Description
Options
References

Quick start
Remarks and examples Also see

Menu
Stored results

Syntax
Methods and formulas

Description

mswitch fits dynamic regression models that exhibit different dynamics across unobserved states using state-dependent parameters to accommodate structural breaks or other multiple-state phenomena. These models are known as Markov-switching models because the transitions between the unobserved states follow a Markov chain.

Two models are available: Markov-switching dynamic regression (MSDR) models that allow a quick adjustment after the process changes state and Markov-switching autoregression (MSAR) models that allow a more gradual adjustment.

Quick start

MSDR model for the dependent variable y with two state-dependent intercepts using tsset data mswitch dr y

Same as above
mswitch dr y, states(2)
As above, but with three states and switching coefficients on x

```
mswitch dr y, switch(x) states(3)
```

MSDR model with two state-dependent intercepts and variance parameters
mswitch dr y, varswitch
MSAR model with two state-dependent intercepts and an autoregression (AR) term
mswitch ar y, ar(1)
As above, but with switching AR coefficients

```
mswitch ar y, ar(1) arswitch
```


Menu

Statistics $>$ Time series $>$ Markov-switching model

Syntax

Markov-switching dynamic regression
mswitch dr depvar [nonswitch_varlist] [if] [in] [, options]

Markov-switching AR
mswitch ar depvar [nonswitch_varlist], ar(numlist) [msar_options options]
nonswitch_varlist is a list of variables with state-invariant coefficients.
options
Main
states(\#) specify number of states; default is states(2)
switch ([varlist $]$ [, noconstant]) specify variables with switching coefficients; by default, the
constant
varswitch
p0(type)
constraints(numlist)
SE/Robust
vce (vcetype)
Reporting
level(\#)
nocnsreport
display_options

EM options
emiterate(\#)
emlog
emdots
Maximization
maximize_options
coeflegend
constant term is state dependent unless switch(, noconstant) is specified
Description
allow a state-invariant constant term; may be specified only with switch(, noconstant)
specify state-dependent variance parameters; by default, the variance parameter is constant across all states
specify initial unconditional probabilities where type is one of transition, fixed, or smoothed; the default is p0(transition)
apply specified linear constraints
vcetype may be oim or robust
set confidence level; default is level (95)
do not display constraints
control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling
specify the number of expectation-maximization (EM)
iterations; default is emiterate (10)
show EM iteration \log
show EM iterations as dots
control the maximization process
display legend instead of statistics

Model

* ar (numlist)
arswitch
specify the number of AR terms
specify state-dependent AR coefficients
* ar (numlist) is required.

You must tsset your data before using mswitch; see [TS] tsset.
varlist and nonswitch_varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, nonswitch_varlist, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists. by, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

ar (numlist) specifies the number of AR terms. This option may be specified only with command mswitch ar. ar() is required to fit AR models.
arswitch specifies that the AR coefficients vary over the states. arswitch may be specified only with option $\operatorname{ar}()$.

```
Main
states (\#) specifies the number of states. The default is states(2).
switch ([varlist][, noconstant]) specifies variables whose coefficients vary over the states. By default, the constant term is state dependent and is included in the regression model. You may suppress the constant term by specifying switch(, noconstant).
```

constant specifies that a state-invariant constant term be included in the model. This option may be specified only with switch(, noconstant).
varswitch specifies that the variance parameters are state dependent. The default is constant variance across all states.
p 0 (type) is rarely used. This option specifies the method for obtaining values for the unconditional transition probabilities. type is one of transition, fixed, or smoothed. The default is p 0 (transition), which specifies that the values be computed using the matrix of conditional transition probabilities. Type fixed specifies that each unconditional probability is $1 / k$, where k is the number of states. Type smoothed specifies that the unconditional probabilities be estimated as extra parameters of the model.
constraints (numlist) specifies the linear constraints to be applied to the parameter estimates.

SE/Robust

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (oim) and that are robust to some kinds of misspecification (robust); see [R] vce_option.

Reporting
level(\#), nocnsreport; see [R] estimation options.
display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabel, fvwrap(\#), fvwrapon(style), cformat (\%fmt), pformat (\%fmt), sformat (\% fint), and nolstretch; see [R] estimation options.

EM options
emiterate(\#), emlog, and emdots control the EM iterations that take place before estimation switches to a quasi-Newton method. EM is used to obtain starting values.
emiterate (\#) specifies the number of EM iterations; the default is emiterate(10).
emlog specifies that the EM iteration log be shown. The default is to not display the EM iteration log.
emdots specifies that the EM iterations be shown as dots. The default is to not display the dots.

Maximization
maximize_options: difficult, technique (algorithm_spec), $\underline{\text { iterate (\#), [no] log, trace, }}$ gradient, showstep, hessian, showtolerance, tolerance(\#), ltolerance(\#), nrtolerance(\#), nonrtolerance, and from (matname); see [R] maximize for all options except from(), and see below for information on from().
from(matname) specifies initial values for the maximization process. If from() is specified, the initial values are used in the EM step to improve the likelihood unless emiterate(0) is also specified. The coefficients obtained at the end of the EM iterations serve as initial values for the quasi-Newton method.
matname must be a row vector. The number of columns must equal the number of parameters in the model, and the values must be in the same order as the parameters in $e(b)$.

The following option is available with mswitch but is not shown in the dialog box: coeflegend; see $[R]$ estimation options.

Remarks and examples

stata.com
mswitch fits Markov-switching models in which the parameters vary over states. The states are unobserved and follow a Markov process.
mswitch dr fits MSDR models that allow a quick adjustment after a state change and are often used to model monthly and higher-frequency data. mswitch ar fits MSAR models that allow a more gradual adjustment after a state change and are often used to model quarterly and lower-frequency data. Estimation is by maximum likelihood. You must tsset your data before using mswitch; see [TS] tsset.

Remarks are presented under the following headings:

```
Introduction
Markov-switching dynamic regression
Markov-switching AR
Video example
```

If you are new to Markov-switching models, we recommend that you begin with Introduction. A more technical discussion and examples are presented in the model-specific sections.

Introduction

Markov-switching models are widely applied in the social sciences. For example, in economics, the growth rate of Gross Domestic Product is modeled as a switching process to capture the asymmetrical behavior observed over expansions and recessions (Hamilton 1989). Other economic examples include modeling interest rates (Garcia and Perron 1996) and exchange rates (Engel and Hamilton 1990). In finance, Kim, Nelson, and Startz (1998) model monthly stock returns, while Guidolin (2011b, 2011a) provide many applications of these models to returns, portfolio choice, and asset pricing. In political science, Jones, Kim, and Startz (2010) model Democratic and Republican partisan states in the United States Congress.

These models are also used in health sciences. For example, in psychology, Markov-switching models have been applied to daily data on manic and depressive states for individuals with rapidcycling bipolar disorder (Hamaker, Grasman, and Kamphuis 2010). In epidemiology, Lu, Zeng, and Chen (2010) and Martinez-Beneito et al. (2008) model the incidence rate of infectious disease in epidemic and nonepidemic states.

The Markov-switching regression model was initially developed in Quandt (1972) and Goldfeld and Quandt (1973). In a seminal paper, Hamilton (1989) extended Markov-switching regressions for AR processes and provided a nonlinear filter for estimation. Hamilton (1993) and Hamilton (1994, chap. 22) provide excellent introductions to Markov-switching regression models.

Markov-switching models are used for series that are believed to transition over a finite set of unobserved states, allowing the process to evolve differently in each state. The transitions occur according to a Markov process. The time of transition from one state to another and the duration between changes in state is random. For example, these models can be used to understand the process that governs the time at which economic growth transitions between expansion and recession and the duration of each period.

