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Description
The rocreg command is used to perform receiver operating characteristic (ROC) analyses with

rating and discrete classification data under the presence of covariates.

The two variables refvar and classvar must be numeric. The reference variable indicates the true
state of the observation—such as diseased and nondiseased or normal and abnormal—and must be
coded as 0 and 1. The refvar coded as 0 can also be called the control population, while the refvar
coded as 1 comprises the case population. The rating or outcome of the diagnostic test or test modality
is recorded in classvar, which must be ordinal, with higher values indicating higher risk.

rocreg can fit three models: a nonparametric model, a parametric probit model that uses the
bootstrap for inference, and a parametric probit model fit using maximum likelihood.

Quick start
Nonparametric estimation with bootstrap resampling

Area under the ROC curve for test classifier v1 and true state true using seed 20547

rocreg true v1, bseed(20547)

Add v2 as an additional classifier
rocreg true v1 v2, bseed(20547)

As above, but estimate ROC value for a false-positive rate of 0.7
rocreg true v1 v2, bseed(20547) roc(.7)

Covariate stratification of controls by categorical variable a using seed 121819

rocreg true v1 v2, bseed(121819) ctrlcov(a)

Linear control covariate adjustment with binary variable b and continuous variable x

rocreg true v1 v2, bseed(121819) ctrlcov(b x) ctrlmodel(linear)

Parametric estimation

Area under the ROC curve for test classifier v1 and true state true by estimating equations using
seed 200512

rocreg true v1, probit bseed(200512)

And save results to myfile.dta for use by rocregplot

rocreg true v1, probit bseed(200512) bsave(myfile)

Add v2 as a classifier and x as a control covariate in a linear control covariate-adjustment model
rocreg true v1 v2, probit bseed(200512) ctrlcov(x) ctrlmodel(linear)
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Also treat x as a ROC covariate
rocreg true v1 v2, probit bseed(200512) ctrlcov(x) ///

ctrlmodel(linear) roccov(x)

Estimate AUC by maximum likelihood instead of bootstrap resampling
rocreg true v1, probit ml

Menu
Statistics > Epidemiology and related > ROC analysis > ROC regression models
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Syntax

Perform nonparametric analysis of ROC curve under covariates, using bootstrap

rocreg refvar classvar
[

classvars
] [

if
] [

in
] [

, np options
]

Perform parametric analysis of ROC curve under covariates, using bootstrap

rocreg refvar classvar
[

classvars
] [

if
] [

in
]
, probit

[
probit options

]

Perform parametric analysis of ROC curve under covariates, using maximum likelihood

rocreg refvar classvar
[

classvars
] [

if
] [

in
] [

weight
]
, probit ml[

probit ml options
]

np options Description

Model

auc estimate total area under the ROC curve; the default
roc(numlist) estimate ROC for given false-positive rates
invroc(numlist) estimate false-positive rates for given ROC values
pauc(numlist) estimate partial area under the ROC curve (pAUC) up to each

false-positive rate
cluster(varname) variable identifying resampling clusters
ctrlcov(varlist) adjust control distribution for covariates in varlist
ctrlmodel(strata | linear) stratify or regress on covariates; default is ctrlmodel(strata)

pvc(empirical | normal) use empirical or normal distribution percentile value estimates;
default is pvc(empirical)

tiecorrected adjust for tied observations; not allowed with pvc(normal)

Bootstrap

nobootstrap do not perform bootstrap, just output point estimates
bseed(#) random-number seed for bootstrap
breps(#) number of bootstrap replications; default is breps(1000)

bootcc perform case–control (stratified on refvar) sampling rather than
cohort sampling in bootstrap

nobstrata ignore covariate stratification in bootstrap sampling
nodots suppress bootstrap replication dots

Reporting

level(#) set confidence level; default is level(95)

http://www.stata.com/manuals14/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals14/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals14/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals14/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals14/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals14/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals14/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals14/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals14/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
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probit options Description

Model
∗probit fit the probit model
roccov(varlist) covariates affecting ROC curve
fprpts(#) number of false-positive rate points to use in fitting ROC

curve; default is fprpts(10)

ctrlfprall fit ROC curve at each false-positive rate in control population
cluster(varname) variable identifying resampling clusters
ctrlcov(varlist) adjust control distribution for covariates in varlist
ctrlmodel(strata | linear) stratify or regress on covariates; default is ctrlmodel(strata)

pvc(empirical | normal) use empirical or normal distribution percentile value estimates;
default is pvc(empirical)

tiecorrected adjust for tied observations; not allowed with pvc(normal)

Bootstrap

nobootstrap do not perform bootstrap, just output point estimates
bseed(#) random-number seed for bootstrap
breps(#) number of bootstrap replications; default is breps(1000)

bootcc perform case–control (stratified on refvar) sampling rather than
cohort sampling in bootstrap

nobstrata ignore covariate stratification in bootstrap sampling
nodots suppress bootstrap replication dots
bsave(filename, . . . ) save bootstrap replicates from parametric estimation
bfile(filename) use bootstrap replicates dataset for estimation replay

Reporting

level(#) set confidence level; default is level(95)

∗probit is required.

http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.6Filenamingconventions
http://www.stata.com/manuals14/u11.pdf#u11.6Filenamingconventions
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probit ml options Description

Model
∗probit fit the probit model
∗ml fit the probit model by maximum likelihood estimation
roccov(varlist) covariates affecting ROC curve
cluster(varname) variable identifying clusters
ctrlcov(varlist) adjust control distribution for covariates in varlist

Reporting

level(#) set confidence level; default is level(95)

display options control column formats, line width, and display of omitted variables

Maximization

maximize options control the maximization process; seldom used
∗probit and ml are required.
fweights, iweights, and pweights are allowed with maximum likelihood estimation; see [U] 11.1.6 weight.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
Options are presented under the following headings:

Options for nonparametric ROC estimation, using bootstrap
Options for parametric ROC estimation, using bootstrap
Options for parametric ROC estimation, using maximum likelihood

Options for nonparametric ROC estimation, using bootstrap

� � �
Model �

auc estimates the total area under the ROC curve. This is the default summary statistic.

roc(numlist) estimates the ROC corresponding to each of the false-positive rates in numlist. The
values of numlist must be in the range (0,1).

invroc(numlist) estimates the false-positive rates corresponding to each of the ROC values in numlist.
The values of numlist must be in the range (0,1).

pauc(numlist) estimates the partial area under the ROC curve up to each false-positive rate in numlist.
The values of numlist must in the range (0,1].

cluster(varname) specifies the variable identifying resampling clusters.

ctrlcov(varlist) specifies the covariates to be used to adjust the control population.

ctrlmodel(strata | linear) specifies how to model the control population of classifiers on
ctrlcov(). When ctrlmodel(linear) is specified, linear regression is used. The default is
ctrlmodel(strata); that is, the control population of classifiers is stratified on the control
variables.

pvc(empirical | normal) determines how the percentile values of the control population will be
calculated. When pvc(normal) is specified, the standard normal cumulative distribution function
(CDF) is used for calculation. Specifying pvc(empirical) will use the empirical CDFs of the
control population classifiers for calculation. The default is pvc(empirical).

http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.1.6weight
http://www.stata.com/manuals14/u20.pdf#u20Estimationandpostestimationcommands
http://www.stata.com/manuals14/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals14/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals14/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
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tiecorrected adjusts the percentile values for ties. For each value of the classifier, one half the
probability that the classifier equals that value under the control population is added to the percentile
value. tiecorrected is not allowed with pvc(normal).

� � �
Bootstrap �

nobootstrap specifies that bootstrap standard errors not be calculated.

bseed(#) specifies the random-number seed to be used in the bootstrap.

breps(#) sets the number of bootstrap replications. The default is breps(1000).

bootcc performs case–control (stratified on refvar) sampling rather than cohort bootstrap sampling.

nobstrata ignores covariate stratification in bootstrap sampling.

nodots suppresses bootstrap replication dots.

� � �
Reporting �

level(#); see [R] estimation options.

Options for parametric ROC estimation, using bootstrap

� � �
Model �

probit fits the probit model. This option is required and implies parametric estimation.

roccov(varlist) specifies the covariates that will affect the ROC curve.

fprpts(#) sets the number of false-positive rate points to use in modeling the ROC curve. These
points form an equispaced grid on (0,1). The default is fprpts(10).

ctrlfprall models the ROC curve at each false-positive rate in the control population.

cluster(varname) specifies the variable identifying resampling clusters.

ctrlcov(varlist) specifies the covariates to be used to adjust the control population.

ctrlmodel(strata | linear) specifies how to model the control population of classifiers on
ctrlcov(). When ctrlmodel(linear) is specified, linear regression is used. The default is
ctrlmodel(strata); that is, the control population of classifiers is stratified on the control
variables.

pvc(empirical | normal) determines how the percentile values of the control population will be
calculated. When pvc(normal) is specified, the standard normal CDF is used for calculation.
Specifying pvc(empirical) will use the empirical CDFs of the control population classifiers for
calculation. The default is pvc(empirical).

tiecorrected adjusts the percentile values for ties. For each value of the classifier, one half the
probability that the classifier equals that value under the control population is added to the percentile
value. tiecorrected is not allowed with pvc(normal).

� � �
Bootstrap �

nobootstrap specifies that bootstrap standard errors not be calculated.

bseed(#) specifies the random-number seed to be used in the bootstrap.

breps(#) sets the number of bootstrap replications. The default is breps(1000).

bootcc performs case–control (stratified on refvar) sampling rather than cohort bootstrap sampling.

http://www.stata.com/manuals14/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
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nobstrata ignores covariate stratification in bootstrap sampling.

nodots suppresses bootstrap replication dots.

bsave(filename, . . . ) saves bootstrap replicates from parametric estimation in the given filename
with specified options (that is, replace). bsave() is only allowed with parametric analysis using
bootstrap.

bfile(filename) specifies to use the bootstrap replicates dataset for estimation replay. bfile() is
only allowed with parametric analysis using bootstrap.

� � �
Reporting �

level(#); see [R] estimation options.

Options for parametric ROC estimation, using maximum likelihood

� � �
Model �

probit fits the probit model. This option is required and implies parametric estimation.

ml fits the probit model by maximum likelihood estimation. This option is required and must be
specified with probit.

roccov(varlist) specifies the covariates that will affect the ROC curve.

cluster(varname) specifies the variable used for clustering.

ctrlcov(varlist) specifies the covariates to be used to adjust the control population.

� � �
Reporting �

level(#); see [R] estimation options.

display options: noomitted, cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch;
see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used. The technique(bhhh) option is not allowed.

Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
ROC statistics
Covariate-adjusted ROC curves
Parametric ROC curves: Estimating equations
Parametric ROC curves: Maximum likelihood

http://www.stata.com/manuals14/u11.pdf#u11.6Filenamingconventions
http://www.stata.com/manuals14/u11.pdf#u11.6Filenamingconventions
http://www.stata.com/manuals14/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals14/d.pdf#dformat
http://www.stata.com/manuals14/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals14/rmaximize.pdf#rmaximizeSyntaxalgorithm_spec
http://www.stata.com/manuals14/rmaximize.pdf#rmaximize
http://stata.com
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Introduction

Receiver operating characteristic (ROC) analysis provides a quantitative measure of the accuracy of
diagnostic tests to discriminate between two states or conditions. These conditions may be referred
to as normal and abnormal, nondiseased and diseased, or control and case. We will use these terms
interchangeably. The discriminatory accuracy of a diagnostic test is measured by its ability to correctly
classify known control and case subjects.

The analysis uses the ROC curve, a graph of the sensitivity versus 1− specificity of the diagnostic
test. The sensitivity is the fraction of positive cases that are correctly classified by the diagnostic test,
whereas the specificity is the fraction of negative cases that are correctly classified. Thus the sensitivity
is the true-positive rate, and the specificity is the true-negative rate. We also call 1− specificity the
false-positive rate.

These rates are functions of the possible outcomes of the diagnostic test. At each outcome, a
decision will be made by the user of the diagnostic test to classify the tested subject as either normal
or abnormal. The true-positive and false-positive rates measure the probability of correct classification
or incorrect classification of the subject as abnormal. Given the classification role of the diagnostic
test, we will refer to it as the classifier.

Using this basic definition of the ROC curve, Pepe (2000) and Pepe (2003) describe how ROC
analysis can be performed as a two-stage process. In the first stage, the control distribution of the
classifier is estimated. The specificity is then determined as the percentiles of the classifier values
calculated based on the control population. The false-positive rates are calculated as 1− specificity.
In the second stage, the ROC curve is estimated as the cumulative distribution of the case population’s
“false-positive” rates, also known as the survival function under the case population of the previously
calculated percentiles. We use the terms ROC value and true-positive value interchangeably.

