
1

We will use real-world data, but a very simple and naive model to keep the example easy
to understand. What is interesting about the example is that the outcome of interest, perhaps the
probability or alternately the odds of a salary increase (raise), has an inherently nonlinear relationship
with any covariate. What’s more, age enters the model in a nonlinear fashion so that interpreting its
impact on the outcome or outcomes of interest becomes even more difficult.

First, let’s create the reciprocal of age variable and the dependent variable we will be analyzing
– raise. We will derive it from the wage variable. We are actually losing information in creating
the binary raise variable from the continuous wage, but out goal is to create and interesting model
to analyze rather than a reasonable one.

. use nls , clear
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

.

. drop if age >= .
(24 observations deleted)

. gen age1 = 1 / age

.

. sort idcode year

. gen raise = wage > wage[_n-1] & idcode == idcode[_n-1]

We can now estimate the probit model.

. probit raise age age1 collgrad

Iteration 0: log likelihood = -19761.451
Iteration 1: log likelihood = -19292.141
Iteration 2: log likelihood = -19290.786
Iteration 3: log likelihood = -19290.786

Probit estimates Number of obs = 28510
LR chi2(3) = 941.33
Prob > chi2 = 0.0000

Log likelihood = -19290.786 Pseudo R2 = 0.0238

raise Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0686738 .0049641 -13.83 0.000 -.0784033 -.0589444
age1 -77.45967 3.952097 -19.60 0.000 -85.20564 -69.7137

collgrad -.1222773 .0203146 -6.02 0.000 -.1620933 -.0824614
_cons 4.822641 .2860679 16.86 0.000 4.261958 5.383324

At this point there are a number of things we might do to analyze our model. We might perform
tests of linear and nonlinear combinations of the coefficients using test and testnl. We might look
directly at marginal effects of the regressors on the probability of a salary increase using mfx. Or,
we might use any of the other post estimation facilities discussed earlier.

Many of these analyses would involve simply typing a command and looking at the output. Instead,
let’s do some analysis that requires us to combine one of the post-estimation tools predictnl with
some data manipulation. predictnl is extremely flexible and as we will see allows us to mimic
some of the results from other post-estimation commands, with increased flexibility.

Looking at the probit results, it is clear that interpreting the effect of age is rather difficult. Let’s
focus on interpreting that effect in ways that an audience unfamiliar with probit could understand.

We know that the effect of age is nonlinear, so if we are interested in its changing effect over a
range of different ages, it is clear that we cannot look at just one age. What we would like to see is the
effect of age evaluated over the range of ages observed in our dataset. Recalling that predictnl can
work on datasets other than the estimation dataset, we can create an artificial dataset with observations



2

at a set of ages – say ages by single year of age from 18 through 47. Further, let’s set the value of
the college graduate indicator to 1 so that we are looking at the effect of age for college graduates.
We could just as easily have set the indicator to 0 and looked an non-college graduates, or even to
the proportion of college graduates and looked that the effect of age for the overall sample.

We will just clear our current sample and create our artificial dataset.

. drop _all

. set obs 30
obs was 0, now 30

. gen collgrad = 1

. gen age = _n + 17

. gen age1 = 1 / age

. gen raise = .
(30 missing values generated)

There are a number of ”outcomes” that we might find interesting from our binary dependent variable
regression. Perhaps the easiest to understand is the probability that someone will get an increase in
salary from one year to the next. In turns out the probability is something that predict after probit
is willing to produce. What’s more predictnl is willing to use anything that can be produced by
predict as part of its nonlinear expression. All we need do is include the term predict(statistic)
in our expression, where statistic is any statistic that predict will produce after our estimator.

So, we evaluate the effect of age at each observation in our artificial dataset by typing,

The option ci(probl probh) requests that in addition to computing predicted probabilities,
predictnl should also produce lower and upper confidence bounds (CIs) for these predictions. Since
we did not specify a confidence level, it is assumed to be 95method where the required derivatives
are taken numerically, but that is really a side note.

We can see the results of our efforts, but just listing the probabilities and their CIs for all of the
ages.

What we are seeing is not so much a set of predictions as an alternate representation of our model,
and one that we can hopefully interpret more easily. If we had estimated our model in the probability
metric rather than the probit metric (where the coefficients represent one standard deviation changes
in our underlying latent z variable), these probabilities and their CIs are the age ”coefficients” we
would have observed.