Consider the evolution of a series y_{t}, where $t=1,2, \ldots, T$, is characterized by two states, as in the models below

State 1: $y_{t}=\mu_{1}+\varepsilon_{t}$
State 2: $y_{t}=\mu_{2}+\varepsilon_{t}$
where μ_{1} and μ_{2} are the intercept terms in state 1 and state 2 , respectively. ε_{t} is a white noise error with variance σ^{2}. The two states model shifts in the intercept term. If the timing of switches is known, the above model can be expressed as

$$
y_{t}=s_{t} \mu_{1}+\left(1-s_{t}\right) \mu_{2}+\varepsilon_{t}
$$

where s_{t} is 1 if the process is in state 1 and 0 otherwise. The above model is a regression with dummy variables and could be estimated with ordinary least squares using, for example, regress.

However, in the case of interest, we never know in which state the process is; that is to say, s_{t} is not observed. Markov-switching regression models allow the parameters to vary over the unobserved states. In the simplest case, we can express this model as a MSDR model with a state-dependent intercept term

$$
y_{t}=\mu_{s_{t}}+\varepsilon_{t}
$$

where $\mu_{s_{t}}$ is the parameter of interest; $\mu_{s_{t}}=\mu_{1}$ when $s_{t}=1$, and $\mu_{s_{t}}=\mu_{2}$ when $s_{t}=2$.
Although one never knows with certainty in which state the process lies, the probabilities of being in each state can be estimated. For a Markov process, the transition probabilities are of greater interest. One-step transition probabilities are given by $p_{s_{t}, s_{t+1}}$, so for a two-state process, p_{11} denotes the probability of staying in state 1 in the next period given that the process is in state 1 in the current period. Likewise, p_{22} denotes the probability of staying in state 2 . Values closer to 1 indicate a more persistent process, or in other words, that it is expected to stay in a given state for a long time.

Estimation of Markov-switching models proceeds by predicting the probabilities of the unobserved state and updating the likelihood at each period, akin to the Kalman filter. However, while the Kalman filter is concerned with making linear updates on continuous latent variables, the filter developed in Hamilton (1989) is a nonlinear algorithm that estimates the probabilities that a discrete, latent variable is in one of several states. Also see Hamilton (1990) for estimation of the model parameters by an EM algorithm, which is also a robust method to find reasonable starting values.

Markov-switching dynamic regression

In this section, we use a series of examples to describe MSDR models and the mswitch dr command.

MSDR models allow a quick adjustment after the process changes state. These models are often used to model monthly and higher-frequency data. When the process is in state s at time t, a general specification of the MSDR model is written as

$$
y_{t}=\mu_{s_{t}}+\mathbf{x}_{t} \boldsymbol{\alpha}+\mathbf{z}_{t} \boldsymbol{\beta}_{s_{t}}+\varepsilon_{s}
$$

where y_{t} is the dependent variable, μ_{s} is the state-dependent intercept, \mathbf{x}_{t} is a vector of exogenous variables with state-invariant coefficients $\boldsymbol{\alpha}, \mathbf{z}_{t}$ is a vector of exogenous variables with state-dependent coefficients $\boldsymbol{\beta}_{s}$, and ε_{s} is an independent and identically distributed (i.i.d.) normal error with mean 0 and state-dependent variance σ_{s}^{2}. \mathbf{x}_{t} and \mathbf{z}_{t} may contain lags of y_{t}. MSDR models allow states to switch according to a Markov process as described in Markov-switching regression models under Methods and formulas.

In the default model fit by mswitch $\mathrm{dr}, s=2$ and a constant σ^{2} is assumed ($\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}$), so three parameters, μ_{1}, μ_{2}, and σ^{2}, are estimated. There is no \mathbf{x}_{t} or \mathbf{z}_{t}. The number of states may be increased with option states(). To include \mathbf{x}_{t}, you specify a varlist after the command name, and to include \mathbf{z}_{t}, you specify option switch(). The assumption of constant variances over states may be relaxed with option varswitch.

A more complete discussion of the MSDR model is provided in Specification of Markov-switching models under Methods and formulas.
$>$ Example 1: MSDR model with switching intercepts
Suppose we wish to model the federal funds rate. One potential model is a constant-only model

$$
r_{t}=\mu_{s_{t}}+\varepsilon_{t}
$$

where r_{t} is the federal funds rate, s_{t} is the state, and $\mu_{s_{t}}$ is the mean in each state. In usmacro.dta, we have data for the series from the third quarter of 1954 to the fourth quarter of 2010 from the Federal Reserve Economic Database, a macroeconomic database provided by the Federal Reserve Bank of Saint Louis. The data are plotted below.

We note that the decades of 1970s and 1980s were characterized by periods of high interest rates while the rest of the sample displays moderate levels.

Thus, a two-state model seems reasonable. $s_{t} \in(1,2)$ is the state; μ_{1} is the mean in the moderaterate state; and μ_{2} is the mean in high-rate state. We can use mswitch dr with dependent variable fedfunds to estimate the parameters of the model.

```
. use http://www.stata-press.com/data/r15/usmacro
(Federal Reserve Economic Data - St. Louis Fed)
. mswitch dr fedfunds
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -508.66031
Iteration 1: log likelihood = -508.6382
Iteration 2: log likelihood = -508.63592
Iteration 3: log likelihood = -508.63592
```

Markov-switching dynamic regression
Sample: 1954q3 - 2010q4 No. of obs $=\quad 226$
Number of states $=2$ AIC $=4.5455$
Unconditional probabilities: transition $=4.5760$
Log likelihood = -508.63592

| fedfunds | Coef. | Std. Err. | z | P>\|z| | [95\% Conf. Interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| State1 | | | | | | |
| _cons | 3.70877 | .1767083 | 20.99 | 0.000 | 3.362428 | 4.055112 |
| State2_cons | 9.556793 | .2999889 | 31.86 | 0.000 | 8.968826 | 10.14476 |
| sigma | 2.107562 | .1008692 | | 1.918851 | 2.314831 | |
| p11 | .9820939 | .0104002 | | .9450805 | .9943119 | |
| p21 | .0503587 | .0268434 | | | .0173432 | .1374344 |

The header reports the sample size, fit statistics, the number of states, and the method used for computing the unconditional state probabilities. The EM algorithm was used to find the starting values
for the quasi-Newton optimizer, and we see that it took three iterations for the model to converge. Finally, the header reports that the transition method was used to compute the unconditional state probabilities as a function of the transition probabilities; see Methods and formulas.

The estimation table reports results for each state-dependent mean and the constant error variance. Below that, the table displays the elements of the first $k-1$ rows of the transition matrix, where k is the number of states.

State 1 is the moderate-rate state and has a mean interest rate of 3.71%. State 2 is the high-rate state and has a mean interest rate of 9.56%. p11 is the estimated probability of staying in state 1 in the next period given that the process is in state 1 in the current period. The estimate of 0.98 implies that state 1 is highly persistent. Similarly, p21 is the probability of transitioning to state 1 from state 2 . The probability of staying in state 2 is therefore $1-0.05=0.95$, which implies that state 2 is also highly persistent.

Note that it is arbitrary which state is called 1 or 2 . Changing the initial values for the iterations, for example, can change the state labels for a given model-data combination. The transition probabilities will get swapped in accordance with the change in labels.

- Technical note

As mentioned in Introduction, a model with one state is equivalent to linear regression. To estimate a one-state constant-only model for the data in example 1, you type
. mswitch dr fedfunds, states(1)
This is equivalent to typing

```
. arima fedfunds, technique(nr)
```

or

```
. regress fedfunds
```

The commands produce nearly identical parameter estimates for the coefficients.