This formulation of ROC curve analysis provides simple, nonparametric estimates of several ROC
curve summary parameters: area under the ROC curve, partial area under the ROC curve, ROC value
for a given false-positive rate, and false-positive rate (also known as invROC) for a given ROC value.
In the next section, we will show how to use rocreg to compute these estimates with bootstrap
inference. There we will also show how rocreg complements the other nonparametric Stata ROC
commands roctab and roccomp.

Other factors beyond condition status and the diagnostic test may affect both stages of ROC analysis.
For example, a test center may affect the control distribution of the diagnostic test. Disease severity
may affect the distribution of the standardized diagnostic test under the case population. Our analysis
of the ROC curve in these situations will be more accurate if we take these covariates into account.

In a nonparametric ROC analysis, covariates may only affect the first stage of estimation; that is,
they may be used to adjust the control distribution of the classifier. In a parametric ROC analysis,
it is assumed that ROC follows a normal distribution, and thus covariates may enter the model at
both stages; they may be used to adjust the control distribution and to model ROC as a function of
these covariates and the false-positive rate. In parametric models, both sets of covariates need not be
distinct but, in fact, they are often the same.

To model covariate effects on the first stage of ROC analysis, Janes and Pepe (2009) propose a
covariate-adjusted ROC curve. We will demonstrate the covariate adjustment capabilities of rocreg
in Covariate-adjusted ROC curves.

To account for covariate effects at the second stage, we assume a parametric model. Particularly,
the ROC curve is a generalized linear model of the covariates. We will thus have a separate ROC curve
for each combination of the relevant covariates. In Parametric ROC curves: Estimating equations,
we show how to fit the model with estimating equations and bootstrap inference using rocreg.
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This method, documented as the “pdf” approach in Alonzo and Pepe (2002), works well with weak
assumptions about the control distribution.

Also in Parametric ROC curves: Estimating equations, we show how to fit a constant-only parametric
model (involving no covariates) of the ROC curve with weak assumptions about the control distribution.
The constant-only model capabilities of rocreg in this context will be compared with those of rocfit.
roccomp has the binormal option, which will allow it to compute area under the ROC curve according
to a normal ROC curve, equivalent to that obtained by rocfit. We will compare this functionality
with that of rocreg.

In Parametric ROC curves: Maximum likelihood, we demonstrate maximum likelihood estimation
of the ROC curve model with rocreg. There we assume a normal linear model for the classifier
on the covariates and case–control status. This method is documented in Pepe (2003). We will also
demonstrate how to use this method with no covariates, and we will compare rocreg under the
constant-only model with rocfit and roccomp.

The rocregplot command is used repeatedly in this entry. This command provides graphical
output for rocreg and is documented in [R] rocregplot.

ROC statistics
roctab computes the ROC curve by calculating the false-positive rate and true-positive rate

empirically at every value of the input classifier. It makes no distributional assumptions about the
case or control distributions. We can get identical behavior from rocreg by using the default option
settings.

Example 1: Nonparametric ROC, AUC

Hanley and McNeil (1982) presented data from a study in which a reviewer was asked to
classify, using a five-point scale, a random sample of 109 tomographic images from patients with
neurological problems. The rating scale was as follows: 1 is definitely normal, 2 is probably normal,
3 is questionable, 4 is probably abnormal, and 5 is definitely abnormal. The true disease status was
normal for 58 of the patients and abnormal for the remaining 51 patients.

http://www.stata.com/manuals14/rrocregplot.pdf#rrocregplot
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Here we list 9 of the 109 observations:

. use http://www.stata-press.com/data/r14/hanley

. list disease rating in 1/9

disease rating

1. 1 5
2. 0 1
3. 1 5
4. 0 4
5. 0 1

6. 0 3
7. 1 5
8. 0 5
9. 0 1

For each observation, disease identifies the true disease status of the subject (0 is normal, 1 is
abnormal), and rating contains the classification value assigned by the reviewer.

We run roctab on these data, specifying the graph option so that the ROC curve is rendered.
We then calculate the false-positive and true-positive rates of the ROC curve by using rocreg. We
graph the rates with rocregplot. Because we focus on rocreg output later, for now we use the
quietly prefix to omit the output of rocreg. Both graphs are combined using graph combine (see
[G-2] graph combine) for comparison. To ease the comparison, we specify the aspectratio(1)
option in roctab; this is the default aspect ratio in rocregplot.

. roctab disease rating, graph aspectratio(1) name(a) nodraw title("roctab")

. quietly rocreg disease rating

. rocregplot, name(b) nodraw legend(off) title("rocreg")

. graph combine a b
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Both roctab and rocreg compute the same false-positive rate and ROC values. The stairstep
line connection style of the graph on the right emphasizes the empirical nature of its estimates. The
control distribution of the classifier is estimated using the empirical CDF estimate. Similarly, the ROC
curve, the distribution of the resulting case observation false-positive rate values, is estimated using
the empirical CDF. Note the footnote in the roctab plot. By default, roctab will estimate the area

http://www.stata.com/manuals14/g-2graphcombine.pdf#g-2graphcombine


rocreg — Receiver operating characteristic (ROC) regression 11

under the ROC curve (AUC) using a trapezoidal approximation to the estimated false-positive rate and
true-positive rate points.

The AUC can be interpreted as the probability that a randomly selected member of the case population
will have a larger classifier value than a randomly selected member of the control population. It can
also be viewed as the average ROC value, averaged uniformly over the (0,1) false-positive rate domain
(Pepe 2003).

The nonparametric estimator of the AUC (DeLong, DeLong, and Clarke-Pearson 1988; Hanley and
Hajian-Tilaki 1997) used by rocreg is equivalent to the sample mean of the percentile values of the
case observations. Thus to calculate the nonparametric AUC estimate, we only need to calculate the
percentile values of the case observations with respect to the control distribution.

This estimate can differ from the trapezoidal approximation estimate. Under discrete classification
data, like we have here, there may be ties between classifier values from case to control. The trapezoidal
approximation uses linear interpolation between the classifier values to correct for ties. Correcting
the nonparametric estimator involves adding a correction term to each observation’s percentile value,
which measures the probability that the classifier is equal to (instead of less than) the observation’s
classifier value.

The tie-corrected nonparametric estimate (trapezoidal approximation) is used when we think the
true ROC curve is smooth. This means that the classifier we measure is a discretized approximation
of a true latent and a continuous classifier.

We now recompute the ROC curve of rating for classifying disease and calculate the AUC.
Specifying the tiecorrected option allows tie correction to be used in the rocreg calculation.
Under nonparametric estimation, rocreg bootstraps to obtain standard errors and confidence intervals
for requested statistics. We use the default 1,000 bootstrap replications to obtain confidence intervals
for our parameters. This is a reasonable lower bound to the number of replications (Mooney and
Duval 1993) required for estimating percentile confidence intervals. By specifying the summary option
in roctab, we will obtain output showing the trapezoidal approximation of the AUC estimate, along
with standard error and confidence interval estimates for the trapezoidal approximation suggested by
DeLong, DeLong, and Clarke-Pearson (1988).
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. roctab disease rating, summary

ROC Asymptotic Normal
Obs Area Std. Err. [95% Conf. Interval]

109 0.8932 0.0307 0.83295 0.95339

. rocreg disease rating, tiecorrected bseed(29092)
(running rocregstat on estimation sample)

Bootstrap replications (1000)
1 2 3 4 5

.................................................. 50

.................................................. 100
(output omitted )

.................................................. 950

.................................................. 1000

Bootstrap results Number of obs = 109
Replications = 1,000

Nonparametric ROC estimation

Control standardization: empirical, corrected for ties
ROC method : empirical

Area under the ROC curve

Status : disease
Classifier: rating

Observed Bootstrap
AUC Coef. Bias Std. Err. [95% Conf. Interval]

.8931711 .0010376 .0309808 .8324498 .9538923 (N)
.8223829 .9475383 (P)
.8084577 .9435818 (BC)

The estimates of AUC match well. The standard error from roctab is close to the bootstrap
standard error calculated by rocreg. The bootstrap standard error generalizes to the more complex
models that we consider later, whereas the roctab standard-error calculation does not.

The AUC can be used to compare different classifiers. It is the most popular summary statistic for
comparisons (Pepe, Longton, and Janes 2009). roccomp will compute the trapezoidal approximation
of the AUC and graph the ROC curves of multiple classifiers. Using the DeLong, DeLong, and Clarke-
Pearson (1988) covariance estimates for the AUC estimate, roccomp performs a Wald test of the null
hypothesis that all classifier AUC values are equal. rocreg has similar capabilities.

Example 2: Nonparametric ROC, AUC, multiple classifiers

Hanley and McNeil (1983) presented data from an evaluation of two computer algorithms designed
to reconstruct CT images from phantoms. We will call these two algorithms modalities 1 and 2. A
sample of 112 phantoms was selected; 58 phantoms were considered normal, and the remaining 54
were abnormal. Each of the two modalities was applied to each phantom, and the resulting images
were rated by a reviewer using a six-point scale: 1 is definitely normal, 2 is probably normal, 3
is possibly normal, 4 is possibly abnormal, 5 is probably abnormal, and 6 is definitely abnormal.
Because each modality was applied to the same sample of phantoms, the two sets of outcomes are
correlated.
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We list the first seven observations:

. use http://www.stata-press.com/data/r14/ct, clear

. list in 1/7, sep(0)

mod1 mod2 status

1. 2 1 0
2. 5 5 1
3. 2 1 0
4. 2 3 0
5. 5 6 1
6. 2 2 0
7. 3 2 0

Each observation corresponds to one phantom. The mod1 variable identifies the rating assigned
for the first modality, and the mod2 variable identifies the rating assigned for the second modality.
The true status of the phantoms is given by status==0 if they are normal and status==1 if they
are abnormal. The observations with at least one missing rating were dropped from the analysis.

A fictitious dataset was created from this true dataset, adding a third test modality. We will use
roccomp to compute the AUC statistic for each modality in these data and compare the AUC of the
three modalities. We obtain the same behavior from rocreg. As before, the tiecorrected option
is specified so that the AUC is calculated with the trapezoidal approximation.

. use http://www.stata-press.com/data/r14/ct2

. roccomp status mod1 mod2 mod3, summary

ROC Asymptotic Normal
Obs Area Std. Err. [95% Conf. Interval]

mod1 112 0.8828 0.0317 0.82067 0.94498
mod2 112 0.9302 0.0256 0.88005 0.98042
mod3 112 0.9240 0.0241 0.87670 0.97132

Ho: area(mod1) = area(mod2) = area(mod3)
chi2(2) = 6.54 Prob>chi2 = 0.0381
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. rocreg status mod1 mod2 mod3, tiecorrected bseed(38038) nodots

Bootstrap results Number of obs = 112
Replications = 1,000

Nonparametric ROC estimation

Control standardization: empirical, corrected for ties
ROC method : empirical

Area under the ROC curve

Status : status
Classifier: mod1

Observed Bootstrap
AUC Coef. Bias Std. Err. [95% Conf. Interval]

.8828225 -.0010192 .0318564 .820385 .94526 (N)
.8150605 .9398384 (P)
.8119603 .9392538 (BC)

Status : status
Classifier: mod2

Observed Bootstrap
AUC Coef. Bias Std. Err. [95% Conf. Interval]

.9302363 .0005148 .0257043 .8798567 .9806159 (N)
.8746504 .9769936 (P)
.8616987 .9688995 (BC)

Status : status
Classifier: mod3

Observed Bootstrap
AUC Coef. Bias Std. Err. [95% Conf. Interval]

.9240102 .0001857 .0240864 .8768018 .9712187 (N)
.8727464 .9658895 (P)
.8629984 .9621795 (BC)

Ho: All classifiers have equal AUC values.
Ha: At least one classifier has a different AUC value.

P-value: .0339546 Test based on bootstrap (N) assumptions.

We see that the AUC estimates are equivalent, and the standard errors are quite close as well.
The p-value for the tests of equal AUC under rocreg leads to similar inference as the p-value from
roccomp. The Wald test performed by rocreg uses the joint bootstrap estimate variance matrix of the
three AUC estimators rather than the DeLong, DeLong, and Clarke-Pearson (1988) variance estimate
used by roccomp.

roccomp is used here on potentially correlated classifiers that are recorded in wide-format data.
It can also be used on long-format data to compare independent classifiers. Further details can be
found in [R] roccomp.

Citing the AUC’s lack of clinical relevance, there is argument against using it as a key summary
statistic of the ROC curve (Pepe 2003; Cook 2007). Pepe, Longton, and Janes (2009) suggest using
the estimate of the ROC curve itself at a particular point, or the estimate of the false-positive rate at
a given ROC value, also known as invROC.

http://www.stata.com/manuals14/rroccomp.pdf#rroccomp
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Recall from example 1 how nonparametric rocreg graphs look, with the stairstep pattern in the
ROC curve. In an ideal world, the graph would be a smooth one-to-one function, and it would be
trivial to map a false-positive rate to its corresponding true-positive rate and vice versa.

