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Description

mlogit fits a multinomial logit (MNL) model for a categorical dependent variable with outcomes that
have no natural ordering. The actual values taken by the dependent variable are irrelevant. The MNL
model is also known as the polytomous logistic regression model. Some people refer to conditional
logistic regression as multinomial logistic regression. If you are one of them, see [R] clogit.

Quick start
Multinomial logit model of y on x1, x2, and categorical variable a

mlogit y x1 x2 i.a

As above, but use y = 1 as the base outcome even if 1 is not the most frequent
mlogit y x1 x2 i.a, baseoutcome(1)

Report results as relative-risk ratios
mlogit y x1 x2 i.a, rrr

Constrain coefficient of x1 to be equal for second and third outcomes
constraint 1 [#2=#3]:x1
mlogit y x1 x2 i.a, constraints(1)

Menu
Statistics > Categorical outcomes > Multinomial logistic regression
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Syntax
mlogit depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
baseoutcome(#) value of depvar that will be the base outcome
constraints(clist) apply specified linear constraints; clist has the form #

[
-#
] [

, #
[
-#
]
. . .
]

collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

rrr report relative-risk ratios
nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, fp, jackknife, mfp, mi estimate, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix

commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] estimation options.

baseoutcome(#) specifies the value of depvar to be treated as the base outcome. The default is to
choose the most frequent outcome.

constraints(clist), collinear; see [R] estimation options.

http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals14/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/r.pdf#rvce_option
http://www.stata.com/manuals14/u11.pdf#u11.4.3Factorvariables
http://www.stata.com/manuals14/u11.pdf#u11.4.4Time-seriesvarlists
http://www.stata.com/manuals14/u11.pdf#u11.1.10Prefixcommands
http://www.stata.com/manuals14/u11.pdf#u11.1.10Prefixcommands
http://www.stata.com/manuals14/mimiestimate.pdf#mimiestimate
http://www.stata.com/manuals14/rbootstrap.pdf#rbootstrap
http://www.stata.com/manuals14/svysvy.pdf#svysvy
http://www.stata.com/manuals14/u11.pdf#u11.1.6weight
http://www.stata.com/manuals14/u20.pdf#u20Estimationandpostestimationcommands
http://www.stata.com/manuals14/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/restimationoptions.pdf#restimationoptions
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), that
allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [R] vce option.

If specifying vce(bootstrap) or vce(jackknife), you must also specify baseoutcome().

� � �
Reporting �

level(#); see [R] estimation options.

rrr reports the estimated coefficients transformed to relative-risk ratios, that is, eb rather than b; see
Description of the model below for an explanation of this concept. Standard errors and confidence
intervals are similarly transformed. This option affects how results are displayed, not how they are
estimated. rrr may be specified at estimation or when replaying previously estimated results.

nocnsreport; see [R] estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

The following option is available with mlogit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples stata.com

Remarks are presented under the following headings:

Description of the model
Fitting unconstrained models
Fitting constrained models

mlogit fits maximum likelihood models with discrete dependent (left-hand-side) variables when
the dependent variable takes on more than two outcomes and the outcomes have no natural ordering.
If the dependent variable takes on only two outcomes, estimates are identical to those produced by
logistic or logit; see [R] logistic or [R] logit. If the outcomes are ordered, see [R] ologit. See
[R] logistic for a list of related estimation commands.

Description of the model

For an introduction to multinomial logit models, see Greene (2012, 763–766), Hosmer, Lemeshow,
and Sturdivant (2013, 269–289), Long (1997, chap. 6), Long and Freese (2014, chap. 8), and
Treiman (2009, 336–341). For a description emphasizing the difference in assumptions and data
requirements for conditional and multinomial logit, see Davidson and MacKinnon (1993).

