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Description

stteffects ipwra estimates the average treatment effect (ATE), the average treatment effect on
the treated (ATET), and the potential-outcome means (POMs) from observational survival-time data
by inverse-probability-weighted regression adjustment (IPWRA). IPWRA estimators use missingness-
adjusted regression coefficients to compute averages of treatment-level predicted outcomes. Contrasts
of these averages estimate the treatment effects. stteffects ipwra offers several choices for the
functional forms of the outcome model, of the treatment model, and of the optional time-to-censoring
model. Binary and multivalued treatments are accommodated.

See [TE] stteffects intro for an overview of estimating treatment effects from observational
survival-time data.

Quick start
Specify time as observed failure time and fail as failure indicator

stset time, failure(fail)

ATE of binary treatment treat2 estimated by IPWRA using a Weibull model for time on x1 and x2
and a logistic model for treat2 on x1 and w

stteffects ipwra (x1 x2) (treat2 x1 w)

As above, but estimate the ATET

stteffects ipwra (x1 x2) (treat2 x1 w), atet

Gamma model for time and probit model for treat2
stteffects ipwra (x1 x2, gamma) (treat2 x1 w, probit)

ATE for each level of three-valued treatment treat3
stteffects ipwra (x1 x2) (treat3 x1 w)

As above, and specify that treat3 = 3 is the control level using the value label “MyControl” for 3
stteffects ipwra (x1 x2) (treat3 x1 w), control("MyControl")

ATE of treat2 estimated by IPWRA using a Weibull model for time on x1 and x2, a logistic model
for treat2 on x1 and w, and a Weibull model for the time to censoring with covariates x1 and x2

stteffects ipwra (x1 x2) (treat2 x1 w) (x1 x2)

Gamma model for time, probit model for treat2, and gamma model for censoring
stteffects ipwra (x1 x2, gamma) (treat2 x1 w, probit) (x1 x2, gamma)
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Menu
Statistics > Treatment effects > Survival outcomes > Regression adjustment with IPW

Syntax
stteffects ipwra (omvarlist

[
, omoptions

]
) (tvar tmvarlist

[
, tmoptions

]
)[

(cmvarlist
[
, cmoptions

]
)
] [

if
] [

in
] [

, stat options
]

omvarlist specifies the variables that predict the survival-time variable in the outcome model.

tvar must contain integer values representing the treatment levels.

tmvarlist specifies the variables that predict treatment assignment in the treatment model.

cmvarlist specifies the variables that predict censoring in the censoring model.

omoptions Description

Model

weibull Weibull; the default
exponential exponential
gamma two-parameter gamma
lnormal lognormal
ancillary(avarlist

[
, noconstant

]
) specify variables used to model ancillary parameter

noconstant suppress constant from outcome model

tmoptions Description

Model

logit logistic treatment model; the default
probit probit treatment model
hetprobit(varlist) heteroskedastic probit treatment model
noconstant suppress constant from treatment model

cmoptions Description

Model

weibull Weibull; the default
exponential exponential
gamma two-parameter gamma
lnormal lognormal
ancillary(avarlist

[
, noconstant

]
) specify variables used to model ancillary parameter

noconstant suppress constant from censoring model

http://www.stata.com/manuals14/te.pdf#testteffectsipwraSyntaxomoptions
http://www.stata.com/manuals14/te.pdf#testteffectsipwraSyntaxtmoptions
http://www.stata.com/manuals14/te.pdf#testteffectsipwraSyntaxcmoptions
http://www.stata.com/manuals14/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals14/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals14/te.pdf#testteffectsipwraSyntaxstat
http://www.stata.com/manuals14/te.pdf#testteffectsipwraSyntaxoptions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
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stat Description

Stat

ate estimate average treatment effect in population; the default
atet estimate average treatment effect on the treated
pomeans estimate potential-outcome means

options Description

SE/Robust

vce(vcetype) vcetype may be robust, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

aequations display auxiliary-equation results
noshow do not show st setting information
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used
iterinit(#) specify starting-value iterations; seldom used

Advanced

pstolerance(#) set the tolerance for the overlap assumption
osample(newvar) identify observations that violate the overlap assumption
control(# | label) specify the level of tvar that is the control
tlevel(# | label) specify the level of tvar that is the treatment

coeflegend display legend instead of statistics

You must stset your data before using stteffects; see [ST] stset.
omvarlist, tmvarlist, cmvarlist, and avarlist may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights may be specified using stset; see Weights under Remarks and examples in

[ST] stset. However, weights may not be specified if you are using the bootstrap prefix.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

ancillary(avarlist
[
, noconstant

]
) specifies the variables used to model the ancillary parameter.

By default, the ancillary parameter does not depend on covariates. Specifying ancillary(avarlist,
noconstant) causes the constant to be suppressed in the model for the ancillary parameter.

ancillary() may be specified for the model for survival-time outcome, for the model for the
censoring variable, or for both. If ancillary() is specified for both, the varlist used for each
model may be different.

http://www.stata.com/manuals14/r.pdf#rvce_option
http://www.stata.com/manuals14/te.pdf#testteffectsipwraOptionsdisplay_options
http://www.stata.com/manuals14/te.pdf#testteffectsipwraOptionsmaxopts
http://www.stata.com/manuals14/ststset.pdf#ststset
http://www.stata.com/manuals14/u11.pdf#u11.4.3Factorvariables
http://www.stata.com/manuals14/u11.pdf#u11.1.10Prefixcommands
http://www.stata.com/manuals14/rbootstrap.pdf#rbootstrap
http://www.stata.com/manuals14/ststset.pdf#ststsetRemarksandexamplesWeights
http://www.stata.com/manuals14/ststset.pdf#ststset
http://www.stata.com/manuals14/u20.pdf#u20Estimationandpostestimationcommands
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noconstant; see [R] estimation options.

� � �
Stat �

stat is one of three statistics: ate, atet, or pomeans. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust) and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

aequations specifies that the results for the outcome-model or treatment-model parameters be
displayed. By default, the results for these auxiliary parameters are not displayed.

noshow prevents stteffects ipwra from showing the key st variables. This option is rarely used
because most people type stset, show or stset, noshow to permanently set whether they want
to see these variables mentioned at the top of the output of every st command; see [ST] stset.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: iterate(#),
[
no
]
log, and from(init specs); see [R] maximize. These options

are seldom used.

init specs is one of

matname
[
, skip copy

]
#
[
, # . . .

]
, copy

iterinit(#) specifies the maximum number of iterations used to calculate the starting values. This
option is seldom used.

� � �
Advanced �

pstolerance(#) specifies the tolerance used to check the overlap assumption. The default value
is pstolerance(1e-5). stteffects will exit with an error if an observation has an estimated
propensity score smaller than that specified by pstolerance().

osample(newvar) specifies that indicator variable newvar be created to identify observations that
violate the overlap assumption.

control(# | label) specifies the level of tvar that is the control. The default is the first treatment
level. You may specify the numeric level # (a nonnegative integer) or the label associated with
the numeric level. control() may not be specified with the statistic pomeans. control() and
tlevel() may not specify the same treatment level.

http://www.stata.com/manuals14/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals14/rvce_option.pdf#rvce_option
http://www.stata.com/manuals14/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals14/ststset.pdf#ststset
http://www.stata.com/manuals14/d.pdf#dformat
http://www.stata.com/manuals14/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals14/rmaximize.pdf#rmaximize
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tlevel(# | label) specifies the level of tvar that is the treatment for the statistic atet. The default
is the second treatment level. You may specify the numeric level # (a nonnegative integer) or
the label associated with the numeric level. tlevel() may only be specified with statistic atet.
tlevel() and control() may not specify the same treatment level.

