

Quantile group shares, cumulative shares (Lorenz ordinates), and generalized Lorenz ordinates: sumdist and svylorenz

> Stephen P. Jenkins ISER, University of Essex Colchester CO4 3SQ, UK Email: stephenj@essex.ac.uk

Overview

Extended postscript to

- Jenkins, S.P. 2006. Estimation and interpretation of measures of inequality, poverty, and social welfare using Stata. Presentation at North American Stata Users' Group Meetings 2006, Boston MA. <u>http://econpapers.repec.org/paper/bocasug06/16.htm</u>
- Focus here on estimation of Lorenz curve and related concepts using sumdist and svylorenz
- NEW! svylorenz extended to provide variance estimates for generalized Lorenz ordinates; sumdist ported to version 8.2. (Both updated on SSC.)
- NB: recent updates on SSC also for ineqdeco, ineqdec0, povdeco, glcurve

Data for illustrations

"Institute for Fiscal Studies (IFS) 'Households Below Average Income Dataset', 1961-1991" data

- Available from <u>http://www.data-</u> archive.ac.uk/findingdata/snDescription.asp?sn=3300
- Unit record data derived from UK *Family Expenditure Survey* = national budget survey
- Data for 1981, 1985, 1991 used here (put in one file)
 - Income: x
 - Weight: wgt
 - Year: year

Lorenz curves and inequality

- A Lorenz curve is a plot of the cumulative income share of the poorest 100*p*% against cumulative population share *p*, where units are ordered in ascending order of income
- Complete equality: Lorenz curve coincides with 45° ray through origin
- Inequality is greater, the further the Lorenz curve from the 45° ray
- Gini coefficient equals twice the area between the Lorenz curve and the 45° ray

Lorenz curves and inequality (2)

Axioms about inequality measures $I(x_1, x_2, ..., x_n)$

- 1. Symmetry a.k.a. Anonymity: only the income values matter, and no other information (permutation invariant)
- 2. Scale invariance: invariant to proportional scaling of all incomes
- 3. Replication Invariance: invariant to replications of the population
- 4. Principle of Transfers: a transfer of a small amount of income from a richer person to a poorer person (while maintaining their relative positions), reduces inequality
- Lorenz dominance result (Atkinson; Foster): Lorenz curve for distribution x lies on or above the Lorenz curve for $y \Leftrightarrow$ all inequality measures satisfying Axioms 1–4 show I(x) < I(y)

Inequality comparisons: 1981, 1985, 1991

Derived using glcurve and graph twoway

Generalized Lorenz curves and social welfare

- Generalized Lorenz curve is the Lorenz curve scaled up at each point by population mean income, i.e. a plot of $p\mu_p$ ('cumulative mean') against p, where units are ordered in ascending order of income
- Class of social welfare functions, W_2 with $W \in W_2$ if increasing in each income, symmetric, replicationinvariant and *concave* (i.e. a mean-preserving spread of income lowers social welfare = inequality aversion)
- Second Order Welfare Dominance result (Shorrocks):
 GLC(x) above GLC(y) at every p ⇔ W(x) > W(y) for all W ∈ W₂
 - Also implies poverty dominance by poverty gap measures

iversity of Essex

Generalized Lorenz curves (2)

Derived using glcurve and graph twoway

Compact summaries: sumdist

Quantile group shares, cumulative shares (Lorenz ordinates), generalized Lorenz ordinates

- sumdist varname [aw fw] [if exp] [in
 range] [, ngp(#) qgp(newvarname)
 pvar(newvarname) lvar(newvarname)
 glvar(newvarname)]
- Optional # of quantile groups (default = 10)
- Many saved results in r(...)
- by-able
- Can derive variance estimates using bootstrap
- Can be used to produce variables for drawing basic Lorenz and generalized Lorenz curves (but glcurve is better)

sumdist in action

. sumdist x [aw= wgt] if year == 1991

Warning: x has 20 values = 0. Used in calculations

Distributional summary statistics, 10 quantile groups

group	Quantile	% of median	Share, %	L(p), %	GL(p)
 1	92.248	47.439	 2.961	2.961	6.923
2	115.768	59.534	4.450	7.411	17.330
3	141.267	72.648	5.469	12.880	30.121
4	167.221	85.995	6.584	19.465	45.518
5	194.455	100.000	7.732	27.197	63.600
6	225.385	115.906	9.008	36.204	84.664
7	263.340	135.424	10.407	46.611	109.001
8	315.397	162.195	12.339	58.950	137.855
9	402.212	206.841	15.145	74.095	173.272
10			25.905	100.000	233.852

