Title stata.com

table — Flexible table of summary statistics

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas Also see

Description

table calculates and displays tables of statistics.

Quick start

- Table of number of nonmissing observations in each category of catvar1 by catvar2 table catvar1 catvar2
- Add supercolumns defined by catvar3 and superrows defined by catvar4 table catvar1 catvar2 catvar3, by(catvar4)
- Table of mean and SD of v1 for each combination of catvar1 and catvar2 table catvar1 catvar2, contents(mean v1 sd v1)
- Add total row showing mean and SD of v1 for each value of catvar2 table catvar1 catvar2, contents(mean v1 sd v1) row
- Add total column showing mean and SD of v1 for each value of catvar1 table catvar1 catvar2, contents(mean v1 sd v1) by(catvar3) row col
- 25th, 50th, and 75th percentiles of v1 for each level of catvar1 displayed using the %7.1fc format table catvar1, contents(p25 v1 p50 v1 p75 v1) format(%7.1fc)
- Means of v1, v2, and v3 for each level of catvar2 centered in columns of width 10 table catvar2, contents(mean v1 mean v2 mean v3) cellwidth(10) center

Menu

Statistics > Summaries, tables, and tests > Other tables > Flexible table of summary statistics

Syntax

```
table rowvar [colvar [supercolvar]] [if] [in] [weight] [, options]
```

options	Description
Main	
<pre>contents(clist)</pre>	contents of table cells; select up to five statistics; default is contents(freq)
by (superrowvarlist)	superrow variables
Options	
<pre>cellwidth(#)</pre>	cell width
csepwidth(#)	column-separation width
stubwidth(#)	stub width
scsepwidth(#)	supercolumn-separation width
<u>cen</u> ter	center-align table cells; default is right-align
<u>l</u> eft	left-align table cells; default is right-align
CW	perform casewise deletion
row	add row totals
<u>col</u> umn	add column totals
<u>sc</u> olumn	add supercolumn totals
<u>con</u> cise	suppress rows with all missing entries
missing	show missing statistics with period
replace	replace current data with table statistics
name(string)	name new variables with prefix string
format(%fmt)	display format for numbers in cells; default is format (%9.0g)

by is allowed; see [D] by.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. pweights may not be used with sd, semean, sebinomial, or sepoisson. iweights may not be used with semean, sebinomial, or sepoisson.

where the elements of clist may be

freq	frequency	n varname	same as count
<u>mean</u> varname	mean of varname	max varname	maximum
sd varname	standard deviation	min varname	minimum
<u>sem</u> ean varname	standard error of the mean	<u>med</u> ian <i>varname</i>	median
	(sd/sqrt(n))	p1 varname	1st percentile
<u>seb</u> inomial varname	standard error of the mean, binomial	p2 varname	2nd percentile
	distribution (sqrt(p(1-p)/n))		3rd-49th percentiles
sepoisson varname	standard error of the mean, Poisson	p50 varname	50th percentile (median)
	distribution (sqrt(mean))		51st-97th percentiles
sum varname	sum	p98 varname	98th percentile
rawsum varname	sums ignoring optionally specified weight	p99 varname	99th percentile
count varname	count of nonmissing observations	iqr <i>varname</i>	interquartile range
		=	-

Rows, columns, supercolumns, and superrows are thus defined as

row 1 row 2	

	supercol 1		super	col 2
	col 1	col 2	col 1	col 2
row 1			ė	
row 2		•	•	

	col 1	col 2
row 1 row 2		

			supercol 2	
	col I	col 2	col I	col 2
superrow 1:				
row 1				
row 2				
superrow 2:				
row 1				
row 2		•	•	•
row 1 row 2 superrow 2: row 1				

Options

Main

contents(clist) specifies the contents of the table's cells; if not specified, contents(freq) is used by default. contents(freq) produces a table of frequencies. contents(mean mpg) produces a table of the means of variable mpg. contents(freq mean mpg sd mpg) produces a table of frequencies together with the mean and standard deviation of variable mpg. Up to five statistics may be specified.

by (*superrowvarlist*) specifies that numeric or string variables be treated as superrows. Up to four variables may be specified in *superrowvarlist*. The by () option may be specified with the by prefix.

