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Description
xtregar fits cross-sectional time-series regression models when the disturbance term is first-

order autoregressive. xtregar offers a within estimator for fixed-effects models and a GLS estimator
for random-effects models. xtregar can accommodate unbalanced panels whose observations are
unequally spaced over time.

Quick start
Random-effects model of y on x1 with an AR(1) disturbance using xtset data

xtregar y x1

Add x2 and x3 as covariates and perform Baltagi–Wu LBI test
xtregar y x1 x2 x3, lbi

Fixed-effects model using the within estimator and observations where tvar is greater than 2,000
xtregar y x1 x2 x3 if tvar > 2000, fe

Menu
Statistics > Longitudinal/panel data > Linear models > Linear regression with AR(1) disturbance (FE, RE)

1

http://stata.com
http://www.stata.com/manuals14/xtxtset.pdf#xtxtset


2 xtregar — Fixed- and random-effects linear models with an AR(1) disturbance

Syntax
GLS random-effects (RE) model

xtregar depvar
[

indepvars
] [

if
] [

in
] [

, re options
]

Fixed-effects (FE) model

xtregar depvar
[

indepvars
] [

if
] [

in
] [

weight
]
, fe

[
options

]
options Description

Model

re use random-effects estimator; the default
fe use fixed-effects estimator
rhotype(rhomethod) specify method to compute autocorrelation; seldom used
rhof(#) use # for ρ and do not estimate ρ
twostep perform two-step estimate of correlation

Reporting

level(#) set confidence level; default is level(95)

lbi perform Baltagi–Wu LBI test
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics

A panel variable and a time variable must be specified; use xtset; see [XT] xtset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by and statsby are allowed; see [U] 11.1.10 Prefix commands.
fweights and aweights are allowed for the fixed-effects model with rhotype(regress) or rhotype(freg), or

with a fixed rho; see [U] 11.1.6 weight. Weights must be constant within panel.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

re requests the GLS estimator of the random-effects model, which is the default.

fe requests the within estimator of the fixed-effects model.

http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals14/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals14/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals14/xtxtset.pdf#xtxtset
http://www.stata.com/manuals14/u11.pdf#u11.4.3Factorvariables
http://www.stata.com/manuals14/u11.pdf#u11.4.4Time-seriesvarlists
http://www.stata.com/manuals14/u11.pdf#u11.1.10Prefixcommands
http://www.stata.com/manuals14/u11.pdf#u11.1.6weight
http://www.stata.com/manuals14/u20.pdf#u20Estimationandpostestimationcommands
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rhotype(rhomethod) allows the user to specify any of the following estimators of ρ:

dw ρdw = 1− d/2, where d is the Durbin–Watson d statistic
regress ρreg = β from the residual regression εt = βεt−1

freg ρfreg = β from the residual regression εt = βεt+1

tscorr ρtscorr = ε′εt−1/ε
′ε, where ε is the vector of residuals and εt−1 is the vector

of lagged residuals
theil ρtheil = ρtscorr(N − k)/N

nagar ρnagar = (ρdwN
2 + k2)/(N2 − k2)

onestep ρonestep = (n/mc)(ε
′εt−1/ε

′ε), where ε is the vector of residuals, n is the
number of observations, and mc is the number of consecutive pairs of residuals

dw is the default method. Except for onestep, the details of these methods are given in [TS] prais.
prais handles unequally spaced data. onestep is the one-step method proposed by Baltagi and
Wu (1999). More details on this method are available below in Methods and formulas.

rhof(#) specifies that the given number be used for ρ and that ρ not be estimated.

twostep requests that a two-step implementation of the rhomethod estimator of ρ be used. Unless
a fixed value of ρ is specified (with the rhof() option), ρ is estimated by running prais on
the de-meaned data. When twostep is specified, prais will stop on the first iteration after the
equation is transformed by ρ—the two-step efficient estimator. Although it is customary to iterate
these estimators to convergence, they are efficient at each step. When twostep is not specified,
the FGLS process iterates to convergence as described in the Methods and formulas of [TS] prais.