The following option is available with stteffects but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples stata.com

If you are not familiar with the framework for treatment-effects estimation from observational
survival-time data, please see [TE] stteffects intro.

IPWRA estimators use estimated weights to obtain missingness-adjusted outcome-regression pa-
rameters. The missingness-adjusted outcome-regression parameters are used to compute averages of
treatment-level predicted outcomes. Contrasts of these averages estimate the treatment effects.

The estimated weights account for the missing potential outcome and, optionally, for data lost to
censoring. The weights are estimated using a treatment-assignment model and, optionally, a model
for the censoring time. A term in the estimator for the outcome-regression parameters accounts for
data lost to censoring when estimated weights are not used.

There are two versions of the IPWRA estimator because there are two methods of accounting for
the data lost to censoring.

1. IPWRA estimators that adjust for censoring by including a term in the likelihood function for
the outcome-model parameters are known as likelihood-adjusted-censoring IPWRA (LAC-IPWRA)
estimators.

2. IPWRA estimators that adjust for censoring by weighting the likelihood function for the outcome-
model parameters by estimated inverse-probability-of-censoring weights are known as weighted-
adjusted-censoring IPWRA (WAC-IPWRA) estimators.

The LAC-IPWRA estimators require fewer assumptions than the WAC-IPWRA estimators. Outlining
the steps performed by LAC-IPWRA and WAC-IPWRA estimators allows us to be more specific about
the trade-offs between the estimators.

LAC-IPWRA estimators use a three-step approach to estimating treatment effects:

1. Estimate the parameters of a treatment-assignment model and compute inverse-probability-of-
treatment weights.

2. Obtain the treatment-specific predicted mean outcomes for each subject by using the weighted
maximum likelihood estimators. Estimated inverse-probability-of-treatment weights are used
to weight the maximum likelihood estimator. A term in the likelihood function adjusts for
right-censored survival times.

3. Compute the means of the treatment-specific predicted mean outcomes. Contrasts of these
averages provide the estimates of the ATEs. By restricting the computations of the means to the
subset of treated subjects, we can obtain the ATETs.

http://www.stata.com/manuals14/restimationoptions.pdf#restimationoptions
http://stata.com
http://www.stata.com/manuals14/testteffectsintro.pdf#testteffectsintro
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WAC-IPWRA estimators use a four-step approach to estimating treatment effects:

1. Estimate the parameters of a treatment-assignment model and compute inverse-probability-of-
treatment weights.

2. Estimate the parameters of a time-to-censoring model and compute inverse-probability-of-
censoring weights.

3. Obtain the treatment-specific predicted mean outcomes for each subject by using the weighted
maximum likelihood estimators. Estimated inverse-probability-of-treatment weights and inverse-
probability-of-censoring weights are used to weight the maximum likelihood estimator. The
inverse-probability-of-censoring weights account for right-censored survival times.

4. Compute the means of the treatment-specific predicted mean outcomes. Contrasts of these
averages provide the estimates of the ATEs. By restricting the computations of the means to the
subset of treated subjects, we can obtain the ATETs.

The WAC-IPWRA estimators require that the censoring time be random and that the time-to-
censoring model be well specified. The implemented WAC-IPWRA estimators also require that the
time-to-censoring process not vary by treatment level. The LAC-IPWRA estimators do not require these
extra assumptions because they use a likelihood term instead of weights to adjust for the data lost to
censoring.

Here we note only a few entry points to the vast literature on estimators that combine IPW and RA
methods. Hirano, Imbens, and Ridder (2003), Imbens (2000, 2004), Imbens and Wooldridge (2009),
Rosenbaum and Rubin (1983), Robins and Rotnitzky (1995, 2006), Robins, Rotnitzky, and Zhao (1995),
Wooldridge (2002, 2007), Cameron and Trivedi (2005, chap. 25), Wooldridge (2010, chap. 21), and
Vittinghoff et al. (2012, chap. 9) provide excellent general introductions to estimating ATEs and to
the IPWRA estimators in particular.

Like streg and other survival-time commands, stteffects ipwra uses the outcome variable and
the failure indicator computed by, and optionally weights specified with, stset. stteffects ipwra
is not appropriate for data with time-varying covariates, also known as multiple-record survival-time
data, or for delayed-entry data.

Example 1: Estimating the ATE by LAC-IPWRA

Suppose we wish to study the effect of smoking on the time to a second heart attack among women
aged 45–55 years. In our fictional sheart dataset, atime is the observed time in years to a second
heart attack or censoring, and fail is the 0/1 indicator that a second heart attack was observed.
(When fail is 1, atime records the time to the second heart attack; when fail is 0, atime records
a censored observation of the time to a second heart attack.) We previously stset these data; see A
quick tour of the estimators in [TE] stteffects intro.

The treatment, smoking, is stored in the 0/1 indicator smoke. These data also contain age at the
time of the first heart attack (age), and indices of the level of exercise (exercise), diet quality
(diet), and education (education) prior to the first heart attack.

We can use stteffects ipwra to estimate the ATE. We model the mean survival time using the
default Weibull model, controlling for age, exercise, diet, and education. We model treatment
assignment using the default logit model with covariates age, exercise, and education. We do
not specify a time-to-censoring model so that we obtain the LAC estimator.

http://www.stata.com/manuals14/ststset.pdf#ststset
http://www.stata.com/manuals14/testteffectsintro.pdf#testteffectsintroRemarksandexamplesAquicktouroftheestimators
http://www.stata.com/manuals14/testteffectsintro.pdf#testteffectsintroRemarksandexamplesAquicktouroftheestimators
http://www.stata.com/manuals14/testteffectsintro.pdf#testteffectsintro
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. use http://www.stata-press.com/data/r14/sheart
(Time to second heart attack (fictional))

. stteffects ipwra (age exercise diet education) (smoke age exercise education)

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 2.432e-16
Iteration 1: EE criterion = 1.021e-29

Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : Weibull
Treatment model: logit
Censoring model: none

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -1.591874 .4837332 -3.29 0.001 -2.539973 -.643774

POmean
smoke

Nonsmoker 4.214263 .2598689 16.22 0.000 3.704929 4.723597

When every woman smoked in the population of women aged 45–55 years who have had a heart
attack, the average time to a second heart attack is estimated to be 1.59 years less than when no
women in the population of interest smoked. The estimated average time to a second heart attack
when no women in the population of interest smoked is 4.21 years.

The ratio of the ATE to the control-level potential-outcome mean (POM) measures the importance
of the effect. In this example, when all women smoked, the time to the second heart attack falls by
an estimated 38% relative to the case in which no women smoked. See example 3 in [TE] stteffects
ra for an example that uses nlcom to compute a point estimate and a confidence interval for this
ratio.

http://www.stata.com/manuals14/testteffectsra.pdf#testteffectsraRemarksandexamplesex3
http://www.stata.com/manuals14/testteffectsra.pdf#testteffectsra
http://www.stata.com/manuals14/testteffectsra.pdf#testteffectsra
http://www.stata.com/manuals14/rnlcom.pdf#rnlcom
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Example 2: Different outcome and treatment models

Instead of a Weibull model for the outcome model, we could have used an exponential, a gamma,
or a lognormal model. Instead of a logit model for the treatment assignment, we could have used a
probit or a heteroskedastic probit model. This example uses a gamma model for the outcome and a
probit model for the treatment assignment.