> Example 2: MSDR model with switching intercepts and coefficients

Continuing example 1 , we specify a more complex model that includes the lagged value of the interest rate and allows its coefficient to switch as well. The respecified model is

$$
r_{t}=\mu_{s_{t}}+\phi_{s_{t}} r_{t-1}+\varepsilon_{t}
$$

We estimate the switching coefficient by including the switch() option.

```
. mswitch dr fedfunds, switch(L.fedfunds)
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -265.37725
Iteration 1: log likelihood = -264.74265
Iteration 2: log likelihood = -264.71073
Iteration 3: log likelihood = -264.71069
Iteration 4: log likelihood = -264.71069
Markov-switching dynamic regression
\begin{tabular}{llll} 
Sample: \(1954 q 4-2010 q 4\) & No. of obs & \(=\) & 225 \\
Number of states \(=\) & 2 & AIC & \(=\) \\
Unconditional probabilities: transition & HQIC & \(=\) & 2.4152 \\
& SBIC & \(=\) & 2.5215
\end{tabular}
Log likelihood = -264.71069
```

fedfunds	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf	Interval]
State1 fedfunds						
	. 7631424	. 0337234	22.63	0.000	. 6970457	. 8292392
_cons	. 724457	. 2886657	2.51	0.012	. 1586826	1.290231
State2						
fedfunds						
L1.	1.061174	. 0185031	57.35	0.000	1.024908	1.097439
_cons	-. 0988764	. 1183838	-0.84	0.404	-. 3309043	. 1331515
sigma	. 6915759	. 0358644			. 6247373	. 7655653
p11	. 6378175	. 1202616			. 3883032	. 830089
p21	. 1306295	. 0495924			. 0600137	. 2612432

The output indicates that the coefficients on the lagged dependent variable in the two states are significant. Also, we favor this model over the constant-only model because the Schwarz Bayesian information criterion (SBIC) for this model, 2.52, is lower than the SBIC for the constant-only model, 4.62.

Example 3: Changing the number of states for an MSDR model

Continuing example 2, we now specify a Taylor-rule model with two and three states and select the preferred number of states.

Taylor-rule models specify that the interest rate depends on its own lag, the current value of inflation, and the output gap. In our dataset, ogap is the output gap and inflation is inflation.

First, we fit a two-state MSDR Taylor-rule model with fedfunds as the interest rate.
. mswitch dr fedfunds, switch(L.fedfunds ogap inflation)
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood $=-229.43752$
Iteration 1: \quad log likelihood $=-229.25718$
Iteration 2: \quad log likelihood $=-229.25614$
Iteration 3: log likelihood $=-229.25614$
Markov-switching dynamic regression

Sample: 1955q3 - 2010q4	No. of obs	$=$	222
Number of states $=12$	AIC	$=$	2.1645
Unconditional probabilities: transition	HQIC	$=$	2.2325
	SBIC	$=$	2.3331

Log likelihood = -229.25614

fedfunds	Coef.	Std. Err	z	$P>\|z\|$	[95\% Conf	Interval]
State1 fedfund						
L1.	. 8314458	. 0333236	24.95	0.000	. 7661328	. 8967587
ogap	. 1355425	. 0294113	4.61	0.000	. 0778975	. 1931875
inflation	-. 0273928	. 0408057	-0.67	0.502	-. 1073704	. 0525849
_cons	. 6554954	. 1373889	4.77	0.000	. 386218	. 9247727
State2 fedfunds						
L1.	. 9292574	. 0270852	34.31	0.000	. 8761713	. 9823435
ogap	. 0343072	. 0240138	1.43	0.153	-. 0127589	. 0813733
inflation	. 2125275	. 0297351	7.15	0.000	. 1542477	. 2708072
_cons	-. 0944924	. 1279231	-0.74	0.460	-. 3452171	. 1562324
sigma	. 5764495	. 0302562			. 5200968	. 638908
p11	. 7279288	. 0929915			. 5159594	. 8703909
p21	. 2114578	. 0641179			. 1120643	. 3629704

The results indicate that inflation does not significantly affect fedfunds in state 1 but that it does in state 2.

Would a model with three states be better than the above two-state model?

Markov-switching dynamic regression			
Sample: 1955q3 - 2010q4	No. of obs	=	222
Number of states $=3$	AIC	=	1.8819
Unconditional probabilities: transition	HQIC	=	1.9995
	SBIC	=	2.1732

Log likelihood = -189.89493

fedfunds	Coef.	Std. Err	z	$P>\|z\|$	[95\% Conf	Interval]
State1						
fedfunds						
L1.	. 8464551	. 0333543	25.38	0.000	. 781082	. 9118283
ogap	. 1201952	. 0232718	5.16	0.000	. 0745834	. 1658071
inflation	-. 0425603	. 0354281	-1.20	0.230	-. 1119981	. 0268775
_cons	. 5261292	. 1266916	4.15	0.000	. 2778182	. 7744403
State2						
fedfunds						
L1.	. 9690088	. 0264823	36.59	0.000	. 9171046	1.020913
ogap	. 0464136	. 0200197	2.32	0.020	. 0071758	. 0856515
inflation	. 1298906	. 0246793	5.26	0.000	. 0815202	. 1782611
_cons	-. 0034106	. 107303	-0.03	0.975	-. 2137206	. 2068995
State3						
fedfunds						
L1.	. 4178913	. 0809412	5.16	0.000	. 2592494	. 5765333
ogap	. 1075357	. 1131713	0.95	0.342	-. 1142761	. 3293474
inflation	. 9099168	. 0732991	12.41	0.000	. 7662531	1.053581
_cons	. 6015991	. 8894513	0.68	0.499	-1.141693	2.344892
sigma	. 438375	. 0247954			. 3923738	. 4897694
p11	. 7253684	. 0807816			. 5440011	. 8539642
p12	. 2564055	. 0784303			. 1334279	. 4357355
p21	. 1641252	. 0548584			. 0822928	. 3006711
p22	. 7994204	. 0578707			. 6626908	. 8899317
p31	. 6178282	. 3481683			. 0824324	. 9667674
p32	. 3821718	. 3481683			. 0332326	. 9175676

We favor the three-state model over the two-state model because it has the lower SBIC. The three states, in this case, can be thought of as representing low, moderate, and high-interest rate states.

The results for the three-state model indicate that inflation does not affect the interest rate in state 1 , but it does affect the interest rate in states 2 and 3 . The results also indicate that when the coefficient on inflation is large and significant in state 3, the output gap coefficient is not significant.

- Technical note

In some situations, the quasi-Newton optimization will not converge, which implies that the parameters of the specified model are not identified by the data. These convergence problems most frequently arise when attempting to fit a model with too many states.

> Example 4: Switching variances

All examples thus far have assumed a constant variance across states. In some cases, we may wish to relax this assumption. For example, in the snp500 dataset we have weekly data on the absolute returns of the S\&P 500 index from the period $2004 w 17$ to $2014 w 18$, which we present below. The graph indicates that there were high-volatility periods in 2008 to 2009 and in late 2011. It would be unreasonable to assume that the variance in this high-volatility state is equal to the variance in the low-volatility state.