Options

- cellwidth(#) specifies the width of the cell in units of digit widths; 10 means the space occupied by 10 digits, which is 0123456789. The default cellwidth() is not a fixed number, but a number chosen by table to spread the table out while presenting a reasonable number of columns across the page.
- csepwidth(#) specifies the separation between columns in units of digit widths. The default is not a fixed number, but a number chosen by table according to what it thinks looks best.
- stubwidth(#) specifies the width, in units of digit widths, to be allocated to the left stub of the table. The default is not a fixed number, but a number chosen by table according to what it thinks looks best.
- scsepwidth(#) specifies the separation between supercolumns in units of digit widths. The default is not a fixed number, but a number chosen by table to present the results best.
- center specifies that results be centered in the table's cells. The default is to right-align results. For centering to work well, you typically need to specify a display format as well. center format(%9.2f) is popular.

- left specifies that column labels be left-aligned. The default is to right-align column labels to distinguish them from supercolumn labels, which are left-aligned.
- cw specifies casewise deletion. If cw is not specified, all observations possible are used to calculate each of the specified statistics. cw is relevant only when you request a table containing statistics on multiple variables. For instance, contents(mean mpg mean weight) would produce a table reporting the means of variables mpg and weight. Consider an observation in which mpg is known but weight is missing. By default, that observation will be used in the calculation of the mean of mpg. If you specify cw, the observation will be excluded in the calculation of the means of both mpg and weight.

row specifies that a row be added to the table reflecting the total across the rows.

column specifies that a column be added to the table reflecting the total across columns.

scolumn specifies that a supercolumn be added to the table reflecting the total across supercolumns.

concise specifies that rows with all missing entries not be displayed.

- missing specifies that missing statistics be shown in the table as periods (Stata's missing-value indicator). The default is that missing entries be left blank.
- replace specifies that the data in memory be replaced with data containing 1 observation per cell (row, column, supercolumn, and superrow) and with variables containing the statistics designated in contents().

This option is rarely specified. If you do not specify this option, the data in memory remain unchanged.

If you do specify this option, the first statistic will be named table1, the second table2, and so on. For instance, if contents(mean mpg sd mpg) was specified, the means of mpg would be in variable table1 and the standard deviations in table2.

- name(string) is relevant only if you specify replace. name() allows changing the default stub
 name that replace uses to name the new variables associated with the statistics. If you specify
 name(stat), the first statistic will be placed in variable stat1, the second in stat2, and so on.
- format(%fmt) specifies the display format for presenting numbers in the table's cells. format (%9.0g) is the default; format(%9.2f) and format(%9.2fc) are popular alternatives. The width of the format you specify does not matter, except that %fmt must be valid. The width of the cells is chosen by table to present the results best. The cellwidth() option allows you to override table's choice.

Limits

Up to four variables may be specified in the by(), so with the three row, column, and supercolumn variables, seven-way tables may be displayed.

Up to five statistics may be displayed in each cell of the table.

The sum of the number of rows, columns, supercolumns, and superrows is called the number of margins. A table may contain up to 3,000 margins. Thus a one-way table may contain 3,000 rows. A two-way table could contain 2,998 rows and two columns, 2,997 rows and three columns, ..., 1,500 rows and 1,500 columns, ..., two rows and 2,998 columns. A three-way table is similarly limited by the sum of the number of rows, columns, and supercolumns. A $r \times c \times d$ table is feasible if $r+c+d \le 3,000$. The limit is set in terms of the sum of the rows, columns, supercolumns, and superrows, and not, as you might expect, in terms of their product.

