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Introduction

Nonnegative skewed outcomes y , e.g.

I labor earnings

I medical expenditures

I trade volume

often modeled using a regression of ln(y) on X . What about y = 0?
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Model of the conditional mean

Linear regression of ln(y) on X assumes

E [ln(y)|X ] = Xb

but the Poisson quasi-MLE (Gourieroux et al. 1984) or GLM with a log
link assumes

ln(E [y |X ]) = Xb

Only one of these makes sense when y can be zero.

Note that the conditional mean must always be positive, but the actual
realized outcome can be zero. GLM with a log link can even
accommodate negative outcomes (but poisson exits with an error).
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When does OLS make sense?

If we write
yi = exp(Xib + ei ) = exp(Xib)vi

and if we happen to have data where yi > 0 for all i , then we can take
logs for

ln(yi ) = Xib + ei

which motivates the OLS specification. With y > 0 always, Manning and
Mullahy (2001) provide guidance on when to prefer OLS or GLM (if e is
symmetric and homoskedastic, prefer OLS).
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Tobit typically not a good alternative

Other common approaches include tobit and “two-part” or “hurdle” models. One
tobit approach puts a small number a for every zero (smaller than the smallest
observed positive y), takes logs, and then specifies ln(a) as the lower limit. See
Cameron and Trivedi (2009, p.532), §16.4.2 “Setting the censoring point for data in
logs,” for one example of this advice.

But this approach makes no sense. The choice of a is arbitrary, and affects the

estimation. Choosing a = .01 results in l̃ny = −4.6 and choosing a = .000001 results

in l̃ny = −13.8 and there is no obvious reason to prefer one over the other, for
example when the smallest positive y is 1.

The only time replacing zero with a small positive number a, taking logs, and running
a tobit makes sense is when zero represents the result of a known lower detection
limit, or rounding, and y is known to actually be positive in these cases. This is not
the case in practice, typically.
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Comparison of OLS and Tobit

Graph comparing OLS, Poisson, and Tobit (with a equal to one
hundredth or one millionth)
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The simulation model

We specify a data generating process given by

yi = exp(Xib)vi

with v distributed gamma with moderate or no heteroskedasticity.
Choose x = exp(u) with u uniform on (0, 1) for moderate skewness in
the predictor.

Also tried mixture of gamma, exponential, pareto, mixture of lognormals.

Poisson tended to dominate in every case.
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Objects of interest

We are usually interested not in estimating b, but in the marginal effect

∂E (y |X )

∂X

which is straightforward in the Poisson case, and not in the others. Or we
might be interested in predictions, or out of sample predictions. Poisson
tends to dominate in these cases as well, and sidesteps the pernicious
retransformation problem of OLS (Duan 1983, Manning 1988, Mullahy
1998, Ai and Norton 2000, Santos Silva and Tenreyro 2006).

Whatever we are interested in estimating, we are presumably looking to
minimize the MSE of that—so looking for a consistent estimator of ŷ (as
in Duan 1983) when we are interested in individual predictions (not the
mean of predictions in a large sample) makes no sense—we want good
small sample performance.
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Marginal Effects

Table: MSE of marginal effect estimates (in percentage terms: ∂E(y|X )
∂X

1
E(y|X ) )

No Het. Low Het.

Variance N=100 N=1000 N=10000 N=100 N=1000 N=10000

Low % nonzero 0.005 0.005 0.005 0.314 0.313 0.312
OLS 0.062 0.006 0.001 0.352 0.029 0.007

Poisson 0.050 0.005 0.000 0.405 0.055 0.005
Tobit 0.799 0.604 0.588 148.919 152.241 148.315

Hurdle (2PM) 0.765 0.588 0.572 13.252 11.259 10.812

Med. % nonzero 0.111 0.111 0.111 0.601 0.596 0.597
OLS 0.148 0.014 0.001 1.003 0.120 0.048

Poisson 0.139 0.013 0.001 1.342 0.142 0.015
Tobit 8.810 6.893 6.655 153.898 235.285 229.831

Hurdle (2PM) 7.317 5.961 5.786 52.625 36.228 33.169

High % nonzero 0.397 0.397 0.397 0.805 0.802 0.802
OLS 0.312 0.031 0.003 1.791 0.357 0.156

Poisson 0.377 0.037 0.004 2.136 0.362 0.037
Tobit 22.270 8.411 6.797 161.239 92.491 90.506

Hurdle (2PM) 28.004 20.213 19.243 61.426 40.132 39.633
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Predictions

Table: MSE of predictions
No Het. Low Het.

Variance N=100 N=1000 N=10000 N=100 N=1000 N=10000

Low % nonzero 0.006 0.005 0.005 0.314 0.313 0.312
OLS 7.785 8.177 8.098 48.063 75.440 68.899

Poisson 6.472 6.936 6.875 44.839 71.849 65.649
Tobit 6.604 6.948 6.877 50.427 77.735 71.049

Hurdle (2PM) 6.580 6.948 6.876 45.952 72.798 66.345

Med. % nonzero 0.112 0.112 0.111 0.601 0.596 0.597
OLS 20.244 21.357 21.634 126.013 162.236 179.508

Poisson 17.327 18.507 18.776 118.111 159.339 176.848
Tobit 18.390 19.267 19.519 131.283 166.499 183.631

Hurdle (2PM) 17.682 18.531 18.780 122.786 160.258 177.462

High % nonzero 0.403 0.397 0.397 0.805 0.802 0.802
OLS 45.523 58.396 53.134 481.218 444.892 488.549

Poisson 41.744 54.808 49.852 335.368 442.150 486.921
Tobit 48.053 61.223 55.865 351.362 451.000 494.182

Hurdle (2PM) 42.736 54.926 49.861 372.344 443.862 487.583
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Hurdle Models

“Hurdle” or “two-part” models (2PM), described by Mullahy (1986)
among others, appear in the prior comparison. Why are they popular?
Due to the RAND Health Insurance Experiment (Duan et al. 1983,
Manning et al. 1987, Newhouse et al. 1993), primarily.