The table is interesting and nice if we really need a probability for a specific age, a graph will,
however, let us see the overall relationship more clearly.
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. twoway rarea probl probh age, p(ci2) || line prob age , ytitle("")
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We see that our estimates show the annual probability of a wage increase begins at about .2 for
18 year-olds (though 18 year-old college graduates may be nearly counterfactuals) and increases to
about .52 for those age 33, then begins to decrease, but at a rate slower than the rate of increase.

To keep things simple we used a basic graph command to look at our probability ”coefficients”,
this graph could obviously benefit from some improved labeling, but we won’t bother here.

Rather than the probability of a salary increase, we might consider the odds of an increase. The
odds are just a nonlinear function of the probability odds = p/(1 − p) where p is the probability.
Similarly to the probability, we use predictnl to compute the odds and the CI of the odds, and
then graph the result.

. predictnl odds = predict(p) / (1 - predict(p)) , ci(oddsl oddsh)
note: Confidence intervals calculated using Z critical values

. twoway rarea oddsl oddsh age, p(ci2) || line odds age , ytitle("")
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We see that the odds are a similar but somewhat differently shaped function of age. We can clearly
see that, according to our model, women college graduates are more likely to get raises than not from
about age 27 through age 42. That is to say their odds of a wage increase exceed 1.

Biostatisticians and epidemiologists in particular often like to work with odds ratios – the change
in the odds for a unit change in a covariate. We noted earlier that native metric a probit model is
that a coefficient represent a one standard deviation change in the latent metric. Similarly the native
metric of a logistic (or logit) model is that a coefficient represents a unit change in the odds ratio.
For probit the change in the standard deviation is constant over all values of the regressor and all
other coefficients while for logistic regression the change is constant for the odds ratio. One result of
this is that even if age did not enter the model nonlinearly, if we were interested in odds ratios after
estimating a probit model, these odds ratios would have a nonlinear relationship to the variable and
they would also depend on the values of all of the other variables. This is also what we observed for
probabilities and odds, which are nonlinear relationships of the coefficients for both the logistic and
probit models.

We will ”cheat” just a little and compute a discrete form of the odds ratio where we assume a
whole unit increase in the covariate, rather than computing the continuous form that requires a bit
more manipulation. Here is the computation and resulting graph.

. predictnl or = (normprob(xb()+_b[age]-_b[age1]/(age*(age+1))) / ///
> (1 - normprob(xb()+_b[age]-_b[age1]/(age*(age+1))))) / ///
> (normprob(xb()) / (1 - normprob(xb()))) ///
> , ci(orl orh)
note: Confidence intervals calculated using Z critical values

. twoway rarea orl orh age, p(ci2) || line or age , ytitle("")
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Basically this is just one plus the rate of change in the odds w.r.t age. Looking at the graph of
the odds ratio, we see that the ratio is monotonically declining – meaning that the effect age on the
odds of obtaining a raise becomes becomes more negative with increasing age. We might say that
the acceleration of age is negative. Looking at both the odds ratio and odds graphs we see that the
odds ratio crosses 1.0 at the same age as the odds switches from increasing to decreasing.

If age were a policy variable that we could change, we might be very interested in the change
in probability of an increase for a unit change in age – the marginal effect of age on probability.
Clearly age is not a policy variable we can change, but let’s ignore that detail.

The expression for the marginal effect of age is fairly easy to derive and we can see it in the
predictnl expression below.

. predictnl mfx = (_b[age] - _b[age1] / age^2) * normden(predict(xb)) ///
> , ci(mfxl mfxh) se(se) wald(wald) p(pvalue)
note: significance levels are with respect to the chi-squared(1) distribution
note: Confidence intervals calculated using Z critical values

Note that we predictnl to compute a number of additional statistics for us – the standard error of
the marginal effect, the Wald statistic against the null hypothesis that the marginal effect is 0, and
the p-value of this test. In other words, we have asked for all of the ingredients of an estimation
coefficient table. Let’s now list those,
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. format pvalue %6.3f

. list age mfx se wald pvalue mfxl mfxh

age mfx se wald pvalue mfxl mfxh

1. 18 .0478073 .0013407 1271.603 0.000 .0451796 .0504349
2. 19 .0461499 .001493 955.4506 0.000 .0432236 .0490762
3. 20 .0429513 .0015133 805.6086 0.000 .0399854 .0459173
4. 21 .0389013 .0014245 745.8185 0.000 .0361095 .0416932
5. 22 .034503 .0012704 737.6323 0.000 .0320131 .0369929