Below we fit areturns, the absolute returns, with an MSDR model in which the coefficients on the lagged dependent variable and the variances differ by state.
. use http://www.stata-press.com/data/r15/snp500
(Federal Reserve Economic Data - St. Louis Fed)
. mswitch dr areturns, switch(L.areturns) varswitch
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood $=-753.27687$
Iteration 1: log likelihood $=-746.54052$
Iteration 2: log likelihood $=-745.80829$
Iteration 3: log likelihood $=-745.7977$
Iteration 4: log likelihood = -745.7977
Markov-switching dynamic regression

Sample: 2004w19 - 2014w18	No. of obs	$=$	520
Number of states $=2$	AIC	$=$	2.8992
Unconditional probabilities: transition	HQIC	$=$	2.9249
	SBIC	$=$	2.9647

Log likelihood = -745.7977

areturns	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf	Interval]
State1 aret						
L1.	. 0790744	. 0301862	2.62	0.009	. 0199105	. 1382384
_cons	. 7641424	. 0782852	9.76	0.000	. 6107062	. 9175785
State2						
L1.	. 527953	. 0857841	6.15	0.000	. 3598193	. 6960867
_cons	1.972771	. 2784204	7.09	0.000	1.427077	2.518465
sigma1	. 5895792	. 0517753			. 4963544	. 7003135
sigma2	1.605333	. 1262679			1.375985	1.872908
p11	. 7530865	. 0634387			. 6097999	. 856167
p21	. 6825357	. 0662574			. 5414358	. 7965346

The estimated standard deviations, reported in sigma1 and sigma2, indicate that state 1 corresponds to the low-volatility periods and that state 2 corresponds to the high-volatility periods.

> Example 5: An MSDR model of population health

We can apply these same methods to noneconomic data that exhibit similar periods of high and low volatility. For example, in public health and epidemiology, the process that determines the incidence of disease over time may evolve with changes in health practices.

In mumpspc.dta, we have monthly data on the number of new mumps cases and the interpolated population in New York City between January 1928 to December 1972. The mumpspc variable represents the number of new mumps cases per 10,000 residents. We apply seasonal differencing to the population-adjusted mumpspc variable using time-series operators, and we plot the resulting series; see [U] 11.4.4 Time-series varlists.

The data clearly show periods of high and low volatility. We fit a two-state MSDR model to the seasonally differenced dependent variable with state-dependent variances and state-dependent coefficients on the lagged dependent variable. This model does not have a constant term, so we specify suboption noconstant in switch() after the variable with a switching coefficient.
. use http://www.stata-press.com/data/r15/mumpspc
(Mumps data from Hipel and Mcleod (1994) with interpolated population)
. mswitch dr S12.mumpspc, varswitch switch(LS12.mumpspc, noconstant)
(output omitted)
Markov-switching dynamic regression

Sample: $1929 \mathrm{~m} 2-1972 \mathrm{~m} 6$	No. of obs	$=$	521
Number of states $=\quad 2$	AIC	$=$	-0.4826
Unconditional probabilities: transition	HQIC	$=$	-0.4634
	SBIC	$=$	-0.4336

Log likelihood $=131.7225$

S12.mumpspc	Coef.	Std. Err.	z	$\mathrm{P}>\|z\|$	[95\% Conf. Interval]	
State1 mumpspc LS12.	.420275	.0167461	25.10	0.000	.3874533	.4530968
State2 mumpspc LS12.	.9847369	.0258383	38.11	0.000	.9340947	1.035379
sigma1	.0562405	.0050954			.0470901	.067169
sigma2	.2611362	.0111191			.2402278	.2838644
p11	.762733	.0362619			.6846007	.8264175
p21	.1473767	.0257599				

The output indicates that there are two distinct states; state 1 is the low-volatility state and state 2 is the high-volatility state. While the lagged seasonally differenced number of mumps cases is a significant predictor of current seasonally differenced cases, the estimates differ between states. Both states are persistent.

Markov-switching AR

In this section, we use a series of examples to describe MSAR models and the mswitch ar command.

MSAR models allow a gradual adjustment after the process changes state. These models are often used to model quarterly and lower-frequency data. An MSAR model with two state-dependent AR terms for the dependent variable that is in state s at time t is

$$
\begin{aligned}
& y_{t}=\mu_{s_{t}}+\mathbf{x}_{t} \boldsymbol{\alpha}+\mathbf{z}_{t} \boldsymbol{\beta}_{s_{t}} \\
&+\phi_{1, s_{t}}\left(y_{t-1}-\mu_{s_{t-1}}-\mathbf{x}_{t-1} \boldsymbol{\alpha}-\mathbf{z}_{t-1} \boldsymbol{\beta}_{s_{t-1}}\right) \\
&+\phi_{2, s_{t}}\left(y_{t-2}-\mu_{s_{t-2}}-\mathbf{x}_{t-2} \boldsymbol{\alpha}-\mathbf{z}_{t-2} \boldsymbol{\beta}_{s_{t-2}}\right) \\
&+\varepsilon_{s_{t}}
\end{aligned}
$$

where y_{t} is the dependent variable at time $t ; \mu_{s_{t}}$ is the state-dependent intercept; \mathbf{x}_{t} are covariates whose coefficients $\boldsymbol{\alpha}$ are state invariant; \mathbf{z}_{t} are covariates whose coefficients $\boldsymbol{\beta}_{s_{t}}$ are state-dependent; $\phi_{1, s_{t}}$ is the first AR term in state $s_{t} ; \phi_{2, s_{t}}$ is the second AR term in state s_{t}; and $\varepsilon_{s_{t}}$ is the i.i.d. normal error with mean 0 and state-dependent variance. As in MSDR models, \mathbf{x}_{t} and \mathbf{z}_{t} may contain lags of y_{t}.

Note that $\mu_{s_{t-1}}$ is the intercept corresponding to the state that the process was in the previous period and that $\mu_{s_{t-2}}$ is the intercept corresponding to the state that the process was in at $t-2$. Similarly, $\boldsymbol{\beta}_{s_{t-1}}$ is the coefficient vector on \mathbf{z}_{t-1} corresponding to the state that the process was in the previous period, and $\boldsymbol{\beta}_{s_{t-2}}$ is the coefficient vector on \mathbf{z}_{t-2} corresponding to the state that the process was in at $t-2$.

In the default model fit by mswitch ar, $s=2$ and a constant σ^{2} is assumed ($\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}$). In the simplest form, a single AR term is specified and the coefficient is common to both states, so four parameters, μ_{1}, μ_{2}, ϕ, and σ^{2}, are estimated. There is no \mathbf{x}_{t} or \mathbf{z}_{t}.

The number of AR terms may be increased by specifying a numlist in $\operatorname{ar}()$. To allow the estimated parameters for the AR terms to vary across states, you specify option arswitch. The number of states may be increased with option states (). To include x_{t}, you specify a varlist after the command name, and to include \mathbf{z}_{t}, you specify option switch(). The assumption of constant variances over states may be relaxed with option varswitch.

