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12.1 Data and datasets
Data form a rectangular table of numeric and string values in which each row is an observation on

all the variables and each column contains the observations on one variable. Variables are designated
by variable names. Observations are numbered sequentially from 1 to N. The following example of
data contains the first five odd and first five even positive integers, along with a string variable:

odd even name
1. 1 2 Bill
2. 3 4 Mary
3. 5 6 Pat
4. 7 8 Roger
5. 9 10 Sean

The observations are numbered 1 to 5, and the variables are named odd, even, and name. Observations
are referred to by number, and variables by name.

A dataset is data plus labelings, formats, notes, and characteristics.

All aspects of data and datasets are defined here. Long (2009) offers a long-time Stata user’s hard-
won advice on how to manage data in Stata to promote accurate, replicable research. Mitchell (2010)
provides many examples on data management in Stata.

12.2 Numbers
A number may contain a sign, an integer part, a decimal point, a fraction part, an e or E, and a

signed integer exponent. Numbers may not contain commas; for example, the number 1,024 must be
typed as 1024 (or 1024. or 1024.0). The following are examples of valid numbers:

5
-5
5.2
.5
5.2e+2
5.2e-2

Technical note

Stata also allows numbers to be represented in a hexadecimal/binary format, defined as[
+|-

]
0.0

[
〈zeros〉

]
{X|x}-3ff

or [
+|-

]
1.〈hexdigit〉

[
〈hexdigits〉

]
{X|x}{+|-}〈hexdigit〉

[
〈hexdigits〉

]
The lead digit is always 0 or 1; it is 0 only when the number being expressed is zero. A maximum of
13 digits to the right of the hexadecimal point are allowed. The power ranges from -3ff to +3ff. The
number is expressed in hexadecimal (base 16) digits; the number aX+b means a× 2b. For instance,
1.0X+3 is 23 or 8. 1.8X+3 is 12 because 1.816 is 1+ 8/16 = 1.5 in decimal and the number is thus
1.5× 23 = 1.5× 8 = 12.

Stata can also display numbers using this format; see [U] 12.5.1 Numeric formats. For example,

. display 1.81x+2
6.015625

. display %21x 6.015625
+1.8100000000000X+002

This hexadecimal format is of special interest to numerical analysts.
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12.2.1 Missing values

A number may also take on the special value missing, denoted by a period (.). You specify a
missing value anywhere that you may specify a number. Missing values differ from ordinary numbers
in one respect: any arithmetic operation on a missing value yields a missing value.

In fact, there are 27 missing values in Stata: ‘.’, the one just discussed, as well as .a, .b, . . . ,
and .z, which are known as extended missing values. The missing value ‘.’ is known as the default
or system missing value. Some people use extended missing values to indicate why a certain value
is unknown—the question was not asked, the person refused to answer, etc. Other people have no
use for extended missing values and just use ‘.’.

Stata’s default or system missing value will be returned when you perform an arithmetic operation
on missing values or when the arithmetic operation is not defined, such as division by zero, or the
logarithm of a nonpositive number.

. display 2/0

.

. list

a

1. .b
2. .
3. .a
4. 3
5. 6

. generate x = a + 1
(3 missing values generated)

. list

a x

1. .b .
2. . .
3. .a .
4. 3 4
5. 6 7

Numeric missing values are represented by “large positive values”. The ordering is

all numbers < . < .a < .b < · · · < .z

Thus the expression

age > 60

is true if variable age is greater than 60 or is missing. Similarly,

gender 6= 0

is true if gender is not zero or is missing.
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To exclude missing values, you must ask whether the value is less than ‘.’; to detect missing
values, you must ask whether the value is greater than or equal to ‘.’. For instance,

. list if age>60 & age<.

. generate agegt60 = 0 if age<=60

. replace agegt60 = 1 if age>60 & age<.

. generate agegt60 = (age>60) if age<.

Technical note

Before Stata 8, Stata had only one representation for missing values, the period (.).

To ensure that old programs and do-files continue to work properly, when version is set less
than 8, all missing values are treated as being the same. Thus . == .a == .b == .z, and so ‘exp==.’
and ‘exp!=.’ work just as they previously did.

Example 1

We have data on the income of husbands and wives recorded in the variables hincome and
wincome, respectively. Typing the list command, we see that your data contain

. use http://www.stata-press.com/data/r15/gxmpl3

. list

hincome wincome

1. 32000 0
2. 35000 34000
3. 47000 .b
4. .z 50000
5. .a .

The values of wincome in the third and fifth observations are missing, as distinct from the value of
wincome in the first observation, which is known to be zero.

If we use the generate command to create a new variable, income, that is equal to the sum of
hincome and wincome, three missing values would be produced.

. generate income = hincome + wincome
(3 missing values generated)

. list

hincome wincome income

1. 32000 0 32000
2. 35000 34000 69000
3. 47000 .b .
4. .z 50000 .
5. .a . .

generate produced a warning message that 3 missing values were created, and when we list the
data, we see that 47,000 plus missing yields missing.
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Technical note
Stata stores numeric missing values as the largest 27 numbers allowed by the particular storage

type; see [U] 12.2.2 Numeric storage types. There are two important implications. First, if you sort
on a variable that has missing values, the missing values will be placed last, and the sort order of
any missing values will follow the rule regarding the properties of missing values stated above.

. sort wincome

. list wincome

wincome

1. 0
2. 34000
3. 50000
4. .
5. .b

The second implication concerns relational operators and missing values. Do not forget that a
missing value will be larger than any numeric value.

. list if wincome > 40000

hincome wincome income

3. .z 50000 .
4. .a . .
5. 47000 .b .

Observations 4 and 5 are listed because ‘.’ and ‘.b’ are both missing and thus are greater than
40,000. Relational operators are discussed in detail in [U] 13.2.3 Relational operators.

Example 2
In producing statistical output, Stata ignores observations with missing values. Continuing with the

example above, if we request summary statistics on hincome and wincome by using the summarize
command, we obtain

. summarize hincome wincome

Variable Obs Mean Std. Dev. Min Max

hincome 3 38000 7937.254 32000 47000
wincome 3 28000 25534.29 0 50000

Some commands discard the entire observation (known as casewise deletion) if one of the variables
in the observation is missing. If we use the correlate command to obtain the correlation between
hincome and wincome, for instance, we obtain

. correlate hincome wincome
(obs=2)

hincome wincome

hincome 1.0000
wincome 1.0000 1.0000

The correlation coefficient is calculated over two observations.

http://www.stata.com/manuals15/u13.pdf#u13.2.3Relationaloperators
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12.2.2 Numeric storage types

Numbers can be stored in one of five variable types: byte, int, long, float (the default), or
double. bytes are, naturally, stored in 1 byte. ints are stored in 2 bytes, longs and floats in 4
bytes, and doubles in 8 bytes. The table below shows the minimum and maximum values for each
storage type.

Closest to 0
Storage type Minimum Maximum without being 0 Bytes

byte −127 100 ±1 1
int −32,767 32,740 ±1 2
long −2,147,483,647 2,147,483,620 ±1 4
float −1.70141173319× 1038 1.70141173319× 1038 ±10−38 4
double −8.9884656743× 10307 +8.9884656743× 10307 ±10−323 8

Do not confuse the term integer, which is a characteristic of a number, with int, which is a storage
type. For instance, the number 5 is an integer, no matter how it is stored; thus, if you read that an
argument must be an integer, that does not mean that it must be stored as an int.

12.3 Dates and times
Stata has nine date, time, and date-and-time numeric encodings known collectively as %t variables

or values. They are

%tC calendar date and time, adjusted for leap seconds
%tc calendar date and time, ignoring leap seconds
%td calendar date
%tw week
%tm calendar month
%tq financial quarter
%th financial half-year
%ty calendar year
%tb business calendars

All except %ty and %tb are based on 0 = beginning of January 1960. %tc and %tC record the number
of milliseconds since then. %td records the number of days. The others record the numbers of weeks,
months, quarters, or half-years. %ty simply records the year, and %tb records a user-defined business
calendar format.

For a full discussion of working with dates and times, see [U] 24 Working with dates and times.

http://www.stata.com/manuals15/u24.pdf#u24Workingwithdatesandtimes
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12.4 Strings
This section describes the treatment of strings by Stata. The section is divided into the following

subsections:

[U] 12.4.1 Overview
[U] 12.4.2 Handling Unicode strings
[U] 12.4.3 Strings containing identifying data
[U] 12.4.4 Strings containing categorical data
[U] 12.4.5 Strings containing numeric data
[U] 12.4.6 String literals
[U] 12.4.7 str1–str2045 and str
[U] 12.4.8 strL
[U] 12.4.9 strL variables and duplicated values
[U] 12.4.10 strL variables and binary strings
[U] 12.4.11 strL variables and files
[U] 12.4.12 String display formats
[U] 12.4.13 How to see the full contents of a strL or a str# variable
[U] 12.4.14 Notes for programmers

12.4.1 Overview

A string is a sequence of characters.