6. 23 .0300873 .0010888 763.5726 0.000 .0279533 .0322214
7. 24 .025852 .0009067 812.9969 0.000 .024075 .0276291
8. 25 .0219012 .000742 871.3121 0.000 .020447 .0233555
9. 26 .0182781 .0006074 905.6754 0.000 .0170877 .0194685

10. 27 .0149887 .0005127 854.595 0.000 .0139838 .0159937

11. 28 .0120181 .0004643 669.9606 0.000 .0111081 .0129281
12. 29 .0093407 .0004602 411.9077 0.000 .0084387 .0102428
13. 30 .0069269 .0004894 200.2936 0.000 .0059676 .0078862
14. 31 .0047465 .0005384 77.71658 0.000 .0036913 .0058018
15. 32 .0027714 .000597 21.54703 0.000 .0016012 .0039416

16. 33 .0009759 .0006594 2.190479 0.139 -.0003164 .0022682
17. 34 -.0006626 .0007221 .8418617 0.359 -.002078 .0007528
18. 35 -.0021632 .0007837 7.618898 0.006 -.0036993 -.0006272
19. 36 -.0035424 .0008431 17.65299 0.000 -.0051949 -.0018899
20. 37 -.0048138 .0008998 28.62359 0.000 -.0065773 -.0030503

21. 38 -.0059884 .0009531 39.47705 0.000 -.0078565 -.0041204
22. 39 -.0070755 .0010027 49.79154 0.000 -.0090407 -.0051102
23. 40 -.008082 .0010481 59.46309 0.000 -.0101362 -.0060278
24. 41 -.0090137 .0010887 68.54877 0.000 -.0111475 -.0068799
25. 42 -.0098749 .001124 77.18836 0.000 -.0120778 -.0076719

26. 43 -.0106685 .0011533 85.56606 0.000 -.012929 -.0084081
27. 44 -.011397 .0011762 93.89397 0.000 -.0137023 -.0090918
28. 45 -.0120618 .0011919 102.408 0.000 -.0143979 -.0097257
29. 46 -.0126636 .0012 111.3723 0.000 -.0150155 -.0103118
30. 47 -.0132032 .0011998 121.0904 0.000 -.0155548 -.0108515

What we see is the marginal effect at each age along with all of the statistics commonly reported
in an estimation coefficient table. This is a particularly nice representation of the marginal effect,
because they are indeed derived ”coefficients” from our estimation. We can see that at age 18 the
marginal effect of increasing age by 1 year is to increase the probability of obtaining a salary increase
by about 4.78%. We also note that this effect is very significantly different from 0 and has a 955.00%.
Likewise we can read off the marginal effect for any age.

The marginal effect looks to be decreasing each year and eventually moves from positive to
negative. Again, we can get a feel for the whole relationship by graphing the marginal effect against
age.

. twoway rarea mfxl mfxh age, p(ci2) || line mfx age , ytitle("")
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Like the odds ratio, the marginal effect is monotonically decreasing and intersects zero at the
point where the probability of a raise begins to decrease. The marginal effect and the odds ratio are
closely related, one being the rate of change in the probability w.r.t. age and the other one plus the
percentage change in the odds w.r.t. age.

What if we were interested in examining the along both the age and college graduate dimensions?
As seen in the steps below we could again start with an empty dataset and create two stacked sets
of observations by age where one set has collgrad set to 0 and the other set to 1. The only real
trick in this code is the use of fillin to ”fill in” all possible combinations of age and collgrad.

. drop _all

. set obs 30
obs was 0, now 30

. gen collgrad = 1

. replace collgrad = 0 in 1
(1 real change made)

. gen age = _n + 17

. fillin collgrad age

. gen age1 = 1 / age

. gen raise = .
(60 missing values generated)

We could now use exactly the same predictnl statements to create our probabilities, odds, odds
ratios, and marginal effects, only now they will be created for college graduates and non-graduates.

. predictnl prob = predict() , ci(plow phigh)
note: Confidence intervals calculated using Z critical values
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. predictnl odds = predict() / (1 - predict()) , ci(oddsl oddsh)
note: Confidence intervals calculated using Z critical values

. predictnl or = (normprob(xb()+_b[age]-_b[age1]/(age*(age+1))) / ///
> (1 - normprob(xb()+_b[age]-_b[age1]/(age*(age+1))))) / ///
> (normprob(xb()) / (1 - normprob(xb()))) ///
> , ci(orl orh)
note: Confidence intervals calculated using Z critical values

. predictnl mfx = (_b[age] - _b[age1] / age^2) * normden(predict(xb)) ///
> , ci(mfxl mfxh)
note: Confidence intervals calculated using Z critical values

We could again list the data, but instead we will use the tabdisp command to produce a twoway
table of annual probability of a salary increase by age and college graduation.

