Title stata.com

zip postestimation — Postestimation tools for zip

Postestimation commands predict margins
Remarks and examples Methods and formulas References

Also see

Postestimation commands

The following postestimation commands are available after zip:

Command	Description contrasts and ANOVA-style joint tests of estimates				
contrast					
estat ic	Akaike's and Schwarz's Bayesian information criteria (AIC and BIC)				
estat summarize	summary statistics for the estimation sample				
estat vce	variance-covariance matrix of the estimators (VCE)				
estat (svy)	postestimation statistics for survey data				
estimates	cataloging estimation results				
*forecast	dynamic forecasts and simulations				
*hausman	Hausman's specification test				
lincom	point estimates, standard errors, testing, and inference for linear combinations of coefficients				
*lrtest	likelihood-ratio test				
margins	marginal means, predictive margins, marginal effects, and average marginal effects				
marginsplot	graph the results from margins (profile plots, interaction plots, etc.)				
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients				
predict	predictions, residuals, influence statistics, and other diagnostic measures				
predictnl	point estimates, standard errors, testing, and inference for generalized predictions				
pwcompare	pairwise comparisons of estimates				
suest	seemingly unrelated estimation				
test	Wald tests of simple and composite linear hypotheses				
testnl	Wald tests of nonlinear hypotheses				
	* *				

 $^{^{}st}$ forecast, hausman, and lrtest are not appropriate with svy estimation results.

predict

Description for predict

predict creates a new variable containing predictions such as numbers of events, incidence rates, probabilities, linear predictions, and standard errors.

Menu for predict

Statistics > Postestimation

Syntax for predict

```
predict [type] newvar [if] [in] [, statistic nooffset]
     predict [type] {stub* | newvar_{reg}| newvar_{inflate}} | [if] [in], \underline{sc}ores
 statistic
                      Description
Main
                      number of events; the default
 n
                      incidence rate
 ir
                      probability of a degenerate zero
 pr
                      probability Pr(y_j = n)
 pr(n)
                       probability \Pr(a \leq y_j \leq b)
 pr(a,b)
 xb
                      linear prediction
                      standard error of the linear prediction
 stdp
```

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample.

Options for predict

Main

- n, the default, calculates the predicted number of events, which is $(1-F_j)\exp(\mathbf{x}_j\boldsymbol{\beta})$ if neither offset() nor exposure() was specified when the model was fit, where F_j is the predicted probability of a zero outcome; $(1-F_j)\exp(\mathbf{x}_j\boldsymbol{\beta}+\text{offset}_j^{\boldsymbol{\beta}})$ if offset() was specified; or $(1-F_j)\{\exp(\mathbf{x}_j\boldsymbol{\beta})\times \text{exposure}_j\}$ if exposure() was specified.
- ir calculates the incidence rate, which is the predicted number of events when exposure is 1. This is equivalent to specifying both the n and the nooffset options.
- pr calculates the probability of a degenerate zero, predicted from the fitted degenerate distribution $F_j = F(\mathbf{z}_j \gamma)$. If offset() was specified within the inflate() option, then $F_j = F(\mathbf{z}_j \gamma + \text{offset}_j^{\gamma})$ is calculated.
- pr(n) calculates the probability $Pr(y_j = n)$, where n is a nonnegative integer that may be specified as a number or a variable. Note that pr is not equivalent to pr(0).
- $\operatorname{pr}(a,b)$ calculates the probability $\operatorname{Pr}(a \leq y_j \leq b)$, where a and b are nonnegative integers that may be specified as numbers or variables;

```
b missing (b \ge .) means +\infty;
pr(20,.) calculates Pr(y_i \ge 20);
\operatorname{pr}(20,b) calculates \Pr(\hat{y_j} \geq 20) in observations for which b \geq 1 and calculates
\Pr(20 \le y_i \le b) elsewhere.
```

pr(.,b) produces a syntax error. A missing value in an observation of the variable a causes a missing value in that observation for pr(a,b).