Variance estimation

- Estimation using sample survey data means that estimates reflect sampling variability
- Complex survey design effects: clustering and stratification also affect sampling variability
- Relatively neglected topic in income distribution analysis to date:
 - Non-sampling issues viewed as mattering more?
 - Large samples argument about SEs likely to be small
 - But what about subgroups? What is 'large'?
 - Appropriate software previously unavailable ... but is now for many of the methods used
 - Focus on linearization methods here

Variance estimation methods

- Beach and Davidson (1983): formulae for variance estimation of shares, cumulative shares and generalized Lorenz ordinates, but for unweighted data with no complex survey design features
- Beach and Kaliski (1986): extend results to the case with sample weights that are fixed and non-stochastic
- Binder & Kovacevic (1995) and Kovacevic & Binder (1997): 'estimating equations' approach yields formulae for variance estimation of cumulative shares and shares, and Gini coefficient, allowing for probability weights and for complex survey design more generally. See also Zheng (2002).
- svylorenz variance estimates:
 - Cumulative shares and Gini: Kovacevic and Binder (1997)
 - Quantile group shares: Beach and Kaliski (1986) result relating variances shares to variances of cumulative shares
 - Generalized Lorenz ordinates: SPJ's application of the estimating equations approach of Binder and Kovacevic (1995) and Kovacevic and Binder (1997)

Jniversity of Essex

Estimation using svylorenz

Quantile group shares, cumulative shares (Lorenz ordinates), generalized Lorenz ordinates, and Gini coefficient

svylorenz varname [if exp] [in range]
[, ngp(#) qgp(newvarname)
subpop(varname) pvar(newvarname)
lvar(newvarname) selvar(newvarname)
glvar(newvarname)
seglvar(newvarname) level(#)]

- Data must be svyset before using this command
- Optional # of quantile groups (default = 10)

Many saved results in e(...)

Assumptions about survey design in the 'IFS' dataset

- There are no PSU or strata variables supplied in the IFS data
- However, the observations (families) are clustered in households (= sampling unit):
 - each person in each family is assumed to have the income of household to which s/he belongs
- Estimate variances accounting for within-household clustering, and the weighting

- svyset hrn [pw = wgt]

Estimation using svylorenz

. svylor Warning: Quantile generali	Default number of quantile groups = 10; number can be chosen by the						
Number of	strata =	1		Number of	obs =	977	2
Number of	PSUs =	9772		Population	size =	54872650.0	00
				Design df	=	977	71
Group	 	 Linearized					
share	Estimate	Std. Err.	Z	P> z	[95% Con	f. Interval]
1	0.029606	0.010052	2.945	0.003	.009903	9.049308	33
2	0.044503	0.000596	74.629	0.000	.043333	8.045671	_ 4
3	0.054694	0.000793	68.952	0.000	.053138	9.056248	33
4	0.065844	0.000908	72.522	0.000	.064064	8 .067623	38
5	0.077321	0.001003	77.115	0.000	.075355	5.079285	59
6	0.090076	0.001136	79.280	0.000	.087848	8.092302	25
7	0.104067	0.001303	79.876	0.000	.10151	3.1066	52
8	0.123386	0.001566	78.777	0.000	.12031	6.12645	56
9	0.151451	0.002019	75.012	0.000	.14749	4 .15540	8
10	0.259053	0.006431	40.283	0.000	.24644	9.27165	57

Variance estimation (continued)

