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Abstract

This paper describes the Stata module akdensity.
akdensity extends the official Stata command
kdensity that estimates density functions by the
kernel method. The extensions are of two types.
Firstly, akdensity allows the use of an ‘adaptive
kernel’ approach with varying, rather than fixed,
bandwidths. Secondly, akdensity estimates point-
wise variability bands around the estimated density
functions.
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1 Overview

Stata offers one official command for non-
parametric estimation of density functions:
kdensity; see [R] kdensity. Important user-
written extensions have also been developed in
Salgado-Ugarte et al. (1993), Salgado-Ugarte et al.
(1995) and Salgado-Ugarte & Pérez-Hernández
(2003) for bandwidth selection and estimation with
adaptive kernel functions. The present insert de-
scribes akdensity, a module that further extends
the possibilities offered for kernel density estima-
tion in Stata. Extensions are of two types. Firstly,
akdensity allows the use of a varying, rather than
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fixed, bandwidth as in Salgado-Ugarte et al. (1993)
and Salgado-Ugarte & Pérez-Hernández (2003).
The main improvement over existing modules in
this regard is in computation speed. The algorithm
implemented permits a much faster estimation
when dealing with large datasets. akdensity is also
more flexible in that it allows weights, user-defined
grid points, and both Gaussian and Epanechnikov
kernel functions. Secondly, akdensity provides
estimation of pointwise variability bands. The
new command is compatible with both Stata 7
and Stata 8, using the appropriate graphics engine
under both versions.

2 Adaptive kernel density
estimation and variability
bands

Usefulness of varying (or local) bandwidths is
widely acknowledged to estimate long-tailed or
multi-modal density functions with kernel methods,
when a fixed (or global) bandwidth approach may
result in undersmoothing in areas with only sparse
observations while oversmoothing in others. Vary-
ing the bandwidth along the support of the sample
data gives flexibility to reduce the variance of the
estimates in areas with few observations, and re-
ducing the bias of the estimates in areas with many
observations. Kernel density estimation methods
relying on such varying bandwidths are generally
referred to as ‘adaptive kernel’ density estimation
methods. For an introductory exposition of such
methods, see, e.g., Silverman (1986), Bowman &
Azzalini (1997), or Pagan & Ullah (1999). Salgado-
Ugarte et al. (1993), Salgado-Ugarte et al. (1995)



and Salgado-Ugarte & Pérez-Hernández (2003) pro-
vide discussions in the context of Stata, addressing
both fixed and varying bandwidth methods.

An adaptive kernel approach adapts to the
sparseness of the data by using a broader kernel
over observations located in regions of low density.
This is done by varying the bandwidth inversely
with the density. As Silverman (1986, p.101) puts
it, “An obvious practical problem is deciding in the
first place whether or not an observation is in a
region of low density.” Adaptive kernel density es-
timation deals with this question by using an itera-
tive procedure: An initial (fixed bandwidth) density
estimate is computed to get an idea of the density
at each of the data points, and this pilot estimate
is used to adapt the size of the bandwidth over the
data points when computing a new kernel density
estimate.

The second feature of akdensity is the possibil-
ity to request the estimation of pointwise variabil-
ity bands around the estimated density functions.
These bands are constructed as the estimated den-
sity at a given grid point x, f̂(x), plus or minus
b times the estimated standard error of f̂(x). Note
that one should not interpret the bands as providing
(pointwise) confidence intervals for f(x) (setting,
for example, b at 1.96 to obtain a 95% confidence in-
terval). Kernel density estimates are asymtotically
biased, with a bias varying with the bandwidth and
the shape of the underlying ‘true’ density function.
For a given bandwidth, the bias does not tend to
0 as the sample size increases. Use of the words
‘variability bands’, rather than ‘confidence bands’,
is meant to emphasise that the bands quantify the
variability of the density estimate but do not take
the bias of the estimate into account, and thence
do not provide a means of examining particular hy-
potheses about the density function (Bowman &
Azzalini 1997, pp.29–30).

3 Methods and formulae

The method implemented in akdensity is the now
standard adaptive two-stage estimator proposed in
Abramson (1982). It is based on the construction of
a local bandwidth factor, λi, at each sample point.
The local bandwidth factors have unit (geometric)
mean and multiply a global fixed bandwidth, h.
Thence h controls the overall degree of smoothing
while the λi stretch or shrink the sample points
bandwidths to adapt to the density of the data.