However, smooth ROC curves can only be obtained by assuming a parametric model that uses
linear interpolation between observed false-positive rates and between observed true-positive rates, and
rocreg is certainly capable of that; see example 1 of [R] rocregplot. However, under nonparametric
estimation, the mapping between false-positive rates and true-positive rates is not one to one, and
estimates tend to be less reliable the further you are from an observed data point. This is somewhat
mitigated by using tie-corrected rates (the tiecorrected option).

When we examine continuous data, the difference between the tie-corrected estimates and the
standard estimates becomes negligible, and the empirical estimate of the ROC curve becomes close
to the smooth ROC curve obtained by linear interpolation. So the nonparametric ROC and invROC
estimates work well.

Fixing one rate value of interest can be difficult and subjective (Pepe 2003). A compromise measure
is the partial area under the ROC curve (pAUC) (McClish 1989; Thompson and Zucchini 1989). This
is the integral of the ROC curve from 0 and above to a given false-positive rate (perhaps the largest
clinically acceptable value). Like the AUC estimate, the nonparametric estimate of the pAUC can be
written as a sample average of the case observation percentiles, but with an adjustment based on the
prescribed maximum false-positive rate (Dodd and Pepe 2003). A tie correction may also be applied
so that it reflects the trapezoidal approximation.

We cannot compare rocreg with roctab or roccomp on the estimation of pAUC, because pAUC
is not computed by the latter two.

Example 3: Nonparametric ROC, other statistics

To see how rocreg estimates ROC, invROC, and pAUC, we will examine a new study. Wieand et al.
(1989) examined a pancreatic cancer study with two continuous classifiers, here called y1 (CA 19-9)
and y2 (CA 125). This study was also examined in Pepe, Longton, and Janes (2009). The indicator
of cancer in a subject is recorded as d. The study was a case–control study, stratifying participants
on disease status.

We list the first five observations:

. use http://research.fhcrc.org/content/dam/stripe/diagnostic-biomarkers-
> statistical-center/files/wiedat2b.dta, clear
(S. Wieand - Pancreatic cancer diagnostic marker data)

. list in 1/5

y1 y2 d

1. 28 13.3 no
2. 15.5 11.1 no
3. 8.2 16.7 no
4. 3.4 12.6 no
5. 17.3 7.4 no

We will estimate the ROC curves at a large value (0.7) and a small value (0.2) of the false-positive
rate. These values are specified in roc(). The false-positive rate for ROC or sensitivity value of 0.6 will
also be estimated by specifying invroc(). Percentile confidence intervals for these parameters are
displayed in the graph obtained by rocregplot after rocreg. The pAUC statistic will be calculated
for the false-positive rate of 0.5, which is specified as an argument to the pauc() option. Following
Pepe, Longton, and Janes (2009), we use a stratified bootstrap, sampling separately from the case

http://www.stata.com/manuals14/rrocregplot.pdf#rrocregplotRemarksandexamplesex1
http://www.stata.com/manuals14/rrocregplot.pdf#rrocregplot
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and control populations by specifying the bootcc option. This reflects the case–control nature of the
study.

All four statistics can be estimated simultaneously by rocreg. For clarity, however, we will estimate
each statistic with a separate call to rocreg. rocregplot is used after estimation to graph the ROC
and false-positive rate estimates. The display of the individual, observation-specific false-positive rate
and ROC values will be omitted in the plot. This is accomplished by specifying msymbol(i) in our
plot1opts() and plot2opts() options to rocregplot.

. rocreg d y1 y2, roc(.7) bseed(8378923) bootcc nodots

Bootstrap results

Number of strata = 2 Number of obs = 141
Replications = 1,000

Nonparametric ROC estimation

Control standardization: empirical
ROC method : empirical

ROC curve

Status : d
Classifier: y1

Observed Bootstrap
ROC Coef. Bias Std. Err. [95% Conf. Interval]

.7 .9222222 .0010222 .0332527 .8570482 .9873962 (N)
.8555555 .9777778 (P)
.8555555 .9777778 (BC)

Status : d
Classifier: y2

Observed Bootstrap
ROC Coef. Bias Std. Err. [95% Conf. Interval]

.7 .8888889 -.0046556 .0444103 .8018463 .9759314 (N)
.7833333 .9666666 (P)
.7666667 .9555556 (BC)

Ho: All classifiers have equal ROC values.
Ha: At least one classifier has a different ROC value.

Test based on bootstrap (N) assumptions.

ROC P-value

.7 .5537371
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. rocregplot, plot1opts(msymbol(i)) plot2opts(msymbol(i))
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In this study, we see that classifier y1 (CA 19-9) is a uniformly better test than is classifier y2
(CA 125) until high levels of false-positive rate and sensitivity or ROC value are reached. At the high
level of false-positive rate, 0.7, the ROC value does not significantly differ between the two classifiers.
This can be seen in the plot by the overlapping confidence intervals.
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. rocreg d y1 y2, roc(.2) bseed(8378923) bootcc nodots

Bootstrap results

Number of strata = 2 Number of obs = 141
Replications = 1,000

Nonparametric ROC estimation

Control standardization: empirical
ROC method : empirical

ROC curve

Status : d
Classifier: y1

Observed Bootstrap
ROC Coef. Bias Std. Err. [95% Conf. Interval]

.2 .7777778 .0020778 .0487666 .6821969 .8733586 (N)
.6777778 .8722222 (P)
.6555555 .8555555 (BC)

Status : d
Classifier: y2

Observed Bootstrap
ROC Coef. Bias Std. Err. [95% Conf. Interval]

.2 .4888889 -.0054 .1348859 .2245173 .7532605 (N)
.2222222 .6944444 (P)
.2111111 .6777778 (BC)

Ho: All classifiers have equal ROC values.
Ha: At least one classifier has a different ROC value.

Test based on bootstrap (N) assumptions.

ROC P-value

.2 .0461582

. rocregplot, plot1opts(msymbol(i)) plot2opts(msymbol(i))
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The sensitivity for the false-positive rate of 0.2 is found to be higher under y1 than under y2, and
this difference is significant at the 0.05 level. In the plot, this is shown by the vertical confidence
intervals.

. rocreg d y1 y2, invroc(.6) bseed(8378923) bootcc nodots

Bootstrap results

Number of strata = 2 Number of obs = 141
Replications = 1,000

Nonparametric ROC estimation

Control standardization: empirical
ROC method : empirical

False-positive rate

Status : d
Classifier: y1

Observed Bootstrap
invROC Coef. Bias Std. Err. [95% Conf. Interval]

.6 0 .0149412 .0255885 -.0501525 .0501525 (N)
0 .0784314 (P)
0 .1372549 (BC)

Status : d
Classifier: y2

Observed Bootstrap
invROC Coef. Bias Std. Err. [95% Conf. Interval]

.6 .254902 .0074118 .0729374 .1119474 .3978566 (N)
.1372549 .4313726 (P)
.1176471 .3921569 (BC)

Ho: All classifiers have equal invROC values.
Ha: At least one classifier has a different invROC value.

Test based on bootstrap (N) assumptions.

invROC P-value

.6 .0010863

. rocregplot, plot1opts(msymbol(i)) plot2opts(msymbol(i))
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We find significant evidence that false-positive rates corresponding to a sensitivity of 0.6 are
different from y1 to y2. This is visually indicated by the horizontal confidence intervals, which are
separated from each other.

. rocreg d y1 y2, pauc(.5) bseed(8378923) bootcc nodots

Bootstrap results

Number of strata = 2 Number of obs = 141
Replications = 1,000

Nonparametric ROC estimation

Control standardization: empirical
ROC method : empirical

Partial area under the ROC curve

Status : d
Classifier: y1

Observed Bootstrap
pAUC Coef. Bias Std. Err. [95% Conf. Interval]

.5 .3932462 .0011971 .0219031 .3503169 .4361755 (N)
.3489107 .4338235 (P)
.3453159 .4315904 (BC)

Status : d
Classifier: y2

Observed Bootstrap
pAUC Coef. Bias Std. Err. [95% Conf. Interval]

.5 .2496732 .0033901 .0362569 .1786109 .3207355 (N)
.1837691 .3224946 (P)
.1721133 .3108932 (BC)

Ho: All classifiers have equal pAUC values.
Ha: At least one classifier has a different pAUC value.

Test based on bootstrap (N) assumptions.

pAUC P-value

.5 .001023

We also find significant evidence supporting the hypothesis that the pAUC for y1 up to a false-positive
rate of 0.5 differs from the area of the same region under the ROC curve of y2.

Covariate-adjusted ROC curves

When covariates affect the control distribution of the diagnostic test, thresholds for the test being
classified as abnormal may be chosen that vary with the covariate values. These conditional thresholds
will be more accurate than the marginal thresholds that would normally be used, because they take
into account the specific distribution of the diagnostic test under the given covariate values as opposed
to the marginal distribution over all covariate values.

By using these covariate-specific thresholds, we are essentially creating new classifiers for each
covariate-value combination, and thus we are creating multiple ROC curves. As explained in Pepe (2003),
when the case and control distributions of the covariates are the same, the marginal ROC curve will
always be bound above by these covariate-specific ROC curves. So using conditional thresholds will
never provide a less powerful test diagnostic in this case.
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In the marginal ROC curve calculation, the classifiers are standardized to percentiles according
to the control distribution, marginalized over the covariates. Thus the ROC curve is the CDF of
the standardized case observations. The covariate-adjusted ROC curve is the CDF of one minus the
conditional control percentiles for the case observations, and the marginal ROC curve is the CDF of
one minus the marginal control percentiles for the case observations (Pepe and Cai 2004). Thus the
standardization of classifier to false-positive rate value is conditioned on the specific covariate values
under the covariate-adjusted ROC curve.

The covariate-adjusted ROC curve (Janes and Pepe 2009) at a given false-positive rate t is equivalent
to the expected value of the covariate-specific ROC at t over all covariate combinations. When the
covariates in question do not affect the case distribution of the classifier, the covariate-specific ROC will
have the same value at each covariate combination. So here the covariate-adjusted ROC is equivalent
to the covariate-specific ROC, regardless of covariate values.

When covariates do affect the case distribution of the classifier, users of the diagnostic test would
likely want to model the covariate-specific ROC curves separately. Tools to do this can be found in
the parametric modeling discussion in the following two sections. Regardless, the covariate-adjusted
ROC curve can serve as a meaningful summary of covariate-adjusted accuracy.

Also note that the ROC summary statistics defined in the previous section have covariate-adjusted
analogs. These analogs are estimated in a similar manner as under the marginal ROC curve (Janes,
Longton, and Pepe 2009). The options for their calculation in rocreg are identical to those given in
the previous section. Further details can be found in Methods and formulas.

Example 4: Nonparametric ROC, linear covariate adjustment

Norton et al. (2000) studied data from a neonatal audiology study on three tests to identify hearing
impairment in newborns. These data were also studied in Janes, Longton, and Pepe (2009). Here we
list 5 of the 5,058 observations.

. use http://www.stata-press.com/data/r14/nnhs, clear
(Norton - neonatal audiology data)

. list in 1/5

id ear male currage d y1 y2 y3

1. B0157 R M 42.42 0 -3.1 -9 -1.5
2. B0157 L M 42.42 0 -4.5 -8.7 -2.71
3. B0158 R M 40.14 1 -3.2 -13.2 -2.64
4. B0161 L F 38.14 0 -22.1 -7.8 -2.59
5. B0167 R F 37 0 -10.9 -6.6 -1.42

The classifiers y1 (DPOAE 65 at 2 kHz), y2 (TEOAE 80 at 2 kHz), and y3 (ABR) and the hearing
impairment indicator d are recorded along with some relevant covariates. The infant’s age is recorded
in months as currage, and the infant’s gender is indicated by male. Over 90% of the newborns
were tested in each ear (ear), so we will cluster on infant ID (id).

Following the strategy of Janes, Longton, and Pepe (2009), we will first perform ROC analysis for
the classifiers while adjusting for the covariate effects of the infant’s gender and age. This is done
by specifying these variables in the ctrlcov() option. We adjust using a linear regression rule,
by specifying ctrlmodel(linear). This means that when a user of the diagnostic test chooses a
threshold conditional on the age and gender covariates, they assume that the diagnostic test classifier
has some linear dependence on age and gender and equal variance as their levels vary. Our cluster
adjustment is made by specifying the cluster() option.
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We will focus on the first classifier. The percentile, or specificity, values are calculated empirically
by default, and thus so are the false-positive rates, (1− specificity). Also by default, the ROC curve
values are empirically defined by the false-positive rates. To draw the ROC curve, we again use
rocregplot.