http://www.stata.com/manuals14/rvce_option.pdf#rvce_option
http://www.stata.com/manuals14/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals14/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals14/d.pdf#dformat
http://www.stata.com/manuals14/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals14/rmaximize.pdf#rmaximizeSyntaxalgorithm_spec
http://www.stata.com/manuals14/rmaximize.pdf#rmaximize
http://www.stata.com/manuals14/restimationoptions.pdf#restimationoptions
http://stata.com
http://www.stata.com/manuals14/rlogistic.pdf#rlogistic
http://www.stata.com/manuals14/rlogit.pdf#rlogit
http://www.stata.com/manuals14/rologit.pdf#rologit
http://www.stata.com/manuals14/rlogistic.pdf#rlogistic
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Consider the outcomes 1, 2, 3, . . . , m recorded in y, and the explanatory variables X . Assume that
there are m = 3 outcomes: “buy an American car”, “buy a Japanese car”, and “buy a European car”.
The values of y are then said to be “unordered”. Even though the outcomes are coded 1, 2, and 3, the
numerical values are arbitrary because 1 < 2 < 3 does not imply that outcome 1 (buy American) is
less than outcome 2 (buy Japanese) is less than outcome 3 (buy European). This unordered categorical
property of y distinguishes the use of mlogit from regress (which is appropriate for a continuous
dependent variable), from ologit (which is appropriate for ordered categorical data), and from logit
(which is appropriate for two outcomes, which can be thought of as ordered).

In the multinomial logit model, you estimate a set of coefficients, β(1), β(2), and β(3), corresponding
to each outcome:

Pr(y = 1) =
eXβ

(1)

eXβ(1) + eXβ(2) + eXβ(3)

Pr(y = 2) =
eXβ

(2)

eXβ(1) + eXβ(2) + eXβ(3)

Pr(y = 3) =
eXβ

(3)

eXβ(1) + eXβ(2) + eXβ(3)

The model, however, is unidentified in the sense that there is more than one solution to β(1), β(2),
and β(3) that leads to the same probabilities for y = 1, y = 2, and y = 3. To identify the model, you
arbitrarily set one of β(1), β(2), or β(3) to 0—it does not matter which. That is, if you arbitrarily
set β(1) = 0, the remaining coefficients β(2) and β(3) will measure the change relative to the y = 1
group. If you instead set β(2) = 0, the remaining coefficients β(1) and β(3) will measure the change
relative to the y = 2 group. The coefficients will differ because they have different interpretations,
but the predicted probabilities for y = 1, 2, and 3 will still be the same. Thus either parameterization
will be a solution to the same underlying model.

Setting β(1) = 0, the equations become

Pr(y = 1) =
1

1 + eXβ(2) + eXβ(3)

Pr(y = 2) =
eXβ

(2)

1 + eXβ(2) + eXβ(3)

Pr(y = 3) =
eXβ

(3)

1 + eXβ(2) + eXβ(3)

The relative probability of y = 2 to the base outcome is

Pr(y = 2)

Pr(y = 1)
= eXβ

(2)

Let’s call this ratio the relative risk, and let’s further assume that X and β(2)
k are vectors equal to

(x1, x2, . . . , xk) and (β
(2)
1 , β

(2)
2 , . . . , β

(2)
k )′, respectively. The ratio of the relative risk for a one-unit

change in xi is then

eβ
(2)
1 x1+···+β(2)

i
(xi+1)+···+β(2)

k
xk

eβ
(2)
1 x1+···+β(2)

i
xi+···+β(2)

k
xk

= eβ
(2)
i
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Thus the exponentiated value of a coefficient is the relative-risk ratio for a one-unit change in the
corresponding variable (risk is measured as the risk of the outcome relative to the base outcome).

Fitting unconstrained models

Example 1: A first example

We have data on the type of health insurance available to 616 psychologically depressed subjects
in the United States (Tarlov et al. 1989; Wells et al. 1989). The insurance is categorized as either an
indemnity plan (that is, regular fee-for-service insurance, which may have a deductible or coinsurance
rate) or a prepaid plan (a fixed up-front payment allowing subsequent unlimited use as provided,
for instance, by an HMO). The third possibility is that the subject has no insurance whatsoever. We
wish to explore the demographic factors associated with each subject’s insurance choice. One of the
demographic factors in our data is the race of the participant, coded as white or nonwhite:

. use http://www.stata-press.com/data/r14/sysdsn1
(Health insurance data)

