Estimating treatment effects from observational data using teffects, stteffects, and eteffects

David M. Drukker

Executive Director of Econometrics Stata

Belgian Stata Users Group 6 September 2016

・ロト ・御ト ・ヨト ・ヨト 三日

A question

- Will a mother hurt her child by smoking while she is pregnant?
 - Too vague
- Will a mother reduce the birthweight of her child by smoking while she is pregnant?
 - Less interesting, but more specific
 - There might even be data to help us answer this question
 - The data will be observational, not experimental

Potential outcomes

- For each treatment level, there is a potential outcome that we would observe if a subject received that treatment level
- Potential outcomes are the data that we wish we had to estimate causal treatment effects
- In the example at hand, the two treatment levels are the mother smokes and the mother does not smoke
 - For each treatment level, there is an outcome (a baby's birthweight) that would be observed if the mother got that treatment level

Potential outcomes

- Suppose that we could see
 - the birthweight of a child born to each mother when she smoked while pregnant, and
 - e the birthweight of a child born to each mother when she did not smoke while pregnant
 - For example, we wish we had data like

	mother_id	bw_smoke	bw_nosmoke
1.	1	3183	3509
2.	2	3060	3316
3.	3	3165	3474
4.	4	3176	3495
5.	5	3241	3413

. list mother_id bw_smoke bw_nosmoke in 1/5, abbreviate(10)

Average treatment effect

 If we had data on each potential outcome, the sample-average treatment effect would be the sample average of bw_smoke minus bw_nosmoke

. mean bw_smol Mean estimatio		Numbe	er of obs	=	4,642		
	Mean	Std. Err.	[95%	Conf.	Interval]		
bw_smoke bw_nosmoke	3171.72 3402.599	.9088219 1.529189	3169. 3399.		3173.501 3405.597		
. lincom _b[bu (1) bw_smol	w_smoke]b ke - bw_nosmol						
Mean	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
(1)	-230.8791	1.222589	-188.84	0.000	-233.	276	-228.4823

• In population terms, the average treatment effect is

$$ATE = \mathbf{E}[bw_{smoke} - bw_{nosmoke}] = \mathbf{E}[bw_{smoke}] - \mathbf{E}[bw_{nosmoke}]$$

Missing data

- The "fundamental problem of causal inference" (Holland (1986)) is that we only observe one of the potential outcomes
 - The other potential outcome is missing
 - We only see bw_{smoke} for mothers who smoked
 - 2 We only see *bw_{nosmoke}* for mothers who did not smoked
- We can use the tricks of missing-data analysis to estimate treatment effects
- For more about potential outcomes Rubin (1974), Holland (1986), Heckman (1997), Imbens (2004), (Cameron and Trivedi, 2005, chapter 2.7), Imbens and Wooldridge (2009), and (Wooldridge, 2010, chapter 21)

Random-assignment case

- Many questions require using observational data, because experimental data would be unethical
 - We could not ask a random selection of pregnant women to smoke while pregnant
- The random-assignment methods used with experimental data are useful, because observational-data methods build on them
- When the treatment is randomly assigned, the potential outcomes are independent of the treatment
- If smoking were randomly assigned to mothers, the missing potential outcome would be missing completely at random
 - The average birthweight of babies born to mothers who smoked would be a good estimator for mean of the smoking potential outcome of all mothers in the population
 - The average birthweight of babies born to mothers who did not smoke would be a good estimator for mean of the not-smoking potential outcome of all mothers in the population

As good as random

- Instead of assuming that the treatment is randomly assigned, we assume that the treatment is as good as randomly assigned after conditioning on covariates
- Formally, this assumption is known as conditional independence
- Even more formally, we only need conditional mean independence which says that after conditioning on covariates, the treatment does not affect the means of the potential outcomes

Assumptions used with observational data

- The assumptions we need vary over estimator and effect parameter, but some version of the following assumptions are required for the exogenous treatment estimators discussed here
 - CMI The conditional mean-independence CMI assumption restricts the dependence between the treatment model and the potential outcomes
- Overlap The overlap assumption ensures that each individual could get any treatment level
 - IID The independent-and-identically-distributed (IID) sampling assumption ensures that the potential outcomes and treatment status of each individual are unrelated to the potential outcomes and treatment statuses of all the other individuals in the population
 - Endogenous treatment effect models replace CMI with a weaker assumption
 - In practice, we assume independent observations, not IID

Some references for assumptions

For Reference Only

- Versions of the CMI assumption are also known as unconfoundedness and selection-on-observables in the literature; see Rosenbaum and Rubin (1983), Heckman (1997), Heckman and Navarro-Lozano (2004), (Cameron and Trivedi, 2005, section 25.2.1), (Tsiatis, 2006, section 13.3), (Angrist and Pischke, 2009, chapter 3), Imbens and Wooldridge (2009), and (Wooldridge, 2010, section 21.3)
- Rosenbaum and Rubin (1983) call the combination of conditional independence and overlap assumptions strong ignorability; see also (Abadie and Imbens, 2006, pp 237-238) and Imbens and Wooldridge (2009).
- The IID assumption is a part of what is known as the stable unit treatment value assumption (SUTVA); see (Wooldridge, 2010, p.905) and Imbens and Wooldridge (2009)