The AUC is calculated by default. For brevity, we specify the nobootstrap option so that bootstrap
sampling is not performed. The AUC point estimate will be sufficient for our purposes.

. rocreg d y1, ctrlcov(male currage) ctrlmodel(linear) cluster(id) nobootstrap

Nonparametric ROC estimation Number of obs = 5,056

Covariate control : linear regression
Control variables : male currage
Control standardization: empirical
ROC method : empirical

Status : d
Classifier: y1
Covariate control adjustment model:

Linear regression Number of obs = 4,907
F(2, 2685) = 13.80
Prob > F = 0.0000
R-squared = 0.0081
Root MSE = 7.7515

(Std. Err. adjusted for 2,686 clusters in id)

Robust
y1 Coef. Std. Err. t P>|t| [95% Conf. Interval]

male .2471744 .2603598 0.95 0.343 -.2633516 .7577005
currage -.2032456 .0389032 -5.22 0.000 -.2795288 -.1269624

_cons -1.239484 1.487855 -0.83 0.405 -4.156942 1.677973

Area under the ROC curve

Status : d
Classifier: y1

Observed Bootstrap
AUC Coef. Bias Std. Err. [95% Conf. Interval]

.6293994 . . . . (N)
. . (P)
. . (BC)
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. rocregplot
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Our covariate control adjustment model shows that currage has a negative effect on y1 (DPOAE 65
at 2 kHz) under the control population. At the 0.001 significance level, we reject that its contribution
to y1 is zero, and the point estimate has a negative sign. This result does not directly tell us about
the effect of currage on the ROC curve of y1 as a classifier of d. None of the case observations are
used in the linear regression, so information on currage for abnormal cases is not used in the model.
This result does show us how to calculate false-positive rates for tests that use thresholds conditional
on a child’s sex and current age. We will see how currage affects the ROC curve when y1 is used as
a classifier and conditional thresholds are used based on male and currage in the following section,
Parametric ROC curves: Estimating equations.

Technical note

Under this nonparametric estimation, rocreg saved the false-positive rate for each observation’s
y1 values in the utility variable fpr y1. The true-positive rates are stored in the utility variable
roc y1. For other models, say with classifier yname, these variables would be named fpr yname

and roc yname. They will also be overwritten with each call of rocreg. The variables roc * and
fpr * are usually for internal rocreg use only and are overwritten with each call of rocreg. They

are only created for nonparametric models or parametric models that do not involve ROC covariates.
In these models, covariates may only affect the first stage of estimation, the control distribution, and
not the ROC curve itself. In parametric models that allow ROC covariates, different covariate values
would lead to different ROC curves.

To see how the covariate-adjusted ROC curve estimate differs from the standard marginal estimate,
we will reestimate the ROC curve for classifier y1 without covariate adjustment. We rename these
variables before the new estimation and then draw an overlaid twoway line (see [G-2] graph twoway
line) plot to compare the two.

http://www.stata.com/manuals14/g-2graphtwowayline.pdf#g-2graphtwowayline
http://www.stata.com/manuals14/g-2graphtwowayline.pdf#g-2graphtwowayline
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. rename _fpr_y1 o_fpr_y1

. rename _roc_y1 o_roc_y1

. label variable o_roc_y1 "covariate_adjusted"

. rocreg d y1, cluster(id) nobootstrap

Nonparametric ROC estimation Number of obs = 5,058

Control standardization: empirical
ROC method : empirical

Area under the ROC curve

Status : d
Classifier: y1

Observed Bootstrap
AUC Coef. Bias Std. Err. [95% Conf. Interval]

.6279645 . . . . (N)
. . (P)
. . (BC)

. label variable _roc_y1 "marginal"

. twoway line _roc_y1 _fpr_y1, sort(_fpr_y1 _roc_y1) connect(J) ||
> line o_roc_y1 o_fpr_y1, sort(o_fpr_y1 o_roc_y1)
> connect(J) lpattern(dash) aspectratio(1) legend(cols(1))
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Though they are close, particularly in AUC, there are clearly some points of difference between
the estimates. So the covariate-adjusted ROC curve may be useful here.

In our examples thus far, we have used the empirical CDF estimator to estimate the control
distribution. rocreg allows some flexibility here. The pvc(normal) option may be specified to
calculate the percentile values according to a Gaussian distribution of the control.

Covariate adjustment in rocreg may also be performed with stratification instead of linear
regression. Under the stratification method, the unique values of the stratified covariates each define
separate parameters for the control distribution of the classifier. A user of the diagnostic test chooses
a threshold based on the control distribution conditioned on the unique covariate value parameters.

We will demonstrate the use of normal percentile values and covariate stratification in our next
example.
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Example 5: Nonparametric ROC, covariate stratification

The hearing test study of Stover et al. (1996) examined the effectiveness of negative signal-to-noise
ratio, nsnr, as a classifier of hearing loss. The test was administered under nine different settings,
corresponding to different frequency, xf, and intensity, xl, combinations. Here we list 10 of the 1,848
observations.

. use http://www.stata-press.com/data/r14/dp, clear
(Stover - DPOAE test data)

. list in 1/10

id d nsnr xf xl xd

1. 101 1 18 10.01 5.5 3.5
2. 101 1 19 20.02 5.5 3
3. 101 1 7.6 10.01 6 3.5
4. 101 1 15 20.02 6 3
5. 101 1 16 10.01 6.5 3.5

6. 101 1 5.8 20.02 6.5 3
7. 102 0 -2.6 10.01 5.5 .
8. 102 0 -3 14.16 5.5 .
9. 102 1 10 20.02 5.5 1

10. 102 0 -5.8 10.01 6 .

Hearing loss is represented by d. The covariate xd is a measure of the degree of hearing loss. We
will use this covariate in later analysis, because it only affects the case distribution of the classifier.
Multiple measurements are taken for each individual, id, so we will cluster by individual.

We evaluate the effectiveness of nsnr using xf and xl as stratification covariates with rocreg;
the default method of covariate adjustment.

As mentioned before, the default false-positive rate calculation method in rocreg estimates the
conditional control distribution of the classifiers empirically. For comparison, we will also estimate a
separate ROC curve using false-positive rates assuming the conditional control distribution is normal.
This behavior is requested by specifying the pvc(normal) option. Using the rocregplot option
name() to store the ROC plots and using the graph combine command, we are able to compare the
Gaussian and empirical ROC curves side by side. As before, for brevity we specify the nobootstrap
option to suppress bootstrap sampling.

. rocreg d nsnr, ctrlcov(xf xl) cluster(id) nobootstrap

Nonparametric ROC estimation Number of obs = 1,848

Covariate control : stratification
Control variables : xf xl
Control standardization: empirical
ROC method : empirical

Area under the ROC curve

Status : d
Classifier: nsnr

Observed Bootstrap
AUC Coef. Bias Std. Err. [95% Conf. Interval]

.9264192 . . . . (N)
. . (P)
. . (BC)

. rocregplot, title(Empirical FPR) name(a) nodraw
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. rocreg d nsnr, pvc(normal) ctrlcov(xf xl) cluster(id) nobootstrap

Nonparametric ROC estimation Number of obs = 1,848

Covariate control : stratification
Control variables : xf xl
Control standardization: normal
ROC method : empirical

Area under the ROC curve

Status : d
Classifier: nsnr

Observed Bootstrap
AUC Coef. Bias Std. Err. [95% Conf. Interval]

.9309901 . . . . (N)
. . (P)
. . (BC)

. rocregplot, title(Normal FPR) name(b) nodraw

. graph combine a b, xsize(5)

0
.2

5
.5

.7
5

1
T

ru
e
−

p
o
s
it
iv

e
 r

a
te

 (
R

O
C

)

0 .25 .5 .75 1
False−positive rate

−SNR

Empirical FPR
0

.2
5

.5
.7

5
1

T
ru

e
−

p
o
s
it
iv

e
 r

a
te

 (
R

O
C

)

0 .25 .5 .75 1
False−positive rate

−SNR

Normal FPR

On cursory visual inspection, we see little difference between the two curves. The AUC values are close
as well. So it is sensible to assume that we have Gaussian percentile values for control standardization.

Parametric ROC curves: Estimating equations

We now assume a parametric model for covariate effects on the second stage of ROC analysis.
Particularly, the ROC curve is a probit model of the covariates. We will thus have a separate ROC
curve for each combination of the relevant covariates.

Under weak assumptions about the control distribution of the classifier, we can fit this model by
using estimating equations as described in Alonzo and Pepe (2002). This method can be also be used
without covariate effects in the second stage, assuming a parametric model for the single (constant
only) ROC curve. Covariates may still affect the first stage of estimation, so we parametrically model
the single covariate-adjusted ROC curve (from the previous section). The marginal ROC curve, involving
no covariates in either stage of estimation, can be fit parametrically as well.
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In addition to the Alonzo and Pepe (2002) explanation, further details are given in Pepe, Longton,
and Janes (2009); Janes, Longton, and Pepe (2009); Pepe (2003); and Janes and Pepe (2009).

The parametric models that we consider assume that the ROC curve is a cumulative distribution
function g invoked with input of a linear polynomial in the corresponding quantile function invoked
on the false-positive rate u. In this context, we assume that g corresponds to a standard normal
cumulative distribution function, Φ. So the corresponding quantile function is Φ−1. The constant
intercept of the polynomial may depend on covariates, but the slope term α (the quantile coefficient)
may not.

ROC (u) = g{x′β + αg−1 (u)}

The first step of the algorithm involves the choice of false-positive rates to use in the parametric
fit. These are typically a set of equispaced points spanning the interval (0,1). Alonzo and Pepe (2002)
examined the effect of fitting large and small sets of points, finding that relatively small sets could
be used with little loss of efficiency. Alternatively, the set can be formed by using the observed
false-positive rates in the data (Pepe 2003). Further details on the algorithm are provided in Methods
and formulas.

Under parametric estimation, all the summary measures we defined earlier, except the AUC, are not
calculated until postestimation. In models with covariates, each covariate combination would yield a
different ROC curve and thus different summary parameters, so no summary parameters are initially
estimated. In marginal parametric models (where there are no ROC covariates, but there are potentially
control covariates), we will calculate the AUC and leave the other measures for postestimation;
see [R] rocreg postestimation. As with the other parameters, we bootstrap for standard errors and
inference.

We will now demonstrate how rocreg performs the Alonzo and Pepe (2002) algorithm using the
previous section’s examples and others.

Example 6: Parametric ROC, linear covariate adjustment

We return to the neonatal audiology study with gender and age covariates (Norton et al. 2000),
which we discussed in example 4. Janes, Longton, and Pepe (2009) suspected the current age of
the infant would play a role in the case distribution of the classifier y1 (DPOAE 65 at 2 kHz). They
postulated a probit link between the ROC curve and the covariate-adjusted false-positive rates. We
follow their investigation and reach similar results.

In example 4, we saw the results of adjusting for the currage and male variables in the control
population for classifier y1. Now we see how currage affects the ROC curve when y1 is used with
thresholds conditioned on male and currage.

We specify the covariates that should affect the ROC curve in the roccov() option. By default,
rocreg will choose 10 equally spaced false-positive rates in the (0,1) interval as fitting points. The
fprpts() option allows the user to specify more or fewer points. We specify the bsave() option
with the nnhs2y1 dataset so that we can use the bootstrap resamples in postestimation.

http://www.stata.com/manuals14/rrocregpostestimation.pdf#rrocregpostestimation
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. use http://www.stata-press.com/data/r14/nnhs, clear
(Norton - neonatal audiology data)

. rocreg d y1, probit ctrlcov(currage male) ctrlmodel(linear) roccov(currage)
> cluster(id) bseed(56930) bsave(nnhs2y1) nodots

Bootstrap results Number of obs = 5,056
Replications = 1,000

Parametric ROC estimation

Covariate control : linear regression
Control variables : currage male
Control standardization: empirical
ROC method : parametric Link: probit

Status : d
Classifier: y1
Covariate control adjustment model:

Linear regression Number of obs = 4,907
F(2, 2685) = 13.80
Prob > F = 0.0000
R-squared = 0.0081
Root MSE = 7.7515

(Std. Err. adjusted for 2,686 clusters in id)

Robust
y1 Coef. Std. Err. t P>|t| [95% Conf. Interval]

currage -.2032456 .0389032 -5.22 0.000 -.2795288 -.1269624
male .2471744 .2603598 0.95 0.343 -.2633516 .7577005

_cons -1.239484 1.487855 -0.83 0.405 -4.156942 1.677973

Status : d
Classifier: y1
ROC Model :

(Replications based on 2,741 clusters in id)

Observed Bootstrap
y1 Coef. Bias Std. Err. [95% Conf. Interval]

_cons -1.272505 -.058656 1.157249 -3.540671 .995661 (N)
-3.703316 .8687538 (P)
-3.550433 1.094785 (BC)

currage .0448228 .0015634 .0300731 -.0141194 .1037649 (N)
-.0107322 .108762 (P)
-.0156332 .1044122 (BC)

probit

_cons .9372393 .0153781 .0739921 .7922176 1.082261 (N)
.8027433 1.108293 (P)
.7865501 1.077874 (BC)

Note how the number of clusters—here infants—changes from the covariate control adjustment
model fit to the ROC model. The control fit is limited to control cases and thus fewer infants. The
ROC is fit on all the data, so the variance is adjusted for all clustering on all infants.