� � �
Reporting �

level(#); see [R] estimation options.

lbi requests that the Baltagi–Wu (1999) locally best invariant (LBI) test statistic that ρ = 0 and a
modified version of the Bhargava, Franzini, and Narendranathan (1982) Durbin–Watson statistic
be calculated and reported. The default is not to report them. p-values are not reported for either
statistic. Although Bhargava, Franzini, and Narendranathan (1982) published critical values for
their statistic, no tables are currently available for the Baltagi–Wu LBI. Baltagi and Wu (1999)
derive a normalized version of their statistic, but this statistic cannot be computed for datasets of
moderate size. You can also specify these options upon replay.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

The following option is available with xtregar but is not shown in the dialog box:

coeflegend; see [R] estimation options.

http://www.stata.com/manuals14/tsprais.pdf#tsprais
http://www.stata.com/manuals14/tsprais.pdf#tspraisMethodsandformulastwostep
http://www.stata.com/manuals14/tsprais.pdf#tsprais
http://www.stata.com/manuals14/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals14/d.pdf#dformat
http://www.stata.com/manuals14/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals14/restimationoptions.pdf#restimationoptions
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Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
The fixed-effects model
The random-effects model

Introduction

If you have not read [XT] xt, please do so.

xtregar fits cross-sectional time-series regression models when the disturbance term is first-order
autoregressive. The models of interest are described by

yit = α+ xitβ + νi + εit i = 1, . . . , N ; t = 1, . . . , Ti (1)

where
εit = ρεi,t−1 + ηit (2)

and where |ρ| < 1 and ηit is independent and identically distributed (i.i.d.) with mean 0 and variance
σ2
η .

In the fixed-effects model, the νi are assumed to be correlated with the covariates xit, whereas in
the random-effects model they are assumed to follow an i.i.d. process with mean 0 and variance σ2

η
and to be uncorrelated with the xit.

Similar to other linear panel-data models, any xit that do not vary over t are collinear with
the νi and will be dropped from the fixed-effects model. In contrast, the random-effects model can
accommodate covariates that are constant over time.

xtregar offers a within estimator for the fixed-effect model and the Baltagi–Wu (1999) GLS
estimator of the random-effects model. Both of these estimators offer several estimators of ρ.

The Baltagi–Wu (1999) GLS estimator extends the balanced panel estimator in Baltagi and Li (1991)
to a case of exogenously unbalanced panels with unequally spaced observations. Specifically, the
dataset contains observations on individual i at times tij for j = 1, . . . , ni. The difference tij−ti,j−1
plays an integral role in the estimation techniques used by xtregar.

For this reason, you must specify the delta() option when you xtset panelvar timevar if, for
example, you have quarterly data with a monthly timevar recorded every three months instead of a
quarterly timevar; see [XT] xtset.

The fixed-effects model

Let’s examine the fixed-effect model first. The basic approach is common to all fixed-effects models.
The νi are treated as nuisance parameters. We use a transformation of the model that removes the
nuisance parameters and leaves behind the parameters of interest in an estimable form. Subtracting
the group means from (1) removes the νi from the model

yitij − yi =
(
xitij − xi

)
β + εitij − εi (3)

where

yi =
1

ni

ni∑
j=1

yitij xi =
1

ni

ni∑
j=1

xitij εi =
1

ni

ni∑
j=1

εitij

http://stata.com
http://www.stata.com/manuals14/xtxt.pdf#xtxt
http://www.stata.com/manuals14/xtxtset.pdf#xtxtset
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After the transformation, (3) is a linear AR(1) model, potentially with unequally spaced observations.
(3) can be used to estimate ρ. Given an estimate of ρ, we must do a Cochrane–Orcutt transformation
on each panel and then remove the within-panel means and add back the overall mean for each
variable. OLS on the transformed data will produce the within estimates of α and β.

Example 1: Fixed-effects model

Let’s use the Grunfeld investment dataset to illustrate how xtregar can be used to fit the fixed-
effects model. This dataset contains information on 10 firms’ investment, market value, and the value
of their capital stocks. The data were collected annually between 1935 and 1954. The following
output shows that we have xtset our data and gives the results of running a fixed-effects model with
investment as a function of market value and the capital stock.

. use http://www.stata-press.com/data/r14/grunfeld

. xtset
panel variable: company (strongly balanced)
time variable: year, 1935 to 1954

delta: 1 year

. xtregar invest mvalue kstock, fe

FE (within) regression with AR(1) disturbances Number of obs = 190
Group variable: company Number of groups = 10

R-sq: Obs per group:
within = 0.5927 min = 19
between = 0.7989 avg = 19.0
overall = 0.7904 max = 19