Choice of auxiliary model

- Recall that the potential-outcomes framework formulates the estimation of the ATE as a missing-data problem
- We use the parameters of an auxiliary model to solve the missing-data problem
 - The auxiliary model is how we condition on covariates so that the treatment is as good as randomly assigned

- outcome \rightarrow Regression adjustment (RA)
- treatment \rightarrow Inverse-probability weighted (IPW)
 - \rightarrow Augmented IPW (AIPW)
 - \rightarrow IPW RA (IPWRA)
 - Nearest-neighbor matching (NNMATCH)
 - \rightarrow Propensity-score matching (PSMATCH)

- outcome and treatment
- outcome and treatment
- outcome (nonparametrically) \rightarrow
 - treatment

Regression adjustment estimators

- Regression adjustment (RA) estimators:
 - RA estimators run separate regressions for each treatment level, then
 - means of predicted outcomes using all the data and the estimated coefficients for treatment level *i* all the data estimate POM_i
 - use differences of POMs, or conditional on the treated POMs, to estimate ATEs or ATETs
 - Formally, the CMI assumption implies that our regressions of observed y for a given treatment level directly estimate $\mathbf{E}[y_t|\mathbf{x}_i]$
 - y_t is the potential outcome for treatment level t
 - **x**_i are the covariates on which we condition
 - Averages of predicted $\mathbf{E}[y_t|\mathbf{x}_i]$ yield estimates of the POM $\mathbf{E}[y_t]$ because $1/N \sum_{i=1}^{N} \widehat{\mathbf{E}}[y_t|\mathbf{x}_i] \rightarrow_{\rho} \mathbf{E}_{\mathbf{x}}[\widehat{\mathbf{E}}[y_t|\mathbf{x}_i]] = \mathbf{E}[y_t]$
- See (Cameron and Trivedi, 2005, chapter 25), (Wooldridge, 2010, chapter 21), and (Vittinghoff et al., 2012, chapter 9)

RA example

. use cattaneo2			
(Excerpt from Cattaneo (2010) Journal of Econ	ometrics 155: 138-154	4)	
. teffects ra (bweight mmarried prenatal1 fba	by medu) (mbsmoke)		
Iteration 0: EE criterion = 2.336e-23			
Iteration 1: EE criterion = 5.702e-26			
Treatment-effects estimation	Number of obs	=	4,642
Estimator : regression adjustment			
Outcome model : linear			
Treatment model: none			

bweight	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	[Interval]
ATE mbsmoke (smoker vs nonsmoker)	-230.9541	24.34012	-9.49	0.000	-278.6599	-183.2484
POmean mbsmoke nonsmoker	3402.548	9.546721	356.41	0.000	3383.836	3421.259

- When all pregnant women smoke the average baby birthweight is estimated to be 231 grams less than when no pregnant women smoke
- The average birthweight when no pregnant women smoke is estimated to be 3403 grams

Estimators: RA

RA exponential-mean example

. teffects ra	(bweight mmarried prenatal1 fbaby	medu, poisson)	(mbsmoke)	
Iteration 0:	EE criterion = 3.926e-17			
Iteration 1:	EE criterion = 1.666e-23			
Treatment-effect	cts estimation	Number of obs	=	4,642
Estimator	: regression adjustment			
Outcome model	: Poisson			
Treatment model	1: none			

bweight	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
ATE mbsmoke (smoker vs nonsmoker)	-230.7723	24.41324	-9.45	0.000	-278.6213	-182.9232
POmean mbsmoke nonsmoker	3402.497	9.547989	356.36	0.000	3383.783	3421.211

- RA using exponential mean $\mathbf{E}[y_t|\mathbf{x}] = \exp(\mathbf{x}\boldsymbol{\beta}_t)$ because birthweights are greater than 0
- teffects ra can also model the outcome using probit, logit, heteroskedastic probit, exponential mean, or poisson

Estimators: RA

Why are the standard errors always robust?

- have a multistep estimator
 - Regress y on x for not treated observations
 - **2** Regress y on \mathbf{x} for treated observations
 - Mean of all observations of predicted y given x from not-treated regression estimates
 - Mean of all observations of predicted y given x from treated regression estimates
- Each step can be obtained by solving moment conditions yielding a method of moments estimator known as an estimating equation (EE) estimator
 - $\mathbf{m}_i(\boldsymbol{\theta})$ is vector of moment equations and $\mathbf{m}(\boldsymbol{\theta}) = 1/N \sum_{i=1}^N \mathbf{m}_i(\boldsymbol{\theta})$
- The estimator for the variance-covariance matrix of the estimator has the form 1/N(DMD') where $D = \left(\frac{1}{N}\frac{\partial m(\theta)}{\partial \theta}\right)^{-1}$ and

$$M = \frac{1}{N} \sum_{i=1}^{N} \mathbf{m}_i(\boldsymbol{\theta}) \mathbf{m}_i(\boldsymbol{\theta})$$

• Stacked moments do not yield a symmetric *D*, so no simplification under correct specification