Cumul.						
share						
1	0.029606	0.010052	2.945	0.003	.0099039	.0493083
2	0.074109	0.009867	7.511	0.000	.0547693	.0934482
3	0.128802	0.009594	13.425	0.000	.109999	.147606
4	0.194647	0.009265	21.010	0.000	.176488	.212805
5	0.271967	0.008885	30.609	0.000	.254553	.289382
6	0.362043	0.008445	42.871	0.000	.345491	.378595
7	0.466110	0.007917	58.875	0.000	.450593	.481627
8	0.589496	0.007275	81.035	0.000	.575238	.603754
9	0.740947	0.006431	115.219	0.000	.728343	.753551
10	1.000000					
Gen.	 					
Lorenz						
1	6.923	0.158	43.861	0.000	6.614	7.233
2	17.330	0.249	69.703	0.000	16.843	17.818
3	30.121	0.377	79.888	0.000	29.382	30.860
4	45.518	0.524	86.828	0.000	44.491	46.546
5	63.600	0.683	93.104	0.000	62.261	64.939
6	84.664	0.860	98.495	0.000	82.980	86.349
7	109.001	1.057	103.169	0.000	106.930	111.071
8	137.855	1.290	106.900	0.000	135.327	140.382
9	173.272	1.576	109.926	0.000	170.182	176.361
10	233.852	2.711	86.247	0.000	228.538	239.166
Gini	 0.3365993	.00515134	65.342	0.000	.3265028	.3466957

Gini estimates are based on the complete unit record data (not grouped data)

Lorenz curve comparisons with CIs

. svylorenz x if year == 1981, pvar(p81) lvar(r181) selvar(se81)
. svylorenz x if year == 1991, pvar(p91) lvar(r191) selvar(se91)

```
. local half_alpha = (1 - c(level)' / 100) / 2
. gen lcl81 = rl81 + invnorm(`half_alpha') * se81
(25222 missing values generated)
. gen ucl81 = rl81 + invnorm(1-`half_alpha') * se81
(25222 missing values generated)
. gen lcl91 = rl91 + invnorm(`half_alpha') * se91
(25222 missing values generated)
. gen ucl91 = rl91 + invnorm(1-`half_alpha') * se91
(25222 missing values generated)
. graph twoway (connect r181 p81, sort yaxis(1 2) )
                                                                           111
    (connect rl91 p91, sort yaxis(1 2) )
                                                             111
>
    (function y = x, range(0 1) yaxis(1 2) )
                                                             111
>
    (rspike lcl81 ucl81 p81, blcolor(black) sort ) ///
>
    (rspike lcl91 ucl91 p91, blcolor(black) sort ) ///
>
    , aspect(1) xtitle("Cumulative population share, p")
                                                             ///
>
    ytitle("Cumulative income share, poorest 100p%", axis(1)) ytitle(" ",
>
    axis(2)) ///
    legend(label (1 "1981") label(2 "1991") label(3 "Equality")
                                                                      111
>
     label(4 "95%CI,1981") label(5 "95%CI,1991") size(small) ///
>
     region(lstyle(none)) ) saving(svylorenz81 91, replace)
>
```

(file svylorenz81_91.gph saved)

NB graphs can also be derived using glcurve, but no Cls

Lorenz curve comparisons with CIs (2)

Note overlapping CIs at small values of p

Further issues

- multiple comparison tests given a set of (generalized) Lorenz estimates
 - stochastic dominance checks
 - See discussion and references in e.g. Davidson and Duclos (2000)

Bootstrap methods

- A general empirically-based approach which you may prefer, because:
- Linearization method may be too complicated for your application, and/or software unavailable
- All the linearization sampling variance formulae are 'approximate', large sample, formulae and you may not trust them
- It is very flexible in principle
 - But is no panacea: requires careful set-up for complex survey designs other than those that bootstrap options allow

Bootstrapped SE for Gini index

- 1. Write wrapper program to retrieve results from ineqdec0
 - svylorenz uses obs with values ≥ 0 , ineqdeco uses obs with values > 0, ineqdec0 and sumdist uses obs with any real value
- 2. Drop observations not to be used in the bootstrapping
 - Apply similar methods to derive bootstrap estimates from any other program producing estimates of inequality measures (including Lorenz ordinates)

```
. cap prog drop ineq
```

```
. prog define ineq, rclass
```

```
1. ineqdec0 x [aw = wgt]
```