Samuel Smith
California
U.K.

Usually—but not always—strings are enclosed in double quotes.

"Samuel Smith"
"California"
"U.K."

Strings typed in quotes are called string literals.

Strings can be stored in Stata datasets in string variables.

. use http://www.stata-press.com/data/r15/auto, clear
(1978 Automobile Data)

. describe make

storage display value
variable name type format label variable label

make str18 %-18s Make and Model

The string-variable storage types are str1, str2, . . . , str2045, and strL. For example, variable
make is a str18 variable. It can contain strings of up to 18 characters long. The strings are not all
18 characters long.

. list make in 1/2

make

1. AMC Concord
2. AMC Pacer
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str18 means that the variable cannot hold a string longer than 18 bytes, and even that is an unimportant
detail, because Stata automatically promotes str# variables to be longer when required.

. replace make = "Mercedes Benz Gullwing" in 1
variable make was str18 now str22

(1 real change made)

Strings in Stata can also be stored in labels and notes that let you see information about your
dataset. See [U] 12.6 Dataset, variable, and value labels and [U] 12.7 Notes attached to data.
Strings in Stata programs can be stored in string scalars, macros, characteristics, and in stored results.

Stata provides a suite of string functions, such as strlen(), substr().

. generate len = strlen(make)

. generate str first5 = substr(make, 1,5)

. list make len first5 in 1/2

make len first5

1. Mercedes Benz Gullwing 22 Merce
2. AMC Pacer 9 AMC P

Many Stata commands can use string variables.

. generate str brand = word(make, 1)

. tabulate brand

brand Freq. Percent Cum.

AMC 2 2.70 2.70
Audi 2 2.70 5.41
BMW 1 1.35 6.76

Buick 7 9.46 16.22
Cad. 3 4.05 20.27
Chev. 6 8.11 28.38
Datsun 4 5.41 33.78
Dodge 4 5.41 39.19
Fiat 1 1.35 40.54
Ford 2 2.70 43.24
Honda 2 2.70 45.95
Linc. 3 4.05 50.00
Mazda 1 1.35 51.35
Merc. 6 8.11 59.46

Mercedes 1 1.35 60.81
Olds 7 9.46 70.27

Peugeot 1 1.35 71.62
Plym. 5 6.76 78.38
Pont. 6 8.11 86.49

Renault 1 1.35 87.84
Subaru 1 1.35 89.19
Toyota 3 4.05 93.24

VW 4 5.41 98.65
Volvo 1 1.35 100.00

Total 74 100.00

Beginning in Stata 14, text in Stata strings can include Unicode characters and is encoded as
UTF-8. This means that you can use plain ASCII characters (also known as “lower ASCII” and stored
as 0–127 on computers) like those shown above. You can also use the remaining Latin characters,
as well as characters from the Chinese, Cyrillic, and Japanese alphabets, among others. However, if

http://www.stata.com/manuals15/fnstringfunctions.pdf#fnStringfunctions
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you have characters other than ASCII in your datasets, do-files, or ado-files, you may need to take
special steps. See [U] 12.4.2 Handling Unicode strings.

12.4.2 Handling Unicode strings

If you do not have Unicode characters beyond the plain ASCII characters, you do not need to
use any special steps to work with your data. In many cases, the same is true even if you do have
other Unicode characters. While it is impossible to provide a rule for every situation, there are some
general guidelines that you should be aware of.

The fundamental concept to understand is the difference between characters and bytes. Characters
are what you see. For example, “a”, “Z”, and “@” are characters. Bytes are used to encode characters,
which are stored on a computer.

For plain ASCII characters, there is a one-to-one mapping between the number of bytes and the
number of characters. By contrast, UTF-8 encoded Unicode characters require two, three, or four bytes.
For this reason, strings containing Unicode characters require string functions that recognize whole
characters; see [U] 12.4.2.1 Unicode string functions. Some characters from older Stata files, known
as extended ASCII characters, will not display correctly and can cause unexpected results. To avoid
this, you must properly convert your older datasets and text files, such as do-files, if they contain
extended ASCII. See [U] 12.4.2.6 Advice for users of Stata 13 and earlier.

If you do have characters in your data other than plain ASCII characters, or if you write commands
for others to use, you should read the following sections.

12.4.2.1 Unicode string functions

Some of Stata’s string functions exist in Unicode-aware versions so they can understand the string
as a sequence of Unicode characters rather than as a sequence of bytes. At times, you will need to
use one of these Unicode-aware functions to return accurate results. For example, suppose that our
data on make included a car manufactured by Clénet Coachworks.

If we wanted to know the correct string length, we would use ustrlen(), not strlen(). The
former will give you the answer you expect, 17, while the latter will return the number of bytes used
to store that string, 18.

There are other Unicode-aware functions. For example, to change Unicode characters to uppercase,
lowercase, or titlecase, use functions ustrupper(), ustrlower(), or ustrtitle(). If you want to
see if there is a Unicode variant of the string function you want to use, check [FN] String functions.

Note that Unicode-aware functions are not required just because a variable contains UTF-8 characters
beyond the plain ASCII range. For example, suppose that rather than wanting the string length, we
wanted to replace “Mercedes” with “Merc.”. We could use subinstr() instead of usubinstr()
because neither “Mercedes” nor “Merc.” contains UTF-8 characters.

Other Unicode-aware functions address the display columns. These functions are primarily of
interest to programmers. See [U] 12.4.2.2 Displaying Unicode characters.

If you are in doubt, or if you are writing code to be used in a general way by others, you should use
the Unicode-aware version of a string function, if it exists. The Unicode-aware functions generally
have the same names as the regular string functions, but with “u” as a prefix. See [FN] String
functions.

http://www.stata.com/manuals15/iglossary.pdf#iGlossaryunichar
http://www.stata.com/manuals15/iglossary.pdf#iGlossaryplainascii
http://www.stata.com/manuals15/iglossary.pdf#iGlossaryextascii
http://www.stata.com/manuals15/fnstringfunctions.pdf#fnStringfunctions
http://www.stata.com/manuals15/fnstringfunctions.pdf#fnStringfunctions
http://www.stata.com/manuals15/fnstringfunctions.pdf#fnStringfunctions
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12.4.2.2 Displaying Unicode characters

Stata has a concept called a display column to ensure that the fixed-width output in Stata’s Results
and Viewer windows continues to align properly. Stata automatically displays each character in one
or two display columns.

Most users, even users with UTF-8 characters beyond the ASCII range, will find that there is
no distinction between the number of characters and the number of display columns because most
characters are displayed in one column. Some wider characters, however, such as Chinese, Japanese,
and Korean (CJK) characters, occupy two display columns.

You may occasionally wish to account for the number of display columns that a string occupies.
Just as some Stata functions understand Unicode characters, some functions understand display
columns. These functions are prefixed with “ud”. For example, you can obtain the number of display
columns for a string with udstrlen(string). If you want to extract a subset of characters from the
beginning of a string and make sure it fits within 10 display columns, use udsubstr(string,1,10).
See [FN] String functions for more information.

12.4.2.3 Encodings

An encoding is the way a computer stores a given string of text. ASCII and UTF-8, which is how
Stata stores all text, are examples of encodings. Plain ASCII characters are stored as a single byte,
each with a value between 0 and 127. “a”, “Z”, and “@” are all examples of plain ASCII characters,
and their respective byte values are 97, 90, and 64.

The letter “á” is also a character. In UTF-8 encoding, that single character is stored as two bytes:
195 and 161. All Unicode characters beyond the plain ASCII range are stored as two or more bytes,
and each of those bytes has a value between 128 and 255. Some characters in UTF-8 encoding take
three or even four bytes to store.

Not every possible combination of bytes represents a valid Unicode character. Because two or
more bytes are required to encode a Unicode character, any single byte between 128 and 255 is not
a valid Unicode character. Invalid Unicode characters are most likely to occur if you have extended
ASCII characters in a file from a previous version of Stata; see [U] 12.4.2.6 Advice for users of Stata
13 and earlier.

If you have text in other encodings, including text in Stata files, you must convert it to UTF-8 for
it to display properly and for some of Stata’s string functions to work properly. To convert a file
to UTF-8, you must know the original encoding. The most common encoding is Windows-1252. To
obtain a list of other common encodings as well as a list of all possible encodings, see unicode
encoding list and unicode encoding alias in [D] unicode encoding.

The unicode analyze and unicode translate commands help to convert text files and Stata
datasets. See [D] unicode translate for more information. Also see [U] 12.4.2.6 Advice for users of
Stata 13 and earlier.

12.4.2.4 Locales in Unicode

A locale identifies a community with a certain set of rules for how their language should be written.
A locale can be as general as a certain language, such as “en” for English, or it can be specific to a
country or region, such as “en US” for U.S. English and “en HK” for Hong Kong English.