xb calculates the linear prediction, which is $x_j\beta$ if neither offset() nor exposure() was specified; $\mathbf{x}_{j}\boldsymbol{\beta} + \text{offset}_{j}^{\beta}$ if offset() was specified; or $\mathbf{x}_{j}\boldsymbol{\beta} + \ln(\text{exposure}_{j})$ if exposure() was specified; see nooffset below.

stdp calculates the standard error of the linear prediction.

nooffset is relevant only if you specified offset() or exposure() when you fit the model. It modifies the calculations made by predict so that they ignore the offset or exposure variable; the linear prediction is treated as $\mathbf{x}_j \boldsymbol{\beta}$ rather than as $\mathbf{x}_j \boldsymbol{\beta} + \text{offset}_j^{\boldsymbol{\beta}}$ or $\mathbf{x}_j \boldsymbol{\beta} + \ln(\text{exposure}_j)$. Specifying predict ..., nooffset is equivalent to specifying predict ..., ir.

scores calculates equation-level score variables.

The first new variable will contain $\partial \ln L/\partial(\mathbf{x}_i\beta)$.

The second new variable will contain $\partial \ln L/\partial (\mathbf{z}_j \boldsymbol{\gamma})$.

margins

Description for margins

margins estimates margins of response for the numbers of events, incidence rates, probabilities, and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

```
margins [marginlist] [, options]
margins [marginlist] , predict(statistic ...) [predict(statistic ...) ...] [options]
```

statistic	Description
n	number of events; the default
ir	incidence rate
pr	probability of a degenerate zero
	probability $Pr(y_i = n)$
pr(a,b)	probability $\Pr(a \le y_i \le b)$
xb	linear prediction
stdp	not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples

stata.com

Example 1: Obtaining predicted counts

Continuing with example 1 from [R] zip, we will use predict to compute the predicted number of fish captured by each individual.

- . use http://www.stata-press.com/data/r14/fish
- . zip count persons livebait, inflate(child camper)
 (output omitted)
- . predict numfish

(option **n** assumed; predicted number of events)

. summarize numfish

Variable	Obs	Mean	Std. Dev.	Min	Max
numfish	250	2.770999	3.269588	.079269	13.55015

The average predicted number of fish caught by all visitors, regardless of whether or not they fished, is 2.77 fish.

Example 2: Obtaining predicted probabilities

predict with the pr option computes the probability that an individual does not fish.

. predict pr, pr

On the other hand, predict with the pr(n) option computes the probability of catching n fish; particularly, the probability of catching zero fish will be

- . predict pr0, pr(0)
- . list pr pr0 in 1

Notice that pr0 is always equal to or greater than pr. For example, for the first individual, the probability of not fishing is 0.38; on the other hand, the probability of catching zero fish (0.86) is equal to the sum of the probability of not fishing and the probability of fishing but not catching any fish. pr0 can be also computed as one minus the probability of catching at least one fish, that is:

- . predict pr_catch, pr(1,.)
- . gen pr0b = 1-pr_catch

Methods and formulas

See Methods and formulas in [R] zip for the model definition and notation.

The probabilities calculated using the pr(n) option are the probability $\Pr(y_j = n)$. These are calculated using

$$\Pr(y_j = 0 | \mathbf{x}_j, \mathbf{z}_j) = F_j + (1 - F_j) \exp(-\lambda_j)$$

$$\Pr(y_j = n | \mathbf{x}_j, \mathbf{z}_j) = (1 - F_j) \frac{\lambda_j^n \exp(-\lambda_j)}{n!} \quad \text{for } n = 1, 2, \dots$$

where F_j is the probability of obtaining an observation from the degenerate distribution whose mass is concentrated at zero. F_j can be obtained by using the pr option.

See Cameron and Trivedi (2013, sec. 4.6) for further details.

References

Cameron, A. C., and P. K. Trivedi. 2013. *Regression Analysis of Count Data*. 2nd ed. New York: Cambridge University Press.

Manjón, M., and O. Martínez. 2014. The chi-squared goodness-of-fit test for count-data models. *Stata Journal* 14: 798–816.

4

1

Also see

- [R] **zip** Zero-inflated Poisson regression
- [U] 20 Estimation and postestimation commands