2. ret scalar gini = r(gini)

```
3. end
```

```
. drop if (missing(x) | x < 0 | year != 1991 ) (18783 observations deleted)
```


Bootstrapped SEs for inequality indices (2)

. * 250 reps			-]				
. Doorstrap gi	$\operatorname{III} = \operatorname{r}(\operatorname{gIIII}),$, reps(250) (luster (II	.rn) • meq			
(running ineq	on estimation	n sample)					
<output omitte<="" td=""><td>ed></td><td></td><td></td><td></td><td></td><td></td><td></td></output>	ed>						
Bootstrap resu	lts			Number of	obs	=	6468
				Number of	clusters	=	5254
				Replicati	ons	=	250
command: gini:	ineq r(gini)						
	Observed	Bootstrap			Norma	al-	based
 +	Coef.		Z	P> z	[95% Conf	£.	Interval]
gini	.3365993	.0045669	73.70	0.000	.3276483		.3455502

Bootstrap SE is similar to the linearized estimate from svylorenz:

Gini | 0.3365993 .00515134 65.342 0.000 .3265028 .3466957

Bootstrapped SEs for shares, etc.

Use similar estimation strategy:

. cap prog drop sdist

```
. prog define sdist, rclass
1. sumdist x [aw = wgt]
2. ret scalar sh10 = r(sh10)
3. end
```

. drop if (missing(x) | x < 0 | year !=
 1991)
(18783 observations deleted)</pre>

Bootstrapped SEs for shares, etc. (2)

* 250 reps

. bootstrap sharetop10pc = r(sh10), reps(250) cluster(hrn) : sdist (running sdist on estimation sample)

<output omitted>

Bootstrap results	Number	of	obs	=	25231
	Number	of	clusters	=	19702
	Replica	atio	ons	=	250

command:	sdist		
abawatan ¹ 0ng.	r(ah10)		

sharetop10pc: r(sh10)

	Observed Coef.	Bootstrap Std. Err.		P> z	Normal- [95% Conf.	-based Interval]
sharetop10pc	.2590531	.0054408	47.61	0.000	.2483894	.2697168

Bootstrap SE is similar to the linearized estimate from svylorenz:

0.259053 0.006431 40.283 0.000 .246449

.271657

Advertisement

Suite of Stata programs for analysis of distributions, also with variance estimation

- Available from SSC or as Stata Journal update
- ineqdeco, ineqdec0, povdeco
 - Variance estimates via the bootstrap
- svyatk, svygei
 - Variance estimates via linearization
- glcurve (joint with Philippe Van Kerm)
 - Draw (generalized) Lorenz, concentration, TIP curves, etc.
- svylorenz (and sumdist)
 - Variance estimates via linearization (and bootstrap)

NB All rely on you having 'good' data and making appropriate choices about definitions of 'income', the income-receiving 'unit', etc.!

References

- Beach, C.M. and R. Davidson. 1983. Distribution-free statistical inference with Lorenz curves and income shares. *Review of Economic Studies* 50: 723–725.
- Beach, C.M. and S.F. Kaliski. 1986. Lorenz curve inference with sample weights: an application to the distribution of unemployment experience. *Applied Statistics* 35(1): 38–45.
- Binder, D.A. and M.S. Kovacevic. 1995. Estimating some measures of income inequality from survey data: an application of the estimating equations approach. *Survey Methodology* 21: 137-145.
- Davidson, R. and J-Y. Duclos. 2000. Statistical inference for stochastic dominance and for the measurement of poverty and inequality. *Econometrica* 68: 1435–1464
- Kovaevic, M.S. and D.A. Binder. 1997. Variance estimation for measures of income inequality and polarization. *Journal of Official Statistics* 13(1): 41–58. Full text downloadable: <u>http://www.jos.nu/Articles/abstract.asp?article=1314</u>

Zheng, B. 2002. Testing Lorenz curves with non-simple random samples. *Econometrica* 70: 1235–1243.