Locales use tags to define how specific they are to language variants; these tags include language,
script, country, variant, and keywords. Typically the language is required and the other tags are optional.
In most cases, Stata uses only the language and country tags. For example, “en US” specifies the
language as English and the country as the USA.

http://www.stata.com/manuals15/fnstringfunctions.pdf#fnStringfunctions
http://www.stata.com/manuals15/dunicodeencoding.pdf#dunicodeencoding
http://www.stata.com/manuals15/dunicodetranslate.pdf#dunicodetranslate


[ U ] 12 Data 11

Certain language-specific operations require a locale to be properly carried out. For example, in
English, the uppercase version of “i” is “I”. In Turkish, the uppercase version of “i” is an “İ” [that is,
an “I” with a dot above it (Unicode character \u0130)]. To specify how to properly convert a letter to
uppercase, you can specify the locale in the ustrupper() function, for example, ustrupper("i",
"en US").

The following Stata functions are locale-dependent: ustrupper(), ustrlower(), ustrtitle(),
ustrword(), ustrwordcount(), ustrcompare(), ustrcompareex(), ustrsortkey(), and us-
trsortkeyex().

If you do not explicitly specify a locale when using these functions, the current Stata lo-
cale functions setting will be used. You can see the current setting by typing

. display c(locale_functions)

and
. unicode locale list

to see a list of supported locales. It is unlikely, however, that you will ever need to change the set
locale functions setting.

See [P] set locale functions for more information about setting the locale, including information
about the how default value is determined.

12.4.2.5 Sorting strings containing Unicode characters

This section deals with collation, sorting strings that contain Unicode characters, and the special
rules that apply when you do. Many users will find that they can skip this section.

If you do not have Unicode characters beyond the plain ASCII range, you can skip this section.
You can also skip this section if you are interested in using sort only so that you can use another
command or prefix. For example, suppose you have the variable id that contains Unicode characters
and you want to type

. statsby id: regress y x1 x2

If your aim is to group the coefficients by id only and the exact order of id does not matter, then
the advice in this section does not apply to you. The usual sort command will be sufficient.

The steps described here also do not apply to commands that require the data to be sorted or
grouped. For example, suppose that you wish to perform a one-to-one merge for two datasets using
id as the key variable. You can just type

. merge 1:1 id using . . .

Finally, you can skip this section if you do not want to apply language-specific rules to the Unicode
characters in your data. For example, if you do not particularly care that “café” is sorted before or
after “cafe”, but only that the two words are distinguished, then this section is not for you.

For users who wish to sort or compare strings as a human might, there are four rules that you
should keep in mind.

1. Sorting is locale-specific.

2. You must generate a sort key. You cannot sort by the variable itself.

3. There are multiple options for controlling the order of Unicode strings.

4. Concatenation is required to sort by varlist.

Rules 1 and 3 also apply to string comparisons. We explain each of these rules in more detail below.
But first, it may be helpful to review how sorting works in general.

http://www.stata.com/manuals15/psetlocale_functions.pdf#psetlocale_functions
http://www.stata.com/manuals15/u11.pdf#u11.4varnameandvarlists


12 [ U ] 12 Data

Stata’s sort command and Stata’s logical operators > and < order strings based on the byte
values of the characters. For example, the byte value for “a” is 97 and the byte value for “A” is 65,
so “a” > “A”. Similarly, the byte value for “Z” is 90, so “a” > “Z”. This means that words starting
with “Z” come before “a”, which might surprise you because, in an English dictionary, words starting
with “Z” would certainly come after words starting with “a”.

For example, suppose we have the following data:

. list mystr

mystr

1. Quick
2. quick
3. brown
4. Fox
5. jump

If we sort these data and then list them, we see

. sort mystr

. list

mystr

1. Fox
2. Quick
3. brown
4. jump
5. quick

This probably is not the order you would have placed these values in.

To sort the values of mystr in a more human fashion, you can use a Unicode tool, known as the
Unicode collation algorithm (UCA), for comparing and sorting strings in a language-aware manner.
Given knowledge of a locale and perhaps some optional instructions about whether to consider things
like case and diacritical marks, the UCA can order Unicode strings as a human (or a dictionary) would.

Stata and Mata provide access to the UCA via the ustrcompare(), ustrcompareex(), and us-
trsortkey(), ustrsortkeyex() functions. Stata also provides access via the collatorlocale()
and collatorversion() functions.

See http://www.unicode.org/reports/tr10/ for the formal specification of the UCA.

Rule 1: Sorting is locale-dependent.

The ordering of strings in Unicode depends on the specified language and any optional tags and
keywords that are specified with the locale.

For the ustrcompare() and ustrsortkey() functions, the default rules for ordering by language
(and country, if specified) are used. You can use the current Stata locale functions setting or
specify a different locale with these each of these functions. See [U] 12.4.2.4 Locales in Unicode for
more information about locales, and see [D] unicode collator for information about locale-specific
collation.

For advanced control of ordering, use the ustrcompareex() and ustrsortkeyex() functions.
These functions allow you to specify a collation keyword, which is used for finer control for ordering,
such as whether case-sensitivity and diacritical marks matter. For example, “pinyin” and “stroke”

http://www.stata.com/manuals15/fnstringfunctions.pdf#fnStringfunctionsustrcompare()
http://www.stata.com/manuals15/fnstringfunctions.pdf#fnStringfunctionsustrcompareex()
http://www.stata.com/manuals15/fnstringfunctions.pdf#fnStringfunctionsustrsortkey()
http://www.stata.com/manuals15/fnstringfunctions.pdf#fnStringfunctionsustrsortkey()
http://www.stata.com/manuals15/fnstringfunctions.pdf#fnStringfunctionsustrsortkeyex()
http://www.stata.com/manuals15/fnstringfunctions.pdf#fnStringfunctionscollatorlocale()
http://www.stata.com/manuals15/fnstringfunctions.pdf#fnStringfunctionscollatorversion()
http://www.stata.com/manuals15/dunicodecollator.pdf#dunicodecollator
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for the Chinese language produce different sort orders. A list of valid collation keywords and their
meanings may be found http://unicode.org/repos/cldr/trunk/common/bcp47/collation.xml.

Rule 2: You must generate a sort key.
To appropriately sort your data with all the rules of the locale applied, you must generate a sort

key. A sort key is a string created by the UCA that can be used to sort Unicode strings. You sort on
the sort key rather than the Unicode string variable. The sort key is not a variable we would ever
want to use for any purpose other than data management because it is not human-readable.

You can generate a sort key using either ustrsortkey() or ustrsortkeyex(). You then sort
your data by the new variable. The following example illustrates the difference between sort and
Unicode collation using the above functions:

. generate sortkey = ustrsortkey(mystr, "en")

. sort sortkey

. list mystr

mystr

1. brown
2. Fox
3. jump
4. quick
5. Quick

It is important to note that the Stata dataset is sorted by sortkey and not by mystr, even though
mystr appears to be sorted correctly. Stata is aware of sorting only by sortkey. This means that if
you need to perform an operation that relies on the sort order, such as by, you should use sortkey
rather than mystr, such as

. by sortkey: ...

Also note that sort keys generated from one locale or one set of advanced options in ustr-
sortkeyex() are usually not compatible or comparable with sort keys generated from another locale
or another set of options. For example, you should not compare the sort keys generated from the
"en" locale with those generated from the "fr" locale.

Technical note

The effective locale may be different from the requested locale. Thus, the sort keys obtained on a
different machine, or even on a different user account on the same machine, may be different unless
the locale is specified. You can retrieve the effective locale with the function collatorlocale()
and then use that effective locale in future calls to the Unicode ordering functions.

Technical note
The Unicode standard is constantly adding more characters, and language rules are constantly

changing, which means that sort keys produced by the current version of the UCA may not be
compatible with sort keys of the same strings produced by future versions of the UCA.

You can use function collatorversion() to retrieve the current version of the collation routine
and then store the result (for example, in a variable characteristic) with any saved sort keys if those
keys are intended for future use.

http://unicode.org/repos/cldr/trunk/common/bcp47/collation.xml
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If the current version is different from the saved sort key, then you should regenerate the sort key
variables if you want them to be up-to-date with the new language rules or if you want to compare
them with newly generated sort keys.

Rule 3: There are multiple options for controlling the order of Unicode strings.
This may appear straightforward, but some finer points of the UCA could surprise you. Consider

an example of string comparisons.

. display ustrcompare("café","cafe","fr")
1

Here we asked Stata to compare the string “café” to the string “cafe” using the French locale ("fr").
Stata reported 1, which means that in this case “café” is considered to be greater than “cafe”. If we
were sorting our data, this means “café” would be sorted after “cafe”.

Now consider

. display ustrcompare("café du monde","cafe new york","fr")
-1

It might surprise you that the result is -1, which means that in this case “café du monde” is considered
to be less than “cafe new york”, even though we already established that ”café” is greater than “cafe”.

The reason is that the difference between “d” and “n” in the second word of each string is
considered by the UCA to be a primary difference, whereas the difference between “é” and “e” in the
first word of each string is a diacritical mark which is considered to be a secondary difference. The
primary difference outweighs the secondary difference even though it occurs later in the string.