With a 0.05 level of statistical significance, we cannot reject the null hypothesis that currage has
no effect on the ROC curve at a given false-positive rate. This is because each of our 95% bootstrap
confidence intervals contains 0. This corresponds with the finding in Janes, Longton, and Pepe (2009)
where the reported 95% intervals each contained 0. We cannot reject that the intercept parameter β0,
reported as cons in the main table, is 0 at the 0.05 level either. The slope parameter α, reported
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as cons in the probit table, is close to 1 and cannot be rejected as being 1 at the 0.05 level.
Under the assumption that the ROC coefficients except α are 0 and that α = 1, the ROC curve at
false-positive rate u is equal to u. In other words, we cannot reject that the false-positive rate is
equal to the true-positive rate, and so the test is noninformative. Further investigation of the results
requires postestimation; see [R] rocreg postestimation.

The fitting point set can be formed by using the observed false-positive rates (Pepe 2003). Our
next example will illustrate this.

Example 7: Parametric ROC, covariate stratification

We return to the hearing test study of Stover et al. (1996), which we discussed in example 5.
Pepe (2003) suspected that intensity, xd, would play a role in the case distribution of the negative
signal-to-noise ratio (nsnr) classifier. A ROC regression was fit with covariate adjustment for xf and
xl with stratification, and for ROC covariates xf, xl, and xd. There is no prohibition against the
same covariate being used in the first and second stages of ROC calculation. The false-positive rate
fitting point set was composed of all observed false-positive rates in the control data.

We fit the model with rocreg here. Using observed false-positive rates as the fitting point set can
make the dataset very large, so fitting the model is computationally intensive. We demonstrate the
fitting algorithm without precise confidence intervals, focusing instead on the coefficient estimates and
standard errors. We will thus perform only 50 bootstrap replications, a reasonable number to obtain
accurate standard error estimates (Mooney and Duval 1993). The number of replications is specified
in the breps() option.

The ROC covariates are specified in roccov(). We specify that all observed false-positive rates
in the control observations be used as fitting points with the ctrlfprall option. The nobstrata
option specifies that the bootstrap is not stratified. The covariate stratification in the first stage of
estimation does not affect the resampling. We will return to this example in postestimation, so we
save the bootstrap results in the nsnrf dataset with the bsave() option.

http://www.stata.com/manuals14/rrocregpostestimation.pdf#rrocregpostestimation
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. use http://www.stata-press.com/data/r14/dp
(Stover - DPOAE test data)

. rocreg d nsnr, probit ctrlcov(xf xl) roccov(xf xl xd) ctrlfprall cluster(id)
> nobstrata bseed(156385) breps(50) bsave(nsnrf)
(running rocregstat on estimation sample)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Bootstrap results Number of obs = 1,848
Replications = 50

Parametric ROC estimation

Covariate control : stratification
Control variables : xf xl
Control standardization: empirical
ROC method : parametric Link: probit

Status : d
Classifier: nsnr
ROC Model :

(Replications based on 208 clusters in id)

Observed Bootstrap
nsnr Coef. Bias Std. Err. [95% Conf. Interval]

_cons 3.247872 .0868352 .8985028 1.486839 5.008905 (N)
1.834415 5.606226 (P)
1.834415 6.275457 (BC)

xf .0502557 .0079289 .0290622 -.0067051 .1072166 (N)
-.0033383 .1145611 (P)
-.0454014 .0883843 (BC)

xl -.4327223 -.024214 .1249467 -.6776134 -.1878313 (N)
-.7207585 -.2425129 (P)
-.7207585 -.1547958 (BC)

xd .4431764 .0200785 .0875782 .2715264 .6148264 (N)
.3388809 .6706273 (P)
.3388809 .6706273 (BC)

probit

_cons 1.032657 .0026243 .1287713 .7802699 1.285044 (N)
.8308481 1.284435 (P)
.7808038 1.284435 (BC)

We obtain results similar to those reported in Pepe (2003, 159). We find that the coefficients for
xl and xd differ from 0 at the 0.05 level of significance. So over certain covariate combinations, we
can have a variety of informative tests using nsnr as a classifier.

As mentioned before, when there are no covariates, rocreg can still fit a parametric model for the
ROC curve of a classifier by using the Alonzo and Pepe (2002) method. roccomp and rocfit can
fit marginal probit models as well. We will compare the behavior of rocreg with that of roccomp
and rocfit for probit models without covariates.

When the binormal option is specified, roccomp calculates the AUC for input classifiers according
to the maximum likelihood algorithm of rocfit. The rocfit algorithm expects discrete classifiers
but can slice continuous classifiers into discrete partitions. Further, the case and control distributions
are both assumed normal. Actually, the observed classification values are taken as discrete indicators
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of the latent normally distributed classification values. This method is documented in Dorfman and
Alf (1969).

Alonzo and Pepe (2002) compared their estimating equations probability density function method
(with empirical estimation of the false-positive rates) to the maximum likelihood approach of Dorfman
and Alf (1969) and found that they had similar efficiency and mean squared error. So we should
expect rocfit and rocreg to give similar results when fitting a simple probit model.

Example 8: Parametric ROC, marginal model

We return to the Hanley and McNeil (1982) data. We will fit a probit model to the ROC curve,
assuming that the rating variable is a discrete indicator of an underlying latent normal random
variable in both the case and control populations of disease. We invoke rocfit with the default
options. rocreg is invoked with the probit option. The percentile values are calculated empirically.
Because there are fewer categories than 10, there will be fewer than 10 false-positive rates that trigger
a different true-positive rate value. So for efficiency, we invoke rocreg with the ctrlfprall option.

. use http://www.stata-press.com/data/r14/hanley

. rocfit disease rating, nolog

Binormal model of disease on rating Number of obs = 109
Goodness-of-fit chi2(2) = 0.21
Prob > chi2 = 0.9006
Log likelihood = -123.64855

Coef. Std. Err. z P>|z| [95% Conf. Interval]

intercept 1.656782 0.310456 5.34 0.000 1.048300 2.265265
slope (*) 0.713002 0.215882 -1.33 0.184 0.289881 1.136123

/cut1 0.169768 0.165307 1.03 0.304 -0.154227 0.493764
/cut2 0.463215 0.167235 2.77 0.006 0.135441 0.790990
/cut3 0.766860 0.174808 4.39 0.000 0.424243 1.109477
/cut4 1.797938 0.299581 6.00 0.000 1.210770 2.385106

Indices from binormal fit
Index Estimate Std. Err. [95% Conf. Interval]

ROC area 0.911331 0.029506 0.853501 0.969161
delta(m) 2.323671 0.502370 1.339044 3.308298

d(e) 1.934361 0.257187 1.430284 2.438438
d(a) 1.907771 0.259822 1.398530 2.417012

(*) z test for slope==1
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. rocreg disease rating, probit ctrlfprall bseed(8574309) nodots

Bootstrap results Number of obs = 109
Replications = 1,000

Parametric ROC estimation

Control standardization: empirical
ROC method : parametric Link: probit

Status : disease
Classifier: rating
ROC Model :

Observed Bootstrap
rating Coef. Bias Std. Err. [95% Conf. Interval]

_cons 1.635041 .0850129 .3706472 .9085857 2.361496 (N)
1.139856 2.649876 (P)
1.103894 2.428801 (BC)

probit

_cons .6951252 .0642966 .275061 .1560155 1.234235 (N)
.3242299 1.409152 (P)
.2721681 1.292525 (BC)

Observed Bootstrap
AUC Coef. Bias Std. Err. [95% Conf. Interval]

.9102903 -.0029679 .0300486 .8513963 .9691844 (N)
.8448006 .9602325 (P)
.8475004 .9607949 (BC)

We see that the intercept and slope parameter estimates are close. The intercept ( cons in the main
table) is clearly nonzero. Under rocreg, the slope ( cons in the probit table) and its percentile
and bias-corrected confidence intervals are close to those of rocfit. The area under the ROC curve
for each of the rocreg and rocfit estimators also matches closely.

Now we will compare the parametric fit of rocreg under the constant probit model with roccomp.

Example 9: Parametric ROC, marginal model, multiple classifiers

We now use the fictitious dataset generated from Hanley and McNeil (1983). To fit a probit model
using roccomp, we specify the binormal option. Our specification of rocreg remains the same as
before.

rocregplot is used to render the model produced by rocreg. We specify several graph options
to both roccomp and rocregplot to ease comparison. When the binormal option is specified along
with graph, roccomp will draw the binormal fitted lines in addition to connected line plots of the
empirical false-positive and true-positive rates.

In this plot, we overlay scatterplots of the empirical false-positive rates (because percentile value
calculation defaulted to pvc(empirical)) and the parametric true-positive rates.
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. use http://www.stata-press.com/data/r14/ct2, clear

. roccomp status mod1 mod2 mod3, summary binormal graph aspectratio(1)
> plot1opts(connect(i) msymbol(o))
> plot2opts(connect(i) msymbol(s))
> plot3opts(connect(i) msymbol(t))
> legend(label(1 "mod1") label(3 "mod2") label(5 "mod3")
> label(2 "mod1 fit") label(4 "mod2 fit")
> label(6 "mod3 fit") order(1 3 5 2 4 6) cols(1))
> title(roccomp) name(a) nodraw
Fitting binormal model for: mod1
Fitting binormal model for: mod2
Fitting binormal model for: mod3

ROC
Obs Area Std. Err. [95% Conf. Interval]

mod1 112 0.8945 0.0305 0.83482 0.95422
mod2 112 0.9382 0.0264 0.88647 0.99001
mod3 112 0.9376 0.0223 0.89382 0.98139

Ho: area(mod1) = area(mod2) = area(mod3)
chi2(2) = 8.27 Prob>chi2 = 0.0160

. rocreg status mod1 mod2 mod3, probit ctrlfprall bseed(867340912) nodots

Bootstrap results Number of obs = 112
Replications = 999

Parametric ROC estimation

Control standardization: empirical
ROC method : parametric Link: probit

Status : status
Classifier: mod1
ROC Model :

Observed Bootstrap
mod1 Coef. Bias Std. Err. [95% Conf. Interval]

_cons 1.726034 .164964 .5823832 .5845836 2.867484 (N)
1.197595 3.410778 (P)
1.154531 3.027969 (BC)

probit

_cons .9666323 .1104948 .4635417 .0581071 1.875157 (N)
.5102274 2.319844 (P)
.5193889 2.319844 (BC)

Observed Bootstrap
AUC Coef. Bias Std. Err. [95% Conf. Interval]

.8927007 .000062 .0306285 .83267 .9527315 (N)
.8297837 .946722 (P)
.8262202 .9423347 (BC)
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Status : status
Classifier: mod2
ROC Model :

Observed Bootstrap
mod2 Coef. Bias Std. Err. [95% Conf. Interval]

_cons 1.696811 .0760455 .4750493 .7657314 2.627891 (N)
1.191126 2.854689 (P)
1.205256 2.916377 (BC)

probit

_cons .4553828 .0245707 .304156 -.140752 1.051518 (N)
.0857558 1.070745 (P)
.1495717 1.434937 (BC)

Observed Bootstrap
AUC Coef. Bias Std. Err. [95% Conf. Interval]

.938734 -.0033941 .0268351 .8861382 .9913297 (N)
.875 .9774636 (P)

.8775983 .9777322 (BC)

Status : status
Classifier: mod3
ROC Model :

Observed Bootstrap
mod3 Coef. Bias Std. Err. [95% Conf. Interval]

_cons 2.281359 .1143008 .5773577 1.149758 3.412959 (N)
1.653256 3.882332 (P)
1.65594 3.882332 (BC)

probit

_cons 1.107736 .0482007 .4195496 .2854334 1.930038 (N)
.6128833 2.256342 (P)
.6514254 2.527536 (BC)

Observed Bootstrap
AUC Coef. Bias Std. Err. [95% Conf. Interval]

.9368321 -.0008781 .0226477 .8924435 .9812207 (N)
.887858 .9720291 (P)

.8866298 .971411 (BC)

Ho: All classifiers have equal AUC values.
Ha: At least one classifier has a different AUC value.

P-value: .0599896 Test based on bootstrap (N) assumptions.