. stteffects ipwra (age exercise diet education, gamma)
> (smoke age exercise education, probit)

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 2.644e-13
Iteration 1: EE criterion = 2.153e-23

Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : gamma
Treatment model: probit
Censoring model: none

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -1.387303 .4786032 -2.90 0.004 -2.325348 -.4492583

POmean
smoke

Nonsmoker 3.97986 .2258474 17.62 0.000 3.537207 4.422512

The estimated ATE of −1.39 and control-level POM of 3.98 are similar to the values of −1.59 and
4.21 that we obtained in example 1.
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Example 3: Estimating the ATE by WAC-IPWRA

Rather than using LAC, we may want to specify a time-to-censoring model. We now use stteffects
ipwra to estimate the ATE by WAC-IPWRA. We use the same specification of the outcome and treatment
models that we used in example 1. However, now we specify a time-to-censoring model, using the
default Weibull model with covariates age, exercise, diet, and education.

. stteffects ipwra (age exercise diet education) (smoke age exercise education)
> (age exercise diet education)

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 1.217e-17
Iteration 1: EE criterion = 9.176e-31

Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : Weibull
Treatment model: logit
Censoring model: Weibull

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -2.285057 .7318456 -3.12 0.002 -3.719448 -.8506656

POmean
smoke

Nonsmoker 4.385841 .6427521 6.82 0.000 3.12607 5.645612

The estimated ATE of −2.29 differs from the ATE of −1.59 estimated by LAC-IPWRA, but the
estimates of the control-level POM are similar between the two models: 4.39 for the WAC compared
with 4.21 for the LAC.
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Example 4: Estimating the ATET by LAC-IPWRA

Intuitively, the ATET measures the effect of the treatment on an at-risk subpopulation. Sometimes
the subpopulation that gets the treatment defines such an at-risk subpopulation. The ATET has the
added benefit that it can be estimated under weaker conditions than the ATE; see Assumptions and
trade-offs under Remarks and examples in [TE] stteffects intro.

. stteffects ipwra (age exercise diet education)
> (smoke age exercise education), atet

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 2.671e-18
Iteration 1: EE criterion = 1.638e-30

Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : Weibull
Treatment model: logit
Censoring model: none

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATET
smoke

(Smoker
vs

Nonsmoker) -1.775107 .3437506 -5.16 0.000 -2.448846 -1.101368

POmean
smoke

Nonsmoker 4.062424 .2779877 14.61 0.000 3.517578 4.60727

When all women in the subpopulation smoked, the average time to a second heart attack is
estimated to be 1.78 years less than when no women in the subpopulation of interest smoked. If no
women in the subpopulation of interest smoked, the average time to a second heart attack is 4.06
years.

Stored results
stteffects ipwra stores the following in e():

Scalars
e(N) number of observations
e(nj) number of observations for treatment level j
e(k eq) number of equations in e(b)
e(k levels) number of levels in treatment variable
e(treated) level of treatment variable defined as treated
e(control) level of treatment variable defined as control
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) stteffects
e(cmdline) command as typed
e(dead) d
e(depvar) t
e(tvar) name of treatment variable
e(subcmd) ipwra

http://www.stata.com/manuals14/testteffectsintro.pdf#testteffectsintroRemarksandexamplesAssumptionsandtrade-offs
http://www.stata.com/manuals14/testteffectsintro.pdf#testteffectsintroRemarksandexamplesAssumptionsandtrade-offs
http://www.stata.com/manuals14/testteffectsintro.pdf#testteffectsintro
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e(omodel) outcome model: weibull, exponential, gamma, or lognormal
e(tmodel) treatment model: logit, probit, or hetprobit
e(cmodel) censoring model: weibull, exponential, gamma, or lognormal (if specified)
e(stat) statistic estimated: ate, atet, or pomeans
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(tlevels) levels of treatment variable
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
Regression-adjusted estimators
Weighted-adjusted-censoring assumptions
Weighted regression-adjusted estimators
Inverse-probability-weighted estimators

Uncensored data
Inverse-probability-weighted regression-adjustment estimators

Weighted-adjusted-censoring IPWRA
Likelihood-adjusted-censoring IPWRA

Functional-form details

Introduction

This section presents the methods and formulas used by the estimators implemented in stteffects
ra, stteffects wra, stteffects ipw, and stteffects ipwra. This section assumes that you are
familiar with the concepts and intuition from the estimators discussed in [TE] teffects intro advanced.

Each of the estimators implemented in stteffects has a multistep logic but is implemented
as one step by simultaneously solving the estimating equations that define each step. This one-step
estimating-equation approach provides consistent point estimates and a consistent variance–covariance
of the estimator (VCE); see Newey (1984), Wooldridge (2010), and Drukker (2014).

Survival-time treatment-effects estimators handle two types of missing data. First, only one of the
potential outcomes is observed, as is standard in causal inference. Second, the potential outcome for
the received treatment may be censored. The data missing because of censoring may be handled by
an outcome model, a censoring model, or both, just like the data missing due to observing only one
potential outcome.

http://www.stata.com/manuals14/teteffectsintroadvanced.pdf#teteffectsintroadvanced
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Technical note

Delayed entry would be a third type of missing data. The left-truncation process caused by delayed
entry would also need to be modeled to estimate ATE parameters. The estimators implement in
stteffects do not allow for delayed entry because they do not have a method for modeling how
the left-truncation process selects the sample, conditional on the covariates.

All the implemented estimators are combinations of regression-adjustment (RA) and inverse-
probability-weighted (IPW) techniques. RA estimators use an outcome model to account for the
missing potential outcome and for censoring. IPW estimators use models for treatment assignment
and censoring to construct weights that account for the missing potential outcome and for censoring.

The remainder of this section provides technical details about how the estimators in stteffects
were implemented. We provide details only for the two-treatment-level case to simplify the formulas.
We provide outlines for how the extensions to the multiple-treatment-level case were implemented.

Regression-adjusted estimators

We begin with the RA estimators implemented in stteffects ra. The RA estimators have the
following logic:

RA1. For each treatment level τ ∈ {0, 1}, estimate by maximum likelihood (ML) the parameters βτ
of a parametric model for the survival-time outcome t in which F (t|x, τ,βτ ) is the distribution
of t conditional on covariates x and treatment level τ . Denote the estimates βτ by β̂ra,τ .

RA2. Use the estimated β̂ra,τ and the functional form implied by F (t|x, τ,βτ ) to estimate the mean
survival time, conditional on x and treatment level τ , for each sample observation, denoted by
Ê(ti|xi, τ, β̂ra,τ ). Conditional independence of the treatment and the survival-time potential
outcomes ensures that E(t|x, τ,βτ ) = E(tτ |x,βτ ), where tτ is the potential survival-time
outcome corresponding to treatment level τ . Under correct model specification, sample averages
of Ê(ti|xi, τ, β̂ra,τ ) consistently estimate the POM for treatment level τ , denoted by POMτ .

RA3. A contrast of the estimated POMs estimates the ATE.

If estimating an ATET, step RA2 is modified to use only the treated observations when estimating
the POMs. A contrast of these POMs then estimates the ATET.