The default behavior of ustrcompare() and ustrsortkey() should be sufficient for most
comparison and sorting needs. For advanced control over how Unicode strings are ordered, including
whether the ordering should be based on differences from primary to quaternary, use ustrcompareex()
and ustrsorkeyex(). See [FN] String functions.

Rule 4: Concatenation is required to sort by a varlist.
An important implication of Rule 3 arises when creating sort keys for Unicode strings. Ordinarily,

if you want to sort on two string variables, you can simply type

. sort string1 string2

However, to take full advantage of the UCA while sorting two or more strings, you should first
concatenate them and then sort the result.

. generate string3 = string1 + string2

. generate sortkey = ustrsortkey(sting3, "fr")

. sort sortkey

If you do not do this, then primary differences that might arise in string2 will not override any
secondary differences in string1.

http://www.stata.com/manuals15/fnstringfunctions.pdf#fnStringfunctions
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12.4.2.6 Advice for users of Stata 13 and earlier
In this section, we discuss how to use your older Stata files in modern Stata and also points you

should consider when sharing your modern Stata files with users of Stata 13 and earlier.

In Stata 13 and earlier, Unicode characters were not supported. If you have only plain ASCII
characters in your datasets, do-files, and ado-files, then you do not need to take any special steps to
continue using these files with modern Stata. You can use saveold to share your dataset with users
of older versions of Stata. Your do-files and ado-files can be shared directly.

If files you used with Stata 13 or earlier contain strings with extended ASCII characters, you should
convert those strings to Unicode UTF-8 encoding so they will work properly with modern Stata. The
unicode analyze command will check your files to see if they need conversion, and if so, the
unicode translate command will convert them to UTF-8 encoding. See [D] unicode translate. To
convert a single variable, use ustrfrom().

If you have Unicode characters in your dataset and you wish to share it with a user of Stata 13 or
earlier, be aware that while they can load a dataset created with the saveold command, their copy of
Stata is not Unicode-aware and will not display Unicode characters properly. Before you use saveold,
you can convert your string variables from the UTF-8 encoding to an extended ASCII encoding by
using ustrto(). We recommend that you generate a new variable when using ustrfrom() or
ustrto() so that you can review the results and make sure you are satisfied before you replace
your existing variable. ustrfrom() and ustrto() may also be used with Mata string matrices.

12.4.3 Strings containing identifying data

String variables often contain identifying information, such as the patient’s name or the name
of the city or state. Such strings are typically listed but are not used directly in statistical analysis,
although the data might be sorted on the string or datasets might be merged on the basis of one or
more string variables.

12.4.4 Strings containing categorical data

Strings sometimes contain information to be used directly in analysis, such as the patient’s sex,
which might be coded “male” or “female”. Stata shows a decided preference for such information to be
numerically encoded and stored in numeric variables. Stata’s statistical routines treat string variables
as if every observation records a numeric missing value. Stata provides two commands for converting
string variables into numeric codes and back again: encode and decode. See [U] 23.2 Categorical
string variables and [U] 11.4.3 Factor variables.

12.4.5 Strings containing numeric data

If a string variable contains the character representation of a number, say, myvar contains “1”,
“1.2”, and “−5.2”, you can convert the string into a numeric value by using the real() function or
the destring command. For example,

. generate newvar = real(myvar)

To convert a numeric variable to its string representation, you can use the string() function or
the tostring command. For example,

. generate as_str = string(numvar)

See [FN] String functions and [D] destring.

http://www.stata.com/manuals15/dsave.pdf#dsave
http://www.stata.com/manuals15/dunicodetranslate.pdf#dunicodetranslate
http://www.stata.com/manuals15/fnstringfunctions.pdf#fnStringfunctionsustrfrom()
http://www.stata.com/manuals15/dsave.pdf#dsave
http://www.stata.com/manuals15/fnstringfunctions.pdf#fnStringfunctionsustrto()
http://www.stata.com/manuals15/dgenerate.pdf#dgenerate
http://www.stata.com/manuals15/u23.pdf#u23.2Categoricalstringvariables
http://www.stata.com/manuals15/u23.pdf#u23.2Categoricalstringvariables
http://www.stata.com/manuals15/u11.pdf#u11.4.3Factorvariables
http://www.stata.com/manuals15/fnstringfunctions.pdf#fnStringfunctions
http://www.stata.com/manuals15/ddestring.pdf#ddestring


16 [ U ] 12 Data

12.4.6 String literals

A string literal is a sequence of printable characters enclosed in quotes. The quotes are not
considered part of the string; they merely serve to delimit the beginning and end of the string. The
following are examples of string literals:

"Hello, world"
"String"
"string"
" string"
"string "
""
"x/y+3"
"1.2"

All the strings above are distinct. Capitalization matters, as do leading and trailing spaces. Also
note that "1.2" is a string and not a number because it is enclosed in quotes.

There is never a circumstance in which a string cannot be delimited with quotes, but there are
instances where strings do not have to be delimited by quotes, such as when inputting data. In those
cases, nondelimited strings are stripped of their leading and trailing spaces. Delimited strings are
always accepted as is.

The list above could also be written as

‘"Hello, world"’
‘"String"’
‘"string"’
‘" string"’
‘"string "’
‘""’
‘"x/y+3"’
‘"1.2"’

‘" and "’ are called compound double quotes.

Use of compound double quotes can help solve the problem of typing strings that themselves
contain double quotes.

‘"Bob said, "Wow!" and promptly fainted."’

Strings in compound quotes can themselves contain compound quotes.

‘"The compound quotes characters are ‘" and "’"’

12.4.7 str1–str2045 and str

str is something generate understands. We will get to that.

str1–str2045 are known as Stata’s fixed-length string storage types.

They are called that because, in your dataset, if a variable is stored as a str#, then each observation
requires # bytes to store the contents of the variable. You obviously do not want # to be longer than
necessary. Stata’s compress command will shorten str# strings that are unnecessarily long.
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. use http://www.stata-press.com/data/r15/auto, clear
(1978 Automobile Data)

. compress
variable mpg was int now byte

variable rep78 was int now byte

variable trunk was int now byte

variable turn was int now byte

variable make was str18 now str17

(370 bytes saved)

In [U] 12.4.1 Overview, we used str with generate:
. generate str brand = word(make, 1)

str is something generate understands and tells generate to create a str# variable of the
minimum required length. Although you cannot tell from the output, generate created variable
brand as a str7.

Stata commands automatically promote str# storage types when necessary:
. replace make = "Mercedes Benz Gullwing" in 1
variable make was str17 now str22

(1 real change made)

In fact, if the string to be stored is longer than 2,045 bytes, generate and replace will even
promote to strL. We discuss strLs in the next section.

12.4.8 strL
strL variables can be 0 to 2-billion bytes long.

The “L” stands for long, and strL is often pronounced sturl.

strL variables are not required to be longer than 2,045 bytes.

str# variables can store strings of up to 2,045 bytes, so strL and str# overlap. This overlap is
comparable to the overlap of the numeric types int and float. Any number that can be stored as
an int can be stored as a float. Similarly, any string that can be stored as a str#, can be stored as
a strL. The reverse is not true. In addition, strL variables can hold binary strings, whereas str#
variables can only hold text strings. Thus the analogy between str#/strL and int/float is exact.
There will be occasions when you will want to use strL variables in preference to str# variables,
just as there are occasions when you will want to use float variables in preference to int variables.

strL variables work just like str# variables. Below we repeat what we did in [U] 12.4.1 Overview
using a strL variable.

. use http://www.stata-press.com/data/r15/auto, clear
(1978 Automobile Data)

. generate strL mymake = make

. describe mymake

storage display value
variable name type format label variable label

mymake strL %9s

. list mymake in 1/2

mymake

1. AMC Concord
2. AMC Pacer
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We can replace strL values just as we can replace str# values:

. replace mymake = "Mercedes Benz Gullwing" in 1
(1 real change made)

We can use string functions with strL variables just as we can with str# variables:

. generate len = strlen(mymake)

. generate strL first5 = substr(mymake, 1, 5)

. list mymake len first5 in 1/2

mymake len first5

1. Mercedes Benz Gullwing 22 Merce
2. AMC Pacer 9 AMC P

We can even make tabulations:

. generate strL brand = word(mymake, 1)

. tabulate brand

brand Freq. Percent Cum.

AMC 2 2.70 2.70
Audi 2 2.70 5.41
BMW 1 1.35 6.76
(output omitted )

Volvo 1 1.35 100.00

Total 74 100.00

The only limitations are the following:

1. You cannot use strL variables as the matching (key) variables in a match merge of two
datasets.

2. strL variables cannot be used with fillin.

strL variables are stored differently from str# variables. str# variables require # bytes per
observation. strL variables require the actual number of bytes per string per observation, which
means strLs require even less memory than str# when the value being stored is less than # bytes
long. Most strLs, however, have an 80-byte overhead per value stored; the exception is strLs
containing empty strings, in which case the overhead is 8 bytes.