Remarks and examples

stata.com

Remarks are presented under the following headings:

One-way tables Two-way tables Three-way tables Four-way and higher-dimensional tables Video example

One-way tables

Example 1

From the automobile dataset, here is a simple one-way table:

- . use http://www.stata-press.com/data/r14/auto2
 (1978 Automobile Data)
- . table rep78, contents(mean mpg)

Repair Record 1978	mean(mpg)
Poor Fair Average Good	21 19.125 19.4333 21.6667
Excellent	27.3636

We are not limited to including only one statistic:

. table rep78, c(n mpg mean mpg sd mpg median mpg)

Repair Record 1978	N(mpg)	mean(mpg)	sd(mpg)	med(mpg)
Poor	2	21	4.24264	21
Fair	8	19.125	3.758324	18
Average	30	19.4333	4.141325	19
Good	18	21.6667	4.93487	22.5
Excellent	11	27.3636	8.732385	30

We abbreviated contents() as c(). The format() option will allow us to better format the numbers in the table:

. table rep78, c(n mpg mean mpg sd mpg median mpg) format(%9.2f)

Repair Record 1978	N(mpg)	mean(mpg)	sd(mpg)	med(mpg)
Poor	2	21.00	4.24	21.00
Fair	8	19.12	3.76	18.00
Average	30	19.43	4.14	19.00
Good	18	21.67	4.93	22.50
Excellent	11	27.36	8.73	30.00

The center option will center the results under the headings:

. table rep78, c(n mpg mean mpg sd mpg median mpg) format(%9.2f) center

Repair Record 1978	N(mpg)	mean(mpg)	sd(mpg)	med(mpg)
Poor	2	21.00	4.24	21.00
Fair	8	19.12	3.76	18.00
Average	30	19.43	4.14	19.00
Good	18	21.67	4.93	22.50
Excellent	11	27.36	8.73	30.00

Two-way tables

Example 2

In example 1, when we typed 'table rep78, ...', we obtained a one-way table. If we were to type 'table rep78 foreign, ...', we would obtain a two-way table:

. table rep78 foreign, c(mean mpg)

Repair Record 1978	Car Domestic	type Foreign
Poor Fair Average Good Excellent	21 19.125 19 18.4444 32	23.3333 24.8889 26.3333

Note the missing cells. Certain combinations of repair record and car type do not exist in our dataset.

As with one-way tables, we can specify a display format for the cells and center the numbers within the cells if we wish.

4

. table rep78 foreign, c(mean mpg) format(%9.2f) center

Repair Record 1978	Car [.] Domestic	0 1
Poor Fair Average Good	21.00 19.12 19.00 18.44	23.33
Excellent	32.00	26.33

We can obtain row totals by specifying the row option and obtain column totals by specifying the col option. We specify both below:

. table rep78 foreign, c(mean mpg) format(%9.2f) center row col

Repair Record 1978	Domestic	Car type Foreign	Total
Poor Fair Average Good Excellent	21.00 19.12 19.00 18.44 32.00	23.33 24.89 26.33	21.00 19.12 19.43 21.67 27.36
Total	19.54	25.29	21.29

table can display multiple statistics within cells, but once we move beyond one-way tables, the table becomes busy:

. table foreign rep78, c(mean mpg n mpg) format(%9.2f) center

	Repair Record 1978									
Car type	Poor	Fair	Average	Good	Excellent					
Domestic	21.00	19.12 8	19.00 27	18.44 9	32.00					
Foreign			23.33	24.89 9	26.33 9					

This two-way table with two statistics per cell works well here. That was, in part, helped along by our interchanging the rows and columns. We turned the table around by typing table foreign rep78 rather than table rep78 foreign.