The contribution of the ith observation to the log likelihood that is maximized in step RA1 is

Lra(ti,xi, τ, β̂ra,τ ) = $i(τi == τ)
[
(1− ci) ln{f(ti|xi, τ, β̂ra,τ )}

+ ci ln{1− F (ti|xi, τ, β̂ra,τ )}
] (1)

where $i is the observation-level weight, ci is the 0/1 indicator for whether the survival-time
observation on person i was censored, and f(ti|xi, τ, β̂ra,τ ) is the density corresponding to distri-
bution F (ti|xi, τ, β̂ra,τ ). The first term inside the curly braces in (1) accounts for the noncensored
observations, and the second term inside the curly braces accounts for the censored observations.
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The RA estimators for the POMs simultaneously solve estimating equations (2a) through (2d) for
β̂ra,0, β̂ra,1, P̂OMra,0, and P̂OMra,1.

1/N

N∑
i=1

sra(ti,xi, 0, β̂ra,0, F ) = 0 (2a)

1/N

N∑
i=1

sra(ti,xi, 1, β̂ra,1, F ) = 0 (2b)

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 0, β̂ra,0)− P̂OMra,0

}
= 0 (2c)

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 1, β̂ra,1)− P̂OMra,1

}
= 0 (2d)

where

sra(ti,xi, 0, β̂ra,0, F ) =
∂Lra(ti,xi,0,β̂ra,0)

∂β̂ra,0

is the vector of score equations from the ML estimator

for β̂ra,0 based on survival-time model F ,

sra(ti,xi, 1, β̂ra,1, F ) =
∂Lra(ti,xi,1,β̂ra,1)

∂β̂ra,1

is the vector of score equations from the ML estimator

for β̂ra,1 based on survival-time model F ,

Ê(ti|xi, τ = 0, β̂ra,0) is the predicted mean survival time assuming treatment level 0 for observation
i conditional on xi, and

Ê(ti|xi, τ = 1, β̂ra,1) is the predicted mean survival time assuming treatment level 1 for observation
i conditional on xi.

The ATE is estimated by replacing (2d) with

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 1, β̂ra,1)− P̂OMra,0 − ÂTEra

}
= 0 (3)

and the ATET is estimated by replacing (2c) and (3) with

1/N1

N∑
i=1

$i(τi == 1)
{
Ê(ti|xi, τ = 0, β̂ra,0)− P̂OMra,cot,0

}
= 0

1/N1

N∑
i=1

$i(τi == 1)
{
Ê(ti|xi, τ = 1, β̂ra,1)− P̂OMra,cot,0 − ÂTETra

}
= 0

where N1 =
∑N
i=1(ti == 1) and P̂OMra,cot,0 is the estimated conditional-on-treatment POM for

treatment level 0.
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Asymptotic standard errors for estimating equation estimators, also known as exactly identified
generalized method of moments estimators, are standard in the literature; see Newey (1984), Newey
and McFadden (1994), Tsiatis (2006), and Wooldridge (2010). These standard errors always have a
robust structure and have been generalized to cluster–robust standard errors (see Wooldridge [2010]).

The score equations and the functional form for the predicted mean survival time depend on the
model for survival-time outcome F . We provide these details below, under Functional-form details.

Weighted-adjusted-censoring assumptions

All estimators that permit you to model the time to censoring are subject to three assumptions:

1. The censoring time must be random.

2. The censoring time must be from a known distribution.

3. The distribution of the censoring time cannot vary by treatment level.

We call these three requirements the WAC assumptions. If the WAC assumptions are violated, you
can use either an RA estimator or the LAC version of the IPWRA estimator.

Technical note

We now describe how the observed survival-time outcome t is generated from the random censoring
time tc, the received treatment τ , and the potential-outcome survival times t0 and t1 under the WAC
assumptions. First, each potential outcome is either censored or not censored.

t̃0 = tc(t0 ≥ tc) + t0{1− (t0 ≥ tc)}
t̃1 = tc(t1 ≥ tc) + t1{1− (t1 ≥ tc)}

Under the WAC assumptions, tc is a random variable from a known distribution, and tc does not vary
by treatment level.

Next, the received treatment τ ∈ {0, 1} determines which, possibly censored, potential outcome
is observed.

t = (1− τ)t̃0 + τ t̃1

The 0/1 indicator for whether the observed t was censored, denoted by c, is given by

c = (1− τ)(t0 ≥ tc) + τ(t1 ≥ tc)

Weighted regression-adjusted estimators

As is standard in the survival literature, the RA estimators account for censored survival times by
adding a term to the log-likelihood function for censored observations [see (1)]. In contrast, weighted
regression-adjustment (WRA) estimators use weights to account for censored observations and are
subject to the WAC assumptions.

Wooldridge (2007) and Lin (2000) derived estimators for the regression parameters that maximize
a weighted objective function of the uncensored observations. Each observation-level weight is the
inverse of the probability of not being censored. Like the RA estimators, the WRA estimators use
averages of the predicted mean survival times to estimate treatment-effect parameters.
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The WRA estimators have the following logic.

WRA1. Estimate by ML the parameters γ of a parametric survival-time model for the time to censoring
tc, in which Fc(tc|w,γ) is the distribution of tc conditional on covariates w. Note that the
censoring process does not vary by treatment level and that we only observe tc when the
observed potential outcome was censored. Denote the estimates of γ by γ̂.

WRA2. For each treatment level τ ∈ {0, 1}, estimate by weighted maximum likelihood (WML) the
βτ parameters of a parametric survival-time model, denoted by F (t|x, τ,βτ ), where t is the
survival-time outcome and x are the covariates. The weights are the inverse of the estimated
probabilities of not being censored, 1/{1−Fc(tc|w, γ̂)}, and only the uncensored observations
are used. Denote the estimates of βτ by β̂wra,τ .

WRA3. Use the estimated β̂wra,τ and the functional form implied by F (t|x, τ,βτ ) to estimate the mean
survival time, conditional on x and treatment level τ , for each sample observation, denoted by
Ê(ti|xi, τ, β̂wra,τ ). Conditional independence of the treatment and the survival-time potential
outcomes ensures that E(t|x, τ,βτ ) = E(tτ |x,βτ ), where tτ is the potential survival-time
outcome corresponding to treatment level τ . Under correct model specification, sample averages
of Ê(ti|xi, τ, β̂wra,τ ) consistently estimate the POM for treatment level τ , denoted by POMτ .

WRA4. A contrast of the estimated POMs estimates the ATE.

If estimating an ATET, step WRA3 is modified to use only the treated observations when estimating
the POMs. A contrast of these POMs then estimates the ATET.

The contribution of the ith observation to the log likelihood that is maximized in step WRA1 is

Lc,wra(ti,wi, γ̂) = $i [ci ln{fc(ti|wi, γ̂)}+ (1− ci) ln{1− Fc(ti|wi, γ̂)}] (4)

where $i is the observation-level weight, ci is the 0/1 indicator for whether the survival-time
observation on person i was censored, ti is the observed failure time, and fc(ti|wi, γ̂) is the density
corresponding to conditional time-to-censoring distribution Fc(ti|wi, γ̂). When ci = 1, ti is the time
to censoring. When ci = 0, the censoring time is not observed; we only know that it is greater
than the observed ti. The first term accounts for the observations in which ti is observed to be the
censoring time, and the second term accounts for the observations in which the censoring time is
greater than the observed ti.

The contribution of the ith observation to the log likelihood that is maximized in step WRA2 is

Lwra(ti,xi, τ, β̂wra,τ ) = $i(τi == τ)

[
(1− ci)

{1− Fc(ti|wi, γ̂)}

]
ln{f(ti|xi, τ, β̂wra,τ )} (5)

where f(ti|xi, τ, β̂wra,τ ) is the density corresponding to distribution F (ti|xi, τ, β̂wra,τ ). Equation
(5) does not contain a term that adjusts for censoring; see (1) for a comparison. Rather, it uses
inverse-probability weights to account for both the censored and the uncensored observations.