Whether strL or str# requires less memory for storing the same string values depends on the
string values themselves. compress can be used to figure that out:

. compress
variable mpg was int now byte

variable rep78 was int now byte

variable trunk was int now byte

variable turn was int now byte

variable len was float now byte

variable make was str18 now str17

variable mymake was strL now str22

variable first5 was strL now str5

variable brand was strL now str8

(12,420 bytes saved)

compress decided to demote all of our strL variables to str# to save memory.
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compress, however, never promotes a str# variable to a strL, even if that would save memory.
It does not do this because, as we mentioned, there are a few things you can do with str# variables
that you cannot do with strL variables.

You can use recast to promote str# to strL:

. * variable make is currently str17

. recast strL make

. describe make

storage display value
variable name type format label variable label

make strL %-9s Make and Model

. compress make
variable make was strL now str17

(5,607 bytes saved)

12.4.9 strL variables and duplicated values

You would never know it, but when strL variables have the same values across observations,
Stata stores only one copy of each value. This is called coalescing, and it saves memory.

Stata mostly coalesces strL variables automatically as they are created, but sometimes duplicate
values escape its attention. When you type compress, however, Stata looks for coalescing opportunities.
You might see

. compress x
x is strL now coalesced
(11,301,687 bytes saved)

We recommend that you type compress occasionally when strL variables are present.

12.4.10 strL variables and binary strings

strLs can hold binary strings. A binary string is, technically speaking, any string that contains
binary 0. Here is an example:

. use http://www.stata-press.com/data/r15/auto, clear
(1978 Automobile Data)

. replace make = "a" + char(0) + "b" in 1
variable make was str18 now strL

(1 real change made)

. list make in 1

make

1. a\0b

list displays binary zeros as \0.
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If we did this same experiment with a str# variable and include the nopromote option to prevent
promotion, we would see something different:

. use http://www.stata-press.com/data/r15/auto, clear
(1978 Automobile Data)

. replace make = "a" + char(0) + "b" in 1, nopromote
(1 real change made)

. list make in 1

make

1. a

For str# strings, binary 0 indicates the end of the string, and thus the variable really does contain
“a” in the first observation.

str# variables cannot contain binary 0; strL variables can.

compress knows this. If we typed compress in the first example, we would discover that compress
would not demote make to be a str#. It would not do this because one of the values could not be
stored in a str# variable. This is no different from compress not demoting a float variable to an
int because one of the values is 1.5.

12.4.11 strL variables and files

strLs can be used to hold the contents of files. We have data on 10 patients. Some of the data have
been coded from doctor notes, and those notes are stored in notes 2217.xyz, notes 2221.xyz,
notes 2222.xyz, and so on. We could do the following:

. generate strL notes = fileread("notes_2217.xyz") in 1

. replace notes = fileread("notes_2221.xyz") in 2

. replace notes = fileread("notes_2222.xyz") in 3

. ...

It would be even easier for us to type

. generate str fname = "notes_" + string(patid) + ".xyz"

. generate strL notes = fileread(fname)

The original files can be re-created from the copies stored in Stata. To re-create all the files, we
could type

. generate len = filewrite(fname, notes)

If we want to know whether the phrase “Diabetes Mellitus Type 1” appears in the notes and
whether doctors recorded the disease as T1DM, we can type

. generate t2dm = (strpos("notes", "T1DM")) != 0

Of course, that depends on the notes *.xyz files being either text or text-like enough so that
the T1DM would show up as “T1DM”.

Note that strpos() and all of Stata’s string functions also work with binary strings.
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12.4.12 String display formats

The format for strings is %
[
-
]
#s, such as %18s and %-18s. # may be up to 2,045. # indicates

the width of the field. %#s specifies that the string be displayed right-aligned in the field, and %-#s
specifies that the string is displayed left-aligned.

Stata sets good default formats for str# variables. The default format is %#s, so if a variable is
str18, its default format is %18s.

Stata sets poor default formats for strL variables. Stata uses %9s in all cases. Because strL
variables can be so long, there is no good choice for the format; the question is merely how much
of the string you want to see.

When the format is too short for the length of the string, whether the string is str# or strL,
Stata usually displays #− 2 characters of the string and adds two dots at the end. We say “usually”
because a few commands are able to do something better than that.

12.4.13 How to see the full contents of a strL or a str# variable
By default, the list command shows only the first part of long strings, followed by two dots.

How much list shows is determined by the width of your Results window.

list will show the first 2,045 bytes of long strings, whether stored as strLs or str#s, if you
add the notrim option.

. list, notrim
(output omitted )

. list mystr, notrim
(output omitted )

. list mystr in 5, notrim
(output omitted )

Another way to display long strings is to use the display command. With display, you can see
the entire contents. To display the fifth observation of the variable mystr, you type

. display _asis mystr[5]
(output omitted )

That one command can produce a lot of output if the string is long, even hundreds of thousands
of pages! Remember that you can press Break to stop the listing.

To see the first 5,000 characters of the string, you type

. display _asis usubstr(mystr[5], 1, 5000)

For detailed information about displaying Unicode characters beyond plain ASCII characters, see
[U] 12.4.2.2 Displaying Unicode characters.

Very rarely, a string variable might contain SMCL output. SMCL is Stata’s text markup language.
A variable might contain SMCL if you used fileread() to read a Stata log file into it. In that case,
you can see the text correctly formatted by typing

. display as txt mystr[1]
(output omitted )

To learn more about other features of display, see [R] display.

http://www.stata.com/manuals15/rdisplay.pdf#rdisplay
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12.4.14 Notes for programmers

The maximum length of macros is shorter than that of strLs. This means the following:

1. You can use macros in string expressions without fear that results will be truncated.

2. You can enclose expanded macros in quotes—‘"‘macname’"’—to form string literals
without fear of truncation.

3. Macros cannot hold binary strings. If you are working with binary strings, use string scalars,
which are also implemented as strLs. See [P] scalar.

4. You should not assume that the result of a string expression will fit into a macro. If you
are sure it will, go ahead and store the result into a macro. If you are not sure, use a string
scalar, which can hold a strL.

5. You should not assume that the contents of a strL variable will fit into a macro. Use string
scalars.

6. In programming, use string scalars just as you would use numeric scalars.
program ...

version 15.1
...
tempname mystr
...
scalar ‘mystr’ = ...
...
generate ... = ...‘mystr’...
...

end

mystr in the above code is a macro containing a temporary name. Thus ‘mystr’ is a
reference, not an expansion, of the contents of the string scalar.

12.5 Formats: Controlling how data are displayed
Formats describe how a number or string is to be presented. For instance, how is the number

325.24 to be presented? As 325.2, or 325.24, or 325.240, or 3.2524e+02, or 3.25e+02, or some
other way? The display format tells Stata exactly how to present such data. You do not have to
specify display formats because Stata always makes reasonable assumptions about how to display a
variable, but you always have the option.

12.5.1 Numeric formats
A Stata numeric format is formed by

first type % to indicate the start of the format
then optionally type - if you want the result left-aligned
then optionally type 0 if you want to retain leading zeros (1)
then type a number w stating the width of the result
then type .
then type a number d stating the number of digits to follow the decimal point
then type

either e for scientific notation, e.g., 1.00e+03
or f for fixed format, e.g., 1000.0
or g for general format; Stata chooses based on the number being displayed

then optionally type c to indicate comma format (not allowed with e)

(1) Specifying 0 to mean “include leading zeros” will be honored only with the f format.

http://www.stata.com/manuals15/pscalar.pdf#pscalar
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For example,

%9.0g general format, 9 columns wide
sqrt(2) = 1.414214
1,000 = 1000

10,000,000 = 1.00e+07
%9.0gc general format, 9 columns wide, with commas

sqrt(2) = 1.414214
1,000 = 1,000

10,000,000 = 1.00e+07
%9.2f fixed format, 9 columns wide, 2 decimal places

sqrt(2) = 1.41
1,000 = 1000.00

10,000,000 = 10000000.00
%9.2fc fixed format, 9 columns wide, 2 decimal places, with commas

sqrt(2) = 1.41
1,000 = 1,000.00

10,000,000 = 10,000,000.00
%9.2e exponential format, 9 columns wide

sqrt(2) = 1.41e+00
1,000 = 1.00e+03

10,000,000 = 1.00e+07

Stata has three numeric format types: e, f, and g. The formats are denoted by a leading percent
sign (%) followed by the string w.d, where w and d stand for two integers. The first integer, w,
specifies the width of the format. The second integer, d, specifies the number of digits that are to
follow the decimal point. d must be less than w. Finally, a character denotes the format type (e, f,
or g), and a c may optionally be appended to that to indicate that commas are to be included in the
result (c is not allowed with e.)