. tabulate insure nonwhite, chi2 col

Key

frequency
column percentage

nonwhite
insure 0 1 Total

Indemnity 251 43 294
50.71 35.54 47.73

Prepaid 208 69 277
42.02 57.02 44.97

Uninsure 36 9 45
7.27 7.44 7.31

Total 495 121 616
100.00 100.00 100.00

Pearson chi2(2) = 9.5599 Pr = 0.008

Although insure appears to take on the values Indemnity, Prepaid, and Uninsure, it actually
takes on the values 1, 2, and 3. The words appear because we have associated a value label with the
numeric variable insure; see [U] 12.6.3 Value labels.

http://www.stata.com/manuals14/u12.pdf#u12.6.3Valuelabels
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When we fit a multinomial logit model, we can tell mlogit which outcome to use as the base
outcome, or we can let mlogit choose. To fit a model of insure on nonwhite, letting mlogit
choose the base outcome, we type

. mlogit insure nonwhite

Iteration 0: log likelihood = -556.59502
Iteration 1: log likelihood = -551.78935
Iteration 2: log likelihood = -551.78348
Iteration 3: log likelihood = -551.78348

Multinomial logistic regression Number of obs = 616
LR chi2(2) = 9.62
Prob > chi2 = 0.0081

Log likelihood = -551.78348 Pseudo R2 = 0.0086

insure Coef. Std. Err. z P>|z| [95% Conf. Interval]

Indemnity (base outcome)

Prepaid
nonwhite .6608212 .2157321 3.06 0.002 .2379942 1.083648

_cons -.1879149 .0937644 -2.00 0.045 -.3716896 -.0041401

Uninsure
nonwhite .3779586 .407589 0.93 0.354 -.4209011 1.176818

_cons -1.941934 .1782185 -10.90 0.000 -2.291236 -1.592632

mlogit chose the indemnity outcome as the base outcome and presented coefficients for the
outcomes prepaid and uninsured. According to the model, the probability of prepaid for whites
(nonwhite = 0) is

Pr(insure = Prepaid) =
e−.188

1 + e−.188 + e−1.942
= 0.420

Similarly, for nonwhites, the probability of prepaid is

Pr(insure = Prepaid) =
e−.188+.661

1 + e−.188+.661 + e−1.942+.378
= 0.570

These results agree with the column percentages presented by tabulate because the mlogit model
is fully saturated. That is, there are enough terms in the model to fully explain the column percentage
in each cell. The model chi-squared and the tabulate chi-squared are in almost perfect agreement;
both test that the column percentages of insure are the same for both values of nonwhite.

Example 2: Specifying the base outcome

By specifying the baseoutcome() option, we can control which outcome of the dependent variable
is treated as the base. Left to its own, mlogit chose to make outcome 1, indemnity, the base outcome.
To make outcome 2, prepaid, the base, we would type
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. mlogit insure nonwhite, base(2)

Iteration 0: log likelihood = -556.59502
Iteration 1: log likelihood = -551.78935
Iteration 2: log likelihood = -551.78348
Iteration 3: log likelihood = -551.78348

Multinomial logistic regression Number of obs = 616
LR chi2(2) = 9.62
Prob > chi2 = 0.0081

Log likelihood = -551.78348 Pseudo R2 = 0.0086

insure Coef. Std. Err. z P>|z| [95% Conf. Interval]

Indemnity
nonwhite -.6608212 .2157321 -3.06 0.002 -1.083648 -.2379942

_cons .1879149 .0937644 2.00 0.045 .0041401 .3716896

Prepaid (base outcome)

Uninsure
nonwhite -.2828627 .3977302 -0.71 0.477 -1.0624 .4966742

_cons -1.754019 .1805145 -9.72 0.000 -2.107821 -1.400217

The baseoutcome() option requires that we specify the numeric value of the outcome, so we could
not type base(Prepaid).

Although the coefficients now appear to be different, the summary statistics reported at the top
are identical. With this parameterization, the probability of prepaid insurance for whites is

Pr(insure = Prepaid) =
1

1 + e.188 + e−1.754
= 0.420

This is the same answer we obtained previously.