The WRA estimators for the POMs simultaneously solve estimating equations (6a) through (6e) for
γ̂, β̂wra,0, β̂wra,1, P̂OMwra,0, and P̂OMwra,1.

1/N

N∑
i=1

swra(ti,wi, γ̂, Fc) = 0 (6a)

1/N

N∑
i=1

swra(ti,xi, 0, β̂wra,0, F ) = 0 (6b)
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1/N

N∑
i=1

swra(ti,xi, 1, β̂wra,1, F ) = 0 (6c)

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 0, β̂wra,0)− P̂OMwra,0

}
= 0 (6d)

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 1, β̂wra,1)− P̂OMwra,1

}
= 0 (6e)

where

swra(ti,wi, γ̂, Fc) =
∂Lc,wra(ti,wi,γ̂)

∂γ̂
is the vector of score equations from the ML estimator for

γ̂ based on survival-time model Fc,

swra(ti,xi, 0, β̂wra,0, F ) =
∂L(ti,xi,0,β̂wra,0)

∂β̂wra,0

is the vector of score equations from the WML

estimator for β̂wra,0 based on survival-time model F ,

swra(ti,xi, 1, β̂wra,1, F ) =
∂L(ti,xi,1,β̂wra,1)

∂β̂wra,1

is the vector of score equations from the WML

estimator for β̂wra,1 based on survival-time model F ,

Ê(ti|xi, τ = 0, β̂wra,0) is the predicted mean survival time assuming treatment level 0 for
observation i conditional on xi, and

Ê(ti|xi, τ = 1, β̂wra,1) is the predicted mean survival time assuming treatment level 1 for
observation i conditional on xi.

The observation-level scores swra(ti,xi, 0, β̂wra,0, F ) and swra(ti,xi, 1, β̂wra,1, F ) also depend on
ci, wi, γ̂, and Fc, but we ignored this dependence to simplify the notation.

The ATE is estimated by replacing (6e) with

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 1, β̂wra,1)− P̂OMwra,0 − ÂTEwra

}
= 0 (7)

and the ATET is estimated by replacing (6e) and (7) with

1/N1

N∑
i=1

$i(τi == 1)
{
Ê(ti|xi, τ = 0, β̂wra,0)− P̂OMwra,cot,0

}
= 0

1/N1

N∑
i=1

$i(τi == 1)
{
Ê(ti|xi, τ = 1, β̂wra,1)− P̂OMwra,cot,0 − ÂTETwra

}
= 0

where P̂OMwra,cot,0 is the estimated conditional-on-treatment POM.
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Inverse-probability-weighted estimators

IPW estimators are weighted averages of the observed outcome. The weights correct for missing
data due to unobserved potential outcomes and censoring. Each weight is the inverse of the probability
that a given value is observed. Observed values that were not likely to be observed have higher weights.

When the outcome variable is never censored, the missing data is the unobserved potential outcome
and an observation’s weight is the inverse of a treatment probability. When the outcome may be
censored, the censoring is an additional source of missing data. In this case, an observation’s weight
is the inverse of the joint probability that an observation is uncensored and has a particular treatment
level.

To define this joint probability, the censoring time must be random. In practice, we make the WAC
assumptions.

As is standard in the survival-time literature, we assume that the censoring-time process is
independent of treatment assignment after conditioning on the covariates. This conditional independence
assumption implies that the probability that observation i receives treatment level 1 and is not censored
is the product of the probability that i gets treatment level 1 and the probability that i is not censored
at time ti, which we denote by

p(zi,α){1− Fc(ti|wi,γ)}

where

p(zi,α) is the modeled probability that i gets treatment level 1, conditional on covariates zi with
parameters α, and

Fc(ti|wi,γ) is the survival-time model for the censoring time, conditional on covariates wi with
parameters γ, and evaluated at time ti.

Bai, Tsiatis, and O’Brien (2013) formally derive these weights to control jointly for the missing
potential outcome and censoring.

The IPW estimators have the following logic.

IPW1. Estimate by ML the parameters γ of a parametric survival-time model for the time to censoring,
in which Fc(tc|w,γ) is the distribution of censoring time, conditional on covariates w. Denote
the estimates of γ by γ̂.

IPW2. Estimate by ML the parameters α of a parametric model for the probability of treatment model
p(zi,α). Denote the estimates of α by α̂.

IPW3. Use the γ̂ estimated in IPW1 and the α̂ estimated in IPW2 to construct inverse-probability weights
by (8a) for treatment level 1 and by (8b) for treatment level 0.

ωi,1 =
(τi == 1)(ci == 0)

[p(zi, α̂){1− Fc(ti|wi, γ̂)}]
(8a)

ωi,0 =
(τi == 0)(ci == 0)

[{1− p(zi, α̂)}{1− Fc(ti|wi, γ̂)}]
(8b)

IPW4. Use the estimated weights to estimate each POMτ by a weighted average of the uncensored
observations on the observed potential outcome.
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The contribution of the ith observation to the log likelihood that is maximized in step IPW1 is

Lc,ipw(ti,wi, γ̂) = $i [ci ln{fc(ti|wi, γ̂)}+ (1− ci) ln{1− Fc(ti|wi, γ̂)}]

where the definitions and intuition are as described after (4).

The contribution of the ith observation to the log likelihood that is maximized in step IPW2 is

Lp,ipw(τi, zi, α̂) = $i [(τi == 1) ln{p(zi, α̂)}+ {1− (τi == 1)} ln{1− p(zi, α̂)}]

where p(zi, α̂) is the model for the probability that i gets treatment level 1.

The IPW estimators for the POMs simultaneously solve estimating equations (9a) through (9d) for
γ̂, α̂, P̂OMipw,0, and P̂OMipw,1.

1/N

N∑
i=1

sipw(ti,wi, γ̂, Fc) = 0 (9a)

1/N

N∑
i=1

sipw(τi, zi, α̂, p) = 0 (9b)

1/N

N∑
i=1

$iωi,0
(
ti − P̂OMipw,0

)
= 0 (9c)

1/N

N∑
i=1

$iωi,1
(
ti − P̂OMipw,1

)
= 0 (9d)

where

sipw(ti,wi, γ̂, Fc) =
∂Lc,ipw(ti,wi,γ̂)

∂γ̂
is the vector of score equations from the ML estimator for

γ̂ based on survival-time model Fc, and

sipw(τi, zi, α̂, p) =
∂Lp,ipw(τi,zi,α̂)

∂α̂
is the vector of score equations from the ML estimator for α̂

based on probability model p.

The literature on IPW estimators discusses using normalized versus unnormalized weights, with
normalized weights doing better in simulation studies; see Busso, DiNardo, and McCrary (2014) for
example. The way that weights enter moment equations (9c) and (9d) implies that they are normalized,
because the scale of the weights does not affect the estimates.