By default, every numeric variable is given a %w.0g format, where w is large enough to display
the largest number of the variable’s type. The %w.0g format is a set of formatting rules that present
the values in as readable a fashion as possible without sacrificing precision. The g format changes
the number of decimal places displayed whenever it improves the readability of the current value.

The default formats for each of the numeric variable types are

byte %8.0g
int %8.0g
long %12.0g
float %9.0g
double %10.0g

You can change the format of a variable by using the format varname % fmt command.

In addition to %w.0g, %w.0gc is also allowed and displays numbers with commas. “One thousand”
is displayed as 1000 in %9.0g format and as 1,000 in %9.0gc format.

In addition to using %w.0g and %w.0gc, you can use %w.dg and %w.dgc, d > 0. For example,
%9.4g and %9.4gc. The 4 means to display approximately four significant digits. For instance, the
number 3.14159265 in %9.4g format is displayed as 3.142, 31.4159265 as 31.42, 314.159265 as 314.2,
and 3141.59265 as 3142. The format is not exactly a significant digit format because 31415.9265 is
displayed as 31416, not as 3.142e+04.

Under the f format, values are always displayed with the same number of decimal places, even
if this results in a loss in the displayed precision. Thus the f format is similar to the C f format.
Stata’s f format is also similar to the Fortran F format, but, unlike the Fortran F format, it switches
to g whenever a number is too large to be displayed in the specified f format.

In addition to %w.df, the format %w.dfc can display numbers with commas.
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The e format is similar to the C e and the Fortran E format. Every value is displayed as a leading
digit (with a minus sign, if necessary), followed by a decimal point, the specified number of digits,
the letter e, a plus sign or a minus sign, and the power of 10 (modified by the preceding sign) that
multiplies the displayed value. When the e format is specified, the width must exceed the number of
digits that follow the decimal point by at least seven to accommodate the leading sign and digit, the
decimal point, the e, and the signed power of 10.

Example 3

Below we have a five-observation dataset with three variables: e fmt, f fmt, and g fmt. All
three variables have the same values stored in them; only the display format varies. describe shows
the display format to the right of the variable type.

. use http://www.stata-press.com/data/r15/format, clear

. describe

Contains data from http://www.stata-press.com/data/r15/format.dta
obs: 5
vars: 3 12 Mar 2016 15:18
size: 60

storage display value
variable name type format label variable label

e_fmt float %9.2e
f_fmt float %10.2f
g_fmt float %9.0g

Sorted by:

The formats for each of these variables were set by typing

. format e_fmt %9.2e

. format f_fmt %10.2f

It was not necessary to set the format for the g fmt variable because Stata automatically assigned it
the %9.0g format. Nevertheless, we could have typed format g fmt %9.0g. Listing the data results
in

. list

e_fmt f_fmt g_fmt

1. 2.80e+00 2.80 2.801785
2. 3.96e+06 3962322.50 3962323
3. 4.85e+00 4.85 4.852834
4. -5.60e-06 -0.00 -5.60e-06
5. 6.26e+00 6.26 6.264982

Technical note
The discussion above is incomplete. There is one other format available that will be of interest to

numerical analysts. The %21x format displays base 10 numbers in a hexadecimal (base 16) format.
The number is expressed in hexadecimal (base 16) digits; the number aX+b means a × 2b. For
example,
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. display %21x 1234.75
+1.34b0000000000X+00a

Thus the base 10 number 1,234.75 has a base 16 representation of 1.34bX+0a, meaning(
1 + 3 · 16−1 + 4 · 16−2 + 11 · 16−3

)
× 210

Remember, the hexadecimal–decimal equivalents are

hexadecimal decimal
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
a 10
b 11
c 12
d 13
e 14
f 15

See [U] 12.2 Numbers.

12.5.2 European numeric formats

The three numeric formats e, f, and g will use ‘,’ to indicate the decimal symbol if you specify
their width and depth as w,d rather than w.d. For instance, the format %9,0g will display what Stata
would usually display as 1.5 as 1,5.

If you use the European specification with fc or gc, the comma will be presented as a period.
For instance, %9,0gc would display what Stata would usually display as 1,000.5 as 1.000,5.

If this way of presenting numbers appeals to you, consider using Stata’s set dp comma command.
set dp comma tells Stata to interpret nearly all %w.d{g|f|e} formats as %w,d{g|f|e} formats. Most
of Stata is written using a period to represent the decimal symbol, and that means that even if you
set the appropriate %w,d{g|f|e} format for your data, it will affect only displays of the data. For
instance, if you type summarize to obtain summary statistics or regress to obtain regression results,
the decimal will still be shown as a period.

set dp comma changes that and affects all of Stata. With set dp comma, it does not matter whether
your data are formatted %w.d{g|f|e} or %w,d{g|f|e}. All results will be displayed using a comma
as the decimal character.
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. use http://www.stata-press.com/data/r15/auto
(1978 Automobile Data)

. set dp comma

. summarize mpg weight foreign

Variable Obs Mean Std. Dev. Min Max

mpg 74 21,2973 5,785503 12 41
weight 74 3019,459 777,1936 1760 4840
foreign 74 ,2972973 ,4601885 0 1

. regress mpg weight foreign

Source SS df MS Number of obs = 74
F(2, 71) = 69,75

Model 1619,2877 2 809,643849 Prob > F = 0,0000
Residual 824,171761 71 11,608053 R-squared = 0,6627

Adj R-squared = 0,6532
Total 2443,45946 73 33,4720474 Root MSE = 3,4071

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -,0065879 ,0006371 -10,34 0,000 -,0078583 -,0053175
foreign -1,650029 1,075994 -1,53 0,130 -3,7955 ,4954422
_cons 41,6797 2,165547 19,25 0,000 37,36172 45,99768

You can switch the decimal character back to a period by typing set dp period.

Technical note
set dp comma makes drastic changes inside Stata, and we mention this because some older user-

written programs may not be able to deal with those changes. If you are using an older user-written
program, you might set dp comma and then find that the program does not work and instead presents
some sort of syntax error.

If, when using any program, you do get an unanticipated error, try setting dp back to period.
See [D] format for more information.

Also understand that set dp comma affects how Stata outputs numbers, not how it inputs them.
You must still use the period to indicate the decimal point on all input. Even with set dp comma,
you type

. replace x=1.5 if x==2

12.5.3 Date and time formats
Date and time formats are really a numeric format because Stata stores dates as the number of

milliseconds, days, weeks, months, quarters, half-years, or years from 01jan1960; see [U] 24 Working
with dates and times.

The syntax of the %t format is

first type % to indicate the start of the format
then optionally type - if you want the result left-aligned
then type t
then type character to indicate the units
then optionally type other characters to indicate how the date/time is to be displayed

http://www.stata.com/manuals15/dformat.pdf#dformat
http://www.stata.com/manuals15/u24.pdf#u24Workingwithdatesandtimes
http://www.stata.com/manuals15/u24.pdf#u24Workingwithdatesandtimes
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The letter you type to specify the units is

C milliseconds from 01jan1960, adjusted for leap seconds
c milliseconds from 01jan1960, ignoring leap seconds
d days from 01jan1960
w weeks from 1960-w1
m calendar months from jan1960
q quarters from 1960-q1
h half years from 1960-h1

There are many codes you can type after that to specify exactly how the date/time is to be displayed, but
usually, you do not. Most users use the default %tc for date/times and %td for dates. See [D] datetime
display formats for details.

12.5.4 String formats

The syntax for a string format is

first type % to indicate the start of the format
then optionally type - if you want the result left-aligned
then type a number indicating the width of the result
then type s

For instance, %10s represents a string format with a width of 10 display columns; see [U] 12.4.2.2 Dis-
playing Unicode characters.

For strw, the default format is %ws or %9s, whichever is wider. For example, a str10 variable
receives a %10s format. Strings are displayed right-justified in the field, unless the minus sign is
coded; %-10s would display the string left-aligned.

Example 4

Our automobile data contain a string variable called make.

. use http://www.stata-press.com/data/r15/auto
(1978 Automobile Data)

. describe make

storage display value
variable name type format label variable label

make str18 %-18s Make and Model

. list make in 63/67

make

63. Mazda GLC
64. Peugeot 604
65. Renault Le Car
66. Subaru
67. Toyota Celica

These values are left-aligned because make has a display format of %-18s. If we want to right-align
the values, we could change the format.

http://www.stata.com/manuals15/ddatetimedisplayformats.pdf#ddatetimedisplayformats
http://www.stata.com/manuals15/ddatetimedisplayformats.pdf#ddatetimedisplayformats
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. format %18s make

. list make in 63/67

make

63. Mazda GLC
64. Peugeot 604
65. Renault Le Car
66. Subaru
67. Toyota Celica

12.6 Dataset, variable, and value labels
Labels are strings used to label elements in Stata, such as labels for datasets, variables, and values.

12.6.1 Dataset labels
Associated with every dataset is an 80-character dataset label, which is initially set to blanks. You

can use the label data "text" command to define the dataset label.