Idea is: a person decides whether to go to the doctor, and then the
doctor decides expenditure conditional on y > 0. Also easy to
run—likelihood is separable, so just run a probit (or logit or cloglog
or what have you) using 1(y > 0) as a dummy outcome, then run OLS
regression of ln(y) on X or a truncated regression (ztp or ztnb or
truncreg) of y on X . See McDowell (2003) but replace commands with
those appropriate in newer Stata.
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Two-part assumption

Not all that realistic in reality-you may find yourself getting medical care
without any decision on your part; you can also end your medical care if
you decide to (in most cases).

Now we need several pieces of the model to be correctly specified, or all
estimates are inconsistent.

Also hard to include endogenous explanatory variables in a hurdle model
without some unpleasantly strong ML assumptions. Not so with
Poisson/GLM: simply adopt a GMM framework.
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GMM framework easily accommodates instruments

GMM version of Poisson assumes:

yi

exp(Xib)
− 1

is orthogonal to Xi (uncorrelated in the population, or dgp). If X is
endogenous, we can instead assume it is orthogonal to Z where Z is a set
of instruments:

E

[(
yi

exp(Xib)
− 1

)′

Z

]
= 0

ivpois for Stata 10, on SSC, gmm in Stata 11.
Manual entry on gmm has many examples.
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The RAND HIE

Suppose we want to measure the effect of a one percent reduction in the
price of health care on health expenditures. In health plans, prices fall as
expenditures increase, so regressing spending on price is a bad idea.

In the RAND Health Insurance Experiment (HIE), participants were
randomly assigned first-dollar prices; not prices more generally, because
every case had a stoploss.
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HIE price structure
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Expected prices

The price changes during the course of the year; in fact, in the RAND
HIE the price is the first dollar price up until the stoploss and then drops
to zero; but the shadow price of a bit more health care also has to take
into account the chance that you want a lot more later in the year, and
spending now lowers the effective price of care later in the year.

Ellis (1986) shows that using expected end-of-year price as a proxy for
the actual marginal price (at each point during the plan year) performs
very well. But the expected end-of-year price is endogenously determined
by spending behavior. I compute expected price over all other individuals
in an individual’s randomly assigned group and use first dollar price as an
instrument for the expected price.
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Graph comparing expenditures by first-dollar price
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Results

Table: Regressions of medical spending on prices

(1) (2) (3) (4) (5)
Poisson Poisson using Ep Poisson using lnEp GMM-IV using Ep GMM-IV using lnEp

FDP 25 -0.181 (-1.48)
FDP 50 0.164 (0.42)
FDP 95 -0.492 (-3.71)
Expected price -0.426 (-2.29) -0.515 (-3.23)
ln(Expected price) -0.153 (-1.37) -0.167 (-1.65)
Good health 0.366 (1.98) 0.365 (1.98) 0.352 (1.18) 0.318 (2.29) 0.439 (2.44)
Fair health 0.675 (3.93) 0.674 (3.95) 0.854 (3.20) 0.580 (3.03) 0.739 (2.76)
Poor health 1.330 (4.92) 1.345 (4.97) 0.723 (2.33) 1.055 (4.62) 0.626 (2.49)
Child -0.0799 (-0.29) -0.0769 (-0.28) -0.257 (-0.82) -0.147 (-0.67) -0.0148 (-0.05)
Female child -0.365 (-0.86) -0.366 (-0.87) 0.184 (0.34) -0.608 (-2.57) -0.441 (-1.57)
Female 0.425 (3.27) 0.424 (3.27) 0.439 (1.96) 0.448 (3.94) 0.505 (2.94)
Black -0.671 (-3.82) -0.690 (-3.80) -0.615 (-2.16) -0.519 (-3.23) -0.503 (-2.26)
Age 0.0105 (2.14) 0.0106 (2.16) 0.0141 (1.68) 0.0134 (2.88) 0.0192 (2.57)
Constant 4.572 (19.66) 4.572 (20.03) 4.071 (9.85) 4.505 (23.18) 3.743 (11.33)

Observations 4146 4146 2277 4146 2277

t statistics in parentheses
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Conclusions

“Use a model that could possibly fit your data” seems like simple and
obvious advice, and has been offered many times before, sometimes
forcefully (e.g. Mullahy 1988, Santos Silva and Tenreyro 2006), but still
has not permeated the awareness of many researchers. See e.g.

I Rutledge (2009) regresses ln spending on X, dropping zeros! GLM or
GMM is the better alternative.

I Kowalski (2009) compares her method to ivtobit instead of a more
reasonable GMM.

These are both common errors, and easily avoided.

There are many other models, zero-inflated or not, for nonnegative
outcomes, but few have the robustness of Poisson. Note in particular we
need no assumption about conditional variance for consistency, contrary
to occasional claims about Poisson.
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Practical Guidance

For a specific application, you should run your own simulation. You can
run several candidate models on half the data, and see the MSE of the
quantity of interest (the other half of the data serves for out of sample
predictions), or resample errors to simulate new data in which to estimate
(with known coefficients and marginal effects). If you choose half-sample
cross-validation, it is easy to run 100 times or so, and get very reliable
estimates of MSE for half-samples.

GLM or the equivalent poisson, both with a log link, will often “win”
this contest.

Note: If you decide on a log link, you may want to call your model “GLM
with a log link,” rather than a “Poisson” QMLE—some older reviewers
believe Poisson regression is only for counts.
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