Inverse-probability-weighted estimators

- Inverse-probability-weighted (IPW) estimators:
 - IPW estimators weight observations on the outcome variable by the inverse of the probability that it is observed to account for the missingness process
 - Observations that are not likely to contain missing data get a weight close to one; observations that are likely to contain missing data get a weight larger than one, potentially much larger
 - IPW estimators model the probability of treatment without any assumptions about the functional form for the outcome model
 - In contrast, RA estimators model the outcome without any assumptions about the functional form for the probability of treatment model
- See Horvitz and Thompson (1952) Robins and Rotnitzky (1995), Robins et al. (1994), Robins et al. (1995), Imbens (2000), Wooldridge (2002), Hirano et al. (2003), (Tsiatis, 2006, chapter 6), Wooldridge (2007) and (Wooldridge, 2010, chapters 19 and 21)

. teffects ipw (bweight) (mbsmoke mmarried	prenatal1 fbaby medu)		
Iteration 0: EE criterion = 1.701e-23			
Iteration 1: EE criterion = 6.343e-27			
Treatment-effects estimation	Number of obs	=	4,642
Estimator : inverse-probability weights	6		
Outcome model : weighted mean			
Treatment model: logit			

bweight	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
ATE mbsmoke (smoker vs nonsmoker)	-231.1516	24.03183	-9.62	0.000	-278.2531	-184.0501
POmean mbsmoke nonsmoker	3402.219	9.589812	354.77	0.000	3383.423	3421.015

- IPW with logit to model treatment
- Could have used probit or heteroskedastic probit to model treatment
- Estimator has stacked moment structure; score equations from first-stage maximum-likelihood estimators are now moment equations

Augmented IPW estimators

• Augmented IPW (AIPW) estimators

- Augmented-inverse-probability-weighted (AIPW) estimators model both the outcome and the treatment probability
- The estimating equation that combines both models is essentially an IPW estimating equation with an augmentation term
- AIPW estimator have the double-robust property
 - only one of the two models must be correctly specified to consistently estimate the treatment effects
- AIPW estimators can be more efficient than IPW or RA estimators
- See Robins and Rotnitzky (1995), Robins et al. (1995), Lunceford and Davidian (2004), Bang and Robins (2005), (Tsiatis, 2006, chapter 13), Cattaneo (2010), Cattaneo, Drukker, and Holland (2013)

AIPW example I

<pre>. teffects aipw (bweight mmarried prenatal1 > (mbsmoke mmarried prenatal1 fbaby</pre>			
Iteration 0: EE criterion = 4.031e-23 Iteration 1: EE criterion = 2.180e-26			
Treatment-effects estimation Estimator : augmented IPW Outcome model : linear by ML Treatment model: logit	Number of obs	=	4,642

bweight	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
ATE mbsmoke (smoker vs nonsmoker)	-229.7809	24.96839	-9.20	0.000	-278.718	-180.8437
POmean mbsmoke nonsmoker	3403.122	9.564165	355.82	0.000	3384.376	3421.867

• AIPW with linear model for outcome and logit for treatment

<pre>. teffects aipw (bweight mmarried prenatal1 > (mbsmoke mmarried prenatal1 fbaby</pre>			
Iteration 0: EE criterion = 7.551e-16 Iteration 1: EE criterion = 8.767e-24			
Treatment-effects estimation	Number of obs	=	4,642
Estimator : augmented IPW			
Outcome model : Poisson by ML			
Treatment model: heteroskedastic probit			

bweight	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
ATE mbsmoke (smoker vs nonsmoker)	-220.496	28.30292	-7.79	0.000	-275.9687	-165.0233
POmean mbsmoke nonsmoker	3402.429	9.557345	356.00	0.000	3383.697	3421.161

- AIPW with exponential conditional mean model for outcome and heteroskedastic probit for treatment
- Could have used linear, poisson, logit, probit, or heteroskedastic probit to model the outcome and probit, logit, or heteroskedastic logit to model the treatment

Balance: As good as random

- In the unobtainable case of a randomly assigned treatment, the distribution of the covariates among those that get the treatment is the same as the distribution of the covariates among those that do not get the treatment
 - The distribution of the covariates is said to be "balanced" over the treatment/control status
- The estimators implemented in teffects use a model or matching method to make the outcome conditionally independent of the treatment by conditioning on covariates
 - If this model or matching method is well specified, it should balance the covariates
 - Balance diagnostic techniques and tests check the specification of the conditioning method used by a teffects

Balance with IPW

- Rosenbaum and Rubin (1983) showed that the propensity score is a balancing score
 - In particular, the treatment is conditionally independent of the covariates after conditioning on the propensity score
 - Among the many applications of this result is the implication that IPW means of covariates will be the same for treated and controls

• The raw means of covariates will differ over treated and control observations, but the IPW means will be similar

- tebalance implements diagnostics and a test for balance after teffects
 - Diagnostics are statistics and graphical methods for which we do not know the distribution under the null
 - A test is a statistic for which we know the distribution under the null
- tebalance is new to Stata 14

An example using the Cattaneo data

• Let's look for evidence against balancing using the simple model

```
. clear all
. use cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. quietly teffects ipw (bweight) (mbsmoke mmarried mage prenatal1 fbaby medu)
>
. tebalance summarize
```

Covariate balance summarize

		Raw	Weighted
Number of obs	=	4,642	4,642.0
Treated obs	=	864	2,280.4
Control obs	=	3,778	2,361.6