F(2,178) = 129.49
corr(u_i, Xb) = -0.0454 Prob > F = 0.0000

invest Coef. Std. Err. t P>|t| [95% Conf. Interval]

mvalue .0949999 .0091377 10.40 0.000 .0769677 .113032
kstock .350161 .0293747 11.92 0.000 .2921935 .4081286
_cons -63.22022 5.648271 -11.19 0.000 -74.36641 -52.07402

rho_ar .67210608
sigma_u 91.507609
sigma_e 40.992469
rho_fov .8328647 (fraction of variance because of u_i)

F test that all u_i=0: F(9,178) = 11.53 Prob > F = 0.0000

Because there are 10 groups, the panel-by-panel Cochrane–Orcutt method decreases the number of
available observations from 200 to 190. The above example used the default dw estimator of ρ. Using
the tscorr estimator of ρ yields
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. xtregar invest mvalue kstock, fe rhotype(tscorr)

FE (within) regression with AR(1) disturbances Number of obs = 190
Group variable: company Number of groups = 10

R-sq: Obs per group:
within = 0.6583 min = 19
between = 0.8024 avg = 19.0
overall = 0.7933 max = 19

F(2,178) = 171.47
corr(u_i, Xb) = -0.0709 Prob > F = 0.0000

invest Coef. Std. Err. t P>|t| [95% Conf. Interval]

mvalue .0978364 .0096786 10.11 0.000 .0787369 .1169359
kstock .346097 .0242248 14.29 0.000 .2982922 .3939018
_cons -61.84403 6.621354 -9.34 0.000 -74.91049 -48.77758

rho_ar .54131231
sigma_u 90.893572
sigma_e 41.592151
rho_fov .82686297 (fraction of variance because of u_i)

F test that all u_i=0: F(9,178) = 19.73 Prob > F = 0.0000

Technical note
The tscorr estimator of ρ is bounded in [−1, 1 ]. The other estimators of ρ are not. In samples

with short panels, the estimates of ρ produced by the other estimators of ρ may be outside [−1, 1 ]. If
this happens, use the tscorr estimator. However, simulations have shown that the tscorr estimator
is biased toward zero. dw is the default because it performs well in Monte Carlo simulations. In the
example above, the estimate of ρ produced by tscorr is much smaller than the one produced by
dw.

Example 2: Using xtset

xtregar will complain if you try to run xtregar on a dataset that has not been xtset:

. xtset, clear

. xtregar invest mvalue kstock, fe
must specify panelvar and timevar; use xtset

r(459);

You must xtset your data to ensure that xtregar understands the nature of your time variable.
Suppose that our observations were taken quarterly instead of annually. We will get the same results
with the quarterly variable t2 that we did with the annual variable year.

http://www.stata.com/manuals14/perror.pdf#perrorRemarksandexamplesr(459)
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. generate t = year - 1934

. generate t2 = tq(1934q4) + t

. format t2 %tq

. list year t2 in 1/5

year t2

1. 1935 1935q1
2. 1936 1935q2
3. 1937 1935q3
4. 1938 1935q4
5. 1939 1936q1

. xtset company t2
panel variable: company (strongly balanced)
time variable: t2, 1935q1 to 1939q4

delta: 1 quarter

. xtregar invest mvalue kstock, fe

FE (within) regression with AR(1) disturbances Number of obs = 190
Group variable: company Number of groups = 10

R-sq: Obs per group:
within = 0.5927 min = 19
between = 0.7989 avg = 19.0
overall = 0.7904 max = 19

F(2,178) = 129.49
corr(u_i, Xb) = -0.0454 Prob > F = 0.0000

invest Coef. Std. Err. t P>|t| [95% Conf. Interval]

mvalue .0949999 .0091377 10.40 0.000 .0769677 .113032
kstock .350161 .0293747 11.92 0.000 .2921935 .4081286
_cons -63.22022 5.648271 -11.19 0.000 -74.36641 -52.07402

rho_ar .67210608
sigma_u 91.507609
sigma_e 40.992469
rho_fov .8328647 (fraction of variance because of u_i)

F test that all u_i=0: F(9,178) = 11.53 Prob > F = 0.0000

In all the examples thus far, we have assumed that εit is first-order autoregressive. Testing the
hypothesis of ρ = 0 in a first-order autoregressive process produces test statistics with extremely
complicated distributions. Bhargava, Franzini, and Narendranathan (1982) extended the Durbin–
Watson statistic to the case of balanced, equally spaced panel datasets. Baltagi and Wu (1999) modify
their statistic to account for unbalanced panels with unequally spaced data. In the same article, Baltagi
and Wu (1999) derive the locally best invariant test statistic of ρ = 0. Both these test statistics have
extremely complicated distributions, although Bhargava, Franzini, and Narendranathan (1982) did
publish some critical values in their article. Specifying the lbi option to xtregar causes Stata to
calculate and report the modified Bhargava et al. Durbin–Watson and the Baltagi–Wu LBI.

