
23 Working with strings

Contents
23.1 Description
23.2 Categorical string variables
23.3 Mistaken string variables
23.4 Complex strings
23.5 Reference

Please read [U] 12 Data before reading this entry.

23.1 Description
The word string is shorthand for a string of characters. “Male” and “Female”, “yes” and “no”,

and “R. Smith” and “P. Jones” are examples of strings. The alternative to strings is numbers—0, 1,
2, 5.7, and so on. Variables containing strings—called string variables—occur in data for a variety
of reasons. Four of these reasons are listed below.

A variable might contain strings because it is an identifying variable. Employee names in a payroll
file, patient names in a hospital file, and city names in a city data file are all examples of this. This
is a proper use of string variables.

A variable might contain strings because it records categorical information. “Male” and “Female”
and “yes” and “no” are examples of such use, but this is not an appropriate use of string variables.
It is not appropriate because the same information could be coded numerically, and, if it were, it
would take less memory to store the data and the data would be more useful. We will explain how
to convert categorical strings to categorical numbers below.

Also, a variable might contain strings because of a mistake. For example, the variable contains
things like 1, 5, 8.2, but because of an error in reading the data, the data were mistakenly put into a
string variable. We will explain how to fix such mistakes.

Finally, a variable might contain strings because the data simply could not be coerced into being
stored numerically. “15 Jan 1992”, “1/15/92”, and “1A73” are examples of such use. We will explain
how to deal with such complexities.

In addition to the advice presented here, read [U] 12.4.2 Handling Unicode strings if your strings
contain Unicode characters.

23.2 Categorical string variables

A variable might contain strings because it records categorical information.

Suppose that you have read in a dataset that contains a variable called sex, recorded as “male”
and “female”, yet when you attempt to run a linear regression, the following message is displayed:

. use http://www.stata-press.com/data/r14/hbp2

. regress hbp sex
no observations
r(2000);

1

http://www.stata.com/manuals14/u12.pdf#u12Data
http://www.stata.com/manuals14/u12.pdf#u12.4.2HandlingUnicodestrings
http://www.stata.com/manuals14/perror.pdf#perrorRemarksandexamplesr(2000)

2 [U] 23 Working with strings

There are no observations because regress, along with most of Stata’s “analytic” commands, cannot
deal with string variables. Commands want to see numbers, and when they do not, they treat the
variable as if it contained numeric missing values. Despite this limitation, it is possible to obtain
tables:

. encode sex, generate(gender)

. regress hbp gender

Source SS df MS Number of obs = 1,128
F(1, 1126) = 14.04

Model .644485682 1 .644485682 Prob > F = 0.0002
Residual 51.6737767 1,126 .045891454 R-squared = 0.0123

Adj R-squared = 0.0114
Total 52.3182624 1,127 .046422593 Root MSE = .21422

hbp Coef. Std. Err. t P>|t| [95% Conf. Interval]

gender .0491501 .0131155 3.75 0.000 .0234166 .0748837
_cons -.0306744 .0221353 -1.39 0.166 -.0741054 .0127566

The magic here is to convert the string variable sex into a numeric variable called gender with an
associated value label, a trick accomplished by encode; see [U] 12.6.3 Value labels and [D] encode.

23.3 Mistaken string variables
A variable might contain strings because of a mistake.

Suppose that you have numeric data in a variable called x, but because of a mistake, x was made
a string variable when you read the data. When you list the variable, it looks fine:

. list x

x

1. 2
2. 2.5
3. 17
(output omitted)

Yet, when you attempt to obtain summary statistics on x,

. summarize x

Variable Obs Mean Std. Dev. Min Max

x 0

http://www.stata.com/manuals14/u12.pdf#u12.6.3Valuelabels
http://www.stata.com/manuals14/dencode.pdf#dencode

[U] 23 Working with strings 3

If this happens to you, type describe to confirm that x is stored as a string:

. describe

Contains data
obs: 10

vars: 3
size: 160

storage display value
variable name type format label variable label

x str4 %9s
y float %9.0g
z float %9.0g

Sorted by:

x is stored as a str4.

The problem is that summarize does not know how to calculate the mean of string variables—how
to calculate the mean of “Joe” plus “Bill” plus “Roger”—even when the string variable contains what
could be numbers. By using the destring command ([D] destring), the variable mistakenly stored
as a str4 can be converted to a numeric variable.

. destring x, replace

. summarize x

Variable Obs Mean Std. Dev. Min Max

newx 10 1.76 .8071899 .7 3

An alternative to using the destring command is to use generate with the real() function;
see [FN] String functions.

23.4 Complex strings
A variable might contain strings because the data simply could not be coerced into being stored

numerically.

A complex string is a string that contains more than one piece of information. Complex strings may
be very long and may contain binary information. Stata can store strings up to 2-billion characters
long and can store strings containing binary information, including binary 0 (\0). You can read more
about this in [U] 12.4 Strings. The most common example of a complex string, however, is a date:
“15 Jan 1992” contains three pieces of information—a day, a month, and a year. If your complex
strings are dates or times, see [U] 24 Working with dates and times.

Although Stata has functions for dealing with dates, you will have to deal with other complex
strings yourself. Assume that you have data that include part numbers:

. list partno

partno

1. 5A2713
2. 2B1311
3. 8D2712

(output omitted)

http://www.stata.com/manuals14/ddestring.pdf#ddestring
http://www.stata.com/manuals14/fnstringfunctions.pdf#fnStringfunctionsreal()
http://www.stata.com/manuals14/fnstringfunctions.pdf#fnStringfunctions
http://www.stata.com/manuals14/u12.pdf#u12.4Strings
http://www.stata.com/manuals14/u24.pdf#u24Workingwithdatesandtimes

4 [U] 23 Working with strings

The first digit of the part number is a division number, and the character that follows identifies the
plant at which the part was manufactured. The next three digits represent the major part number and
the last digit is a modifier indicating the color. This complex variable can be decomposed using the
substr() and real() functions described in [FN] String functions:

. generate byte div = real(substr(partno,1,1))

. generate str1 plant = substr(partno,2,1)

. generate int part = real(substr(partno,3,3))

. generate byte color = real(substr(partno,6,1))

We use the substr() function to extract pieces of the string and use the real() function, when
appropriate, to translate the piece into a number. See [U] 12.4.2.1 Unicode string functions.

For an extended discussion of numeric and string data types and how to convert from one kind to
another, see Cox (2002).

23.5 Reference
Cox, N. J. 2002. Speaking Stata: On numbers and strings. Stata Journal 2: 314–329.

http://www.stata.com/manuals14/fnstringfunctions.pdf#fnStringfunctionssubstr()
http://www.stata.com/manuals14/fnstringfunctions.pdf#fnStringfunctionsreal()
http://www.stata.com/manuals14/fnstringfunctions.pdf#fnStringfunctions
http://www.stata.com/manuals14/u12.pdf#u12.4.2.1Unicodestringfunctions
http://www.stata-journal.com/sjpdf.html?articlenum=pr0006