The estimated ATE is computed as

P̂OMipw,1 − P̂OMipw,0 = ÂTEipw

The estimated ATET uses weights

ωi,cot,1 =
(τi == 1)(ci == 0)

[{1− Fc(ti|wi, γ̂)}]
(10a)

for treatment level 1 and

ωi,cot,0 =
p(zi, α̂)(τi == 0)(ci == 0)

[{1− p(zi, α̂)}{1− Fc(ti|wi, γ̂)}]
(10b)
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for treatment level 0, and replaces (9c) and (9d) with

1/N1

N∑
i=1

$iωi,cot,0
(
ti − P̂OMipw,cot,0

)
= 0 (11a)

1/N1

N∑
i=1

$iωi,cot,1
(
ti − P̂OMipw,cot,1

)
= 0 (11b)

and then computes
P̂OMipw,cot,1 − P̂OMipw,cot,0 = ÂTETipw

These IPW estimators can be viewed as weighted IPW estimators and are thus related to those in
Hirano, Imbens, and Ridder (2003).

Uncensored data

As mentioned, when the outcome variable is never censored, the missing data is the unobserved
potential outcome and an observation’s weight is the inverse of a treatment probability. In the never-
censored case, the IPW estimators are identical to those implemented in teffects ipw; see IPW
estimators under Methods and formulas in [TE] teffects aipw.

stteffects ipw computes the estimator for never-censored data when a censoring model is
not specified and there are no censored observations in the sample. In the never-censored case, the
following changes are made to the IPW estimator for the POMs and the ATE.

1. Step IPW1 is not performed.

2. The weights in (8a) and (8b) for the POMs and the ATE are replaced with (12a) for treatment
level 1 and (12b) for treatment level 0.

ωi,1 =
(τi == 1)

p(zi, α̂)
(12a)

ωi,0 =
(τi == 0)

{1− p(zi, α̂)}
(12b)

3. Only moment conditions (9b), (9c), and (9d) are used.

The following changes also are made to the IPW estimator for the ATET.

1. Step IPW1 is not performed.

2. The weights in (10a) and (10b) are replaced with (13a) for treatment level 1 and (13b) for
treatment level 0.

ωi,cot,1 = (τi == 1) (13a)

ωi,cot,0 =
p(zi, α̂)(τi == 0)

{1− p(zi, α̂)}
(13b)

3. Only moment conditions (9b), (11a), and (11b) are used.

http://www.stata.com/manuals14/teteffectsipw.pdf#teteffectsipw
http://www.stata.com/manuals14/teteffectsaipw.pdf#teteffectsaipwMethodsandformulasIPWestimators
http://www.stata.com/manuals14/teteffectsaipw.pdf#teteffectsaipwMethodsandformulasIPWestimators
http://www.stata.com/manuals14/teteffectsaipw.pdf#teteffectsaipw
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Inverse-probability-weighted regression-adjustment estimators

IPWRA estimators are averages of treatment-specific predicted conditional means that were made
using missingness-adjusted regression parameters. These estimators are Wooldridge’s IPWRA for
survival-time outcomes; see Wooldridge (2010, chap. 21) and Wooldridge (2007).

The censored observations can be handled either by weighting under the WAC assumptions to
obtain the WAC-IPWRA estimator or by adding a term to the log-likelihood function (which we call
likelihood-adjusted censoring) to obtain the LAC-IPWRA estimator. Correspondingly, there are two
versions of formulas for the IPWRA estimator.

1. When a censoring model is specified, stteffects ipwra uses the formulas for the WAC-IPWRA
estimator given in Weighted-adjusted-censoring IPWRA.

2. When a censoring model is not specified, stteffects ipwra uses the formulas for the
LAC-IPWRA given in Likelihood-adjusted-censoring IPWRA, below.

The WAC-IPWRA estimator requires that some observations be censored and that the WAC assumptions
hold; see Weighted-adjusted-censoring assumptions, above. The LAC-IPWRA estimator handles the case
in which no observations are censored and requires the weaker independent censoring assumptions,
which allows for fixed censoring times.

Weighted-adjusted-censoring IPWRA

When a censoring model is specified, stteffects ipwra uses the formulas for the WAC-IPWRA
estimator to obtain the model-based weights that account for censoring. For notational conciseness
and to reinforce its dependence on random censoring, we denote the WAC-IPWRA estimator by IPWRAR
in lists and formulas. The WAC-IPWRA estimators have the following logic.

IPWRAR1. Estimate by ML the parameters γ of a parametric survival-time model for the time to
censoring, in which Fc(tc|w,γ) is the censoring-time distribution, conditional on covariates
w. We denote the estimates of γ by γ̂.

IPWRAR2. Estimate by ML the parameters α of a parametric model for the probability of treatment
model p(zi,α). We denote the estimates of α by α̂.

IPWRAR3. For each treatment level τ ∈ {0, 1}, estimate by WML the parameters βτ of a parametric
model for the survival-time outcome t, in which F (t|x, τ,βτ ) is the distribution of t
conditional on covariates x and treatment level τ . For the ATE, the weights are those in
equations (8a) and (8b). For the ATET, the weights are those in equations (10a) and (10b).
We denote the estimates of βipwrar,τ by β̂τ .

IPWRAR4. Use the estimated β̂ipwrar,τ and the functional form implied by F (t|x, τ,βτ ) to estimate the
mean survival time, conditional on x and treatment level τ , for each sample observation,
denoted by Ê(ti|xi, τ, β̂ipwrar,τ ). Conditional independence of the treatment and the
survival-time potential outcomes ensures that E(t|x, τ,βτ ) = E(tτ |x,βτ ), where tτ is
the potential survival-time outcome corresponding to treatment level τ . Under correct model
specification, sample averages of Ê(ti|xi, τ, β̂ipwrar,τ ) consistently estimate the POM for
treatment level τ , denoted by POMτ .

The contribution of the ith observation to the log likelihood that is maximized in step IPWRAR1 is

Lc,ipwrar(ti,wi, γ̂) = $i [ci ln{fc(ti|wi, γ̂)}+ (1− ci) ln{1− Fc(ti|wi, γ̂)}]

where the definitions and intuition are as described after (4).
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The contribution of the ith observation to the log likelihood that is maximized in step IPWRAR2 is

Lp,ipwrar(τi, zi, α̂) = $i [(τi == 1) ln{p(zi, α̂)}+ {1− (τi == 1)} ln{1− p(zi, α̂)}]

where p(zi, α̂) is the model for the probability that i gets treatment level 1.

The weights and the parameters in step IPWRAR3 used to estimate the ATE differ from those used
to estimate the ATET. For the ATE, the contribution of the ith observation to the log likelihood that
is maximized in step IPWRAR3 is

Lipwrar(ti,xi, τ, β̂ipwrar,ate,τ ) = $iωi,τ ln{f(ti|xi, τ, β̂ipwrar,ate,τ )}

where ωi,1 is given in (8a), ωi,0 is given in (8b), and f(ti|xi, τ, β̂ipwrar,ate,τ ) is the density
corresponding to distribution F (ti|xi, τ, β̂ipwrar,ate,τ ). Like WRA, only the uncensored observations
are used because the weights account for censoring.

The IPWRAR estimators for the POMs simultaneously solve estimating equations (14a) through (14f)
for γ̂, α̂, β̂ipwrar,ate,0, β̂ipwrar,ate,0, P̂OMipwrar,0, and P̂OMipwrar,1.