. label variable plow ""

. label variable phigh ""

. tabdisp age collgrad , cell(prob)

collgrad
age 0 1

18 .2367478 .2007121
19 .2880854 .2478523
20 .3358488 .2924998
21 .3790163 .3334732
22 .4171939 .3701882
23 .4503928 .4024749
24 .4788591 .4304241
25 .5029556 .4542746
26 .5230871 .4743362
27 .5396575 .4909422
28 .5530444 .50442
29 .5635898 .5150763
30 .5715953 .5231893
31 .5773245 .5290079
32 .5810045 .5327508
33 .5828313 .5346105
34 .5829731 .5347549
35 .5815747 .5333312
36 .5787613 .5304688
37 .5746419 .5262822
38 .5693122 .5208735
39 .5628569 .5143345
40 .5553524 .5067493
41 .5468687 .4981955
42 .5374702 .4887454
43 .5272182 .4784682
44 .5161709 .46743
45 .5043854 .4556954
46 .4919177 .4433275
47 .4788234 .4303889
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Or, we could include the CIs in the table.

. tabdisp age collgrad , cell(prob plow phigh)

collgrad
age 0 1

18 .2367478 .2007121
.2205016 .1819141
.252994 .2195101

19 .2880854 .2478523
.274085 .2297721

.3020858 .2659324

20 .3358488 .2924998
.3241054 .2752971
.3475923 .3097025

21 .3790163 .3334732
.3691117 .3170219
.388921 .3499245

22 .4171939 .3701882
.4084745 .3542495
.4259132 .3861269

23 .4503928 .4024749
.4422 .3868231

.4585857 .4181268

24 .4788591 .4304241
.4707236 .4149063
.4869946 .4459419

25 .5029556 .4542746
.4946519 .4388186
.5112591 .4697305

26 .5230871 .4743362
.5145723 .458932
.531602 .4897403

27 .5396575 .4909422
.5309871 .4756165
.5483279 .5062679

28 .5530444 .50442
.5443122 .4892144
.5617766 .5196257

29 .5635898 .5150763
.5548908 .5000303
.5722888 .5301222

30 .5715953 .5231893
.563004 .5083292

.5801865 .5380494

31 .5773245 .5290079
.5688801 .5143371
.5857687 .5436786
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32 .5810045 .5327508
.5726995 .5182443
.5893094 .5472573

33 .5828313 .5346105
.5746014 .5202096
.5910611 .5490112

34 .5829731 .5347549
.574692 .5203651

.5912542 .5491446

35 .5815747 .5333312
.5730563 .518822
.5900932 .5478404

36 .5787613 .5304688
.5697733 .5156769
.5877494 .5452608

37 .5746419 .5262822
.5649276 .5110185
.5843562 .5415459

38 .5693122 .5208735
.5586137 .5049331
.5800107 .5368139

39 .5628569 .5143345
.550932 .4975072

.5747817 .5311619

40 .5553524 .5067493
.5419835 .4888298
.5687214 .5246689

41 .5468687 .4981955
.5318651 .4789915
.5618724 .5173994

42 .5374702 .4887454
.5206671 .4680835
.5542733 .5094073

43 .5272182 .4784682
.5084753 .4561969
.5459611 .5007395

44 .5161709 .46743
.4953703 .4434217
.5369716 .4914384

45 .5043854 .4556954
.4814302 .4298465
.5273407 .4815443

46 .4919177 .4433275
.4667315 .4155592
.5171039 .4710958

47 .4788234 .4303889
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.4513499 .4006465

.5062969 .4601313

Finally, we can compare the two probability profiles on a single graph.

. twoway rarea plow phigh age if collgrad==1, p(ci2) || ///
> rarea plow phigh age if collgrad==0, p(ci) || ///
> line prob age if collgrad==1 || ///
> line prob age if collgrad==0 , ytitle("")
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We have ignored the odds, odds ratios, and marginal effects in our twoway analysis, though we
could have tabulated and graphed them also.

We have only scratched the surface of what we might do with predictnl and the other post-
estimation commands. We have focused on various transforms of the dependent variable, but could
just as easily focused on transforms of one or more of the independent variables. Still, hopefully we
have gotten a sense of how interesting questions can be approached.


