

3 Methods

Monte Car Study

Simulation results

Conclusions

Alfonso Miranda

Keele University and IZA (A.Miranda@econ.keele.ac.uk)

2007 UK Stata Users Group meeting

September 10.

CENTRE FOR ECONOMIC RESEARCH · RESEARCH INSTITUTE FOR PUBLIC POLICY AND MANAGEMENT

- 3 Methods
- Monte Carl Study
- Simulation results
- Conclusions

- In a number of contexts researchers have to model a dummy variable y_{it} that is function of y_{i,t-1} (unemployment, migration, health).
- A dynamic probit/logit model is needed.
- ► In the dynamic setup y_{i0} is likely to be correlated with unobserved heterogeneity u_i affecting y_{it}.
- If y_{i0} is taken as exogenous inconsistent estimators are obtained. This is know as the initial conditions problem.

Motivation

- 3 Methods
- Monte Carl Study
- Simulatior results
- Conclusions

- Three methods of estimation have been suggested: Heckman (1981), Orme (1996), and Wooldridge (2002).
- Heckman's method is computer expensive not anymore really – while the other two methods are computer inexpensive and easy to implement in conventional econometric software.
- No study has compared the relative performance of such methods with small and large samples, and with low and high correlation between unobservables affecting initial conditions and dynamic equations.

Heckman (1981) method

Motivation

3 Methods

Monte Carlo Study

Simulation results

Conclusions

Heckman suggests to approximate the reduced form of the marginal probability of y_{i0} given u_i with a Probit model and to allow free correlation ρ between y_{i0} and y_{it} .

$$\mathbf{y}_{it}^* = \mathbf{z}_{it}\boldsymbol{\beta} + \gamma \mathbf{y}_{i,t-1} + u_i + \varepsilon_{it}$$
(1)

$$y_{i0}^* = \mathbf{x}_{it}\boldsymbol{\theta} + \delta u_i + \eta_{it}$$
(2)

with $y_{it} = 1$ if $y_{it}^* > 0$ and zero otherwise. u_i , η_{it} and ε_{it} are all iid N(0,1). Neither ε_{it} nor η_{it} are serially correlated.

- equations (1) and (2) are estimated as a system.
- Need to integrate out u_i against the density $\phi(u_i)$.
- May use ML + Gauss-Hermite quadrature or Maximum Simulated Likelihood.

$$\bullet \ \rho = \frac{\delta}{\sqrt{(2(\delta^2 + 1))}}$$

Orme (1996) methoc

Motivation

3 Methods

Monte Carlo Study

Simulation results

Conclusions

Orme suggests a two-step bias corrected procedure that is locally valid when ρ approximates to zero. Define,

$$y_{it}^* = \mathbf{z}_{it}\boldsymbol{\beta} + \gamma y_{i,t-1} + u_i + \varepsilon_{it}$$
(3)

$$y_{i0}^* = \mathbf{x}_{it}\boldsymbol{\theta} + \delta u_i + \eta_{it}$$
(4)

Notice that in eq. (3) $E[u_i] = 0$ but $E[u_i|y_{i0}] \neq 0$ when $\delta \neq 0$ (that is, when $\rho \neq 0$).

▶ Correlation between *u_i* and *y_{i0}* can be removed by writing:

$$u_i = E[u_i|y_{i0}] + u_i^*$$

so that $E[u_i^*|y_{i0}] = 0$ by construction.

3 Methods

Monte Carlo Study

Simulatior results

Conclusions

 Can use, in a first step, a simple probit model for y_{i0} to estimate,

$$E[u|y_{i0}] = E[u_i|\delta u_i + \eta_{it} \ge -\mathbf{x_{it}}\theta] = \frac{\phi(\mathbf{x_{it}}\theta)}{\Phi(\mathbf{x_{it}}\theta)}$$

And in a second step estimate the dynamic equation using a standard RE probit that includes E[u_i^{*}|y_{i0}] as a regressor,

$$y_{it}^* = \mathbf{x}_{it}\boldsymbol{\beta} + \gamma y_{i,t-1} + \sigma E[u_i|y_{i0}] + u_i^* + \varepsilon_{it}$$
(5)

Orme shows that this two-step procedure is locally valid if ρ approximates to zero and argues that the method can perform well even if ρ is 'high'.

Wooldridge (2002) method

Motivation

- 3 Methods
- Monte Carl Study
- Simulatior results
- Conclusions

$$y_{it}^{*} = \mathbf{x}_{it}\boldsymbol{\beta} + \gamma y_{i,t-1} + u_{i} + \varepsilon_{it}$$
(6)
$$y_{i0}^{*} = \mathbf{z}_{it}\boldsymbol{\theta} + \delta u_{i} + \eta_{it}$$
(7)

Heckman does the following:

$$f(y_{i0}, \dots, y_{iT}) = \int f(y_{i1}, \dots, y_{iT} | y_{i0}, \mathbf{w_{it}}, u_i) h(y_{i0} | \mathbf{w_{it}}, u_i) g(u_i | \mathbf{w_{it}}) du_i$$

with $\mathbf{w_{it}} = (\mathbf{x_{it}}, \mathbf{z_{it}})$ and use ML.

