
24 Working with dates and times

Contents
24.1 Overview
24.2 Inputting dates and times
24.3 Displaying dates and times
24.4 Typing dates and times (datetime literals)
24.5 Extracting components of dates and times
24.6 Converting between date and time values
24.7 Business dates and calendars
24.8 References

24.1 Overview
Full documentation on Stata’s date and time capabilities—including documentation on relevant

functions and display formats—can be found in [D] datetime.

Stata can work with dates such as 21nov2006, with times such as 13:42:02.213, and with dates
and times such as 21nov2006 13:42:02.213. You can write these dates and times however you wish,
such as 11/21/2006, November 21, 2006, and 1:42 p.m.

Stata stores dates, times, and dates and times as integers such as −4,102, 0, 82, 4,227, and
1,479,735,745,213. It works like this:

1. You begin with the datetime variables in your data however they are recorded, such as 21nov2006
or 11/21/2006 or November 21, 2006, or 13:42:02.213 or 1:42 p.m. The original values are
usually best stored in string variables.

2. Using functions we will describe below, you translate the original into the integers that Stata
understands and store those values in a new variable.

3. You specify the appropriate display format for the new variable so that, rather than displaying
as the integer values that they are, they display in a way you can read them such as 21nov2006
or 11/21/2006 or November 21, 2006, or 13:42:02.213 or 1:42 p.m.

The numeric encoding that Stata uses is centered on the first millisecond of 01jan1960, that is,
01jan1960 00:00:00.000. That datetime is assigned integer value 0.

Integer value 1 is the millisecond after that: 01jan1960 00:00:00.001.

Integer value −1 is the millisecond before that: 31dec1959 23:59:59.999.

By that logic, 21nov2006 13:42:02.213 is integer value 1,479,735,722,213 or, at least, it is if
we ignore the leap seconds that have been inserted to keep clocks in alignment with astronomical
observation. If we account for leap seconds, 21nov2006 13:42:02.213 would be 23 seconds later,
namely, 1,479,735,745,213. Stata can work either way.

Obtaining the number of milliseconds associated with a datetime is easy because Stata pro-
vides functions that translate things like 21nov2006 13:42:02.213 (written however you wish) to
1,479,735,722,213 or 1,479,735,745,213.

Just remember, Stata records datetime values as the number of milliseconds since the first millisecond
of 01jan1960.

1

http://www.stata.com/manuals14/ddatetime.pdf#ddatetime
http://www.stata.com/manuals14/ddatetimetranslation.pdf#ddatetimetranslationRemarksandexamplesWhytherearetwoSIFdatetimeencodings

2 [U] 24 Working with dates and times

Stata records pure time values (clock times independent of date) the same way. Rather than thinking
of the numeric value as the number of milliseconds since 01jan1960, however, think of it as the
number of milliseconds since the beginning of the day. For instance, at 2 p.m. every day, the airplane
takes off from Houston for London. The numeric value associated with 2 p.m. is 50,400,000 because
there are that many milliseconds between the beginning of the day (00:00:00.000) and 2 p.m.

The advantage of thinking this way is that you can add dates and times. What is the datetime value
for when the plane takes off on 21nov2006? Well, 21nov2006 00:00:00.000 is 1,479,686,400,000
(ignoring leap seconds), and 1,479,686,400,000 + 50,400,000 is 1,479,736,800,000.

Subtracting datetime values is useful, too. How many hours are there between 21jan1952 7:23
a.m. and 21nov2006 3:14 p.m.? Answer: (1,479,741,240,000 − (−250,706,220,000))/3,600,000 =
480,679.85 hours.

Variables that record the number of milliseconds since 01jan1960 and ignore leap seconds are
called %tc variables.

Variables that record the number of milliseconds since 01jan1960 and account for leap seconds
are called %tC variables.

Stata has seven other kinds of %t variables.

In many applications, calendar dates by themselves are sufficient. The applicant was hired on
15jan2006, for instance. You could use a %tc variable to record that value, assigning some arbitrary
time that you would ignore, but it is better and easier to use a %td variable. In %td variables, 0 still
corresponds to 01jan1960, but a unit change now represents an entire day rather than a millisecond.
The value 1 represents 02jan1960. The value −1 represents 31dec1959. When you subtract %td
variables, you obtain the number of days between dates.