Example 3: Displaying relative-risk ratios

By specifying rrr, which we can do at estimation time or when we redisplay results, we see the
model in terms of relative-risk ratios:

. mlogit, rrr

Multinomial logistic regression Number of obs = 616
LR chi2(2) = 9.62
Prob > chi2 = 0.0081

Log likelihood = -551.78348 Pseudo R2 = 0.0086

insure RRR Std. Err. z P>|z| [95% Conf. Interval]

Indemnity
nonwhite .516427 .1114099 -3.06 0.002 .3383588 .7882073

_cons 1.206731 .1131483 2.00 0.045 1.004149 1.450183

Prepaid (base outcome)

Uninsure
nonwhite .7536233 .2997387 -0.71 0.477 .3456255 1.643247

_cons .1730769 .0312429 -9.72 0.000 .1215024 .2465434
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Looked at this way, the relative risk of choosing an indemnity over a prepaid plan is 0.516 for
nonwhites relative to whites.

To illustrate, from the output and discussions of examples 1 and 2 we find that

Pr (insure = Indemnity | white) =
1

1 + e−.188 + e−1.942
= 0.507

and thus the relative risk of choosing indemnity over prepaid (for whites) is

Pr (insure = Indemnity | white)
Pr (insure = Prepaid | white)

=
0.507
0.420

= 1.207

For nonwhites,

Pr (insure = Indemnity | not white) =
1

1 + e−.188+.661 + e−1.942+.378
= 0.355

and thus the relative risk of choosing indemnity over prepaid (for nonwhites) is

Pr (insure = Indemnity | not white)
Pr (insure = Prepaid | not white)

=
0.355
0.570

= 0.623

The ratio of these two relative risks, hence the name “relative-risk ratio”, is 0.623/1.207 = 0.516, as
given in the output under the heading “RRR”.

Technical note
In models where only two categories are considered, the mlogit model reduces to standard logit.

Consequently the exponentiated regression coefficients, labeled as RRR within mlogit, are equal to
the odds ratios as given when the or option is specified under logit; see [R] logit.

As such, always referring to mlogit’s exponentiated coefficients as odds ratios may be tempting.
However, the discussion in example 3 demonstrates that doing so would be incorrect. In general
mlogit models, the exponentiated coefficients are ratios of relative risks, not ratios of odds.

Example 4: Model with continuous and multiple categorical variables

One of the advantages of mlogit over tabulate is that we can include continuous variables and
multiple categorical variables in the model. In examining the data on insurance choice, we decide
that we want to control for age, gender, and site of study (the study was conducted in three sites):

http://www.stata.com/manuals14/rlogit.pdf#rlogit
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. mlogit insure age male nonwhite i.site

Iteration 0: log likelihood = -555.85446
Iteration 1: log likelihood = -534.67443
Iteration 2: log likelihood = -534.36284
Iteration 3: log likelihood = -534.36165
Iteration 4: log likelihood = -534.36165

Multinomial logistic regression Number of obs = 615
LR chi2(10) = 42.99
Prob > chi2 = 0.0000

Log likelihood = -534.36165 Pseudo R2 = 0.0387

insure Coef. Std. Err. z P>|z| [95% Conf. Interval]

Indemnity (base outcome)

Prepaid
age -.011745 .0061946 -1.90 0.058 -.0238862 .0003962

male .5616934 .2027465 2.77 0.006 .1643175 .9590693
nonwhite .9747768 .2363213 4.12 0.000 .5115955 1.437958

site
2 .1130359 .2101903 0.54 0.591 -.2989296 .5250013
3 -.5879879 .2279351 -2.58 0.010 -1.034733 -.1412433

_cons .2697127 .3284422 0.82 0.412 -.3740222 .9134476

Uninsure
age -.0077961 .0114418 -0.68 0.496 -.0302217 .0146294

male .4518496 .3674867 1.23 0.219 -.268411 1.17211
nonwhite .2170589 .4256361 0.51 0.610 -.6171725 1.05129

site
2 -1.211563 .4705127 -2.57 0.010 -2.133751 -.2893747
3 -.2078123 .3662926 -0.57 0.570 -.9257327 .510108

_cons -1.286943 .5923219 -2.17 0.030 -2.447872 -.1260134

These results suggest that the inclination of nonwhites to choose prepaid care is even stronger than
it was without controlling. We also see that subjects in site 2 are less likely to be uninsured.