	Standardized	differences	Vari	ance ratio
	Raw	Weighted	Raw	Weighted
mmarried	5953009	0258113	1.335944	1.021696
mage	300179	0803657	.8818025	.8127244
prenatal1	3242695	0228922	1.496155	1.034023
fbaby	1663271	.0221042	.9430944	1.005032
medu	5474357	1373455	.7315846	.4984786

Standardized differences

- Group differences scaled by the average the group variances are known as known as standardized differences
- The raw standardized differences between treatment levels t_1 and t_0 are

$$\delta(t_1, t_0) = \frac{\widehat{\mu}_x(t_1) - \widehat{\mu}_x(t_1)}{\sqrt{\widehat{\sigma}_x^2(t_1) + \widehat{\sigma}_x^2(t_0)}}$$

where

$$\widehat{\mu}_{x}(t) = \frac{1}{N_{t}} \sum_{i=1}^{N} (t_{i} == t) x_{i}$$
$$\widehat{\sigma}_{x}(t) = \frac{1}{N_{t} - 1} \sum_{i=1}^{N} (t_{i} == t) (x_{i} - \widehat{\mu}_{x}(t))^{2}$$

Checking for balance

IPW standardized differences

- If the model for the treatment is correctly specified, the IPW standardized differences will be zero
- The IPW standardized differences between treatment levels t₁ and t₀ are

$$\delta(t_1,t_0) = rac{\widetilde{\mu}_{x}(t_1) - \widetilde{\mu}_{x}(t_1)}{\sqrt{\widetilde{\sigma}_{x}^2(t_1) + \widetilde{\sigma}_{x}^2(t_0)}}$$

where

$$\widetilde{\mu}_{x}(t) = \frac{1}{M_{t}} \sum_{i=1}^{N} \omega_{i}(t_{i} == t) x_{i}$$
$$\widetilde{\sigma}_{x}(t) = \frac{1}{M_{t} - 1} \sum_{i=1}^{N} (t_{i} == t) \omega_{i} (x_{i} - \widetilde{\mu}_{x}(t))^{2}$$

and ω_i are the normalized predicted treatment probabilities and $M_t = \sum_{i=1}^N (t_1 == t) \omega_i$

Test for balance

- Imai and Ratkovic (2014) derived a test for balance by viewing the restrictions imposed by balance as overidentifying conditions.
 - Scores for ML estimator of propensity score are moment conditions
 - Moment conditions for equality of means are over-identifing conditions
 - Estimate over-identified parameters by generalized method of moments (GMM)
 - Under the null of covariate balance GMM criterion statistic has χ²(J) distribution, where J is the number of over-identifying moment conditions imposed by covariate balance

```
. quietly teffects ipw (bweight) (mbsmoke mmarried mage prenatal1 fbaby medu)
. tebalance overid
Iteration 0:
                           .01513068
              criterion =
Iteration 1:
            criterion =
                           .01514951
                                      (backed up)
Iteration 2:
                           .01521006
              criterion =
Iteration 3:
              criterion =
                           .01539644
Iteration 4:
              criterion =
                           .01542377
Iteration 5:
              criterion =
                           .01550797
Iteration 6:
              criterion =
                           01553409
Iteration 7:
                           .01558564
              criterion =
Iteration 8:
              criterion =
                           .01568553
Iteration 9:
              criterion =
                           .01569184
                           .01572741
Iteration 10: criterion =
Iteration 11: criterion =
                           .01573404
Iteration 12: criterion =
                            .01573406
Overidentification test for covariate balance
        HO: Covariates are balanced:
        chi2(6)
                        62.5564
                     =
        Prob > chi2 =
                         0.0000
```

Reject null hypothesis that IPW model/weights balance covariates

Model selection

- How to selection the model for the outcome or the treatment?
- Use theory to decide the set of covariates
 - Do not condition on variables that are affected by the treatment, Wooldridge (2005)
- What functional form of a set or super set of the correct covariates should I use?

Minimizing an information criterion

- The idea is to fit a bunch of models and select the model with smallest information criterion
 - An information criterion is -LL + penalty term
 - The better the estimator fits the data, the smaller is the negative of the log-likelihood (-LL)
 - The more parameters are added to the model, the larger is the penalty term
- Choosing the model that minimizes an information criteria has a long history in statistics and econometrics
 - Claeskens and Hjort (2008), (Cameron and Trivedi, 2005, Section 8.5.1)

Minimizing an information criterion

- Minimizing the Bayesian information criterion (BIC) can be a consistent model selection technique
 - Selecting the model that minimizes the BIC is an estimator of which model to select
 - The model selected by this estimator converges to the true model as the sample size gets larger
 - $BIC = -2LL + 2\ln(N)q$, where N is the sample size and q is the number of parameters
- Minimizing the Akaike information criterion (AIC) tends to select a model with too many terms
 - The model selected by this estimator converges to a model that over fits as the sample size gets larger
 - AIC = -2LL + 2q

bfit does model selection

- bfit is a user written command documented in Cattaneo et al. (2013)
- bfit will find the model that minimizes either the BIC or the AIC within a subset of all possible models