In a financial application, you might use %tq variables. In %tq, 0 represents the first quarter of
1960, 1 represents the second quarter, and −1 represents the last quarter of 1959. When you subtract
%tq variables, you obtain the number of quarters between dates.

Stata understands nine %t formats:

Format Base Units Comment
%tc 01jan1960 milliseconds ignores leap seconds
%tC 01jan1960 milliseconds accounts for leap seconds
%td 01jan1960 days calendar date format
%tw 1960-w1 weeks 52nd week may have more than 7 days
%tm jan1960 months calendar month format
%tq 1960-q1 quarters financial quarter
%th 1960-h1 half-years 1 half-year = 2 quarters
%ty 0 A.D year 1960 means year 1960
%tb – days user defined

All formats except %ty and %tb are based on the beginning of January 1960. The value 0 means the
first millisecond, day, week, month, quarter, or half-year of 1960, depending on format. The value 1
is the millisecond, day, week, month, quarter, or half-year after that. The value −1 is the millisecond,
day, week, month, quarter, or half-year before that.

Stata’s %ty format records years as numeric values and it codes them the natural way: rather than
0 meaning 1960, 1960 means 1960, and so 2006 also means 2006.

[U] 24 Working with dates and times 3

24.2 Inputting dates and times
Dates and time variables are best read as strings. You then use one of the string-to-numeric

conversion functions to convert the string to an appropriate %t value:

Format String-to-numeric conversion function

%tc clock(string, mask)
%tC Clock(string, mask)
%td date(string, mask)
%tw weekly(string, mask)
%tm monthly(string, mask)
%tq quarterly(string, mask)
%th halfyearly(string, mask)
%ty yearly(string, mask)

The full documentation of these functions can be found in [D] datetime translation.

In the above table, string is the string variable to be translated, and mask specifies the order in
which the components of the date and/or time appear in string. For instance, the mask in %td function
date() is made up of the letters M, D, and Y.

date(string, "DMY") specifies string contains dates in the order of day, month, year. With that
specification, date() can translate 21nov2006, 21 November 2006, 21-11-2006, 21112006, and other
strings that contain dates in the order day, month, year.

date(string, "MDY") specifies string contains dates in the order of month, day, year. With that
specification, date() can translate November 21, 2006, 11/21/2006, 11212006, and other strings that
contain dates in the order month, day, year.

You can specify a two-digit prefix in front of Y to handle two-digit years. date(string, "MD19Y")
specifies string contains dates in the order of month, day, and year, and that if the year contains
only two digits, it is to be prefixed with 19. With that specification, date() could not only translate
November 21, 2006, 11/21/2006, and 11212006, but also Feb. 15 ’98, 2/15/98, and 21598. (There
is another way to deal with two-digit years so that 98 becomes 1998 while 06 becomes 2006; it
involves specifying an optional third argument. See Working with two-digit years in [D] datetime
translation.)

Let’s consider some %td data. We have the following raw-data file:

begin bdays.raw
Bill 21 Jan 1952 22
May 11 Jul 1948 18
Sam 12 Nov 1960 25
Kay 9 Aug 1975 16

end bdays.raw

We could read these data by typing

. infix str name 1-5 str bday 7-17 x 20-21 using bdays
(4 observations read)

We read the date not as three separate variables but as one variable. Variable bday contains the entire
date:

http://www.stata.com/manuals14/ddatetimetranslation.pdf#ddatetimetranslation
http://www.stata.com/manuals14/ddatetimetranslation.pdf#ddatetimetranslationRemarksandexamplesWorkingwithtwo-digityears
http://www.stata.com/manuals14/ddatetimetranslation.pdf#ddatetimetranslation
http://www.stata.com/manuals14/ddatetimetranslation.pdf#ddatetimetranslation