- ▶ Wooldridge suggests to model the distribution of {y_{i1}, · · · , y_{iT}} given y_{i0} and to use conditional ML.
- To do so one needs to specify the distribution for u_i given y_{i0} and other exog. variables:

$$f(y_{i1}, \cdots, y_{iT} | y_{i0}) = \int f(y_{i1}, \cdots, y_{iT} | y_{i0}, \mathbf{w_{it}}, u_i) g(u_i | y_{i0}, \mathbf{w_{it}}) du_i$$

3 Methods

Monte Carl Study

Simulatior results

Conclusions

It is suggested the following approximation

$$g(u_i|y_{i0}, \mathbf{w_{it}}) \sim N(\alpha_0 + \alpha_1 y_{i0} + \alpha_2 \bar{w}_i, \sigma_v^2)$$

In other words, we can write

$$u_i = \alpha_0 + \alpha_1 y_{i0} + \alpha_2 \bar{w}_i + v_i \tag{8}$$

$$v_i \sim N(0, \sigma_v^2)$$
 and independent of y_{i0}, w_i (9)

substituting (8) in (6)

$$y_{it}^* = \mathbf{z_{it}}\boldsymbol{\beta} + \gamma y_{i,t-1} + \alpha_1 y_{i0} + \alpha_2 \bar{w}_i + v_i + \varepsilon_{it}$$
(10)

and estimate (9) by standard RE probit.

Monte Carlo Study

The following model is specified:

Motivation

3 Methods

Monte Carlo Study

Simulatior results

Conclusions

$$y_{it}^* = 0.5 + 0.5z_{it} - 0.5y_{i,t-1} + u_i + \varepsilon_{it}$$
(11)

$$y_{i0}^* = 1x_{i0} - 1z_{i0} + \delta u_i + \eta_{it}$$
(12)

- Random draws from independent standard normal distributions are taken to generate z_{it} and x_{i0}. These variables remain fixed during all simulations.
 - At each replication step random draws from independent standard normal distributions are taken to generate u_i, ε_{it} and η_{it}.
 - At each iteration the model is estimated using Heckman (MSL with 400 halton draws), Wooldridge, and Orme methods. Estimates for the dynamic equation are kept.

3 Methods

- Monte Car Study
- Simulatior results
- Conclusions

- ▶ 1000 replications are taken.
- Various experiments are done comparing the performance of all these three methods using small, medium, and large samples and low and high ρ.
- At the end simulation statistics are calculated:
 - Average estimator (AE)
 - Percentage bias (PB)
 - Average standard error (ASE)
 - Standard error (SDE)
 - Mean square error (MSE)
 - ▶ Nominal coverage of 95% confidence intervals (Ncov).

T=3, n=100, N=300, rho=0

vation ethods te Carlo	Obs per	panel		= 100 = 3 = 300 = 0.00			
		I AE	PB	ASE	SDE	MSE	Ncov
	 Heckman	Method					
	LDV _cons Wooldri z	506 .51 dge Met .5	-1.14 1.93 hod .015	.14 .261 .221 .168 .36	.25 .22 .171	.063 .048 .029	.958 .948 .956
	_cons Orme Me z LDV	.494 thod .502 48	1.13 .461 4.08	.332 .148 .352 .326	.352 .151 .355	.124 .023 .127	.926 .952 .931

CENTRE FOR ECONOMIC RESEARCH · RESEARCH INSTITUTE FOR PUBLIC POLICY AND MANAGEMENT

. . .

ation nods Carlo	Number o Obs per Total Nu Delta	panel	obs	= 3			
		AE	PB	ASE	SDE	MSE	Ncov
ition	 Heckman	Method					
isions	Z	.505	1.04	.136	.13	.017	.966
510115	LDV	505	969	.252	.238	.057	.965
	_cons	.508	1.64	.214	.213	.045	.954
	Wooldrid	ge Meth	od				
	Z	.417	-16.6	.162	.161	.033	.904
	LDV	466	6.88	.371	.366	.135	.945
	_cons	222	-144	.267	.277	.597	.232
	Orme Met	hod					
	Z	.412	-17.6	.118	.121	.023	.835
	LDV	.162	132	.276	.334	.549	.362
	_cons	-7e-3	-101	.266	.302	.348	.44

100

	Number of								
tion	Obs per j								
ods	Total Nu Delta	mber of			300 10.00				
Carlo							 		
		AE	I PB	1	ASE	SDE	MSE	T	Ncov
tion							 		
	Heckman	Method							
sions	z	.509	1.78		. 131	.123	.015		.962
	LDV	497	.525		.237	.224	.05		.968
	_cons	.508	1.58		. 191	.199	.04		.942
	Wooldrid	ge Metho	bd						
	Z	.474	-5.16		. 159	.157	.025		.943
	LDV	564	-12.8		.421	.396	.161		.932
	_cons	327	-165		. 182	.189	.719		.022
	Orme Met	hod							
	z	.389	-22.1		.101	.1	.022		.799
	LDV	.558	212		.19	.223	1.17		3e-3
	_cons	042	-108		.853	1.2	1.72		.849