. rocregplot, title(rocreg) nodraw name(b)
> plot1opts(msymbol(o)) plot2opts(msymbol(s)) plot3opts(msymbol(t))
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. graph combine a b, xsize(5)
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We see differing true-positive rate values in the scattered points, which is expected because roccomp
gives the empirical estimate and rocreg gives the parametric estimate. However, the estimated curves
and areas under the ROC curve look similar. Using the Wald test based on the bootstrap covariance,
rocreg rejects the null hypothesis that each test has the same AUC at the 0.1 significance level.
roccomp formulates the asymptotic covariance using the rocfit estimates of AUC. Examination of
its output leads to rejection of the null hypothesis that the AUCs are equal across each test at the 0.05
significance level.

Parametric ROC curves: Maximum likelihood
The Alonzo and Pepe (2002) method of fitting a parametric model to the ROC curve is powerful

because it can be generally applied, but that can be a limitation as well. Whenever we invoke the
method and want anything other than point estimates of the parameters, we must perform bootstrap
resampling.

An alternative is to use maximum likelihood inference to fit the ROC curve. This method can save
computational time by avoiding the bootstrap.

rocreg implements maximum likelihood estimation for ROC curve analysis when both the case
and control populations are normal. Particularly, the classifier is a normal linear model on certain
covariates, and the covariate effect and variance of the classifier may change between the case and
control populations. This model is defined in Pepe (2003, 145).

y = z′β0 +Dx′β1 + σ (D) ε

Our error term, ε, is a standard normal random variable. The variable D is our true status variable,
being 1 for the case population observations and 0 for the control population observations. The
variance function σ is defined as

σ (D) = σ0 (D = 0) + σ1 (D = 1)

This provides two variance parameters in the model and does not depend on covariate values.
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Suppose a covariate xi is present in z and x. The coefficient β1i represents the interaction effect
of the xi and D. It is the extra effect that xi has on classifier y under the case population, D = 1,
beyond the main effect β0i. These β1 coefficients are directly related to the ROC curve of y.

Under this model, the ROC curve is derived to be

ROC (u) = Φ

[
1

σ1
{x′β1 + σ0Φ−1 (u)}

]
For convenience, we reparameterize the model at this point, creating the parameters βi = σ−11 β1i
and α = σ−11 σ0. We refer to β0 as the constant intercept, i cons. The parameter α is referred to
as the constant slope, s cons.

ROC (u) = Φ{x′β + αΦ−1 (u)}

We may interpret the final coefficients as the standardized linear effect of the ROC covariate on
the classifier under the case population. The marginal effect of the covariate on the classifier in the
control population is removed, and it is rescaled by the case population standard deviation of the
classifier when all ROC covariate effects are removed. An appreciable effect on the classifier by a
ROC covariate in this measure leads to an appreciable effect on the classifier’s ROC curve by the ROC
covariate.

The advantage of estimating the control coefficients β0 is similar to the gains of estimating the
covariate control models in the estimating equations ROC method and nonparametric ROC estimation.
This model would similarly apply when evaluating a test that is conditioned on control covariates.

Again we note that under parametric estimation, all the summary measures we defined earlier except
the AUC are not calculated until postestimation. In models with covariates, each covariate combination
would yield a different ROC curve and thus different summary parameters, so no summary parameters
are estimated initially. In marginal parametric models, we will calculate the AUC and leave the other
measures for postestimation. There is a simple closed-form formula for the AUC under the probit
model. Using this formula, the delta method can be invoked for inference on the AUC. Details on
AUC estimation for probit marginal models are found in Methods and formulas.

We will demonstrate the maximum likelihood method of rocreg by revisiting the models of the
previous section.

Example 10: Maximum likelihood ROC, single classifier

Returning to the hearing test study of Stover et al. (1996), we use a similar covariate grouping
as before. The frequency xf and intensity xl are control covariates (z), while all three covariates
xf, xl, and hearing loss degree xd are case covariates (x). In example 7, we fit this model using
the Alonzo and Pepe (2002) method. Earlier we stratified on the control covariates and estimated
the conditioned control distribution of nsnr empirically. Now we assume a normal linear model for
nsnr on xf and xl under the control population.

We fit the model by specifying the control covariates in the ctrlcov() option and the case
covariates in the roccov() option. The ml option tells rocreg to perform maximum likelihood
estimation.



rocreg — Receiver operating characteristic (ROC) regression 37

. use http://www.stata-press.com/data/r14/dp, clear
(Stover - DPOAE test data)

. rocreg d nsnr, ctrlcov(xf xl) roccov(xf xl xd) probit ml cluster(id) nolog

Parametric ROC estimation Number of obs = 112
Replications = 999

Covariate control : linear regression
Control variables : xf xl
Control standardization: normal
ROC method : parametric Link: probit

Status : d
Classifiers: nsnr

Classifier : nsnr
Covariate control adjustment model:

(Std. Err. adjusted for 208 clusters in id)

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

casecov
xf .4690907 .1408683 3.33 0.001 .192994 .7451874
xl -3.187785 .8976521 -3.55 0.000 -4.947151 -1.42842
xd 3.042998 .3569756 8.52 0.000 2.343339 3.742657

_cons 23.48064 5.692069 4.13 0.000 12.32439 34.63689

casesd
_cons 7.979708 .354936 22.48 0.000 7.284047 8.67537

ctrlcov
xf -.1447499 .0615286 -2.35 0.019 -.2653438 -.0241561
xl -.8631348 .2871976 -3.01 0.003 -1.426032 -.3002378

_cons 1.109477 1.964004 0.56 0.572 -2.7399 4.958854

ctrlsd
_cons 7.731203 .3406654 22.69 0.000 7.063511 8.398894

Status : d
ROC Model :

(Std. Err. adjusted for 208 clusters in id)

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

nsnr
i_cons 2.942543 .7569821 3.89 0.000 1.458885 4.426201

xf .0587854 .0175654 3.35 0.001 .024358 .0932129
xl -.3994865 .1171914 -3.41 0.001 -.6291775 -.1697955
xd .381342 .0449319 8.49 0.000 .2932771 .4694068

s_cons .9688578 .0623476 15.54 0.000 .8466587 1.091057

We find the results are similar to those of example 7. Frequency (xf) and intensity (xl) have a
negative effect on the classifier nsnr in the control population.

The negative control effect is mitigated for xf in the case population, but the effect for xl is even
more negative there. Hearing loss severity, xd, has a positive effect on nsnr in the case population,
and it is undefined in the control population.

The ROC coefficients are shown in the ROC Model table. Each are different from 0 at the 0.05
level. At this level, we also cannot conclude that the variances differ from case to control populations,
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because 1 is in the 95% confidence interval for s cons, the ratio of the case to control standard
deviation parameters.

Both frequency (xf) and hearing loss severity (xd) make a positive contribution to the ROC curve
and thus make the test more powerful. Intensity (xl) has a negative effect on the ROC curve and
weakens the test. We previously saw in example 5 that the control distribution appears to be normal,
so using maximum likelihood to fit this model is a reasonable approach.

This model was also fit in Pepe (2003, 147). Pepe used separate least-squares estimates for the
case and control samples. We obtain similar results for the coefficients, but the maximum likelihood
fitting yields slightly different standard deviations by considering both case and control observations
concurrently. In addition, a misprint in Pepe (2003, 147) reports a coefficient of −4.91 for xl in the
case population instead of −3.19 as reported by Stata.

Inference on multiple classifiers using the Alonzo and Pepe (2002) estimating equation method
is performed by fitting each model separately and bootstrapping to determine the dependence of the
estimates. Using the maximum likelihood method, we also fit each model separately. We use suest
(see [R] suest) to estimate the joint variance–covariance of our parameter estimates.

For our models, we can view the score equation for each model as an estimating equation. The
estimate that solves the estimating equation (that makes the score 0) is asymptotically normal with a
variance matrix that can be estimated using the inverse of the squared scores. By stacking the score
equations of the separate models, we can estimate the variance matrix for all the parameter estimates
by using this rule. This is an informal explanation; further details can be found in [R] suest and in
the references Rogers (1993); White (1982 and 1996).

Now we will examine a case with multiple classification variables.

Example 11: Maximum likelihood ROC, multiple classifiers

We return to the neonatal audiology study with gender and age covariates (Norton et al. 2000).
In example 6, we fit a model with male and currage as control covariates, and currage as a ROC
covariate for the classifier y1 (DPOAE 65 at 2 kHz). We will refit this model, extending it to include
the classifier y2 (TEOAE 80 at 2 kHz).

http://www.stata.com/manuals14/rsuest.pdf#rsuest
http://www.stata.com/manuals14/rsuest.pdf#rsuest
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. use http://www.stata-press.com/data/r14/nnhs
(Norton - neonatal audiology data)

. rocreg d y1 y2, probit ml ctrlcov(currage male) roccov(currage) cluster(id)
> nolog

Parametric ROC estimation

Covariate control : linear regression
Control variables : currage male
Control standardization: normal
ROC method : parametric Link: probit

Status : d
Classifiers: y1 y2

Classifier : y1
Covariate control adjustment model:

Coef. Std. Err. z P>|z| [95% Conf. Interval]

casecov
currage .494211 .2126672 2.32 0.020 .077391 .9110311

_cons -15.00403 8.238094 -1.82 0.069 -31.1504 1.142338

casesd
_cons 8.49794 .4922792 17.26 0.000 7.533091 9.46279

ctrlcov
currage -.2032048 .0323803 -6.28 0.000 -.266669 -.1397406

male .2369359 .2201391 1.08 0.282 -.1945288 .6684006
_cons -1.23534 1.252775 -0.99 0.324 -3.690734 1.220055

ctrlsd
_cons 7.749156 .0782225 99.07 0.000 7.595843 7.902469

Classifier : y2
Covariate control adjustment model:

Coef. Std. Err. z P>|z| [95% Conf. Interval]

casecov
currage .5729861 .2422662 2.37 0.018 .0981532 1.047819

_cons -18.2597 9.384968 -1.95 0.052 -36.6539 .1344949

casesd
_cons 9.723858 .5632985 17.26 0.000 8.619813 10.8279

ctrlcov
currage -.1694575 .0291922 -5.80 0.000 -.2266732 -.1122419

male .7122587 .1993805 3.57 0.000 .3214802 1.103037
_cons -5.651728 1.129452 -5.00 0.000 -7.865415 -3.438042

ctrlsd
_cons 6.986167 .0705206 99.07 0.000 6.84795 7.124385
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Status : d
ROC Model :

(Std. Err. adjusted for 2,741 clusters in id)

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

y1
i_cons -1.765608 1.105393 -1.60 0.110 -3.932138 .4009225

currage .0581566 .0290177 2.00 0.045 .0012828 .1150303
s_cons .9118864 .0586884 15.54 0.000 .7968593 1.026913

y2
i_cons -1.877825 .905174 -2.07 0.038 -3.651933 -.1037167

currage .0589258 .0235849 2.50 0.012 .0127002 .1051514
s_cons .7184563 .0565517 12.70 0.000 .607617 .8292957

Both classifiers have similar results. The results for y1 show the same direction as the estimating
equation results in example 6. However, we can now reject the null hypothesis that the ROC currage
coefficient is 0 at the 0.05 level.

In example 6, we could not reject that the slope parameter s cons was 1 and that the constant
intercept or ROC coefficient for current age was 0. The resulting ROC curve implied a noninformative
test using y1 as a classifier. This is not the case with our current results. As currage increases, we
expect a steeper ROC curve and thus a more powerful test, for both classifiers y1 (DPOAE 65 at 2 kHz)
and y2 (TEOAE 80 at 2 kHz).

In example 10, the clustering of observations within infant id was adjusted in the individual fit of
nsnr. In our current example, the adjustment for the clustering of observations within id is performed
during concurrent estimation, as opposed to during the individual classifier fits (as in example 10).
This adjustment, performed by suest, is still accurate.

Now we will fit constant probit models and compare rocreg with rocfit and roccomp with the
binormal option. Our first applications of rocfit and roccomp are taken directly from examples 8
and 9. The Dorfman and Alf (1969) algorithm that rocfit works with uses discrete classifiers or
uses slicing to make a classifier discrete. So we are applying the maximum likelihood method of
rocreg on discrete classification data here, where it expects continuous data. We expect to see some
discrepancies, but we do not find great divergence in the estimates. After revisiting examples 8 and
9, we will fit a probit model with a continuous classifier and no covariates using rocreg, and we
will compare the results with those from rocfit.