4 [U] 24 Working with dates and times

. list

name bday x

1. Bill 21 Jan 1952 22
2. May 11 Jul 1948 18
3. Sam 12 Nov 1960 25
4. Kay 9 Aug 1975 16

The data look fine, but if we set about using them, we would quickly discover there is not much we
could do with variable bday. Variable bday looks like a date, but it is just a string. We need to turn
bday into a %t variable that Stata understands:

. generate birthday = date(bday, "DMY")

. list

name bday x birthday

1. Bill 21 Jan 1952 22 -2902
2. May 11 Jul 1948 18 -4191
3. Sam 12 Nov 1960 25 316
4. Kay 9 Aug 1975 16 5699

New variable birthday is a %td variable. The problem now is that, whereas the new variable is
perfectly understandable to Stata, it is not understandable to us. Naturally enough, a %td variable
needs a %td format:

. format birthday %td

. list

name bday x birthday

1. Bill 21 Jan 1952 22 21jan1952
2. May 11 Jul 1948 18 11jul1948
3. Sam 12 Nov 1960 25 12nov1960
4. Kay 9 Aug 1975 16 09aug1975

Using our new %td variable, we can create a variable recording how old each of these subjects
was on 01jan2000:

. generate age2000 = (td(1jan2000)-birthday)/365.25

. list

name bday x birthday age2000

1. Bill 21 Jan 1952 22 21jan1952 47.94524
2. May 11 Jul 1948 18 11jul1948 51.47433
3. Sam 12 Nov 1960 25 12nov1960 39.13484
4. Kay 9 Aug 1975 16 09aug1975 24.39699

td() is a function that makes it easy to type %td dates. There are also functions tc(), tC(), tw(),
tm(), tq(), and th() for the other %t formats; see [D] datetime.

http://www.stata.com/manuals14/ddatetime.pdf#ddatetime

[U] 24 Working with dates and times 5

Let’s consider one more example. We have the following data:

. use http://www.stata-press.com/data/r14/datexmpl2

. list

id timestamp action

1. 1001 Tue Nov 14 08:59:43 CST 2006 15
2. 1002 Wed Nov 15 07:36:49 CST 2006 15
3. 1003 Wed Nov 15 09:21:07 CST 2006 11
4. 1002 Wed Nov 15 14:57:36 CST 2006 16
5. 1005 Thu Nov 16 08:22:53 CST 2006 12

6. 1001 Thu Nov 16 08:36:44 CST 2006 16

Variable timestamp is a string which we want to convert to a %tc variable. From the table above,
we know we will use function clock(). The mask in clock() uses the letters D, M, Y, and h, m, s,
which specify the order of the day, month, year and hours, minutes, seconds. timestamp contains
more than that and so cannot directly be converted using clock(). First, we must create a variable
that clock() understands:

. generate str ts = substr(timestamp, 5, 15) + " " + substr(timestamp, 25, 4)

. list ts

ts

1. Nov 14 08:59:43 2006
2. Nov 15 07:36:49 2006
3. Nov 15 09:21:07 2006
4. Nov 15 14:57:36 2006
5. Nov 16 08:22:53 2006

6. Nov 16 08:36:44 2006

New variable ts can be translated using clock(ts, "MD hms Y"). "MD hms Y" specifies that the
order of the components in ts is month, day, hours, minutes, seconds, and year. There is no meaning
to the spaces; we could just as well have specified clock(ts, "MDhmsY"). You can specify spaces
when they help to make what you type more readable.

Because %tc values can be so large, whenever you use the function clock(), you must store the
results in a double, as we do below:

. generate double dt = clock(ts, "MD hms Y")

. list id dt action

id dt action

1. 1001 1.479e+12 15
2. 1002 1.479e+12 15
3. 1003 1.479e+12 11
4. 1002 1.479e+12 16
5. 1005 1.479e+12 12

6. 1001 1.479e+12 16

Don’t panic. New variable dt contains numeric values, and large ones, which is why it was so
important that we stored the values as doubles. That output above just shows us what a %tc variable

6 [U] 24 Working with dates and times

looks like with default formatting. If we wanted to see the numeric values better, we could change dt
to have a %20.0gc format. We would then see that the first value is 1,479,113,983,000, the second
1,479,195,409,000, and so on. We will not do that. Instead, we will put a %tc format on our %tc
variable:

. format dt %tc

. list id dt action

id dt action

1. 1001 14nov2006 08:59:43 15
2. 1002 15nov2006 07:36:49 15
3. 1003 15nov2006 09:21:07 11
4. 1002 15nov2006 14:57:36 16
5. 1005 16nov2006 08:22:53 12

6. 1001 16nov2006 08:36:44 16

Variable dt is a variable we can use. Say we wanted to know how many hours it had been since the
previous action:

. sort dt

. generate hours = hours(dt - dt[_n-1])
(1 missing value generated)

. format hours %9.2f

. list id dt action hours

id dt action hours

1. 1001 14nov2006 08:59:43 15 .
2. 1002 15nov2006 07:36:49 15 22.62
3. 1003 15nov2006 09:21:07 11 1.74
4. 1002 15nov2006 14:57:36 16 5.61
5. 1005 16nov2006 08:22:53 12 17.42

6. 1001 16nov2006 08:36:44 16 0.23

We subtracted the previous value of dt from dt, which results in the number of milliseconds. Converting
milliseconds to hours is easy enough: we just have to divide by 60 × 60 × 1,000 = 3,600,000. It
is easy to forget or mistype that constant, so we used Stata’s hours() function, which converts
milliseconds to hours. hours(), and other useful functions, are documented in [D] datetime.

24.3 Displaying dates and times
A %td variable should have a %td format, a %tc variable should have a %tc format, and so on for

all the other %t variable–format pairs. You do that by typing format varname %td, format varname
%tc, etc.

Formats %tc, %tC, %td, %tw, %tm, %tq, %th, and %ty are called the default %t formats. By
specifying codes following them, you can control how the variable is to be displayed.

In the previous example, we started with a string variable that contained a time stamp and looked
like “Tue Nov 14 08:59:43 CST 2006”. After creating a %tc variable from it, and putting the default
%tc format on it, our datetimes looked like “14nov2006 08:59:43”. Below we specify a %tc format
that makes our new variable look just like the original:

http://www.stata.com/manuals14/ddatetime.pdf#ddatetime

[U] 24 Working with dates and times 7

. format dt %tcDay_Mon_DD_HH:MM:SS_!C!S!T_CCYY

. list id dt action hours

id dt action hours

1. 1001 Tue Nov 14 08:59:43 CST 2006 15 .
2. 1002 Wed Nov 15 07:36:49 CST 2006 15 22.62
3. 1003 Wed Nov 15 09:21:07 CST 2006 11 1.74
4. 1002 Wed Nov 15 14:57:36 CST 2006 16 5.61
5. 1005 Thu Nov 16 08:22:53 CST 2006 12 17.42

6. 1001 Thu Nov 16 08:36:44 CST 2006 16 0.23

%t display formats are documented in [D] datetime display formats.

24.4 Typing dates and times (datetime literals)
You will sometimes need to type dates and times in expressions. When we needed to calculate

the age of subjects as of 01jan2000 in a previous example, for instance, we typed,
. generate age2000 = (td(1jan2000)-birthday)/365.25

although we could just as well have typed,
. generate age2000 = (14610-birthday)/365.25

because 14,610 is the %td value of 01jan2000. Typing td(1jan2000) is easier and less error-prone.

Similarly, if we needed 10:55 a.m. on 01jan1960 as a %tc value, rather than typing 39,300,000, we
could type tc(01jan1960 10:55). See Conveniently typing SIF values in [D] datetime for details.

24.5 Extracting components of dates and times
Once you have a %t variable, you can use the extraction functions to obtain components of the

variable. For instance, the following functions are appropriate for use with %td variables:

year(date) returns four-digit year; e.g., 1980, 2002
month(date) returns month; 1, 2, . . . , 12
day(date) returns day within month; 1, 2, . . . , 31
halfyear(date) returns the half of year; 1 or 2
quarter(date) returns quarter of year; 1, 2, 3, or 4
week(date) returns week of year; 1, 2, . . . , 52
dow(date) returns day of week; 0, 1, . . . , 6; 0 = Sunday
doy(date) returns day of year; 1, 2, . . . , 366

There are other functions useful with other %t variables. See Extracting time-of-day components from
SIFs and Extracting date components from SIFs in [D] datetime.