MSAR models allow states to switch according to a Markov process, as described in Methods and formulas under Markov-switching regression models. A more complete discussion of the MSAR model is provided in Specification of Markov-switching models under Methods and formulas.
> Example 6: MSAR model with switching intercepts
Hamilton (1989) and Hamilton (1994, chap. 22) fit an MSAR to the growth of quarterly U.S. real gross national product using data from 1952q1 to 1984q4. We replicate those results here using rgnp.dta.

```
. use http://www.stata-press.com/data/r15/rgnp
(Data from Hamilton (1989))
. mswitch ar rgnp, ar(1/4)
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -182.54411 (not concave)
Iteration 1: log likelihood = -182.12714 (not concave)
Iteration 2: log likelihood = -181.68653
Iteration 3: log likelihood = -181.42342
Iteration 4: log likelihood = -181.26492
Iteration 5: log likelihood = -181.26339
Iteration 6: log likelihood = -181.26339
Markov-switching autoregression
Sample: 1952q2 - 1984q4 No. of obs = 131
Number of states = 2 AIC = 2.9048
Unconditional probabilities: transition HQIC = 2.9851
```

Log likelihood = -181.26339

| | rgnp | Coef. | Std. Err. | z | P>\|z| | [95\% Conf. Interval] | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| rgnp | ar | | | | | | |
| | L1. | .0134871 | .1199942 | 0.11 | 0.911 | -.2216971 | .2486713 |
| | L2. | -.0575211 | .137663 | -0.42 | 0.676 | -.3273357 | .2122934 |
| | L3. | -.2469833 | .1069103 | -2.31 | 0.021 | -.4565235 | -.037443 |
| | L4. | -.2129214 | .1105311 | -1.93 | 0.054 | -.4295583 | .0037155 |
| State1 | | | | | | | |
| _cons | -.3588127 | .2645396 | -1.36 | 0.175 | -.8773007 | .1596754 | |
| State2 | | | | | | | |
| | _cons | 1.163517 | .0745187 | 15.61 | 0.000 | 1.017463 | 1.309571 |
| | sigma | .7690048 | .0667396 | | | .6487179 | .9115957 |
| | p11 | .754671 | .0965189 | | | .5254555 | .8952432 |

The output indicates that the average growth rate of U.S. real gross national product during expansions is 1.16% and during recessions is -0.36%, with each state being persistent.

Example 7: Switching AR coefficients

Continuing example 6, we now fit an MSAR with state-dependent AR coefficients to the same dataset. We include only two AR terms in each state to better estimate the parameters.
. mswitch ar rgnp, ar(1/2) arswitch
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood $=-179.68471$
Iteration 1: log likelihood $=-179.56238$
Iteration 2: log likelihood $=-179.32917$
Iteration 3: log likelihood $=-179.32356$
Iteration 4: log likelihood = -179.32354
Iteration 5: log likelihood $=-179.32354$
Markov-switching autoregression

Sample: 1951q4-1984q4	No. of obs	$=$	133
Number of states $=12$	AIC	$=$	2.8319
Unconditional probabilities: transition	HQIC	$=$	2.9114
	SBIC		$=$

Log likelihood = -179.32354

rgnp	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf.	Interval]
State1						
ar						
L1.	. 3710719	. 1754383	2.12	0.034	. 0272191	. 7149246
L2.	. 7002937	. 187409	3.74	0.000	. 3329787	1.067609
_cons	-. 0055216	. 2057086	-0.03	0.979	-. 408703	. 3976599
State2						
ar						
L1.	. 4621503	. 1652473	2.80	0.005	. 1382714	. 7860291
L2.	-. 3206652	. 1295937	-2.47	0.013	-. 5746642	-. 0666661
_cons	1.195482	. 1225987	9.75	0.000	. 9551925	1.435771
sigma	. 6677098	. 0719638			. 5405648	. 8247604
p11	. 3812383	. 1424841			. 1586724	. 6680876
p21	. 3564492	. 0994742			. 1914324	. 5644178

The results indicate that state 1 has negative average growth that is different than the positive average growth in state 2 . The AR coefficients for state 1 indicate that shocks will die out very slowly, while the AR coefficients for state 2 indicate that shocks will die out moderately quickly. In other words, shocks in a recession last a long time, while shocks in an expansion die out moderately quickly.

Example 8: Markov-switching regression model with constraints

mswitch can fit models subject to constraints. To facilitate the optimization, mswitch estimates a logit transform of the transition probabilities (see Methods and formulas) and a log transformation of the variance parameter. Therefore, all constraints must be specified to the transformed parameter.

In example 6, the estimated transition probability of staying in state 1 was about 0.75 . In this example, we constrain that probability to be 0.75 and estimate the remaining parameters. For this case, the transformed value is $q=-\ln (0.75 / 0.25)=-1.0986123$. We use the constraint command to define this constraint; see $[\mathrm{R}]$ constraint.

Performing EM optimization:						
Performing gradient-based optimization:						
Iteration 0: log likelihood $=-182.86708$						
Iteration 1: log likelihood = -182.05084 (not concave)						
Iteration 2: log likelihood $=-181.79995$						
Iteration 3: log likelihood $=-181.29355$						
Iteration 4: log likelihood $=-181.26463$						
Iteration 5: log likelihood $=-181.26456$						
Iteration 6: log likelihood $=-181.26456$						
Markov-switching autoregression						
Sample: 1952q2 - 1984q4				No. of		131
Number of states $=2$				AIC		2.8895
Unconditional probabilities: transition				HQIC		2.9609
				SBIC		3.0651
Log likelihood $=-181.26456$						
(1) [p11]_cons $=-1.098612$						
rgnp	Coef.	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Con	Interval]
rgnp						
ar						
L2.	-. 01531073	. 133834	-0.44	0.659	-. 3214172	. 2032026
L3.	-. 2473259	. 1067244	-2.32	0.020	-. 456502	-. 0381499
L4.	-. 2130605	. 1106088	-1.93	0.054	-. 4298498	. 0037288
State1						
_cons	-. 3648129	. 23039	-1.58	0.113	-. 816369	. 0867432
State2						
_cons	1.163125	. 0738402	15.75	0.000	1.018401	1.307849
sigma	. 7682327	. 0644585			. 6517376	. 9055508
p11	. 75	(constrain				
p21	. 0962226	. 037246			. 0439668	. 1977399

The point estimates are similar to those reported in example 6 while the standard errors reported here are slightly smaller.

Note that an MSAR model with no AR terms is equivalent to estimating an MSDR model, so typing . mswitch ar rgnp, ar(0)
is the same as typing

```
. mswitch dr rgnp
```

- Technical note

Achieving convergence in Markov-switching models can be difficult due to the existence of multiple local minima. Furthermore, a model with switching variance is able to generate a likelihood function that is unbounded when $\mu=y_{i}$ and $\sigma^{2} \rightarrow 0$ (Frühwirth-Schnatter 2006, chap. 6). Four methods for
overcoming convergence problems are 1) selecting an alternate optimization algorithm by using the technique () option; 2) using alternative starting values by specifying the from() option; 3) using improved starting values, which can be obtained by increasing the number of EM iterations specified in the emiterate() option; and 4) transforming the variables to be on the same scale.

Video example

Markov-switching models in Stata

Stored results

mswitch stores the following in e():
Scalars
e(N)
e(N_gaps)
e(k)
e(k_eq)
e(k_aux)
e(states)
e(11)
e(rank)
e(aic)
e(hqic)
e(sbic)
$e(t m i n)$
$e(t \operatorname{tax})$
e (emiter)
Macros
e(cmd)
e(cmdline)
e (eqnames)
e(depvar)
e(switchvars)
e(nonswitchvars)
e(model)
e(title)
e(tsfmt)
e(timevar)
e(tmins)
e(tmaxs)
e(vce)
e(vcetype)
e(technique)
e(p0)
e(varswitch)
e(arswitch)
e(ar)
e(properties)
e(estat_cmd)
e (predict)
e(marginsnotok)
e(asbalanced)
e(asobserved)
number of observations number of gaps number of parameters number of equations in $e(b)$ number of auxiliary parameters number of states
log likelihood
rank of $e(V)$
Akaike information criterion
Hannan-Quinn information criterion
Schwarz-Bayesian information criterion
minimum time
maximum time
number of EM iterations

mswitch

command as typed
names of equations
name of dependent variable
list of switching variables
list of nonswitching variables
dr or ar
title in estimation output
format for the current time variable
time variable specified in tsset
formatted minimum time
formatted maximum time
vcetype specified in vce()
title use to label Std. Err.
maximization technique
unconditional probabilities
varswitch, if specified
arswitch, if specified
list of AR lags, if $\operatorname{ar}()$ is specified b V
program used to implement estat
program used to implement predict
predictions disallowed by margins
factor variables fvset as asbalanced
factor variables fvset as asobserved