Example 12: Maximum likelihood ROC, marginal model

Using the Hanley and McNeil (1982) data, discussed in example 1 and in example 8, we fit a
constant probit model of the classifier rating with true status disease. rocreg is invoked with the
ml option and compared with rocfit.
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. use http://www.stata-press.com/data/r14/hanley, clear

. rocfit disease rating, nolog

Binormal model of disease on rating Number of obs = 109
Goodness-of-fit chi2(2) = 0.21
Prob > chi2 = 0.9006
Log likelihood = -123.64855

Coef. Std. Err. z P>|z| [95% Conf. Interval]

intercept 1.656782 0.310456 5.34 0.000 1.048300 2.265265
slope (*) 0.713002 0.215882 -1.33 0.184 0.289881 1.136123

/cut1 0.169768 0.165307 1.03 0.304 -0.154227 0.493764
/cut2 0.463215 0.167235 2.77 0.006 0.135441 0.790990
/cut3 0.766860 0.174808 4.39 0.000 0.424243 1.109477
/cut4 1.797938 0.299581 6.00 0.000 1.210770 2.385106

Indices from binormal fit
Index Estimate Std. Err. [95% Conf. Interval]

ROC area 0.911331 0.029506 0.853501 0.969161
delta(m) 2.323671 0.502370 1.339044 3.308298

d(e) 1.934361 0.257187 1.430284 2.438438
d(a) 1.907771 0.259822 1.398530 2.417012

(*) z test for slope==1

. rocreg disease rating, probit ml nolog

Binormal model of disease on rating Number of obs = 109
GOF chi2(0) = .

Log likelihood = -123.64855 Prob > chi2 = .

Control standardization: normal
ROC method : parametric Link: probit

Status : disease
Classifiers: rating

Classifier : rating
Covariate control adjustment model:

Coef. Std. Err. z P>|z| [95% Conf. Interval]

casecov
_cons 2.3357 .2334285 10.01 0.000 1.878188 2.793211

casesd
_cons 1.117131 .1106124 10.10 0.000 .9003344 1.333927

ctrlcov
_cons 2.017241 .1732589 11.64 0.000 1.67766 2.356823

ctrlsd
_cons 1.319501 .1225125 10.77 0.000 1.07938 1.559621
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Status : disease
ROC Model :

Coef. Std. Err. z P>|z| [95% Conf. Interval]

rating
i_cons 2.090802 .2941411 7.11 0.000 1.514297 2.667308
s_cons 1.181151 .1603263 7.37 0.000 .8669177 1.495385

auc .9116494 .0261658 34.84 0.000 .8603654 .9629333

We compare the estimates for these models:

rocfit rocreg, ml

slope 0.7130 1.1812
SE of slope 0.2159 0.1603
intercept 1.6568 2.0908
SE of intercept 0.3105 0.2941
AUC 0.9113 0.9116
SE of AUC 0.0295 0.0262

We find that both the intercept and the slope are estimated as higher with the maximum likelihood
method under rocreg than with rocfit. The AUC (ROC area in rocfit) is close for both commands.
We find that the standard errors of each of these estimates is slightly lower under rocreg than rocfit
as well.

Both rocfit and rocreg suggest that the slope parameter of the ROC curve (slope in rocfit
and s cons in rocreg) is not significantly different from 1. Thus we cannot reject that the classifier
has the same variance in both case and control populations. There is, however, significant evidence
that the intercepts (i cons in rocreg and intercept in rocfit) differ from 0. Because of the
positive direction of the intercept estimates, the ROC curve for rating as a classifier of disease
suggests that rating provides an informative test. This is also suggested by the high AUC, which is
significantly different from 0.5, that is, a flip of a coin.

Example 13: Maximum likelihood ROC, marginal model, multiple classifiers

We use the fictitious dataset generated from Hanley and McNeil (1983), which we previously used
in example 2 and in example 9. To fit a probit model using roccomp, we specify the binormal option.
We perform parametric, maximum likelihood ROC analysis using rocreg. We use rocregplot to
plot the ROC curves created by rocreg.
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. use http://www.stata-press.com/data/r14/ct2, clear

. roccomp status mod1 mod2 mod3, summary binormal graph aspectratio(1)
> plot1opts(connect(i) msymbol(o))
> plot2opts(connect(i) msymbol(s))
> plot3opts(connect(i) msymbol(t))
> legend(label(1 "mod1") label(3 "mod2") label(5 "mod3")
> label(2 "mod1 fit") label(4 "mod2 fit") label(6 "mod3 fit")
> order(1 3 5 2 4 6) cols(1)) title(roccomp) name(a) nodraw
Fitting binormal model for: mod1
Fitting binormal model for: mod2
Fitting binormal model for: mod3

ROC
Obs Area Std. Err. [95% Conf. Interval]

mod1 112 0.8945 0.0305 0.83482 0.95422
mod2 112 0.9382 0.0264 0.88647 0.99001
mod3 112 0.9376 0.0223 0.89382 0.98139

Ho: area(mod1) = area(mod2) = area(mod3)
chi2(2) = 8.27 Prob>chi2 = 0.0160

. rocreg status mod1 mod2 mod3, probit ml nolog

Parametric ROC estimation Number of obs = 109

Control standardization: normal
ROC method : parametric Link: probit

Status : status
Classifiers: mod1 mod2 mod3

Classifier : mod1
Covariate control adjustment model:

Coef. Std. Err. z P>|z| [95% Conf. Interval]

casecov
_cons 2.118135 .2165905 9.78 0.000 1.693626 2.542645

casesd
_cons 1.166078 .1122059 10.39 0.000 .9461589 1.385998

ctrlcov
_cons 2.344828 .1474147 15.91 0.000 2.0559 2.633755

ctrlsd
_cons 1.122677 .1042379 10.77 0.000 .9183746 1.32698

Classifier : mod2
Covariate control adjustment model:

Coef. Std. Err. z P>|z| [95% Conf. Interval]

casecov
_cons 2.659642 .2072731 12.83 0.000 2.253395 3.06589

casesd
_cons 1.288468 .1239829 10.39 0.000 1.045466 1.53147

ctrlcov
_cons 1.655172 .1105379 14.97 0.000 1.438522 1.871823

ctrlsd
_cons .8418313 .0781621 10.77 0.000 .6886365 .9950262
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Classifier : mod3
Covariate control adjustment model:

Coef. Std. Err. z P>|z| [95% Conf. Interval]

casecov
_cons 2.353768 .1973549 11.93 0.000 1.966959 2.740576

casesd
_cons 1.143359 .1100198 10.39 0.000 .9277243 1.358994

ctrlcov
_cons 2.275862 .1214094 18.75 0.000 2.037904 2.51382

ctrlsd
_cons .9246267 .0858494 10.77 0.000 .7563649 1.092888

Status : status
ROC Model :

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

mod1
i_cons 1.81646 .3144804 5.78 0.000 1.20009 2.432831
s_cons .9627801 .1364084 7.06 0.000 .6954245 1.230136

auc .904657 .0343518 26.34 0.000 .8373287 .9719853

mod2
i_cons 2.064189 .3267274 6.32 0.000 1.423815 2.704563
s_cons .6533582 .1015043 6.44 0.000 .4544135 .8523029

auc .9580104 .0219713 43.60 0.000 .9149473 1.001073

mod3
i_cons 2.058643 .2890211 7.12 0.000 1.492172 2.625113
s_cons .8086932 .1163628 6.95 0.000 .5806262 1.03676

auc .9452805 .0236266 40.01 0.000 .8989732 .9915877

Ho: All classifiers have equal AUC values.
Ha: At least one classifier has a different AUC value.

P-value: .0808808
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. rocregplot, title(rocreg) nodraw name(b)
> plot1opts(msymbol(o)) plot2opts(msymbol(s)) plot3opts(msymbol(t))

. graph combine a b, xsize(5)

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0
S

e
n
s
it
iv

it
y

0.00 0.25 0.50 0.75 1.00
1−Specificity

mod1

mod2

mod3

mod1 fit

mod2 fit

mod3 fit

roccomp

0
.2

5
.5

.7
5

1
T

ru
e
−

p
o
s
it
iv

e
 r

a
te

 (
R

O
C

)

0 .25 .5 .75 1
False−positive rate

mod1

mod2

mod3

mod1 Fit

mod2 Fit

mod3 Fit

rocreg

We compare the AUC estimates for these models:

roccomp rocreg, ml

mod1 0.8945 0.9047
mod2 0.9382 0.9580
mod3 0.9376 0.9453

Each classifier has a higher estimated AUC under rocreg than roccomp. Each curve appears to
be raised and smoothed in the rocreg fit as compared with roccomp. They are different, but not
drastically different. The inference on whether the curve areas are the same is similar to example 9.
We reject equality at the 0.10 level under rocreg and at the 0.05 level under roccomp.

Each intercept is significantly different from 0 at the 0.05 level and is estimated in a positive
direction. Though all but classifier mod2 has 1 in their slope confidence intervals, the high intercepts
suggest steep ROC curves and powerful tests.

Also note that the false-positive and true-positive rate points are calculated empirically in the
roccomp graph and parametrically in rocreg. In example 9, the false-positive rates calculated by
rocreg were calculated empirically, similar to roccomp. But in this example, the rates are calculated
based on normal percentiles.

Now we will generate an example to compare rocfit and rocreg under maximum likelihood
estimation of a continuous classifier.

Example 14: Maximum likelihood ROC, graphical comparison with rocfit

We generate 500 realizations of a population under threat of disease. One quarter of the population
has the disease. A classifier x is measured, which has a control distribution of N(1, 3) and a case
distribution of N(1 + 5, 2). We will invoke rocreg with the ml option on this generated data. We
specify the continuous() option for rocfit and invoke it on the data as well. The continuous()
option tells rocfit how many discrete slices to partition the data into before fitting.
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For comparison of the two curves, we will use the rocfit postestimation command, rocplot;
see [R] rocfit postestimation. This command graphs the empirical false-positive and true-positive
rates with an overlaid fit of the binormal curve estimated by rocfit. rocplot also supports an
addplot() option. We use the saved variables from rocreg in this option to overlay a line plot of
the rocreg fit.

. clear

. set seed 8675309

. set obs 500
number of observations (_N) was 0, now 500

. generate d = runiform() < .25

. quietly generate double epsilon = 3*invnormal(runiform()) if d == 0

. quietly replace epsilon = 2*invnormal(runiform()) if d == 1

. quietly generate double x = 1 + d*5 + epsilon

. rocreg d x, probit ml nolog

Parametric ROC estimation Number of obs = 112

Control standardization: normal
ROC method : parametric Link: probit

Status : d
Classifiers: x

Classifier : x
Covariate control adjustment model:

Coef. Std. Err. z P>|z| [95% Conf. Interval]

casecov
_cons 4.823931 .2305469 20.92 0.000 4.372067 5.275795

casesd
_cons 1.926652 .1204158 16.00 0.000 1.690642 2.162663

ctrlcov
_cons 1.14378 .155409 7.36 0.000 .8391841 1.448376

ctrlsd
_cons 2.99742 .1098907 27.28 0.000 2.782038 3.212802

Status : d
ROC Model :

Coef. Std. Err. z P>|z| [95% Conf. Interval]

x
i_cons 2.503789 .1969952 12.71 0.000 2.117686 2.889893
s_cons 1.555766 .1127296 13.80 0.000 1.33482 1.776712

auc .912102 .0123921 73.60 0.000 .8878139 .9363902

http://www.stata.com/manuals14/rrocfitpostestimation.pdf#rrocfitpostestimation
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. rocfit d x, continuous(10) nolog

Binormal model of d on x Number of obs = 500
Goodness-of-fit chi2(7) = 1.33
Prob > chi2 = 0.9877
Log likelihood = -914.15521

Coef. Std. Err. z P>|z| [95% Conf. Interval]

intercept 2.647297 0.277012 9.56 0.000 2.104362 3.190231
slope (*) 1.670103 0.195433 3.43 0.001 1.287062 2.053145

/cut1 -2.079091 0.153221 -13.57 0.000 -2.379398 -1.778783
/cut2 -1.383360 0.093448 -14.80 0.000 -1.566515 -1.200205
/cut3 -0.905227 0.075606 -11.97 0.000 -1.053413 -0.757041
/cut4 -0.252654 0.065679 -3.85 0.000 -0.381382 -0.123925
/cut5 0.310051 0.065913 4.70 0.000 0.180863 0.439239
/cut6 0.915048 0.072958 12.54 0.000 0.772054 1.058043
/cut7 1.512188 0.092153 16.41 0.000 1.331570 1.692805
/cut8 2.095878 0.136662 15.34 0.000 1.828026 2.363731
/cut9 2.516563 0.181939 13.83 0.000 2.159970 2.873156

Indices from binormal fit
Index Estimate Std. Err. [95% Conf. Interval]

ROC area 0.913079 0.012942 0.887713 0.938445
delta(m) 1.585110 0.107531 1.374352 1.795868

d(e) 1.982917 0.121777 1.744239 2.221596
d(a) 1.923275 0.115671 1.696565 2.149985

(*) z test for slope==1

. rocplot, plotopts(msymbol(i)) lineopts(lpattern(dash))
> norefline addplot(line _roc_x _fpr_x, sort(_fpr_x _roc_x)
> lpattern(solid)) aspectratio(1) legend(off)
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Area under curve = 0.9128  se(area) = 0.0137