24.6 Converting between date and time values
You can convert between %t values. For instance, the cofd() function converts a %td value

to a %tc value. cofd() of 17,126 (21nov2006) returns 1,479,686,400,000 (21nov2006 00:00:00).
Function dofc() of 1,479,736,920,000 (21nov2006 14:02) returns 17,126 (21nov2006).

There are other functions for converting between other %t values; see SIF-to-SIF conversion in
[D] datetime.

http://www.stata.com/manuals14/ddatetimedisplayformats.pdf#ddatetimedisplayformats
http://www.stata.com/manuals14/ddatetime.pdf#ddatetimeSyntaxConvenientlytypingSIFvalues
http://www.stata.com/manuals14/ddatetime.pdf#ddatetime
http://www.stata.com/manuals14/ddatetime.pdf#ddatetimeSyntaxExtractingtime-of-daycomponentsfromSIFs
http://www.stata.com/manuals14/ddatetime.pdf#ddatetimeSyntaxExtractingtime-of-daycomponentsfromSIFs
http://www.stata.com/manuals14/ddatetime.pdf#ddatetimeSyntaxExtractingdatecomponentsfromSIFs
http://www.stata.com/manuals14/ddatetime.pdf#ddatetime
http://www.stata.com/manuals14/ddatetime.pdf#ddatetimeSyntaxSIF-to-SIFconversion
http://www.stata.com/manuals14/ddatetime.pdf#ddatetime

8 [U] 24 Working with dates and times

24.7 Business dates and calendars
In addition to the built-in date types above, such as %tc and %td, Stata provides a type you can

define, denoted as %tb and called business dates and calendars.

A business calendar is like an ordinary calendar with some dates crossed out. The crossed-out
dates correspond to the dates on which the business is closed:

November 2011
Su Mo Tu We Th Fr Sa

1 2 3 4 X
X 7 8 9 10 11 X
X 14 15 16 17 18 19
X 21 22 23 X 25 X
X 28 29 30

With respect to a business date, yesterday is the last day the business was open, and tomorrow is
the next day the business will be open.

Consider date = 25nov2011. If date is a regular (%td) date variable,

yesterday = date − 1 = 24nov2011

tomorrow = date + 1 = 26nov2011

If date is a business (%tb) date variable,

yesterday = date − 1 = 23nov2011

tomorrow = date + 1 = 28nov2011

That is important because variables containing dates are often used with Stata’s lag and lead
operators; see [U] 13.10 Time-series operators. If variable trading date is an ordinary %td
variable, then L.trading date really is yesterday and F.trading date really is tomorrow. But if
trading date has an appropriately defined %tb format, L.trading date is the previous trading
date and F.trading date is the next trading date.

You can use bcal create to create a business calendar based on the current dataset. Alternatively,
you can create a file named calname.stbcal, such as nyse.stbcal. After that, Stata deeply
understands the new format %tbnyse. For more information, see [D] datetime business calendars.

Business dates work just like regular dates, it is just that some dates are crossed out.

24.8 References
Cox, N. J. 2006. Speaking Stata: Time of day. Stata Journal 6: 124–137.

. 2010. Stata tip 68: Week assumptions. Stata Journal 10: 682–685.

. 2012. Stata tip 111: More on working with weeks. Stata Journal 12: 565–569.

Samuels, S. J., and N. J. Cox. 2012. Stata tip 105: Daily dates with missing days. Stata Journal 12: 159–161.

http://www.stata.com/manuals14/u13.pdf#u13.10Time-seriesoperators
http://www.stata.com/manuals14/ddatetimebusinesscalendars.pdf#ddatetimebusinesscalendars
http://www.stata-journal.com/sjpdf.html?articlenum=dm0018
http://www.stata-journal.com/sjpdf.html?articlenum=dm0052
http://www.stata-journal.com/article.html?article=dm0065
http://www.stata-journal.com/article.html?article=dm0062