Matrices

```
    e(b)
    e(Cns)
    e(V)
    e(V_modelbased)
    e(initvals)
    e(uncprob)
```

Functions
e(sample) marks estimation sample

Methods and formulas

Methods and formulas are presented under the following headings:
Markov-switching regression models
Markov chains
Specification of Markov-switching models
Markov-switching dynamic regression
Markov-switching AR
Likelihood function with latent states
Smoothed probabilities
Unconditional probabilities

Markov-switching regression models

Consider the evolution of y_{t}, where $t=1,2, \ldots, T$, that is characterized by two states or regimes as in the models below

$$
\begin{array}{ll}
\text { State 1: } & y_{t}=\mu_{1}+\phi y_{t-1}+\varepsilon_{t} \\
\text { State 2: } & y_{t}=\mu_{2}+\phi y_{t-1}+\varepsilon_{t}
\end{array}
$$

where μ_{1} and μ_{2} are the intercept terms in state 1 and state 2 , respectively; ϕ is the AR parameter; and ε_{t} is a white noise error with variance σ^{2}. The two states model abrupt shifts in the intercept term. If the timing of switches is known, the above model can be expressed as

$$
y_{t}=s_{t} \mu_{1}+\left(1-s_{t}\right) \mu_{2}+\phi y_{t-1}+\varepsilon_{t}
$$

where s_{t} is 1 if the process is in state 1 and 0 otherwise. Estimation in this case can be performed using standard procedures.

In the case of interest, we never know in which state the process is; that is to say, s_{t} is not observed. Markov-switching regression models specify that the unobserved s_{t} follows a Markov chain. In the simplest case, we can express this model as a state-dependent intercept term for k states

$$
y_{t}=\mu_{s_{t}}+\phi y_{t-1}+\varepsilon_{t}
$$

where $\mu_{s_{t}}=\mu_{1}$ when $s_{t}=1, \mu_{s_{t}}=\mu_{2}$ when $s_{t}=2, \ldots$, and $\mu_{s_{t}}=\mu_{k}$ when $s_{t}=k$. The conditional density of y_{t} is assumed to be dependent only on the realization of the current state s_{t} and is given by $f\left(y_{t} \mid s_{t}=i, y_{t-1} ; \boldsymbol{\theta}\right)$, where $\boldsymbol{\theta}$ is a vector of parameters. There are k conditional densities for k states, and estimation of $\boldsymbol{\theta}$ is performed by updating the conditional likelihood using a nonlinear filter.

Markov chains

s_{t} is an irreducible, aperiodic Markov chain starting from its ergodic distribution $\boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{k}\right)$; see Hamilton (1994, chap. 22). The probability that s_{t} is equal to $j \in(1, \ldots, k)$ depends only on the most recent realization, s_{t-1}, and is given by

$$
\operatorname{Pr}\left(s_{t}=j \mid s_{t-1}=i\right)=p_{i j}
$$

All possible transitions from one state to the other can be collected in a $k \times k$ transition matrix

$$
\mathbf{P}=\left[\begin{array}{ccc}
p_{11} & \cdots & p_{k 1} \\
p_{12} & \ldots & p_{k 2} \\
\vdots & \ddots & \vdots \\
p_{1 k} & \cdots & p_{k k}
\end{array}\right]
$$

which governs the evolution of the Markov chain. All elements of \mathbf{P} are nonnegative and each column sums to 1 . For an excellent introduction on the properties of Markov chains, refer to Hamilton (1994, chap. 22) and Frühwirth-Schnatter (2006, chap. 10). For a deeper treatment, see Karlin and Taylor (1975, chap. 2 and 3).

The fact that $\sum_{j=1}^{k} p_{i j}=1$ causes some numerical complications. We handle these complications by estimating functions of $p_{i j}$ and by normalizing $p_{i k}$. In particular, we estimate $q_{i j}$ in

$$
p_{i j}=\frac{\exp \left(-q_{i j}\right)}{1+\exp \left(-q_{i 1}\right)+\exp \left(-q_{i 2}\right)+\cdots+\exp \left(-q_{i, k-1}\right)}
$$

for $j \in\{1,2, \ldots, k-1\}$. We normalize $p_{i k}$ by imposing

$$
p_{i k}=\frac{1}{1+\exp \left(-q_{i 1}\right)+\exp \left(-q_{i 2}\right)+\cdots+\exp \left(-q_{i, k-1}\right)}
$$

The estimates of $p_{i j}$ are displayed, but the estimates of $q_{i j}$ are stored in e(b).

Specification of Markov-switching models

Consider an $\operatorname{AR}(1)$ model given by

$$
y_{t}=\mu+\phi y_{t-1}+\varepsilon_{t}
$$

This model can be rewritten in terms of an $\operatorname{AR}(1)$ error specification as

$$
\begin{aligned}
& y_{t}=\nu+e_{t} \\
& e_{t}=\rho e_{t-1}+\varepsilon_{t}
\end{aligned}
$$

which can be written as the single equation

$$
y_{t}=\nu+\rho\left(y_{t-1}-\nu\right)+\varepsilon_{t}
$$

such that $\phi=\rho$ and $\mu=\nu(1-\rho)$.

This result, however, does not hold in the case of Markov-switching regression models, as seen below in a simple two-state case where the constant term is state dependent. Consider the following models:

$$
\begin{aligned}
\text { Model I: } & y_{t}=\mu_{s_{t}}+\phi y_{t-1}+\varepsilon_{t} \\
\text { Model II: } & y_{t}=\mu_{s_{t}}+\phi\left(y_{t-1}-\mu_{s_{t-1}}\right)+\varepsilon_{t}
\end{aligned}
$$

Model I is also referred to as a MSDR model or a Markov-switching intercept model (Krolzig 1997). It may consist of other switching parameters, but for simplicity, we only consider the switching-intercept case. The evolution of y_{t} depends on the realization of the switching intercept at time t. The discrete latent state s_{t} that governs the value of the intercept at time t has a transition matrix

$$
\mathbf{P}=\left[\begin{array}{ll}
p_{11} & p_{21} \\
p_{12} & p_{22}
\end{array}\right]
$$

This specification allows for two possible intercepts at any given time t.
By contrast, the evolution of y_{t} in model II depends on the value of the switching mean at its current state and its lagged value. Model II is also referred to as MSAR or Markov-switching mean (Krolzig 1997). At any given time t, there are four possible values of the intercept given by

$$
\begin{aligned}
& \mu_{1}-\rho \mu_{1} \\
& \mu_{2}-\rho \mu_{1} \\
& \mu_{1}-\rho \mu_{2} \\
& \mu_{2}-\rho \mu_{2}
\end{aligned}
$$

which implies that models I and II do not yield equivalent representations as compared with the $\operatorname{AR}(1)$ model with no switching.

The MA (∞) representation shown below better illustrates the different dynamics of y_{t} obtained as a result of these specifications.

$$
\begin{aligned}
& \text { Model I: } y_{t}=\sum_{i=0}^{\infty} \phi^{i} \mu_{s_{t-i}}+\sum_{i=0}^{\infty} \phi^{i} \varepsilon_{t} \\
& \text { Model II: } y_{t}=\mu_{s_{t}}+\sum_{i=0}^{\infty} \phi^{i} \varepsilon_{t}
\end{aligned}
$$

In model I, the effect of a one-time change in state accumulates over time similar to a permanent shift in the error term ε_{t}. In model II, the effect of a one-time change in state is the same for all time periods. Also see Hamilton (1993).