Example 5

We have just entered 1980 state data on marriage rates, divorce rates, and median ages. The
describe command will describe the data in memory:

. describe

Contains data
obs: 50
vars: 4
size: 1,200

storage display value
variable name type format label variable label

state str8 %9s
median_age float %9.0g
marriage_rate long %12.0g
divorce_rate long %12.0g

Sorted by:
Note: Dataset has changed since last saved.

describe shows that there are 50 observations on 4 variables named state, median age, mar-
riage rate, and divorce rate. state is stored as a str8; median age is stored as a float;
and marriage rate and divorce rate are both stored as longs. Each variable’s display format
(see [U] 12.5 Formats: Controlling how data are displayed) is shown. Finally, the data are not in
any particular sort order, and the dataset has changed since it was last saved on disk.
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We can label the data by typing label data "1980 state data". We type this and then type
describe again.

. label data "1980 state data"

. describe

Contains data
obs: 50 1980 state data
vars: 4
size: 1,200

storage display value
variable name type format label variable label

state str8 %9s
median_age float %9.0g
marriage_rate long %12.0g
divorce_rate long %12.0g

Sorted by:
Note: Dataset has changed since last saved.

The dataset label is displayed by the describe and use commands.

12.6.2 Variable labels

In addition to the name, every variable has associated with it an 80-character variable label. The
variable labels are initially set to blanks. You use the label variable varname "text" command to
define a new variable label.

Example 6

We have entered data on four variables: state, median age, marriage rate, and di-
vorce rate. describe portrays the data we entered.

. describe

Contains data from states.dta
obs: 50 1980 state data
vars: 4
size: 1,200

storage display value
variable name type format label variable label

state str8 %9s
median_age float %9.0g
marriage_rate long %12.0g
divorce_rate long %12.0g

Sorted by:
Note: Dataset has changed since last saved.

We can associate labels with the variables by typing

. label variable median_age "Median Age"

. label variable marriage_rate "Marriages per 100,000"

. label variable divorce_rate "Divorces per 100,000"



30 [ U ] 12 Data

From then on, the result of describe will be
. describe
Contains data
obs: 50 1980 state data
vars: 4
size: 1,200

storage display value
variable name type format label variable label

state str8 %9s
median_age float %9.0g Median Age
marriage_rate long %12.0g Marriages per 100,000
divorce_rate long %12.0g Divorces per 100,000

Sorted by:
Note: Dataset has changed since last saved.

Whenever Stata produces output, it will use the variable labels rather than the variable names to
label the results if there is room.

12.6.3 Value labels

Value labels define a correspondence or mapping between numeric data and the words used to
describe what those numeric values represent. Mappings are named and defined by the label define
lblname # "string" # "string". . . command. The maximum length for the lblname is 32 characters. #
must be an integer or an extended missing value (.a, .b, . . . , .z). The maximum length of string is
32,000 bytes. Named mappings are associated with variables by the label values varname lblname
command.

Below, we demonstrate how to create value labels and then associate those mappings (labels) with
the numeric values to which they relate. To see how to use labels in an expression in place of the
numeric values with which they are associated, see [U] 13.11 Label values.

Example 7

The definition makes value labels sound more complicated than they are in practice. We create a
dataset on individuals in which we record a person’s sex, coding 0 for males and 1 for females. If
our dataset also contained an employee number and salary, it might resemble the following:

. use http://www.stata-press.com/data/r15/gxmpl4
(2007 Employee data)

. describe

Contains data from http://www.stata-press.com/data/r15/gxmpl4.dta
obs: 7 2007 Employee data
vars: 3 11 Feb 2016 15:31
size: 84

storage display value
variable name type format label variable label

empno float %9.0g Employee number
sex float %9.0g Sex
salary float %8.0fc Annual salary, exclusive of bonus

Sorted by:

http://www.stata.com/manuals15/u13.pdf#u13.11Labelvalues
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. list

empno sex salary

1. 57213 0 34,000
2. 47229 1 37,000
3. 57323 0 34,000
4. 57401 0 34,500
5. 57802 1 37,000

6. 57805 1 34,000
7. 57824 0 32,500

We could create a mapping called sexlabel defining 0 as “Male” and 1 as “Female”, and then
associate that mapping with the variable sex by typing

. label define sexlabel 0 "Male" 1 "Female"

. label values sex sexlabel

From then on, our data would appear as

. describe

Contains data from http://www.stata-press.com/data/r15/gxmpl4.dta
obs: 7 2007 Employee data
vars: 3 11 Feb 2016 15:31
size: 84

storage display value
variable name type format label variable label

empno float %9.0g Employee number
sex float %9.0g sexlabel Sex
salary float %8.0fc Annual salary, exclusive of bonus

Sorted by:

. list

empno sex salary

1. 57213 Male 34,000
2. 47229 Female 37,000
3. 57323 Male 34,000
4. 57401 Male 34,500
5. 57802 Female 37,000

6. 57805 Female 34,000
7. 57824 Male 32,500

Notice not only that the value label is used to produce words when we list the data, but also that the
association of the variable sex with the value label sexlabel is shown by the describe command.
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Technical note
Value labels and variables may share the same name. For instance, rather than calling the value

label sexlabel in the example above, we could just as well have named it sex. We would then type
label values sex sex to associate the value label named sex with the variable named sex.

Example 8

Stata’s encode and decode commands provide a convenient way to go from string variables to
numerically coded variables and back again. Let’s pretend that, in the example above, rather than
coding 0 for males and 1 for females, we created a string variable recording either "male" or
"female".

. use http://www.stata-press.com/data/r15/gxmpl5
(2007 Employee data)

. describe

Contains data from http://www.stata-press.com/data/r15/gxmpl5.dta
obs: 7 2007 Employee data
vars: 3 11 Feb 2016 15:37
size: 98

storage display value
variable name type format label variable label

empno float %9.0g Employee number
sex str6 %9s Sex
salary float %8.0fc Annual salary, exclusive of bonus

Sorted by:

. list

empno sex salary

1. 57213 male 34,000
2. 47229 female 37,000
3. 57323 male 34,000
4. 57401 male 34,500
5. 57802 female 37,000

6. 57805 female 34,000
7. 57824 male 32,500

We now want to create a numerically encoded variable—we will call it gender—from the string
variable. We want to do this, say, because we typed anova salary sex to perform a one-way ANOVA
of salary on sex, and we were told that there were “no observations”. We then remembered that all
of Stata’s statistical commands treat string variables as if they contain nothing but missing values.
The statistical commands work only with numerically coded data.
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. encode sex, generate(gender)

. describe

Contains data from http://www.stata-press.com/data/r15/gxmpl5.dta
obs: 7 2007 Employee data
vars: 4 11 Feb 2016 15:37
size: 126

storage display value
variable name type format label variable label

empno float %9.0g Employee number
sex str6 %9s Sex
salary float %8.0fc Annual salary, exclusive of bonus
gender long %8.0g gender Sex

Sorted by:
Note: Dataset has changed since last saved.

encode adds a new long variable called gender to the data and defines a new value label called
gender. The value label gender maps 1 to the string male and 2 to female, so if we were to list
the data, we could not tell the difference between the gender and sex variables. However, they are
different. Stata’s statistical commands know how to deal with gender but do not understand the sex
variable. See [U] 23.2 Categorical string variables.

Technical note
Perhaps rather than employee data, our data are on persons undergoing sex-change operations.

There would, therefore, be two sex variables in our data: sex before the operation and sex after the
operation. Assume that the variables are named presex and postsex. We can associate the same
value label to each variable by typing

. label define sexlabel 0 "Male" 1 "Female"

. label values presex sexlabel

. label values postsex sexlabel

Technical note
Stata’s input commands (input and infile) can switch from the words in a value label back to

the numeric codes. Remember that encode and decode can translate a string to a numeric mapping
and vice versa, so we can map strings to numeric codes either at the time of input or later.

For example,

. label define sexlabel 0 "Male" 1 "Female"

. input empno sex:sexlabel salary, label

empno sex salary
1. 57213 Male 34000
2. 47229 Female 37000
3. 57323 0 34000
4. 57401 Male 34500
5. 57802 Female 37000
6. 57805 Female 34000
7. 57824 Male 32500
8. end

http://www.stata.com/manuals15/u23.pdf#u23.2Categoricalstringvariables
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The label define command defines the value label sexlabel. input empno sex:sexlabel
salary, label tells Stata to input three variables from the keyboard (empno, sex, and salary),
attach the value label sexlabel to the sex variable, and look up any words that are typed in the
value label to try to convert them to numbers. To demonstrate, we list the data that we recently
entered:

. list

empno sex salary

1. 57213 Male 34000
2. 47229 Female 37000
3. 57323 Male 34000
4. 57401 Male 34500
5. 57802 Female 37000

6. 57805 Female 34000
7. 57824 Male 32500

Compare the information we typed for observation 3 with the result listed by Stata. We typed
57323 0 34000. Thus the value of sex in the third observation is 0. When Stata listed the observation,
it indicated that the value is Male because we told Stata in our label define command that zero
is equivalent to Male.