	Obs	11(null)	ll(model)	df	AIC	BIC
4	642	-2230.748	-2002.985	9	4023.97	4081.956
4	642	-2230.748	-2012.263	7	4038.525	4083.626
4	642	-2230.748	-2008.151	8	4032.302	4083.845
4	642	-2230.748	-1995.658	12	4015.316	4092.631
4	642	-2230.748	-1989.613	18	4015.225	4131.197
4	642	-2230.748	-2033.762	8	4083.524	4135.067
4	642	-2230.748	-2040.745	7	4095.49	4140.59
4	642	-2230.748	-2039.028	8	4094.056	4145.0
4	642	-2230.748	-2053.041	5	4116.081	4148.29
4	642	-2230.748	-2049.147	6	4110.294	4148.95
4	642	-2230.748	-2033.566	10	4087.132	4151.56
4	642	-2230.748	-2051.069	6	4114.138	4152.79
4	642	-2230.748	-2051.658	6	4115.316	4153.97
4	642	-2230.748	-2047.907	7	4109.815	4154.91
4	642	-2230.748	-2027.135	12	4078.271	4155.58
4	642	-2230.748	-2029.388	12	4082.776	4160.09
4	642	-2230.748	-2055.651	6	4123.303	4161.9
4	642	-2230.748	-2044.248	9	4106.496	4164.48
4	642	-2230.748	-1983.735	24	4015,469	4170.09
4	642	-2230.748	-2017.789	16	4067.577	4170.66
4	642	-2230.748	-2072.867	4	4153.733	4179.50
4	642	-2230.748	-2026.593	15	4083.186	4179.8
4	642	-2230.748	-2069.425	5	4148.85	4181.06
4	642	-2230.748	-2060.093	8	4136.187	4187.7
4	642	-2230.748	-2016.621	20	4073.242	4202.
4	642	-2230.748	-2082.388	5	4174.776	4206.9
4	642	-2230.748	-2079.501	6	4171.003	4209.6
4	642	-2230.748	-2088.62	4	4185.241	4211.01
4	642	-2230.748	-2085.159	6	4182.317	4220.97
4	642	-2230.748	-2102.649	4	4213,297	4239.06
4	642	-2230.748	-2109.805	3	4225.61	4244.93
4	642	-2230.748	-2133.02	4	4274.041	4299.81
4	642	-2230.748	-2130.327	5	4270,653	4302.86
	642	-2230.748	-2138.799	3	4283.598	4302.92
	642	-2230.748	-2200.161	2	4404.322	4417.20

. bfit logit mbsmoke mmarried mage prenatal1 fbaby medu bfit logit results sorted by bic

Note: N= used in calculating BIC (results _bfit_32 are active now) . display "`r(bvlist) "

i.(mmarried prenatal1 fbaby) mage medu c.mage#c.mage c.mage#c.medu c.medu#c.med

> u

Model selection

Over-identification test with selected model

bweight	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
ATE mbsmoke (smoker vs nonsmoker)	-220.7592	28.47705	-7.75	0.000	-276.5732	-164.9452
POmean mbsmoke nonsmoker	3403.625	9.544666	356.60	0.000	3384.917	3422.332

. tebalance overid, nolog Overidentification test for covariate balance H0: Covariates are balanced: chi2(9) = 9.38347 Prob > chi2 = 0.4027

Survival-time example

Does smoking decrease the time to a second heart attack in the population of men aged 45–55 who have had one heart attack?

- Is For ethical reasons, these data will be observational.
- This question is about the time to an event, and such data are commonly known as survival-time data or time-to-event data. These data are nonnegative and, frequently, right-censored.

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

Many researchers and practitioners want an effect estimate in easy-to-understand units of time.

Much of the survival-time literature uses a hazard ratio as the effect of interest. The ATE has three advantages over the hazard ratio as an effect measure.

- The ATE measures the effect in the same time units as the outcome instead of in relative conditional probabilities.
- **②** The ATE is much easier to explain to nontechnical audiences.
- **③** The models used to estimate the ATE can be much more flexible.

Hazard ratios are useful for population effects when they are constant, which occurs when the treatment enters linearly and the distribution of the outcome has a proportional-hazards form.

Neither linearity in treatment nor proportional-hazards form is required for the ATE, and neither is imposed on the models fit by the estimators implemented in stteffects.
Estimators in stteffects

- Regression adjustment (RA)
 - Model outcome
 - Treatment assignment is handled by estimating seperate models for each treatment level
 - Censoring handled in log-likelihood function for outcome
- Inverse-probability weighting
 - Model treatment assignment
 - Outcome is not modeled; estimated is weighted average of observed outcomes
 - Censoring handled my modeling time to censoring, which must be random
- Inverse-probability weighted regression adjustment (IPWRA)
 - Model outcome and treatment
 - Censoring handled in one of two ways
 - Censoring handled in log-likelihood function for outcome, or
 - Censoring handled my modeling time to censoring, which must be random
- stteffects is new Stata 14

stset the data

```
. use sheart
(Time to second heart attack (fictional))
. stset atime, failure(fail)
        failure event: fail != 0 & fail < .
obs. time interval: (0, atime]
exit on or before: failure
```

2000 total observations 0 exclusions

2000 observations remaining, representing 1208 failures in single-record/single-failure data 3795.226 total analysis time at risk and under observation at risk from t = 0 earliest observed entry t = 0 last observed exit t = 34.17743