Model II allows y_{t} to depend on lagged values of the state s_{t-1}, which in turn leads to four conditional densities. We define a new state variable s_{t}^{*} such that s_{t}^{*} is a four-state Markov chain and y_{t} depends only on the current state as

$$
\begin{array}{llll}
s_{t}^{*}=1 & \text { if } & s_{t}=1 \quad \text { and } & s_{t-1}=1 \\
s_{t}^{*}=2 & \text { if } & s_{t}=2 \text { and } & s_{t-1}=1 \\
s_{t}^{*}=3 & \text { if } & s_{t}=1 \quad \text { and } & s_{t-1}=2 \\
s_{t}^{*}=4 & \text { if } & s_{t}=2 \text { and } & s_{t-1}=2
\end{array}
$$

The corresponding 4×4 transition matrix is

$$
\mathbf{P}=\left[\begin{array}{cccc}
p_{11} & 0 & p_{11} & 0 \\
p_{12} & 0 & p_{12} & 0 \\
0 & p_{21} & 0 & p_{21} \\
0 & p_{22} & 0 & p_{22}
\end{array}\right]
$$

The conditional density of y_{t} is given by $f\left(y_{t} \mid s_{t}^{*}=i, y_{t-1} ; \boldsymbol{\theta}\right)$ for $i=1, \ldots, 4$. Also see Hamilton (1994, chap. 22). More generally, for MSAR models, s_{t}^{*} is a $k^{(p+1)}$-state Markov chain, where p is the number of lagged states. Because MSAR models require larger state vectors, they are often used with low-frequency data and smaller AR lags. However, the state vector in MSDR models does not depend on the AR lags and can thus be used to accommodate high-frequency data and higher AR lags.

Markov-switching dynamic regression

A general specification of the MSDR model is written as

$$
y_{t}=\mu_{s}+\mathbf{x}_{t} \boldsymbol{\alpha}+\mathbf{z}_{t} \boldsymbol{\beta}_{s}+\varepsilon_{s}
$$

where y_{t} is the dependent variable, μ_{s} is the state-dependent intercept, \mathbf{x}_{t} is a vector of exogenous variables with state-invariant coefficients $\boldsymbol{\alpha}, \mathbf{z}_{t}$ is a vector of exogenous variables with state-dependent coefficients $\boldsymbol{\beta}_{s}$, and ε_{s} is an i.i.d. normal error with mean 0 and state-dependent variance σ_{s}^{2}. \mathbf{x}_{t} and \mathbf{z}_{t} may contain lags of y_{t}.

Markov-switching AR

A general specification of the MSAR model is written as

$$
y_{t}=\mu_{s_{t}}+\mathbf{x}_{t} \boldsymbol{\alpha}+\mathbf{z}_{t} \boldsymbol{\beta}_{s_{t}}+\sum_{i=1}^{p} \phi_{i, s_{t}}\left(y_{t-i}-\mu_{s_{t-i}}-\mathbf{x}_{t-i} \boldsymbol{\alpha}-\mathbf{z}_{t-i} \boldsymbol{\beta}_{s_{t-i}}\right)+\varepsilon_{s_{t}}
$$

where y_{t} is the dependent variable at time $t, \mu_{s_{t}}$ is the state-dependent intercept, \mathbf{x}_{t} are covariates whose coefficients $\boldsymbol{\alpha}$ are state-invariant, and \mathbf{z}_{t} are covariates whose coefficients $\boldsymbol{\beta}_{s_{t}}$ are state-dependent. As in MSDR models, \mathbf{x}_{t} and \mathbf{z}_{t} may contain lags of y_{t}.
$\phi_{i, s_{t}}$ is the i th AR term in state s_{t}. Note that $\mu_{s_{t-i}}$ is the intercept corresponding to the state that the process was in at period $t-i$. Similarly, $\boldsymbol{\beta}_{s_{t-i}}$ is the coefficient vector on \mathbf{z}_{t-i} corresponding to the state that the process was in at period $t-i$.
$\varepsilon_{s_{t}}$ is the i.i.d. normal error with mean 0 and state-dependent variance.
This representation clarifies that the demeaned, lagged errors depend on the state previously occupied by the process. This dependence is not present in the MSDR model.

Likelihood function with latent states

The conditional density of y_{t} is given by $f\left(y_{t} \mid s_{t}=i, y_{t-1} ; \boldsymbol{\theta}\right)$ for $i=1, \ldots, k$. The marginal density of y_{t} is obtained by weighting the conditional densities by their respective probabilities. This is written as follows:

$$
f\left(y_{t} \mid \boldsymbol{\theta}\right)=\sum_{i=1}^{k} f\left(y_{t} \mid s_{t}=i, y_{t-1} ; \boldsymbol{\theta}\right) \operatorname{Pr}\left(s_{t}=i ; \boldsymbol{\theta}\right)
$$

Let $\boldsymbol{\eta}_{t}$ denote a $k \times 1$ vector of conditional densities given by

$$
\boldsymbol{\eta}_{t}=\left[\begin{array}{c}
f\left(y_{t} \mid s_{t}=1 ; y_{t-1} ; \boldsymbol{\theta}\right) \\
f\left(y_{t} \mid s_{t}=2 ; y_{t-1} ; \boldsymbol{\theta}\right) \\
\vdots \\
f\left(y_{t} \mid s_{t}=k ; y_{t-1} ; \boldsymbol{\theta}\right)
\end{array}\right]
$$

Constructing the likelihood function requires estimating the probability that s_{t} takes on a specific value using the data through time t and model parameters $\boldsymbol{\theta}$. Let $\operatorname{Pr}\left(s_{t}=i \mid y_{t} ; \boldsymbol{\theta}\right)$ denote the conditional probability of observing $s_{t}=i$ based on data until time t. Then

$$
\operatorname{Pr}\left(s_{t}=i \mid y_{t} ; \boldsymbol{\theta}\right)=\frac{f\left(y_{t} \mid s_{t}=i, y_{t-1} ; \boldsymbol{\theta}\right) \operatorname{Pr}\left(s_{t}=i \mid y_{t-1} ; \boldsymbol{\theta}\right)}{f\left(y_{t} \mid y_{t-1} ; \boldsymbol{\theta}\right)}
$$

where $f\left(y_{t} \mid y_{t-1} ; \boldsymbol{\theta}\right)$ is the likelihood of y_{t} and $\operatorname{Pr}\left(s_{t}=i \mid y_{t-1} ; \boldsymbol{\theta}\right)$ is the forecasted probability of $s_{t}=i$ given observation until time $t-1$. Then

$$
\operatorname{Pr}\left(s_{t}=1 \mid y_{t-1} ; \boldsymbol{\theta}\right)=\sum_{j=1}^{k} \operatorname{Pr}\left(s_{t}=i \mid s_{t-1}=j, y_{t-1} ; \boldsymbol{\theta}\right) \operatorname{Pr}\left(s_{t-1}=j \mid y_{t-1} ; \boldsymbol{\theta}\right)
$$

