
WS _{it-1}	0.148	-0.126	-0.116		
	(0.126)	(0.103)	(0.096)		
Monitor fixed effect	No	Yes	Yes		
Time fixed effect	No	No	Yes		
Observations	1267	1267	1267		

Table: Reduced Form

Table: Second Stage

Dependent variable: rate _{it}			
	(1)	(2)	(3)
Scalar-based			
$log(NOx_{it})$	-0.710	0.606**	0.594**
	(0.462)	(0.242)	(0.235)
Vector-based			
$log(NOx_{it})$	-0.360	0.721***	0.752***
	(0.353)	(0.259)	(0.243)
Monitor fixed effect	No	Yes	Yes
Time fixed effect	No	No	Yes
Observations	1267	1267	1267

Depende	ent variable: (1)	: <i>rate_{it}</i> (2)	(3)
$log(NOx_{it})$	-0.381** (0.130)	0.387** (0.163)	0.158 (0.109)
Monitor fixed effect Time fixed effect	No	Yes	Yes
Observations	1267	1267	1267


Table: Regressions without instrumental variable

- First stage: regression of air pollution on wind speed registered days after the hospitalization.
- Reduced form: regression of hospitalization rate on the wind speed of another monitor (randomly chosen).
- Reduced form:regression of hospitalization rate for digestive system disease on wind speed.

Limitations

- Few monitors
- Missings
- No controls (such as temperature and humidity)
- Solution: INPE data

Velocidade do vento vetorial

Herrnstadt and Muehlegger (2015):

- Steps:
 - Finding sin(θ) * ws and cos(θ) * ws
 - Calculating the hourly average for each day

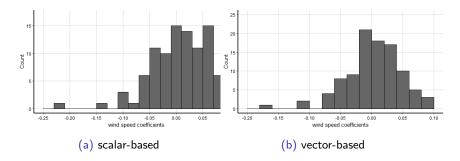


Figure: First stage falsification

Table: Placebo I

Dependent variable: rate _{it}				
	(1)	(2)		
	Scalar-based	Vector-based		
WSjt	-0.147	-0.045		
	(0.142)	(0.085)		
WS _{jt-1}	-0.113	-0.082		
-	(0.075)	(0.053)		
Monitor fixed effect	Yes	Yes		
Time fixed effect	Yes	Yes		
Observations	1267	1267		

back

Table: Placebo II

Dependent variable: rate _{it}				
	(1)	(2)		
	Scalar-based	Vector-based		
WS _{it}	-0.112	-0.060		
	(0.093)	(0.073)		
WS _{it-1}	0.220***	0.137**		
	(0.063)	(0.058)		
Monitor fixed effect	Yes	Yes		
Time fixed effect	Yes	Yes		
Observations	1267	1267		

back