 1,208 of the 2,000 observations record actual time to a second heart attack; remainder were censored

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

stteffects ra

. stteffects ra (age exercise diet education)	(smoke)		
failure _d: fail			
analysis time _t: atime			
Iteration 0: EE criterion = 1.525e-19			
Iteration 1: EE criterion = 3.127e-31			
Survival treatment-effects estimation	Number of obs	=	2,000
Estimator : regression adjustment			
Outcome model : Weibull			
Treatment model: none			
Censoring model: none			

_t	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
ATE smoke (Smoker vs Nonsmoker)	-1.956657	.3331787	-5.87	0.000	-2.609676	-1.303639
POmean smoke Nonsmoker	4.243974	.2620538	16.20	0.000	3.730358	4.75759

• The time to second heart attack is 1.96 years sooner when all the men smoke instead of when none of them smoke

stteffects ipw

```
. stteffects ipw (smoke age exercise diet education)
                                                        111
         (age exercise diet education)
>
        failure d: fail
  analysis time _t: atime
Iteration 0: EE criterion = 2.042e-18
Iteration 1: EE criterion = 3,796e-31
Survival treatment-effects estimation
                                              Number of obs
                                                                       2,000
Estimator
              : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit
Censoring model: Weibull
```

t	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
ATE smoke (Smoker vs Nonsmoker)	-2.187297	.6319837	-3.46	0.001	-3.425962	9486314
POmean smoke Nonsmoker	4.225331	.517501	8.16	0.000	3.211047	5.239614

Survival-time data

stteffects ipwra: likelihood adjustment for censoring

```
111
. stteffects ipwra (age exercise diet education)
>
         (smoke age exercise diet education)
        failure d: fail
  analysis time _t: atime
Iteration 0: EE criterion = 2.153e-16
Iteration 1:
              EE criterion = 9.051e-30
Survival treatment-effects estimation
                                               Number of obs
                                                                       2,000
              : IPW regression adjustment
Estimator
Outcome model : Weibull
Treatment model: logit
Censoring model: none
                            Robust
```

_t	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
ATE smoke (Smoker vs	1 500404	4070777	2.07	0.001	0 54754	697447
Nonsmoker)	-1.592494	.4872777	-3.27	0.001	-2.54754	637447
POmean smoke Nonsmoker	4.214523	.2600165	16.21	0.000	3.7049	4.724146

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Survival-time data

stteffects ipwra: Weighted adjustment for censoring

<pre>. stteffects ipwra (age exercise diet education) > (smoke age exercise diet education) > (age exercise diet)</pre>) ///		
failure _d: fail			
analysis time _t: atime			
Iteration 0: EE criterion = 1.632e-16			
Iteration 1: EE criterion = 9.890e-31			
Survival treatment-effects estimation	Number of obs	=	2,000
Estimator : IPW regression adjustment			
Outcome model : Weibull			
Treatment model: logit			
Censoring model: Weibull			

_t	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
ATE smoke (Smoker vs Nonsmoker)	-2.037944	.6032549	-3.38	0.001	-3.220302	855586
POmean smoke Nonsmoker	4.14284	.4811052	8.61	0.000	3.199891	5.085789

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Endogenous treatment effects

- Allow an unobserved component to affect treatment assignment and each potential outcome
 - Violates CMI even though covariates are unrelated to error terms
- View the estimators implemented in eteffects as extentions to RA for a type of endogenous treatment
- eteffects is new to Stata 14

Endogenous treatment effects

• Here are the equations, when the outcome is linear

$$y_0 = \mathbf{x}\boldsymbol{\beta}_0 + \epsilon_0 + \gamma_0 \nu$$

$$y_1 = \mathbf{x}\boldsymbol{\beta}_1 + \epsilon_1 + \gamma_1 \nu$$

$$t = (\mathbf{z}\boldsymbol{\alpha} + \nu > 0)$$

$$y = ty_1 + (1 - t)y_0$$

- **x** and **z** are unrelated to ν and ϵ
- $\nu \sim N(0,1)$
- The endogeneity is caused by the presence of ν in all the equations

Endogenous treatment effects: Method

- Estimate probit of treatment on z, and get residuals $\widehat{\nu}$
- Regress y on x and $\hat{\nu}$, when t==0 to get $\hat{\mu}_{0i} = \widehat{\mathbf{E}}[y_0|\mathbf{x}_i, \nu_i]$
- Regress y on x and $\hat{\nu}$, when t==1 to get $\hat{\mu}_{1i} = \widehat{\mathbf{E}}[y_1|\mathbf{x}_i, \nu_i]$
- ATE is average of $\widehat{\mu}_{1i} \widehat{\mu}_{0i}$
- Correct standard errors by stacking the moment conditions

RA estimates

. use pschool	
. teffects aipw (gpa hgpa pedu) (private	i.religious pincome i.squality)
Iteration 0: EE criterion = 2.190e-15	
Iteration 1: EE criterion = 8.081e-27	
Treatment-effects estimation	Number of obs = 10,000
Estimator : augmented IPW	
Outcome model : linear by ML	
Treatment model: logit	

gpa	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
ATE private (Yes vs No)	.5856043	.0071606	81.78	0.000	.5715697	.5996389
POmean private No	3.114636	.003141	991.60	0.000	3.10848	3.120792

eteffects estimates

. eteffects (gpa hgpa pedu) (private i.religious pincome i.squality)
Iteration 0: EE criterion = 2.029e-22
Iteration 1: EE criterion = 1.040e-31
Endogenous treatment-effects estimation Number of obs = 10,000
Outcome model : linear
Treatment model: probit

gpa	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
ATE private (Yes vs No)	.1295686	.0225492	5.75	0.000	.0853729	.1737642
POmean private No	3.181094	.0048958	649.75	0.000	3.171498	3.19069