Another way to display two-way tables is to specify a row and superrow rather than a row and column. We do that below and display three statistics per cell:

. table foreign, by(rep78) c(mean mpg sd mpg n mpg) format(%9.2f) center

Repair Record 1978 and Car type	mean(mpg)	sd(mpg)	N(mpg)
Poor Domestic Foreign	21.00	4.24	2
Fair Domestic Foreign	19.12	3.76	8
Average Domestic Foreign	19.00 23.33	4.09 2.52	27 3
Good Domestic Foreign	18.44 24.89	4.59 2.71	9
Excellent Domestic Foreign	32.00 26.33	2.83 9.37	2 9

Three-way tables

Example 3

We have data on the prevalence of byssinosis, a form of pneumoconiosis to which workers exposed to cotton dust are susceptible. The dataset is on 5,419 workers in a large cotton mill. We know whether each worker smokes, his or her race, and the dustiness of the work area. The categorical variables are

smokes Smoker or nonsmoker in the last five years.
race White or other.
workplace 1 (most dusty), 2 (less dusty), 3 (least dusty).

Moreover, this dataset includes a frequency-weight variable pop. Here is a three-way table showing the fraction of workers with byssinosis:

- . use http://www.stata-press.com/data/r14/byssin
 (Byssinosis incidence)
- . table workplace smokes race [fw=pop], c(mean prob)

Dustiness		Race an	d Smokes	
of	ot	her ——	wh	ite
workplace	no	yes	no	yes
least	.0107527	.0101523	.0081549	.0162774
less	.02	.0081633	.0136612	.0143149
most	.0820896	.1679105	.0833333	.2295082

4

This table would look better if we showed the fraction to four digits:

. table workplace smokes race [fw=pop], c(mean prob) format(%9.4f)

Dustiness	Race and Smokes						
of	ot	her	wh	ite —			
workplace	no	yes	no	yes			
least	0.0108	0.0102	0.0082	0.0163			
less	0.0200	0.0082	0.0137	0.0143			
most	0.0821	0.1679	0.0833	0.2295			

In this table, the rows are the dustiness of the workplace, the columns are whether the worker smokes, and the supercolumns are the worker's race.

Now we request that the table include the supercolumn totals by specifying the sctotal option, which we can abbreviate as sc:

. table workplace smokes race [fw=pop], c(mean prob) format(%9.4f) sc

Dustiness of	ot	her	Race and		—— То	tal
workplace	no	yes	no	yes	no	yes
least less most	0.0108 0.0200 0.0821	0.0102 0.0082 0.1679	0.0082 0.0137 0.0833	0.0163 0.0143 0.2295	0.0090 0.0159 0.0826	0.0145 0.0123 0.1929

The supercolumn total is the total over race and is divided into its columns based on smokes. Here is the table with the column rather than the supercolumn totals:

. table workplace smokes race [fw=pop], c(mean prob) format(%9.4f) col

Dustiness			Race an	d Smokes		
of workplace	no	- other yes	Total	no	- white yes	Total
least less most	0.0200	0.0102 0.0082 0.1679	0.0135	0.0082 0.0137 0.0833	0.0163 0.0143 0.2295	0.0140

Here is the table with both column and supercolumn totals:

. table workplace smokes race [fw=pop], c(mean prob) format(%9.4f) sc col

Dustin ess of workpl		— other			and Smo			— Total	
ace	no	yes	Total	no		Total		yes	Total
least less most	0.0108 0.0200 0.0821		0.0135	0.0137	0.0163 0.0143 0.2295	0.0140	0.0159	0.0123	0.0122 0.0138 0.1570

table is struggling to keep this table from becoming too wide—notice how it divided the words in the title in the top-left stub. Here, if the table had more columns, or, if we demanded more digits, table would be forced to segment the table and present it in pieces, which it would do:

. table workplace smokes race [fw=pop], c(mean prob) format(%9.6f) sc col

Dustiness			Race and	d Smokes		
of workplace	no	— other - yes	Total	no	white - yes	Total
least	0.010753	0.010152	0.010417	0.008155	0.016277	0.012949
less most	0.020000 0.082090	0.008163 0.167910	0.013483 0.139303	0.013661 0.083333	0.014315 0.229508	0.014035 0.183521

