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INTRODUCTION

Basic Concepts of GLM

Canonical exponential family

y6 — b(0) }
0,0) = exp {— + c(y,
fyl6, o) () (y, ¢)
where
6 = canonical parameter
= somefunction(x3)
¢ = scale parameter

Log-likelihood
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For n = x3 = linear predictor

uw=Ey)=V0) =g
Var(y) = " (0)a(¢) = V(i)a(o)

and thus g(p) = x3 is called a link function since it links E(y)
to the linear predictor.



MLE estimate of 3 solves
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Newton-Raphson solution (i.e. using the observed Hessian) re-
quires evaluation of

op  Pu IV(p)
on’ on’ ou

Fisher scoring (which uses the expected Hessian) requires only
the evaluation of u/dn (or On/du), and fits into the algorithm
of iterated reweighted least—squares (IRLS).

Can be generalized into maximum quasi-likelihood estimation
for which only the components p and V(i) need to be specified.



Examples

Poisson model

fwlp) = exp{yn(p) —p—InT(y +1)}

0 = In(p)
b(#) = exp(0) =
b"(0) = p="V(u)
a(¢) = 1

Canonical link is

Gamma model

_ oy JY/pt ) oL, In(e) L
fylu, @) = p{ > T3 In(y) 5 InT'(¢ )}
0 = 1/p
b(#) = In(f) = —In(u)
b'(0) = ~1/6* = —p°
a(p) = —¢

Thus, we can take V(u) = p? and the canonical link is the
reciprocal link

g(p) =1/p=mn=x8



Iterated reweighted least squares

1. Construct an adjusted dependent variable (pseudo-response)

on;
zi =1+ (Yi — i) (8Z~)

2. Construct weights

vi= (2 vy

3. Perform a weighted linear regression of z; on x; and calculate
new 1n; = x;8 and p; = g~ (n;).

4. Iterate

The point is that GLM/IRLS can be done using regress with
iweights.



The Partially Linear Model

Rather than the standard linear predictor
ni = X3
the partially linear model allows
n = f(z:) +viB

that is, one predictor allowed to be nonlinear.

Stata command fracpoly will treat f(x;) as a fractional poly-
nomial.

My approach is nonparametric, and instead uses a local-linear
smooth to estimate f(x;).

That is, step 3. in the previous is replaced by a weighted par-
tially linear (gaussian errors) model.



New Algorithm

Old Step 3: Perform a weighted linear regression of z; on x; and
calculate new 1; = x;8 and u; = g~ (n;).

New Step 3:

3a. Perform a weighted linear regression of z; on x; and v;.
3b. Form residuals e; = z; — v; 3.

3c. Perform a weighted local linear smooth of e; on x;. This
can be done using locpoly with iweights.

3d. Form residuals e = z; — f(azz) Regress (with weights) e}
on v;.

3e. Iterate 3b. — 3d. until convergence.

3f. Form n; = ]?(xl) + v, and wi =g Hn;).

The above algorithm is known as backfitting and is done using
my partlin command.



Example

Consider the data used by Bell et al. (1989). Data on 83
children who undergo corrective spine surgery.

Response is the presence of kyphosis, a forward flexion of the
spine.

Covariates are age (months), the starting vertebrae level of the
surgery (startvert), and the number of levels involved in the
surgery (numvert).

. list in 1/10

1.1 71 5 3 0 |
2. | 1568 14 3 0|
3. | 128 4 11
4. | 2 1 5 0|
5. | 1 15 4 0|
|- I

6. | 1 16 2 0|
7. 1 61 17 2 01
8. | 37 16 3 0|
9. | 113 16 2 01
10. | 59 12 6 1|



Fitting the binomial partially linear model.

. gplm kyphosis age startvert numvert, fam(bin) reps(200) nolog

Generalized partially linear models

Deviance =

Variance function:
Link function

63.993901
V(u) = ux(1-uw)
: g(w) = In(u/(1-w))

startvert
numvert

1.

No. of obs = 83

[Bernoulli]

[Logit]
P>|z]| [95% Conf. Intervall
0.298 -.3253116 .0996924
0.001 .4789826 1.8695732

2.14 Prob > chi2 = 0.6462

Deviance test of f

Compared to fitting a standard GLIM:

. glm kyphosis age

Generalized linear
Optimization

Deviance =
Pearson =

Variance function:
Link function
Standard errors

Log likelihood =
BIC =

Coef Std. Err z
1128096 .1084214 -1.04
1742779 .3547490 3.31
(age) = 0: chi2(3.58) =

startvert numvert , fam(binom) link(logit) nolog

models

: ML: Newton-Raphson

64.87296734
68.36550054

V(u) = ux(1-u)
: g(w) = In(u/(1-w))
: 0IM

-32.43648367
-284.2154407

|
+
age |
startvert |
numvert |

|

_cons -1

Coef Std. Err
.006094 .0055402
-.1972165 .0657152
.3031238 .1789986
.249726 1.242394

No. of obs = 83

Residual df = 79

Scale parameter = 1

(1/df) Deviance = .8211768

(1/df) Pearson = .8653861

[Bernoulli]

[Logit]

AIC = .8779876
P>zl [95% Conf. Intervall
0.271 -.0047645 .0169525
0.003 -.326016 -.0684171
0.090 -.0477071 .6539546
0.314 -3.684773 1.185321
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Computational Issues

Bandwidth Selection: Given the iterated local linear smooth,
automated bandwidth selection is essential. I use the Rule-of-

Thumb method by Sheather and Wand (1995 JASA). There is

the issue of proper order, however.

Standard errors: bootstrap, although it is possible to use matrix
calculations and the smoothing matrix to get standard errors
of the linear predictor.

Degrees of freedom for the smooth: can be calculated as the
trace of the smoothing matrix, since kernel smoothing is a linear
operation.

The above, especially bootstrapping, makes current implemen-
tation of gplm rather slow, but plugins have made things doable,
at least.

partlin, bandwidth selection, and degrees of freedom calcula-
tion are all implemented as plugins.



Further Work

Faster standard errors (directly calculated).

Error bars for plot of the estimated smooth.

Generalization to single index models

Generalization to generalized additive model, where the user
can specify either kernel methods or splines.