Testing for endogeneity

- There is no endogeneity if the coefficients on the control term, the generalized residuals, are zero
- A Wald test that these coefficients are jointly zero is a test of the null hypothesis of no endogeneity

Endogenous treatment effects

Testing for endogeneity

Other functional forms

• Outcome model in eteffects could be fractional, probit, or exponential-mean, in addition to linear

Now what?

• Go to http://www.stata.com/manuals14/te.pdf entry teffects intro advanced for more information and lots of links to literature and examples

QTEs for survival data

- Imagine a study that followed middle-aged men for two years after suffering a heart attack
 - Does exercise affect the time to a second heart attack?
 - Some observations on the time to second heart attack are censored
 - Observational data implies that treatment allocation depends on covariates
 - We use a model for the outcome to adjust for this dependence

QTEs for survival data

- Exercise could help individuals with relatively strong hearts but not help those with weak hearts
- For each treatment level, a strong-heart individual is in the .75 quantile of the marginal, over the covariates, distribution of time to second heart attack
 - QTE(.75) is difference in .75 marginal quantiles
- Weak-heart individual would be in the .25 quantile of the marginal distribution for each treatment level
 - QTE(.25) is difference in .25 marginal quantiles
- our story indicates that the QTE(.75) should be significantly larger that the QTE(.25)

What are QTEs?

Quantile Treatment effects

- We can easily estimate the marginal quantiles, but estimating the quantile of the differences is harder
- We need a rank preserveration assumption to ensure that quantile of the differences is the difference in the quantiles
 - The τ (th) quantile of y_1 minus the τ (th) quantile of y_0 is not the same as the τ (th) quantile of $(y_1 y_0)$ unless we impose a rank-preservation assumption
 - Rank preservation means that the random shocks that affect the treated and the not-treated potential outcomes do not change the rank of the individuals in the population

The rank of an individual in y_1 is the same as the rank of that individual in y_0

• Graphically, the horizontal lines must intersect the CDFs "at the same individual"

Quantile treatment effects (QTE)

A regression-adjustment estimator for QTEs

- Estimate the θ_1 parameters of $F(y|\mathbf{x}, t = 1, \theta_1)$ the CDF conditional on covariates and conditional on treatment level
 - Conditional independence implies that this conditional on treatment level CDF estimates the CDF of the treated potential outcome
- Similarly, estimate the θ_0 parameters of $F(y|\mathbf{x}, t=0, \theta_0)$
- At the point y,

$$1/N\sum_{i=1}^{N}F(y|\mathbf{x}_{i},\widehat{\boldsymbol{ heta}}_{1})$$

. .

estimates the marginal distribution of the treated potential outcome • The $\hat{q}_{1..75}$ that solves

$$1/N\sum_{i=1}^{N}F(\widehat{q}_{1,.75}|\mathbf{x}_{i},\widehat{\theta}_{1})=.75$$

estimates the .75 marginal quantile for the treated potential outcome

A regression-adjustment estimator for QTEs

• The $\widehat{q}_{0,.75}$ that solves

$$1/N\sum_{i=1}^{N}F(\widehat{q}_{0,.75}|\mathbf{x}_i,\widehat{\theta}_0)=.75$$

estimates the .75 marginal quantile for the control potential outcome

- $\widehat{q}_1(.75) \widehat{q}_0(.75)$ consistently estimates QTE(.75)
- See Drukker (2014) for details

mqgamma example

• mqgamma is a user-written command documented in Drukker (2014)

• . ssc install mqgamma

1.591147

2.510068

_cons

_cons

q75_1

. mqga		e, clear ctive, treat(e EE criterio			lns(health) quantile(.25 .75)
		EE criterio					
		EE criterio					
Iterat	ion 3:	EE criterion	n = 6.892e-	07			
Iterat	ion 4:	EE criterion	n = 4.706e-	12			
		EE criterio		22			
Gamma	marginal	L quantile est	timation		Number of	obs =	2000
	t	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
05.0							
q25_0	_cons	.2151604	.0159611	13.48	0.000	.1838771	.2464436
q25_1							
420_1	_cons	.2612655	.0249856	10.46	0.000	.2122946	.3102364
q75_0							

21.93

18.59

0.000

0.000

1.44893

2.245489

1.733363

2.774647

.0725607

.1349917

mqgamma example

. nlcom (_b[q25_1:_cons]b[q25_0:_cons]) /// > (_b[q75_1:_cons]b[q75_0:_cons]) _nl_1: _b[q25_1:_cons]b[q25_0:_cons] _nl_2: _b[q75_1:_cons]b[q75_0:_cons]							
	t	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
	_nl_1 _nl_2	.0461051 .9189214	.0295846 .1529012	1.56 6.01	0.119 0.000	0118796 .6192405	.1040899 1.218602

poparms also estimates QTEs

- poparms is a user-written command documented in Cattaneo, Drukker, and Holland (2013)
- poparms estimates mean and quantiles of the potential-outcome distributions
 - poparms implements an IPW and an AIPW derived in Cattaneo (2010)
 - Cattaneo (2010) and Cattaneo, Drukker, and Holland (2013) call the AIPW estimator an efficient-influence function (EIF) estimator because EIF theory is what produces the augmentation term