Example 3: Testing for autocorrelation

In this example, we calculate the modified Bhargava et al. Durbin–Watson statistic and the Baltagi–
Wu LBI. We exclude periods 9 and 10 from the sample, thereby reproducing the results of Baltagi
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and Wu (1999, 822). p-values are not reported for either statistic. Although Bhargava, Franzini, and
Narendranathan (1982) published critical values for their statistic, no tables are currently available
for the Baltagi–Wu (LBI). Baltagi and Wu (1999) did derive a normalized version of their statistic,
but this statistic cannot be computed for datasets of moderate size.

. xtregar invest mvalue kstock if year !=1934 & year !=1944, fe lbi

FE (within) regression with AR(1) disturbances Number of obs = 180
Group variable: company Number of groups = 10

R-sq: Obs per group:
within = 0.5954 min = 18
between = 0.7952 avg = 18.0
overall = 0.7889 max = 18

F(2,168) = 123.63
corr(u_i, Xb) = -0.0516 Prob > F = 0.0000

invest Coef. Std. Err. t P>|t| [95% Conf. Interval]

mvalue .0941122 .0090926 10.35 0.000 .0761617 .1120627
kstock .3535872 .0303562 11.65 0.000 .2936584 .4135161
_cons -64.82534 5.946885 -10.90 0.000 -76.56559 -53.08509

rho_ar .6697198
sigma_u 93.320452
sigma_e 41.580712
rho_fov .83435413 (fraction of variance because of u_i)

F test that all u_i=0: F(9,168) = 11.55 Prob > F = 0.0000
modified Bhargava et al. Durbin-Watson = .71380994
Baltagi-Wu LBI = 1.0134522

The random-effects model
In the random-effects model, the νi are assumed to be realizations of an i.i.d. process with mean 0

and variance σ2
ν . Furthermore, the νi are assumed to be independent of both the εit and the covariates

xit. The latter of these assumptions can be strong, but inference is not conditional on the particular
realizations of the νi in the sample. See Mundlak (1978) for a discussion of this point.

Example 4: Random-effects model

By specifying the re option, we obtain the Baltagi–Wu GLS estimator of the random-effects model.
This estimator can accommodate unbalanced panels and unequally spaced data. We run this model
on the Grunfeld dataset:
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. xtregar invest mvalue kstock if year !=1934 & year !=1944, re lbi

RE GLS regression with AR(1) disturbances Number of obs = 190
Group variable: company Number of groups = 10

R-sq: Obs per group:
within = 0.7707 min = 19
between = 0.8039 avg = 19.0
overall = 0.7958 max = 19

Wald chi2(3) = 351.37
corr(u_i, Xb) = 0 (assumed) Prob > chi2 = 0.0000

invest Coef. Std. Err. z P>|z| [95% Conf. Interval]

mvalue .0947714 .0083691 11.32 0.000 .0783683 .1111746
kstock .3223932 .0263226 12.25 0.000 .2708019 .3739845
_cons -45.21427 27.12492 -1.67 0.096 -98.37814 7.949603

rho_ar .6697198 (estimated autocorrelation coefficient)
sigma_u 74.662876
sigma_e 42.253042
rho_fov .75742494 (fraction of variance due to u_i)

theta .66973313

modified Bhargava et al. Durbin-Watson = .71380994
Baltagi-Wu LBI = 1.0134522

The modified Bhargava et al. Durbin–Watson and the Baltagi–Wu LBI are the same as those reported
for the fixed-effects model because the formulas for these statistics do not depend on fitting the
fixed-effects model or the random-effects model.
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Stored results
xtregar, re stores the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(df m) model degrees of freedom
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(d1) Bhargava et al. Durbin–Watson
e(LBI) Baltagi–Wu LBI statistic
e(N LBI) number of obs used in e(LBI)
e(Tcon) 1 if T is constant
e(sigma u) panel-level standard deviation
e(sigma e) standard deviation of ηit
e(r2 w) R-squared for within model
e(r2 o) R-squared for overall model
e(r2 b) R-squared for between model
e(chi2) χ2

e(rho ar) autocorrelation coefficient
e(rho fov) ui fraction of variance
e(thta min) minimum θ

e(thta 5) θ, 5th percentile
e(thta 50) θ, 50th percentile
e(thta 95) θ, 95th percentile
e(thta max) maximum θ

e(Tbar) harmonic mean of group sizes
e(rank) rank of e(V)