T=3, n=300, N=900, rho=0

ivation ethods ite Carlo	Obs per	of panel panel umber of		= 3			
ly		I AE	PB	ASE	SDE	MSE	Ncov
	 Heckman	Method					
	LDV _cons	492	1.54 587	.147	.078 .142 .12	.02	.962
	z LDV _cons Orme Me z	.488 399 .46 thod .491	-2.49 20.3 -7.9 -1.83	.197 .185 .081	.205	.052 .039 7e-3	.904 .928 .931
	_cons	.452	-9.67	.179	.18	.035	.928

CENTRE FOR ECONOMIC RESEARCH · RESEARCH INSTITUTE FOR PUBLIC POLICY AND MANAGEMENT

ation	Obs per	panel	s = = obs =	3			
hods	Delta	mber or	=				
Carlo							
		AE	PB	ASE	SDE	MSE	Ncov
ition							
	Heckman	Method					
isions	Z	.504	.88	.075	.076	6e-3	.948
	LDV	493	1.34	.142	.135	.018	.964
	_cons	.497	637	.122	.116	.014	.964
	Wooldrid	ge Metho	bd				
	Z	.421	-15.9	.088	.089	.014	.823
	LDV	442	11.6	.21	.231	.057	.938
	_cons	225	-145	.153	.153	.549	7e-3
	Orme Met	hod					
	Z	.401	-19.9	.068	.07	.015	.62
	LDV	.209	142	.167	.207	.545	.112
	_cons	048	-110	.155	.177	.332	.174

- na (

ion ods Carlo	Number o Obs per Total Nu Delta		= obs =				
		AE	PB	ASE	SDE	MSE	Ncov
on	Heckman	 Method					
ons	Z	.506	1.22	.071	.07	5e-3	.957
	LDV	49	2	.133	.127	.016	.955
	_cons	.497	53	.109	.108	.012	.949
	Wooldrid	ge Method	1				
	Z	.472	-5.58	.088	.086	8e-3	.928
	LDV	517	-3.46	.267	.245	.06	.924
	_cons	33	-166	.103	.1	.699	0
	Orme Met	hod					
	z	.399	-20.1	.058	.06	.014	.567
	LDV	.575	215	.109	.126	1.17	0
	_cons	27	-154	.555	.796	1.23	.58

ation hods 2 Carlo	Number of panels Obs per panel Total Number of obs Delta	= 3			
	AE	PB ASE	SDE	MSE	Ncov
	Heckman Method				
	z .50 LDV5011 _cons .501 .1 Wooldridge Method	.046	.046	5e-4 2e-3 1e-3	
	2 .493 -1. LDV464 7. _cons .483 -3 Orme Method	.23 .069		7e-4 5e-3 4e-3	.939
	z .493 -1. LDV469 6. _cons .477 -4.	.12 .065	.059		.944

ration thods e Carlo	Obs per	of panel panel umber of		= 3			
		AE	 PB	ASE	SDE	MSE	Ncov
	 Heckman	Method					
	LDV _cons Wooldrig z LDV	.5 dge Meth .419 415	063 .049 od -16.3 16.9	.045 .038 .026 .062	.044 .038 .03 .101	2e-3 1e-3 7e-3 .017	.955 .951 .163 .486
	Orme Me z LDV	.397 .245	-20.7 149	.022	.025	.011	.02
	_cons	081	-116	.054	.07	.342	

vation thods e Carlo	Number o Obs per Total Nu Delta	panel	obs	= 3			
		 AE	PB	ASE	SDE	MSE	Ncov
	 Heckman	 Method					
	LDV	499 .499	.294 234	.022 .042 .034	.041	2e-3	.951
	LDV	.472 545 328	-8.93	.095	.084	1e-3 9e-3 .687	.938
	z LDV	.403 .571	214	.018 .034 .149	.04	1.15	0

CENTRE FOR ECONOMIC RESEARCH · RESEARCH INSTITUTE FOR PUBLIC POLICY AND MANAGEMENT

Conclusions

Motivation

3 Methods

Monte Car Study

Simulatior results

Conclusions

- Heckman's method delivers estimators that are hardly subject to bias and that are estimated with high precision.
- The methods suggested by Wooldridge and Orme (W&O) deliver estimators that can be subject to substantial bias and low precision.
- ► W&O: The bias does not seem to decrease as sample size (number of panels n) increases.
- W&O: The bias increases when ρ gets higher.
- Nominal coverage of confidence intervals is satisfactory in Heckman's method but can be extremely bad in the case of W&O when ρ is high.

- Motivation
- 3 Methods
- Monte Car Study
- Simulation results
- Conclusions

- Evidence suggest that Heckman's method offers substantial advantages.
- Today Heckman's method is not really computer expensive anymore (can use MSL and BHHH algorithm to speed the process).