Let’s now add one more observation to our data:

. input, label

empno sex salary
8. 67223 FEmale 33000

'FEmale' cannot be read as a number

8. 67223 Female 33000
9. end

At first we typed 67223 FEmale 33000, and Stata responded with “’FEmale’ cannot be read as a
number”. Remember that Stata always respects case, so FEmale is not the same as Female. Stata
prompted us to type the line again, and we did so, this time correctly.

Technical note
Coupled with the automatic option, Stata not only can go from words to numbers but can also

create the mapping. Let’s input the data again, but this time, rather than typing the data, let’s read
the data from a file. Assume that we have a text file named employee.raw stored on our disk that
contains

57213 Male 34000
47229 Female 37000
57323 Male 34000
57401 Male 34500
57802 Female 37000
57805 Female 34000
57824 Male 32500

The infile command can read these data and create the mapping automatically.
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. label list sexlabel
value label sexlabel not found
r(111);

. infile empno sex:sexlabel salary using employee, automatic
(7 observations read)

Our first command, label list sexlabel, is only to prove that we had not previously defined the
value label sexlabel. Stata infiled the data without complaint. We now have

. list

empno sex salary

1. 57213 Male 34000
2. 47229 Female 37000
3. 57323 Male 34000
4. 57401 Male 34500
5. 57802 Female 37000

6. 57805 Female 34000
7. 57824 Male 32500

Of course, sex is just another numeric variable; it does not actually take on the values Male and
Female—it takes on numeric codes that have been automatically mapped to Male and Female. We
can find out what that mapping is by using the label list command.

. label list sexlabel
sexlabel:

1 Male
2 Female

We discover that Stata attached the codes 1 to Male and 2 to Female. Anytime we want to see what
our data really look like, ignoring the value labels, we can use the nolabel option.

. list, nolabel

empno sex salary

1. 57213 1 34000
2. 47229 2 37000
3. 57323 1 34000
4. 57401 1 34500
5. 57802 2 37000

6. 57805 2 34000
7. 57824 1 32500

http://www.stata.com/manuals15/perror.pdf#perrorRemarksandexamplesr(111)
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12.6.4 Labels in other languages

A dataset can contain labels—data, variable, and value—in up to 100 languages. To discover the
languages available for the dataset in memory, type label language. You will see

. label language

Language for variable and value labels

In this dataset, value and variable labels have been defined in only one
language: default

To create new language: . label language <name>, new
To rename current language: . label language <name>, rename

or something like the following:

. label language

Language for variable and value labels

Available languages:
de
en
sp

Currently set is: . label language sp

To select different language: . label language <name>

To create new language: . label language <name>, new
To rename current language: . label language <name>, rename

Right now, the example dataset is set with sp (Spanish) labels:

. describe

Contains data
obs: 74 Automóviles, 1978
vars: 12 3 Oct 2016 13:53
size: 3,478

storage display value
variable name type format label variable label

make str18 %-18s Marca y modelo
price int %8.0gc Precio
mpg int %8.0g Consumo de combustible
rep78 int %8.0g Historia de reparaciones
headroom float %6.1f Cabeza adelante
trunk int %8.0g Volumen del maletero
weight int %8.0gc Peso
length int %8.0g Longitud
turn int %8.0g Radio de giro
displacement int %8.0g Cilindrada
gear_ratio float %6.2f Relación de cambio
foreign byte %8.0g Extranjero

Sorted by: foreign

To create labels in more than one language, you set the new language and then define the labels in
the standard way; see [D] label language.

http://www.stata.com/manuals15/dlabellanguage.pdf#dlabellanguage
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12.7 Notes attached to data
A dataset may contain notes, which are nothing more than little bits of text that you define and

review with the notes command. Typing note, a colon, and the text defines a note:

. note: Send copy to Bob once verified.

You can later display whatever notes you have previously defined by typing notes:

. notes

_dta:
1. Send copy to Bob once verified.

Notes are saved with the data, so once you save your dataset, you can replay this note in the future,
too.

You can add more notes:

. note: Mary wants a copy, too.

. notes

_dta:
1. Send copy to Bob once verified.
2. Mary wants a copy, too.

The notes you have added so far are attached to the data generically, which is why Stata prefixes
them with dta when it lists them. You can attach notes to variables:

. note state: verify values for Nevada.

. note state: what about the two missing values?

. notes

_dta:
1. Send copy to Bob once verified.
2. Mary wants a copy, too.

state:
1. verify values for Nevada.
2. what about the two missing values?

When you describe your data, you can see whether notes are attached to the dataset or to any
of the variables:

. describe

Contains data from states.dta
obs: 50 1980 state data
vars: 4
size: 1,200 (_dta has notes)

storage display value
variable name type format label variable label

state str8 %9s *
median_age float %9.0g Median Age
marriage_rate long %12.0g Marriages per 100,000
divorce_rate long %12.0g Divorces per 100,000

* indicated variables have notes

Sorted by:
Note: Dataset has changed since last saved.

See [D] notes for a complete description of this feature.

http://www.stata.com/manuals15/dnotes.pdf#dnotes
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12.8 Characteristics
Characteristics are an arcane feature of Stata but are of great use to Stata programmers. In fact,

the notes command described above was implemented using characteristics.

The dataset itself and each variable within the dataset have associated with them a set of
characteristics. Characteristics are named and referred to as varname[charname], where varname is
the name of a variable or dta. The characteristics contain text and are stored with the data in the
Stata-format .dta dataset, so they are recalled whenever the data are loaded.

How are characteristics used? The [XT] xt commands need to know the name of the panel variable,
and some of these commands also need to know the name of the time variable. xtset is used to
specify the panel variable and optionally the time variable. Users need xtset their data only once.
Stata then remembers this information, even from a different Stata session. Stata does this with
characteristics: dta[iis] contains the name of the panel variable and dta[tis] contains the
name of the time variable. When an xt command is issued, the command checks these characteristics
to obtain the panel and time variables’ names. If this information is not found, then the data have
not previously been xtset and an error message is issued. This use of characteristics is hidden from
the user—no mention is made of how the commands remember the identity of the panel variable and
the time variable.

As a Stata user, you need understand only how to set and clear a characteristic for the few commands
that explicitly reveal their use of characteristics. You set a variable varname’s characteristic charname
to x by typing

. char varname[charname] x

You set the data’s characteristic charname to be x by typing

. char _dta[charname] x

You clear a characteristic by typing

. char varname[charname]

where varname is either a variable name or dta. You can clear a characteristic, even if it has never
been set.

The most important feature of characteristics is that Stata remembers them from one session to
the next; they are saved with the data.

Technical note

Programmers will want to know more. A technical description is found in [P] char, but for an
overview, you may refer to varname’s charname characteristic by embedding its name in single quotes
and typing ‘varname[charname]’; see [U] 18.3.13 Referring to characteristics.

You can fetch the names of all characteristics associated with varname by typing

. local macname : char varname[ ]

The maximum length of the contents of a characteristic is 67,784 bytes for Stata/IC, Stata/SE, and
Stata/MP. The association of names with characteristics is by convention. If you, as a programmer,
wish to create new characteristics for use in your ado-files, do so, but include at least one capital
letter in the characteristic name. The current convention reserves all lowercase names for “official”
Stata.

http://www.stata.com/manuals15/xtxt.pdf#xtxt
http://www.stata.com/manuals15/pchar.pdf#pchar
http://www.stata.com/manuals15/u18.pdf#u18.3.13Referringtocharacteristics
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12.9 Data Editor and Variables Manager
We have spent most of this chapter writing about data management performed from Stata’s command

line. However, Stata provides two powerful features in its interface to help you examine and manage
your data: the Data Editor and the Variables Manager.

The Data Editor is a spreadsheet-style data editor that allows you to enter new data, edit existing
data, safely browse your data in a read-only mode, and perform almost any data-management task
you desire in a reproducible manner using a graphical interface. To open the Data Editor, select
Data > Data Editor > Data Editor (Edit) or Data > Data Editor > Data Editor (Browse). See
[GS] 6 Using the Data Editor (GSM, GSU, or GSW) for a tutorial discussion of the Data Editor. See
[D] edit for technical details.

The Variables Manager is a tool that lists and allows you to manage all the properties of the
variables in your data. Variable properties include the name, label, storage type, format, value label,
and notes. The Variables Manager allows you to sort and filter your variables; this is something that
you will find to be very useful if you work with datasets containing many variables. The Variables
Manager also can be used to create varlists for the Command window. To open the Variables Manager,
select Data > Variables Manager. See [GS] 7 Using the Variables Manager (GSM, GSU, or GSW)
for a tutorial discussion of the Variables Manager.

Both the Data Editor and Variables Manager submit commands to Stata to perform any changes
that you request. This lets you see a log of what changes were made, and it also allows you to work
interactively while still building a list of commands that you can execute later to reproduce your
analysis.
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