Macros
e(cmd) xtregar
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(model) re
e(rhotype) method of estimating ρar
e(dw) LBI, if requested
e(chi2type) Wald; type of model χ2 test
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) VCE for random-effects model

Functions
e(sample) marks estimation sample
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xtregar, fe stores the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(df m) model degrees of freedom
e(mss) model sum of squares
e(rss) residual sum of squares
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(d1) Bhargava et al. Durbin–Watson
e(LBI) Baltagi–Wu LBI statistic
e(N LBI) number of obs used in e(LBI)
e(Tcon) 1 if T is constant
e(corr) corr(ui, Xb)
e(sigma u) panel-level standard deviation
e(sigma e) standard deviation of εit
e(r2 a) adjusted R-squared
e(r2 w) R-squared for within model
e(r2 o) R-squared for overall model
e(r2 b) R-squared for between model
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(rho ar) autocorrelation coefficient
e(rho fov) ui fraction of variance
e(F) F statistic
e(F f) F for ui=0

e(df r) residual degrees of freedom
e(df a) degrees of freedom for absorbed effect
e(df b) numerator degrees of freedom for F statistic
e(rmse) root mean squared error
e(Tbar) harmonic mean of group sizes
e(rank) rank of e(V)

Macros
e(cmd) xtregar
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(wtype) weight type
e(wexp) weight expression
e(model) fe
e(rhotype) method of estimating ρar
e(dw) LBI, if requested
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample
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Methods and formulas
Consider a linear panel-data model described by (1) and (2). The data can be unbalanced and

unequally spaced. Specifically, the dataset contains observations on individual i at times tij for
j = 1, . . . , ni.

Methods and formulas are presented under the following headings:

Estimating ρ
Transforming the data to remove the AR(1) component
The within estimator of the fixed-effects model
The Baltagi–Wu GLS estimator
The test statistics

Estimating ρ

The estimate of ρ is always obtained after removing the group means. Let ỹit = yit − yi, let
x̃it = xit − xi, and let ε̃it = εit − εi.

Then, except for the onestep method, all the estimates of ρ are obtained by running Stata’s prais
on

ỹit = x̃itβ + ε̃it

See [TS] prais for the formulas for each of the methods.

When onestep is specified, a regression is run on the above equation, and the residuals are
obtained. Let eitij be the residual used to estimate the error ε̃itij . If tij − ti,j−1 > 1, eitij is set to
zero. Given this series of residuals

ρ̂onestep =
n

mc

∑N
i=1

∑T
t=2 eitei,t−1∑N

i=1

∑T
t=1 e

2
it

where n is the number of nonzero elements in e and mc is the number of consecutive pairs of nonzero
eits.

Transforming the data to remove the AR(1) component

After estimating ρ, Baltagi and Wu (1999) derive a transformation of the data that removes the
AR(1) component. Their Ci(ρ) can be written as

y∗itij =


(1− ρ2)1/2yitij if tij = 1

(1− ρ2)1/2

{
yi,tij

1

(1−ρ2(tij−ti,j−1))
1/2 − yi,ti,j−1

ρ(tij−ti,j−1)

(1−ρ2(ti,j−ti,j−1))
1/2

}
if tij > 1

Using the analogous transform on the independent variables generates transformed data without
the AR(1) component. Performing simple OLS on the transformed data leaves behind the residuals µ∗.

http://www.stata.com/manuals14/tsprais.pdf#tsprais
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The within estimator of the fixed-effects model
To obtain the within estimator, we must transform the data that come from the AR(1) transform.

For the within transform to remove the fixed effects, the first observation of each panel must be
dropped. Specifically, let

y̆itij = y∗itij − y∗i + y
∗ ∀j > 1

x̆itij = x∗itij − x∗i + x
∗ ∀j > 1

ε̆itij = ε∗itij − ε∗i + ε
∗ ∀j > 1

where

y∗i =

∑ni−1
j=2 y∗itij
ni − 1

y
∗

=

∑N
i=1

∑ni−1
j=2 y∗itij∑N

i=1 ni − 1

x∗i =

∑ni−1
j=2 x∗itij
ni − 1

x
∗

=

∑N
i=1

∑ni−1
j=2 x∗itij∑N

i=1 ni − 1

ε∗i =

∑ni−1
j=2 ε∗itij
ni − 1

ε
∗

=

∑N
i=1

∑ni−1
j=2 ε∗itij∑N

i=1 ni − 1

The within estimator of the fixed-effects model is then obtained by running OLS on

y̆itij = α+ x̆itijβ + ε̆itij

Reported as R2 within is the R2 from the above regression.

