xtnbreg postestimation — Postestimation tools for xtnbreg

Postestimation commands predict margins Methods and formulas Also see

Postestimation commands

The following postestimation commands are available after xtnbreg:

Command	Description	
contrast	contrasts and ANOVA-style joint tests of estimates	
*estat ic	Akaike's and Schwarz's Bayesian information criteria (AIC and BIC)	
estat summarize	summary statistics for the estimation sample	
estat vce	variance-covariance matrix of the estimators (VCE)	
estimates	cataloging estimation results	
forecast	dynamic forecasts and simulations	
hausman	Hausman's specification test	
lincom	point estimates, standard errors, testing, and inference for linear combinations of coefficients	
*lrtest	likelihood-ratio test	
margins	marginal means, predictive margins, marginal effects, and average marginal effects	
marginsplot	graph the results from margins (profile plots, interaction plots, etc.)	
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinati of coefficients	
predict	predictions, residuals, influence statistics, and other diagnostic measures	
predictnl	point estimates, standard errors, testing, and inference for generalized predictions	
pwcompare	pairwise comparisons of estimates	
test	Wald tests of simple and composite linear hypotheses	
testnl	Wald tests of nonlinear hypotheses	

* estat ic and lrtest are not appropriate after xtnbreg, pa.

[†] forecast is not appropriate with mi estimation results.

predict

Description for predict

predict creates a new variable containing predictions such as linear predictions, standard errors, numbers of events, incidence rates, probabilities, and equation-level scores.

Menu for predict

Statistics > Postestimation

Syntax for predict

Random-effects (RE) and conditional fixed-effects (FE) overdispersion models

predict [type] newvar [if] [in] [, RE/FE_statistic nooffset]

Population-averaged (PA) model

predict [type] newvar [if] [in] [, PA_statistic nooffset]

RE/FE_statistic	Description		
Main			
xb	linear prediction; the default		
stdp	standard error of the linear prediction		
nu0	predicted number of events; assumes fixed or random effect is zero		
iru0	predicted incidence rate; assumes fixed or random effect is zero		
pr0(<i>n</i>)	probability $Pr(y = n)$ assuming the random effect is zero; only allowed after xtnbreg, re		
pr0(<i>a</i> , <i>b</i>)	probability $Pr(a \le y \le b)$ assuming the random effect is zero; only allowed after xtnbreg, re		
PA_statistic	Description		
Main			
mu	predicted number of events; considers the offset(); the default		
rate	predicted number of events		
xb	linear prediction		
stdp	standard error of the linear prediction		
<u>sc</u> ore	ore first derivative of the log likelihood with respect to $\mathbf{x}_{it}\boldsymbol{\beta}$		

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample.

Options for predict

Main

xb calculates the linear prediction. This is the default for the random-effects and fixed-effects models.

- mu and rate both calculate the predicted number of events. mu takes into account the offset(), and rate ignores those adjustments. mu and rate are equivalent if you did not specify offset(). mu is the default for the population-averaged model.
- stdp calculates the standard error of the linear prediction.
- nuO calculates the predicted number of events, assuming a zero random or fixed effect.
- iru0 calculates the predicted incidence rate, assuming a zero random or fixed effect.
- pr0(n) calculates the probability Pr(y = n) assuming the random effect is zero, where n is a nonnegative integer that may be specified as a number or a variable (only allowed after xtnbreg, re).
- pr0(*a*,*b*) calculates the probability $Pr(a \le y \le b)$ assuming the random effect is zero, where *a* and *b* are nonnegative integers that may be specified as numbers or variables (only allowed after xtnbreg, re);

b missing $(b \ge .)$ means $+\infty$; pr0(20,.) calculates $Pr(y \ge 20)$; pr0(20,b) calculates $Pr(y \ge 20)$ in observations for which $b \ge .$ and calculates $Pr(20 \le y \le b)$ elsewhere.

pr0(.,b) produces a syntax error. A missing value in an observation on the variable a causes a missing value in that observation for pr0(a,b).

score calculates the equation-level score, $u_{it} = \partial \ln L(\mathbf{x}_{it}\beta)/\partial(\mathbf{x}_{it}\beta)$.

nooffset is relevant only if you specified offset(*varname*) for xtnbreg. It modifies the calculations made by predict so that they ignore the offset variable; the linear prediction is treated as $\mathbf{x}_{it}\beta$ rather than $\mathbf{x}_{it}\beta$ + offset_{it}.

margins

Description for margins

margins estimates margins of response for linear predictions, numbers of events, incidence rates, and probabilities.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins	[marginlist]	, options	
margins	[marginlist]	<pre>predict(statistic) [predict(statistic)] [</pre>	options]

Random-effects (RE) and conditional fixed-effects (FE) overdispersion models

statistic	Description
xb	linear prediction; the default
nu0	predicted number of events; assumes fixed or random effect is zero
iru0	predicted incidence rate; assumes fixed or random effect is zero
pr0(<i>n</i>)	probability $Pr(y = n)$ assuming the random effect is zero; only allowed after xtnbreg, re
pr0(<i>a</i> , <i>b</i>)	probability $Pr(a \le y \le b)$ assuming the random effect is zero; only allowed after xtnbreg, re
stdp	not allowed with margins

Population-averaged (PA) model

statistic	Description	
mu	predicted number of events; considers the offset(); the default	
rate	predicted number of events	
xb	linear prediction	
stdp	not allowed with margins	
<u>sc</u> ore	not allowed with margins	

Statistics not allowed with margins are functions of stochastic quantities other than e(b). For the full syntax, see [R] margins.

Methods and formulas

The probabilities calculated using the pr0(n) option are the probability $Pr(y_{it} = n)$ for a RE model assuming the random effect is zero. A negative binomial model is an overdispersed Poisson model, and the nominal overdispersion can be calculated as $\delta = s/(r-1)$, where r and s are as given in the estimation results. Define $\mu_{it} = \exp(\mathbf{x}_{it}\beta + \text{offset}_{it})$. Then the probabilities in pr0(n) are calculated as the probability that $y_{it} = n$, where y_{it} has a negative binomial distribution with mean $\delta \mu_{it}$ and variance $\delta(1 + \delta)\mu_{it}$.

Also see

[XT] **xtnbreg** — Fixed-effects, random-effects, & population-averaged negative binomial models

[U] 20 Estimation and postestimation commands