- Abadie, Alberto and Guido W. Imbens. 2006. "Large sample properties of matching estimators for average treatment effects," *Econometrica*, 235–267.
- Angrist, J. D. and J.-S. Pischke. 2009. *Mostly Harmless Econometrics: An Empiricist's Companion*, Princeton, NJ: Princeton University Press.
- Bang, Heejung and James M. Robins. 2005. "Doubly robust estimation in missing data and causal inference models," *Biometrics*, 61(4), 962–973.
- Cameron, A. Colin and Pravin K. Trivedi. 2005. *Microeconometrics: Methods and Applications*, Cambridge: Cambridge University Press.
- Cattaneo, Matias D., David M. Drukker, and Ashley D. Holland. 2013. "Estimation of multivalued treatment effects under conditional independence," *Stata Journal*, 13(3), 407–450.
- Cattaneo, M.D. 2010. "Efficient semiparametric estimation of multi-valued treatment effects under ignorability," *Journal of Econometrics*, 155(2), 138–154.
- Claeskens, Gerda and Nils Lid Hjort. 2008. *Model selection and model averaging*, Cambridge, UK: Cambridge University Press.

59 / 59

Drukker, David M. 2014. "Quantile treatment effect estimation from censored data by regression adjustment," Tech. rep., Under review at the *Stata Journal*, http://www.stata.com/ddrukker/mqgamma.pdf.

- Heckman, James and Salvador Navarro-Lozano. 2004. "Using matching, instrumental variables, and control functions to estimate economic choice models," *Review of Economics and statistics*, 86(1), 30–57.
- Heckman, James J. 1997. "Instrumental variables: A study of implicit behavioral assumptions used in making program evaluations," *Journal of Human Resources*, 32(3), 441–462.
- Hirano, Keisuke, Guido W. Imbens, and Geert Ridder. 2003. "Efficient estimation of average treatment effects using the estimated propensity score," *Econometrica*, 71(4), 1161–1189.
- Holland, Paul W. 1986. "Statistics and causal inference," *Journal of the American Statistical Association*, 945–960.
- Horvitz, D. G. and D. J. Thompson. 1952. "A Generalization of Sampling Without Replacement From a Finite Universe," *Journal of the American Statistical Association*, 47(260), 663–685.

Imai, Kosuke and Marc Ratkovic. 2014. "Covariate balancing and propensity score," *Journal of the Royal Statistical Society: Series B*, 76(1), 243–263.

Imbens, Guido W. 2000. "The role of the propensity score in estimating dose-response functions," *Biometrika*, 87(3), 706–710.

 2004. "Nonparametric estimation of average treatment effects under exogeneity: A review," *Review of Economics and statistics*, 86(1), 4–29.

Imbens, Guido W. and Jeffrey M. Wooldridge. 2009. "Recent Developments in the Econometrics of Program Evaluation," *Journal of Economic Literature*, 47, 5–86.

Lunceford, Jared K and Marie Davidian. 2004. "Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study," *Statistics in medicine*, 23(19), 2937–2960.

Robins, James M. and Andrea Rotnitzky. 1995. "Semiparametric Efficiency in Multivariate Regression Models with Missing Data," *Journal of the American Statistical Association*, 90(429), 122–129. (Determined and the second content of the sec

59 / 59

Robins, James M., Andrea Rotnitzky, and Lue Ping Zhao. 1994.
"Estimation of Regression Coefficients When Some Regressors Are Not Always Observed," *Journal of the American Statistical Association*, 89(427), 846–866.

———. 1995. "Analysis of Semiparametric Regression Models for Repeated Outcomes in the Presence of Missing Data," *Journal of the American Statistical Association*, 90(429), 106–121.

- Rosenbaum, P. and D. Rubin. 1983. "Central Role of the Propensity Score in Observational Studies for Causal Effects," *Biometrika*, 70, 41–55.
- Rubin, Donald B. 1974. "Estimating causal effects of treatments in randomized and nonrandomized studies." *Journal of educational Psychology*, 66(5), 688.
- Tsiatis, Anastasios A. 2006. *Semiparametric theory and missing data*, New York: Springer Verlag.

Wooldridge, Jeffrey M. 2002. "Inverse probability weighted M-estimators for sample selection, attrition, and stratification," *Portuguese Economic Journal*, 1, 117–139.

- Wooldridge, Jeffrey M. 2005. "Violating ignorability of treatment by controlling for too many factors," *Econometric Theory*, 21(5), 1026.
- Wooldridge, Jeffrey M. 2007. "Inverse probability weighted estimation for general missing data problems," *Journal of Econometrics*, 141(2), 1281–1301.
- -------. 2010. Econometric Analysis of Cross Section and Panel Data, Cambridge, Massachusetts: MIT Press, second ed.