Dustiness	Rac	e and Smok	tes
workplace	no	yes	Total
least less most	0.008990 0.015901 0.082569		0.012174 0.013846 0.156951

Here three digits is probably enough, so here is the table including all the row, column, and supercolumn totals:

. table workplace smokes race [fw=pop], c(mean prob) format(%9.3f) sc col row

Dustiness		other		Race	and Sm	okes		Total	
workplace	no	yes	Total	no	yes	Total	no	yes	Total
least less most	0.011 0.020 0.082	0.010 0.008 0.168	0.010 0.013 0.139	0.008 0.014 0.083	0.016 0.014 0.230	0.013 0.014 0.184	0.009 0.016 0.083	0.014 0.012 0.193	0.012 0.014 0.157
Total	0.025	0.048	0.038	0.014	0.035	0.026	0.018	0.039	0.030

We can show multiple statistics:

. table workplace smokes race [fw=pop], c(mean prob $\,$ n prob) format(%9.3f) sc > col row

Dustiness of		other		Race	and Sm	nokes		· Total	
workplace	no	yes	Total	no	yes	Total	no	yes	Total
least	0.011 465	0.010 591	0.010 1,056	0.008 981	0.016 1,413	0.013 2,394	0.009 1,446	0.014 2,004	0.012
less	0.020 200	0.008 245	0.013 445	0.014 366	0.014 489	0.014 855	0.016 566	0.012 734	0.014 1,300
most	0.082 134	0.168 268	0.139 402	0.083 84	0.230 183	0.184 267	0.083 218	0.193 451	0.157 669
Total	0.025 799	0.048 1,104	0.038 1,903	0.014 1,431	0.035 2,085	0.026 3,516	0.018	0.039 3,189	0.030 5,419

Four-way and higher-dimensional tables

Example 4

Let's pretend that our byssinosis dataset also recorded each worker's sex (it does not, and we have made up this extra information). We obtain a four-way table just as we would a three-way table, but we specify the fourth variable as a superrow by including it in the by() option:

- . use http://www.stata-press.com/data/r14/byssin1 (Byssinosis incidence)
- . table workplace smokes race [fw=pop], by(sex) c(mean prob) format(%9.3f) sc

Sex and Dustiness of workplace	other			Race and Smokes				· Total	
	no	yes	Total	no	yes	Total	no	yes	Total
Female									
least	0.006	0.009	0.008	0.009	0.021	0.016	0.009	0.018	0.014
less	0.020	0.008	0.010	0.015	0.015	0.015	0.016	0.012	0.014
most	0.057	0.154	0.141				0.057	0.154	0.141
Total	0.017	0.051	0.043	0.011	0.020	0.016	0.012	0.032	0.024
Male									
least	0.013	0.011	0.012	0.006	0.007	0.006	0.009	0.008	0.009
less	0.020	0.000	0.019	0.000	0.013	0.011	0.016	0.013	0.014
most	0.091	0.244	0.136	0.083	0.230	0.184	0.087	0.232	0.167
Total	0.029	0.041	0.033	0.020	0.056	0.043	0.025	0.052	0.039

If our dataset also included work group and we wanted a five-way table, we could include both the sex and work-group variables in the by() option. You may include up to four variables in by(), and so produce up to 7-way tables.

1

Video example

Combining cross-tabulations and descriptives in Stata

Methods and formulas

The contents of cells are calculated by collapse and are displayed by tabdisp; see [D] collapse and [P] tabdisp.

Also see

- [R] summarize Summary statistics
- [R] tabstat Compact table of summary statistics
- [R] tabulate oneway One-way table of frequencies
- [R] tabulate twoway Two-way table of frequencies
- [D] collapse Make dataset of summary statistics
- [P] tabdisp Display tables