The adaptive kernel density estimate is given by
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where the xi’s are the data points (associated with
weights wi), K is a kernel function, and hi = h×λi.
(Compare with [R] kdensity.)

The local bandwidth factors are proportional to
the square root of the underlying density functions
at the sample points:
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)0.5
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where G is the geometric mean over all i of the pilot
density estimate f̃(x). The pilot density estimate is
a standard fixed bandwidth kernel density estimate
obtained with h as bandwidth.1

The variability bands are based on the follow-
ing expression for the variance of f̂(x) given in
Burkhauser et al. (1999):
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The b parameter that controls the number of stan-
dard errors to add around f̂(x) to construct the
variability bands is specified by the user.

4 Implementation notes

akdensity is packaged in two modules. The en-
gine of the package is akdensity0. It allows kernel
density estimation with either fixed or observation-
specific bandwidths (i.e. the bandwidth parameter
can be either a scalar or a variable name), and
optionally generates local bandwidth factors after
estimation of the density function. It produces
no graphical output. akdensity is a user-friendly
wrapper that mimicks the syntax of the official
kdensity and generates the 2-stage adaptive ker-
nel density estimates by making repeated calls to
akdensity0. The first call uses a fixed bandwidth
and generates the local bandwidth factors, the sec-
ond call uses the varying bandwidths obtained from
the local bandwidth factors.

Equations (1) and (2) show that local bandwidth
factors must be computed for each sample point.
This requires an estimate of the pilot density func-
tion at each sample point. Computing a kernel
density estimate for each sample point can be pro-
hibitively slow for large datasets. To speed up cal-
culations, akdensity0 estimates the pilot density
function for a grid of points (specified by the user),
and uses linear interpolation to approximate the

1In the unweighted case, with a Gaussian kernel function,
the methods are exactly as in Salgado-Ugarte et al. (1993)
and Salgado-Ugarte & Pérez-Hernández (2003): estimates
obtained with both akdensity and the existing adgakern or
varwiker are identical, although akdensity offers some extra
flexibility in practice.
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density at sample points located between two grid
points. It is thus useful to use a grid that spans
outside of the data range. This procedure leads to
considerable speed gains with large datasets.
akdensity is more limited than kdensity in one

respect: The choice of the kernel function. Only
Epanechnikov and Gaussian kernel functions have
been implemented. Note, however, that these are
popular choices and it is widely accepted that the
choice of kernel is not a crucial issue.

5 Syntax

The syntax for akdensity follows kdensity’s:

akdensity varname
[
weight

] [
if exp

] [
in

range
] [

, nograph noadaptive

generate(newvar x newvar density) n(#)

width(#)
[
epan | gauss

]
normal

student(#) at(var x) stdbands(#)

symbol(. . .) connect(. . .) title(string)

graph options
]

The only new options are stdbands and
noadaptive. All the other options are described
in [R] kdensity.
stdbands(#) requests the estimation of variability

bands, and specifies the number of standard er-
rors above and below the estimates to be used
(a positive number). If the generate option
is specified, the estimated bands are stored in
two new variables newvar density up and new-
var density lo.

noadaptive can be specified to obtain the stan-
dard fixed bandwidth kernel density estimate.
The resulting density is exactly as produced by
kdensity. This may be used to obtain the vari-
ability bands around the fixed kernel density es-
timates.
akdensity is compatible with both Stata 7 and

Stata 8. It uses the newly implemented graphics
engine if called by Stata 8, and runs otherwise the
former engine for Stata 7. As a consequence, the
allowed graphics options differ according to the re-
lease of Stata being used.2

The syntax for the engine command,
akdensity0, is similar:

akdensity0 varname
[
weight

] [
if exp

] [
in

range
]

, width(# | varname) at(var x)

generate(newvar density)
[
stdbands(#)

2Remember that, if need be, the Stata 7 engine can be
called from within Stata 8 by using the version 7: prefix
command, i.e. version 7: akdensity (...).

lambda(string)
[
epan | gauss

]
double

]
at, width and generate are not optional. Most

options are as in kdensity or akdensity. Note,
however, that the width option can here be either
a scalar or a variable name containing observation-
specific bandwidths. Also, generate must specify
a single new variable name to store the estimated
value of the density function at the grid points. The
options specific to akdensity0 are the following:
lambda(string) requests the estimation of local

bandwidth factors based on the estimated den-
sity function, and specifies a new variable name
where these values are to be stored.

double requests the use of double precision in the
estimation of the density functions and standard
error bands.
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