Reported as R2 between is
{

corr(xiβ̂ , yi)
}2

.

Reported as R2 overall is
{

corr(xitβ̂ , yit)
}2

.
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The Baltagi–Wu GLS estimator

The residuals µ∗ can be used to estimate the variance components. Translating the matrix formulas
given in Baltagi and Wu (1999) into summations yields the following variance-components estimators:

σ̂2
ω =

N∑
i=1

(µ∗′i gi)
2

(g′igi)

σ̂2
ε =

[∑N
i=1(µ∗′i µ

∗
i )−

∑N
i=1

{
(µ∗′i gi)

2

(g′
i
gi)

}]
∑N
i=1(ni − 1)

σ̂2
µ =

[∑N
i=1

{
(µ∗′i gi)

2

(g′
i
gi)

}
−Nσ̂2

ε

]
∑N
i=1(g′igi)

where

gi =

1,

{
1− ρ(ti,2−ti,1)

}{
1− ρ2(ti,2−ti,1)

} 1
2

, . . . ,

{
1− ρ(ti,ni

−ti,ni−1)
}

{
1− ρ2(ti,ni

−ti,ni−1)
} 1

2

′

and µ∗i is the ni × 1 vector of residuals from µ∗ that correspond to person i.

Then

θ̂i = 1−
(
σ̂µ
ω̂i

)
where

ω̂2
i = g′igiσ̂

2
µ + σ̂2

ε

With these estimates in hand, we can transform the data via

z∗∗itij = z∗itij − θ̂igij
∑ni

s=1 gisz
∗
itis∑ni

s=1 g
2
is

for z ∈ {y,x}.
Running OLS on the transformed data y∗∗,x∗∗ yields the feasible GLS estimator of α and β.

Reported as R2 between is
{

corr(xiβ̂ , yi)
}2

.

Reported as R2 within is
{

corr
{

(xit − xi)β̂ , yit − yi
}}2

.

Reported as R2 overall is
{

corr(xitβ̂ , yit)
}2

.
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The test statistics
The Baltagi–Wu LBI is the sum of terms

d∗ = d1 + d2 + d3 + d4

where

d1 =

∑N
i=1

∑ni

j=1{z̃iti,j−1
− z̃itijI(tij − ti,j−1 = 1)}2∑N

i=1

∑ni

j=1 z̃
2
itij

d2 =

∑N
i=1

∑ni−1
j=1 z̃2iti,j−1

{1− I(tij − ti,j−1 = 1)}2∑N
i=1

∑ni

j=1 z̃
2
itij

d3 =

∑N
i=1 z̃

2
iti1∑N

i=1

∑ni

j=1 z̃
2
itij

d4 =

∑N
i=1 z̃

2
itini∑N

i=1

∑ni

j=1 z̃
2
itij

I() is the indicator function that takes the value of 1 if the condition is true and 0 otherwise. The
z̃iti,j−1

are residuals from the within estimator.

Baltagi and Wu (1999) also show that d1 is the Bhargava et al. Durbin–Watson statistic modified
to handle cases of unbalanced panels and unequally spaced data.
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Also see
[XT] xtregar postestimation — Postestimation tools for xtregar

[XT] xtset — Declare data to be panel data

[XT] xtgee — Fit population-averaged panel-data models by using GEE

[XT] xtgls — Fit panel-data models by using GLS

[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models

[TS] newey — Regression with Newey–West standard errors

[TS] prais — Prais–Winsten and Cochrane–Orcutt regression

[U] 20 Estimation and postestimation commands

http://www.stata.com/manuals14/xtxtregarpostestimation.pdf#xtxtregarpostestimation
http://www.stata.com/manuals14/xtxtset.pdf#xtxtset
http://www.stata.com/manuals14/xtxtgee.pdf#xtxtgee
http://www.stata.com/manuals14/xtxtgls.pdf#xtxtgls
http://www.stata.com/manuals14/xtxtreg.pdf#xtxtreg
http://www.stata.com/manuals14/tsnewey.pdf#tsnewey
http://www.stata.com/manuals14/tsprais.pdf#tsprais
http://www.stata.com/manuals14/u20.pdf#u20Estimationandpostestimationcommands