1/N

N∑
i=1

sipwrar(ti,wi, γ̂, Fc) = 0 (14a)

1/N

N∑
i=1

sipwrar(τi, zi, α̂, p) = 0 (14b)

1/N

N∑
i=1

sipwrar(ti,xi, 0, β̂ipwrar,ate,0, F ) = 0 (14c)

1/N
N∑
i=1

sipwrar(ti,xi, 1, β̂ipwrar,ate,1, F ) = 0 (14d)

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 0, β̂ipwrar,ate,0)− P̂OMipwrar,0

}
= 0 (14e)

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 1, β̂ipwrar,ate,1)− P̂OMipwrar,1

}
= 0 (14f)

where

sipwrar(ti,wi, γ̂, Fc) =
∂Lc,ipwrar(ti,wi,γ̂)

∂γ̂
is the vector of score equations from the ML estimator

for γ̂ based on survival-time model Fc,

sipwrar(τi, zi, α̂, p) =
∂Lp,ipwrar(τi,zi,α̂)

∂α̂
is the vector of score equations from the ML estimator

for α̂ based on probability model p,

sipwrar(ti,xi, 0, β̂ipwrar,ate,0, F ) =
∂Lipwrar(ti,xi,0,β̂ipwrar,ate,0)

∂β̂ipwrar,ate,0

is the vector of score equations

from the ML estimator for β̂ipwrar,ate,0 based on survival-time model F ,
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sipwrar(ti,xi, 1, β̂ipwrar,ate,1, F ) =
∂Lipwrar(ti,xi,1,β̂ipwrar,ate,1)

∂β̂ipwrar,ate,1

is the vector of score equations

from the ML estimator for β̂ipwrar,ate,1 based on survival-time model F ,

Ê(ti|xi, τ = 0, β̂ipwrar,ate,0) is the predicted mean survival time assuming treatment level 0 for
observation i conditional on xi, and

Ê(ti|xi, τ = 1, β̂ipwrar,ate,1) is the predicted mean survival time assuming treatment level 1 for
observation i conditional on xi.

The ATE is estimated by replacing (14f) with

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 1, β̂ipwrar,ate,1)− P̂OMipwrar,0 − ÂTEipwrar

}
= 0

For the ATET, the contribution of the ith observation to the weighted log likelihood that is maximized
in step IPWRAR3 is

Lipwrar(ti,xi, τ, β̂ipwrar,ate,τ ) = $iωi,cot,τ (τi == τ) ln{f(ti|xi, τ, β̂ipwrar,atet,τ )}

where ωi,cot,1 is given in (10a), ωi,cot,0 is given in (10b), and f(ti|xi, τ, β̂ipwrar,atet,τ ) is the density
corresponding to distribution F (ti|xi, τ, β̂ipwrar,atet,τ ).

The WAC-IPWRA estimators for the conditional-on-treatment POMs simultaneously solve esti-
mating equations (15a) through (15f) for β̂ipwrar,atet,0, β̂ipwrar,atet,0, γ̂, α̂, P̂OMipwrar,cot,0, and
P̂OMipwrar,cot,1.

1/N

N∑
i=1

sipwrar(ti,wi, γ̂, Fc) = 0 (15a)

1/N

N∑
i=1

sipwrar(τi, zi, α̂, p) = 0 (15b)

1/N

N∑
i=1

sipwrar(ti,xi, 0, β̂ipwrar,atet,0, F ) = 0 (15c)

1/N

N∑
i=1

sipwrar(ti,xi, 1, β̂ipwrar,atet,1, F ) = 0 (15d)

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 0, β̂ipwrar,atet,0)− P̂OMipwrar,cot,0

}
= 0 (15e)

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 1, β̂ipwrar,atet,1)− P̂OMipwrar,cot,1

}
= 0 (15f)

where

sipwrar(ti,wi, γ̂, Fc) =
∂Lc,ipwrar(ti,wi,γ̂)

∂γ̂
is the vector of score equations from the ML estimator

for γ̂ based on survival-time model Fc,
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sipwrar(τi, zi, α̂, p) =
∂Lp,ipwrar(τi,zi,α̂)

∂α̂
is the vector of score equations from the ML estimator

for α̂ based on probability model p,

sipwrar(ti,xi, 0, β̂ipwrar,atet,0, F ) =
∂Lipwrar(ti,xi,0,β̂ipwrar,atet,0)

∂β̂ipwrar,atet,0

is the vector of score equations

from the WML estimator for β̂ipwrar,atet,0 based on survival-time model F ,

sipwrar(ti,xi, 1, β̂ipwrar,atet,1, F ) =
∂Lipwrar(ti,xi,1,β̂ipwrar,atet,1)

∂β̂ipwrar,atet,1

is the vector of score equations

from the WML estimator for β̂ipwrar,atet,1 based on survival-time model F ,

Ê(ti|xi, τ = 0, β̂ipwrar,atet,0) is the predicted mean survival time assuming treatment level 0 for
observation i conditional on xi, and

Ê(ti|xi, τ = 1, β̂ipwrar,atet,1) is the predicted mean survival time assuming treatment level 1 for
observation i conditional on xi.

The ATET is estimated by replacing (15f) with

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 1, β̂ipwrar,atet,1)− P̂OMipwrar,cot,0 − ÂTETipwrar

}
= 0

Likelihood-adjusted-censoring IPWRA

When a censoring model is not specified, stteffects ipwra uses the formulas for the LAC-IPWRA
estimator that add a term to the log-likelihood function. For notational conciseness and to reinforce
its use of an additional term in the log likelihood, we denote the LAC-IPWRA estimator by IPWRAL
in lists and formulas.

The methods and formulas for the LAC-IPWRA estimator differ in three ways from those for the
WAC-IPWRA estimator.

1. No censoring model is specified, so LAC-IPWRA does not perform a version of step IPWRAR1
and it does not use the moment equations (14a).

2. The weights only depend on the treatment level and treatment assignment probabilities, not on
the censoring.

3. The WML estimator for βτ includes a term for censored observations and censored observations
are used. Recall that for the WAC-IPWRA estimator, the weights used in the WML estimator for
βτ account for the censoring, and the censored observations are not used in the WML estimator.

The LAC-IPWRA estimators have the following logic.

IPWRAL1. Estimate by ML the parameters α of a parametric model for the probability of treatment
model p(zi,α).

IPWRAL2. For each treatment level τ ∈ {0, 1}, estimate by WML the parameters βτ of a parametric
model for the survival-time outcome t in which F (t|x, τ,βτ ) is the distribution of
t conditional on covariates x and treatment level τ . The weights depend only on the
treatment level and the treatment-assignment probabilities. For the ATE, the weights are
those in (12a) and (12b). For the ATET, the weights are those in (13a) and (13b). We denote
the estimates of βτ by β̂ipwral,τ .
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IPWRAL3. Use the estimated β̂ipwral,τ and the functional form implied by F (t|x, τ,βτ ) to estimate
the mean survival time, conditional on x and treatment level τ , for each sample observa-
tion, denoted by Ê(ti|xi, τ, β̂ipwral,τ ). Conditional independence of the treatment and the
survival-time potential outcomes ensures that E(t|x, τ,βτ ) = E(tτ |x,βτ ), where tτ is the
potential survival-time outcome corresponding to treatment level τ . Under correct model
specification, sample averages of Ê(ti|xi, τ, β̂ipwral,τ ) consistently estimate the POM for
treatment level τ , denoted by POMτ .

The contribution of the ith observation to the log likelihood that is maximized in step IPWRAL1 is

Lp,ipwral(τi, zi, α̂) = $i [(τi == 1) ln{p(zi, α̂)}+ {1− (τi == 1)} ln{1− p(zi, α̂)}]

where p(zi, α̂) is the model for the probability that i gets treatment level 1.