Let $\boldsymbol{\xi}_{t \mid t}$ and $\boldsymbol{\xi}_{t \mid t-1}$ denote $k \times 1$ vectors of conditional probabilities $\operatorname{Pr}\left(s_{t}=i \mid y_{t} ; \boldsymbol{\theta}\right)$ and $\operatorname{Pr}\left(s_{t}=\right.$ $\left.i \mid y_{t-1} ; \boldsymbol{\theta}\right)$. The likelihood is then obtained by iterating on the following equations [Hamilton (1994, chap. 22)]:

$$
\begin{aligned}
\boldsymbol{\xi}_{t \mid t} & =\frac{\left(\boldsymbol{\xi}_{t \mid t-1} \odot \boldsymbol{\eta}_{t}\right)}{\mathbf{1}^{\prime}\left(\boldsymbol{\xi}_{\mathbf{t} \mid \mathbf{t}-\mathbf{1}} \odot \boldsymbol{\eta}_{\mathbf{t}}\right)} \\
\boldsymbol{\xi}_{t+1 \mid t} & =\mathbf{P} \boldsymbol{\xi}_{\mathbf{t} \mid \mathbf{t}}
\end{aligned}
$$

where 1 is a $k \times 1$ vector of 1 s . The log-likelihood function is obtained as

$$
L(\boldsymbol{\theta})=\sum_{t=1}^{T} \log f\left(y_{t} \mid y_{t-1} ; \boldsymbol{\theta}\right)
$$

where

$$
f\left(y_{t} \mid y_{t-1} ; \boldsymbol{\theta}\right)=\mathbf{1}^{\prime}\left(\boldsymbol{\xi}_{\mathbf{t} \mid \mathbf{t}-\mathbf{1}} \odot \boldsymbol{\eta}_{\mathbf{t}}\right)
$$

Smoothed probabilities

Let $\boldsymbol{\xi}_{t \mid T}$, where $t<T$, denote the $k \times 1$ vector of conditional probabilities $\operatorname{Pr}\left(s_{t}=i \mid y_{T} ; \boldsymbol{\theta}\right)$, which represents the probability of $s_{t}=i$ using observations available through time T. The smoothed probabilities are calculated using an algorithm developed in Kim (1994).

$$
\boldsymbol{\xi}_{t \mid T}=\boldsymbol{\xi}_{t \mid t} \odot\left\{\mathbf{P}^{\prime}\left(\boldsymbol{\xi}_{\mathbf{t + 1} \mid \mathbf{T}}(\div) \boldsymbol{\xi}_{\mathbf{t + 1} \mid \mathbf{t}}\right)\right\}
$$

where (\div) denotes element-by-element division. The smoothed probabilities are obtained by iterating backwards from $t=T-1, T-2, \ldots, 1$.

Unconditional probabilities

The log-likelihood function has a recursive structure that starts from the unconditional state probabilities $\boldsymbol{\xi}_{1 \mid 0}$. These unconditional state probabilities are unknown. There are three standard ways to obtain them.

By default, or by option p 0 (transition), the unconditional state probabilities are estimated from the conditional transition probabilities and the Markov structure of the model. Specifically, the vector of unconditional state probabilities is obtained as

$$
\boldsymbol{\pi}=\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-\mathbf{1}} \mathbf{A}^{\prime} \mathbf{e}_{\mathbf{k}+\mathbf{1}}
$$

where \mathbf{A} is a $(k+1) \times k$ matrix given by

$$
\mathbf{A}=\left[\begin{array}{c}
\mathbf{I}_{\mathbf{k}}-\mathbf{P} \\
\mathbf{1}^{\prime}
\end{array}\right]
$$

$\mathbf{I}_{\mathbf{k}}$ denotes a $k \times k$ identity matrix, and $\mathbf{e}_{\mathbf{k}}$ denotes the k th column of $\mathbf{I}_{\mathbf{k}}$.
Sometimes researchers prefer to estimate unconditional state probabilities by adding $k-1$ additional parameters to the model. This method is seldom used because it requires enough observations to estimate the additional parameters. mswitch uses this method when option p0 (smoothed) is specified.

Sometimes researchers prefer to set the unconditional state probabilities to $1 / k$. mswitch uses this method when option p 0 (fixed) is specified.

References

Engel, C., and J. D. Hamilton. 1990. Long swings in the dollar: Are they in the data and do markets know it? American Economic Review 80: 689-713.

Frühwirth-Schnatter, S. 2006. Finite Mixture and Markov Switching Models. New York: Springer.
Garcia, R., and P. Perron. 1996. An analysis of the real interest rate under regime shifts. Review of Economics and Statistics 78: 111-125.
Goldfeld, S. M., and R. E. Quandt. 1973. A Markov model for switching regressions. Journal of Econometrics 1: 3-15.

Guidolin, M. 2011a. Markov switching in portfolio choice and asset pricing models: A survey. In Advances in Econometrics: Vol. 27B—Missing Data Methods: Time-series Methods and Applications, ed. D. M. Drukker, 87-178. Bingley, UK: Emerald.
__. 2011b. Markov switching models in empirical finance. In Advances in Econometrics: Vol. 27B—Missing Data Methods: Time-series Methods and Applications, ed. D. M. Drukker, 1-86. Bingley, UK: Emerald.

Hamaker, E. L., R. P. P. P. Grasman, and J. H. Kamphuis. 2010. Regime-switching models to study psychological processes. In Individual Pathways of Change: Statistical Models for Analyzing Learning and Development, ed. P. C. Molenaar and K. M. Newell, 155-168. Washington, DC: American Psychological Association.

Hamilton, J. D. 1989. A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57: 357-384.
-_ 1990. Analysis of time series subject to changes in regime. Journal of Econometrics 45: 39-70.
_-. 1993. Estimation, inference and forecasting of time series subject to changes in regime. In Handbook of Statistics 11: Econometrics, ed. G. S. Maddala, C. R. Rao, and H. D. Vinod, 231-260. San Diego, CA: Elseiver.
——. 1994. Time Series Analysis. Princeton, NJ: Princeton University Press.
Jones, B. D., C.-J. Kim, and R. Startz. 2010. Does congress realign or smoothly adjust? A discrete switching model of congressional partisan regimes. Statistical Methodology 7: 254-276.
Karlin, S., and H. M. Taylor. 1975. A First Course in Stochastic Processes. 2nd ed. San Diego, CA: Elseiver.
Kim, C.-J. 1994. Dynamic linear models with Markov-switching. Journal of Econometrics 60: 1-22.
Kim, C.-J., C. R. Nelson, and R. Startz. 1998. Testing for mean reversion in heteroskedastic data based on Gibbs-sampling-augmented randomization. Journal of Empirical Finance 5: 131-154.
Krolzig, H.-M. 1997. Markov-Switching Vector Autoregressions: Modelling, Statistical Inference, and Application to Business Cycle Analysis. New York: Springer.

Linden, A. 2015. Conducting interrupted time-series analysis for single- and multiple-group comparisons. Stata Journal 15: 480-500.
-_. 2017. A comprehensive set of postestimation measures to enrich interrupted time-series analysis. Stata Journal 17: 73-88.

Lu, H.-M., D. Zeng, and H. Chen. 2010. Prospective infectious disease outbreak detection using Markov switching models. IEEE Transactions on Knowledge and Data Engineering 22: 565-577.
Martinez-Beneito, M. A., D. Conesa, A. López-Quilez, and A. López-Maside. 2008. Bayesian Markov switching models for the early detection of influenza epidemics. Statistics in Medicine 27: 4455-4468.
Quandt, R. E. 1972. A new approach to estimating switching regressions. Journal of the American Statistical Association 67: 306-310.

Also see

[TS] mswitch postestimation - Postestimation tools for mswitch
[TS] arima - ARIMA, ARMAX, and other dynamic regression models
[TS] sspace - State-space models
[TS] threshold - Threshold regression
[TS] tsset - Declare data to be time-series data
[TS] ucm - Unobserved-components model
[U] 20 Estimation and postestimation commands