We find that the curves are close. As before, the rocfit estimates are lower for the slope and
intercept than under rocreg. The AUC estimates are close. Though the slope confidence interval
contains 1, a high ROC intercept suggests a steep ROC curve and thus a powerful test.
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Stored results
Nonparametric rocreg stores the following in e():

Scalars
e(N) number of observations
e(N strata) number of covariate strata
e(N clust) number of clusters
e(rank) rank of e(V)

Macros
e(cmd) rocreg
e(cmdline) command as typed
e(classvars) classification variable list
e(refvar) status variable, reference variable
e(ctrlmodel) covariate-adjustment specification
e(ctrlcov) covariate-adjustment variables
e(pvc) percentile value calculation method
e(title) title in estimation output
e(tiecorrected) indicates whether tie correction was used
e(nobootstrap) indicates that bootstrap was performed
e(rngstate) random-number state used in bootstrap, if bootstrap was performed
e(breps) number of bootstrap resamples, if bootstrap performed
e(cc) indicates whether case–control groups were used as resampling strata
e(nobstrata) indicates whether resampling should stratify based on control covariates
e(clustvar) name of cluster variable
e(roc) false-positive rates where ROC was estimated
e(invroc) ROC values where false-positive rates were estimated
e(pauc) false-positive rates where pAUC was estimated
e(auc) indicates that AUC was calculated
e(vce) bootstrap
e(properties) b V (or b if bootstrap not performed)

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators
e(b bs) bootstrap estimates
e(bias) estimated biases
e(se) estimated standard errors
e(z0) median biases
e(ci normal) normal-approximation confidence intervals
e(ci percentile) percentile confidence intervals
e(ci bc) bias-corrected confidence intervals

Functions
e(sample) marks estimation sample
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Parametric, bootstrap rocreg stores the following in e():

Scalars
e(N) number of observations
e(N strata) number of covariate strata
e(N clust) number of clusters
e(rank) rank of e(V)

Macros
e(cmd) rocreg
e(cmdline) command as typed
e(title) title in estimation output
e(classvars) classification variable list
e(refvar) status variable, reference variable
e(ctrlmodel) covariate-adjustment specification
e(ctrlcov) covariate-adjustment variables
e(pvc) percentile value calculation method
e(title) title in estimation output
e(tiecorrected) indicates whether tie correction was used
e(probit) probit
e(roccov) ROC covariates
e(fprpts) number of points used as false-positive rate fit points
e(ctrlfprall) indicates whether all observed false-positive rates were used as fit points
e(nobootstrap) indicates that bootstrap was performed
e(rngstate) random-number state used in bootstrap
e(breps) number of bootstrap resamples
e(cc) indicates whether case–control groups were used as resampling strata
e(nobstrata) indicates whether resampling should stratify based on control covariates
e(clustvar) name of cluster variable
e(vce) bootstrap
e(properties) b V (or b if nobootstrap is specified)
e(predict) program used to implement predict

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators
e(b bs) bootstrap estimates
e(reps) number of nonmissing results
e(bias) estimated biases
e(se) estimated standard errors
e(z0) median biases
e(ci normal) normal-approximation confidence intervals
e(ci percentile) percentile confidence intervals
e(ci bc) bias-corrected confidence intervals

Functions
e(sample) marks estimation sample
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Parametric, maximum likelihood rocreg stores the following in e():

Scalars
e(N) number of observations
e(N clust) number of clusters
e(rank) rank of e(V)

Macros
e(cmd) rocreg
e(cmdline) command as typed
e(classvars) classification variable list
e(refvar) status variable
e(ctrlmodel) linear
e(ctrlcov) control population covariates
e(roccov) ROC covariates
e(probit) probit
e(pvc) normal
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(vce) cluster if clustering used
e(vcetype) robust if multiple classifiers or clustering used
e(ml) indicates that maximum likelihood estimation was used
e(predict) program used to implement predict

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
Assume that we applied a diagnostic test to each of N0 control and N1 case subjects. Further

assume that the higher the outcome value of the diagnostic test, the higher the risk of the subject
being abnormal. Let y1i, i = 1, 2, . . . , N1, and y0j , j = 1, 2, . . . , N0, be the values of the diagnostic
test for the case and control subjects, respectively. The true status variable D identifies an observation
as case D = 1 or control D = 0. The CDF of the classifier Y is F . Conditional on D, we write the
CDF as FD.

Methods and formulas are presented under the following headings:

ROC statistics
Covariate-adjusted ROC curves
Parametric ROC curves: Estimating equations
Parametric ROC curves: Maximum likelihood
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ROC statistics

We obtain these definitions and their estimates from Pepe (2003) and Pepe, Longton, and
Janes (2009). The false-positive and true-positive rates at cutoff c are defined as

FPR (y) = P
(
Y ≥ y

∣∣D = 0
)

TPR (y) = P
(
Y ≥ y

∣∣D = 1
)

The true-positive rate, or ROC value at false-positive rate u, is given by

ROC (u) = P
(
1− F0 (Y ) ≤ u

∣∣D = 1
)

When Y is continuous, the false-positive rate can be written as

FPR (y) = 1− F0 (y)

The empirical CDF for the sample z1, . . . , zn is given by

F̂ (z) =

n∑
i=1

I (z < zi)

n

The empirical estimates F̂PR and R̂OC both use this empirical CDF estimator.

The area under the ROC curve is defined as

AUC =

∫ 1

0

ROC (u) du

The partial area under the ROC curve for false-positive rate a is defined as

pAUC (a) =

∫ a

0

ROC (u) du

The nonparametric estimate for the AUC is given by

ÂUC =

N1∑
i=1

1− F̂PR (y1i)

N1

The nonparametric estimate of pAUC is given by

p̂AUC (a) =

N1∑
i=1

max
{

1− F̂PR (y1i)− (1− a), 0
}

N1

For discrete classifiers, a correction term is subtracted from the false-positive rate estimate so that
the ÂUC and p̂AUC estimates correspond with a trapezoidal approximation to the area of the ROC
curve.

FPRc (y) = 1− F̂0 (y)− 1

2

N0∑
j=1

I (y = y0j)

N0

In the nonparametric estimation of the ROC curve, all inference is performed using the bootstrap
command (see [R] bootstrap). rocreg also allows users to calculate the ROC curve and related
statistics by assuming a normal control distribution. So these formulas are updated by replacing F0

by Φ (with adjustment of the marginal mean and variance of the control distribution).

http://www.stata.com/manuals14/rbootstrap.pdf#rbootstrap
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Covariate-adjusted ROC curves

Suppose we observe covariate vector Z in addition to the classifier Y . Let Z1i, i = 1, 2, . . . , N1,
and Z0j , j = 1, 2, . . . , N0, be the values of the covariates for the case and control subjects, respectively.

The covariate-adjusted ROC curve is defined by Janes and Pepe (2009) as

AROC (t) = E
{

ROC
(
t
∣∣Z0

)}
It is calculated by replacing the marginal control CDF estimate, F̂0, with the conditional control CDF

estimate, F̂0Z . If we used a normal control CDF, then we would replace the marginal control mean
and variance with the conditional control mean and variance. The formulas of the previous section
can be updated for covariate-adjustment by making this substitution of the conditional CDF for the
marginal CDF in the false-positive rate calculation.

Because the calculation of the ROC value is now performed based on the conditionally calculated
false-positive rate, no further conditioning is made in its calculation under nonparametric estimation.

rocreg supports covariate adjustment with stratification and linear regression. Under stratification,
separate parameters are estimated for the control distribution at each level of the covariates. Under
linear regression, the classifier is regressed on the covariates over the control distribution, and the
resulting coefficients serve as parameters for F̂0Z .

Parametric ROC curves: Estimating equations

Under nonparametric estimation of the ROC curve with covariate adjustment, no further conditioning
occurs in the ROC curve calculation beyond the use of covariate-adjusted false-positive rates as inputs.

Under parametric estimation of the ROC curve, we can relax this restriction. We model the ROC
curve as a cumulative distribution function g (standard normal Φ) invoked with input of a linear
polynomial in the corresponding quantile function (here Φ−1) invoked on the false-positive rate u. The
constant intercept of the polynomial may depend on covariates; the slope term α (quantile coefficient)
may not.

ROC (u) = g{x′β + αg−1 (u)}

Pepe (2003) notes that having a binormal ROC (g = Φ) is equivalent to specifying that some
monotone transformation of the data exists to make the case and control classifiers normally distributed.
This specification applies to the marginal case and control.

Under weak assumptions about the control distribution of the classifier, we can fit this model
by using estimating equations (Alonzo and Pepe 2002). The method can be used without covariate
effects in the second stage, assuming a parametric model for the single ROC curve. Using the Alonzo
and Pepe (2002) method, the covariate-adjusted ROC curve may be fit parametrically. The marginal
ROC curve, involving no covariates in either stage of estimation, can be fit parametrically as well. In
addition to the Alonzo and Pepe (2002) explanation, further details are given in Pepe, Longton, and
Janes (2009); Janes, Longton, and Pepe (2009); Pepe (2003); and Janes and Pepe (2009).

The algorithm can be described as follows:

1. Estimate the false-positive rates of the classifier fpr. These may be computed in any fashion
outlined so far: covariate-adjusted, empirically, etc.

2. Determine a set of np false-positive rates to use as fitting points f1, . . . , fnp
. These may be an

equispaced grid on (0, 1) or the set of observed false-positive rates from part 1.
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3. Expand the case observation portion of the data to include a subobservation for each fitting point.
So there are now N1(np − 1) additional observations in the data.

4. Generate a new dummy variable u. For subobservation j, u = I (fpr ≤ fj).

5. Generate a new variable quant containing the quantiles of the false-positive rate fitting points.
For subobservation j, quant = g−1 (fj).

6. Perform a binary regression (probit, g = Φ) of fpr on the covariates x and quantile variable
quant.

The coefficients of part 6 are the coefficients of the ROC model. The coefficients of the covariates
coincide naturally with estimates of β, and the α parameter is estimated by the coefficient on quant.
Because the method is so general and makes few distributional assumptions, bootstrapping must be
performed for inference. If multiple classifiers are to be fit, the algorithm is performed separately for
each in each bootstrap, and the bootstrap is used to estimate covariances.

We mentioned earlier that in parametric estimation, the AUC was the only summary parameter that
could be estimated initially. This is true when we fit the marginal probit model because there are no
covariates in part 6 of the algorithm.

To calculate the AUC statistic under a marginal probit model, we use the formula

AUC = Φ

(
β0√

1 + α2

)
Alternatively, the AUC for the probit model can be calculated as pAUC(1) in postestimation. Under
both models, bootstrapping is performed for inference on the AUC.

Parametric ROC curves: Maximum likelihood
rocreg supports another form of parametric ROC estimation: maximum likelihood with a normally

distributed classifier. This method assumes that the classifier is a normal linear model on certain
covariates, and the covariate effect and variance of the classifier may change between the case and
control populations. The model is defined in Pepe (2003, 145).

y = z′β0 +Dx′β1 + σ (D) ε

Our error term, ε, is a standard normal random variable. The variable D is our true status variable,
being 1 for the case population observations and 0 for the control population observations. The
variance function σ is defined as

σ (D) = σ0 (D = 0) + σ1 (D = 1)

This provides two variance parameters in the model and does not depend on covariate values.

Under this model, the ROC curve is easily derived to be

ROC (u) = Φ

[
1

σ1

{
x′β1 + σ0Φ−1 (u)

}]
We reparameterize the model, creating the parameters βi = σ−11 β1i and α = σ−11 σ0. We refer to β0
as the constant intercept, i cons. The parameter α is referred to as the constant slope, s cons.

ROC (u) = Φ{x′β + αΦ−1 (u)}
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The original model defining the classifier y leads to the following single observation likelihoods
for D = 0 and D = 1:

L(β0,β1, σ1, σ0,
∣∣D = 0, y, z,x) =

1√
2πσ0

exp
−(y − z′β0)2

2σ2
0

L(β0,β1, σ1, σ0,
∣∣D = 1, y, z,x) =

1√
2πσ1

exp
−(y − z′β0 − x′β1)2

2σ2
1

These can be combined to yield the observation-level log likelihood:

lnL(β0,β1, σ1, σ0,
∣∣D, y, z,x) = − ln2π

2

− I (D = 0)

{
lnσ0 +

(y − z′β0)2

2σ2
0

}

− I (D = 1)

{
lnσ1 +

(y − z′β0 − x′β1)2

2σ2
1

}

When there are multiple classifiers, each classifier is fit separately with maximum likelihood. Then
the results are combined by stacking the scores and using the sandwich variance estimator. For more
information, see [R] suest and the references White (1982); Rogers (1993); and White (1996).
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