The weights and the parameters in step IPWRAL2 used to estimate the ATE differ from those used
to estimate the ATET. For the ATE, the contribution of the ith observation to the log likelihood that
is maximized in step IPWRAL2 is

Lipwral(ti,xi, τ, β̂ipwral,ate,τ ) = (τi == τ)$iωi,τ

{
(1− ci) ln{f(ti|xi, τ, β̂ipwrar,ate,τ )}

ci ln{1− F (ti|xi, τ, β̂ipwrar,ate,τ )}
}

where ωi,1 is given in (12a), ωi,0 is given in (12b), and f(ti|xi, τ, β̂ipwral,ate,τ ) is the density corre-
sponding to distribution F (ti|xi, τ, β̂ipwral,ate,τ ). Unlike the WRA estimator, the censored observations
are used, and there is a term in the likelihood function to account for censoring.

The LAC-IPWRA estimators for the POMs simultaneously solve estimating equations (16a) through
(16e) for α̂, β̂ipwral,ate,0, β̂ipwral,ate,0, P̂OMipwral,0, and P̂OMipwral,1.

1/N

N∑
i=1

sipwral(τi, zi, α̂, p) = 0 (16a)

1/N

N∑
i=1

sipwral(ti,xi, 0, β̂ipwral,ate,0, F ) = 0 (16b)

1/N

N∑
i=1

sipwral(ti,xi, 1, β̂ipwral,ate,1, F ) = 0 (16c)

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 0, β̂ipwral,ate,0)− P̂OMipwral,0

}
= 0 (16d)

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 1, β̂ipwral,ate,1)− P̂OMipwral,1

}
= 0 (16e)

where

sipwral(τi, zi, α̂, p) =
∂Lp,ipwral(τi,zi,α̂)

∂α̂
is the vector of score equations from the ML estimator

for α̂ based on probability model p,
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sipwral(ti,xi, 0, β̂ipwral,ate,0, F ) =
∂Lipwral(ti,xi,0,β̂ipwral,ate,0)

∂β̂ipwral,ate,0

is the vector of score equations

from the WML estimator for β̂ipwral,ate,0 based on survival-time model F ,

sipwral(ti,xi, 1, β̂ipwral,ate,1, F ) =
∂Lipwral(ti,xi,1,β̂ipwral,ate,1)

∂β̂ipwral,ate,1

is the vector of score equations

from the WML estimator for β̂ipwral,ate,1 based on survival-time model F ,

Ê(ti|xi, τ = 0, β̂ipwral,ate,0) is the predicted mean survival time assuming treatment level 0 for
observation i conditional on xi, and

Ê(ti|xi, τ = 1, β̂ipwral,ate,1) is the predicted mean survival time assuming treatment level 1 for
observation i conditional on xi.

The ATE is estimated by replacing (16e) with

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 1, β̂ipwral,ate,1)− P̂OMipwral,0 − ÂTEipwral

}
= 0

For the ATET, the contribution of the ith observation to the WML function that is maximized in step
IPWRAL2 is

Lipwral(ti,xi, τ, β̂ipwral,atet,τ ) = (τi == τ)$iωi,cot,τ

{
(1− ci) ln{f(ti|xi, τ, β̂ipwrar,atet,τ )}

ci ln{1− F (ti|xi, τ, β̂ipwrar,atet,τ )}
}

where ωi,cot,1 is given in (13a), ωi,cot,0 is given in (13b), and f(ti|xi, τ, β̂ipwral,atet,τ ) is the
density corresponding to distribution F (ti|xi, τ, β̂ipwral,atet,τ ). Again unlike the WRA, the censored
observations are used, and there is a term in the likelihood function to account for censoring.

The LAC-IPWRA estimators for the conditional-on-treatment POMs simultaneously solve estimating
equations (17a) through (17e) for α̂, β̂ipwral,atet,0, β̂ipwral,atet,0, P̂OMipwral,cot,0, and P̂OMipwral,cot,1.

1/N

N∑
i=1

sipwral(τi, zi, α̂, p) = 0 (17a)

1/N

N∑
i=1

sipwral(ti,xi, 0, β̂ipwral,atet,0, F ) = 0 (17b)

1/N

N∑
i=1

sipwral(ti,xi, 1, β̂ipwral,atet,1, F ) = 0 (17c)

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 0, β̂ipwral,atet,0)− P̂OMipwral,cot,0

}
= 0 (17d)

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 1, β̂ipwral,atet,1)− P̂OMipwral,cot,1

}
= 0 (17e)
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where

sipwral(τi, zi, α̂, p) =
∂Lp,ipwral(τi,zi,α̂)

∂α̂
is the vector of score equations from the ML estimator

for α̂ based on probability model p,

sipwral(ti,xi, 0, β̂ipwral,atet,0, F ) =
∂Lipwral(ti,xi,0,β̂ipwral,atet,0)

∂β̂ipwral,atet,0

is the vector of score equations

from the WML estimator for β̂ipwral,atet,0 based on survival-time model F ,

sipwral(ti,xi, 1, β̂ipwral,atet,1, F ) =
∂Lipwral(ti,xi,1,β̂ipwral,atet,1)

∂β̂ipwral,atet,1

is the vector of score equations

from the WML estimator for β̂ipwral,atet,1 based on survival-time model F ,

Ê(ti|xi, τ = 0, β̂ipwral,atet,0) is the predicted mean survival time assuming treatment level 0 for
observation i conditional on xi, and

Ê(ti|xi, τ = 1, β̂ipwral,atet,1) is the predicted mean survival time assuming treatment level 1 for
observation i conditional on xi.

The ATET is estimated by replacing (17e) with

1/N

N∑
i=1

$i

{
Ê(ti|xi, τ = 1, β̂ipwral,atet,1)− P̂OMipwral,cot,0 − ÂTETipwral

}
= 0

Functional-form details
In this section, we specify the functional forms for the conditional distribution function used in

the survival-time outcome model F , the conditional distribution function used in the survival-time
censoring model Fc, and the conditional distribution used to model the treatment probabilities p.

You may choose among the same set of conditional distribution functions for either F or Fc:
exponential, weibull, lnormal, or gamma.

Name Cumulative Density Mean
exponential 1− exp(−λiti) λiexp(−λiti) 1/λi
Weibull 1− exp{−(λiti)

si} sit
si−1
i λsii exp{−(λiti)

si} (1/λi)Γ{(si + 1)/si}
log normal Φ{(ln(ti)− λi)/si} (1/(siti))φ{(ln(ti)− λi)/si} exp(λi + s2i /2)
gamma gammap{si, (siti/λi)} (ssii t

si−1
i )/{λsii Γ(si)}exp(−siti/λi) λi

where the following table specifies how λi and si are parameterized in terms of the covariates xi
and the ancillary covariates x̃i, respectively.

Name λi si
exponential exp(−xiβ)

Weibull exp(−xiβ) exp(x̃iβ̃)

log normal xiβ exp(x̃iβ̃)

gamma exp(xiβ) exp(−2x̃iβ̃)
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For the treatment-assignment models, the probit model uses the standard normal distribution, the
logit uses the standard logistic distribution, the hetprobit model uses

Φ{z1α1/ exp(z2α2)}

and the multinomial logit uses

p(z, t) = exp(zαt)/{1 +

q∑
k=1

exp(zαk)}

where the notation is defined below.

In the hetprobit model, z1 are the covariates specified in the treatment-assignment specification,
z2 are the covariates specified in the hetprobit() option, and α1 and α2 are the corresponding
coefficients.

In the multinomial logit model, z are the covariates specified in the treatment-assignment
specification and αk are the coefficients; see [R] mlogit for further details.
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