Fitting constrained models

mlogit can fit models with subsets of coefficients constrained to be zero, with subsets of coefficients
constrained to be equal both within and across equations, and with subsets of coefficients arbitrarily
constrained to equal linear combinations of other estimated coefficients.

Before fitting a constrained model, you define the constraints with the constraint command;
see [R] constraint. Once the constraints are defined, you estimate using mlogit, specifying the
constraint() option. Typing constraint(4) would use the constraint you previously saved as
4. Typing constraint(1,4,6) would use the previously stored constraints 1, 4, and 6. Typing
constraint(1-4,6) would use the previously stored constraints 1, 2, 3, 4, and 6.

Sometimes you will not be able to specify the constraints without knowing the omitted outcome.
In such cases, assume that the omitted outcome is whatever outcome is convenient for you, and
include the baseoutcome() option when you specify the mlogit command.

http://www.stata.com/manuals14/rconstraint.pdf#rconstraint


10 mlogit — Multinomial (polytomous) logistic regression

Example 5: Specifying constraints to test hypotheses

We can use constraints to test hypotheses, among other things. In our insurance-choice model,
let’s test the hypothesis that there is no distinction between having indemnity insurance and being
uninsured. Indemnity-style insurance was the omitted outcome, so we type

. test [Uninsure]

( 1) [Uninsure]age = 0
( 2) [Uninsure]male = 0
( 3) [Uninsure]nonwhite = 0
( 4) [Uninsure]1b.site = 0
( 5) [Uninsure]2.site = 0
( 6) [Uninsure]3.site = 0

Constraint 4 dropped

chi2( 5) = 9.31
Prob > chi2 = 0.0973

If indemnity had not been the omitted outcome, we would have typed test [Uninsure=Indemnity].

The results produced by test are an approximation based on the estimated covariance matrix of
the coefficients. Because the probability of being uninsured is low, the log likelihood may be nonlinear
for the uninsured. Conventional statistical wisdom is not to trust the asymptotic answer under these
circumstances but to perform a likelihood-ratio test instead.

To use Stata’s lrtest (likelihood-ratio test) command, we must fit both the unconstrained and
constrained models. The unconstrained model is the one we have previously fit. Following the
instruction in [R] lrtest, we first store the unconstrained model results:

. estimates store unconstrained

To fit the constrained model, we must refit our model with all the coefficients except the constant set
to 0 in the Uninsure equation. We define the constraint and then refit:

http://www.stata.com/manuals14/rlrtest.pdf#rlrtest
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. constraint 1 [Uninsure]

. mlogit insure age male nonwhite i.site, constraints(1)

Iteration 0: log likelihood = -555.85446
Iteration 1: log likelihood = -539.80523
Iteration 2: log likelihood = -539.75644
Iteration 3: log likelihood = -539.75643

Multinomial logistic regression Number of obs = 615
Wald chi2(5) = 29.70

Log likelihood = -539.75643 Prob > chi2 = 0.0000

( 1) [Uninsure]o.age = 0
( 2) [Uninsure]o.male = 0
( 3) [Uninsure]o.nonwhite = 0
( 4) [Uninsure]2o.site = 0
( 5) [Uninsure]3o.site = 0

insure Coef. Std. Err. z P>|z| [95% Conf. Interval]

Indemnity (base outcome)

Prepaid
age -.0107025 .0060039 -1.78 0.075 -.0224699 .0010649

male .4963616 .1939683 2.56 0.010 .1161907 .8765324
nonwhite .9421369 .2252094 4.18 0.000 .5007346 1.383539

site
2 .2530912 .2029465 1.25 0.212 -.1446767 .6508591
3 -.5521773 .2187237 -2.52 0.012 -.9808678 -.1234869

_cons .1792752 .3171372 0.57 0.572 -.4423023 .8008527

Uninsure
age 0 (omitted)

male 0 (omitted)
nonwhite 0 (omitted)

site
2 0 (omitted)
3 0 (omitted)

_cons -1.87351 .1601099 -11.70 0.000 -2.18732 -1.5597

We can now perform the likelihood-ratio test:

. lrtest unconstrained .

Likelihood-ratio test LR chi2(5) = 10.79
(Assumption: . nested in unconstrained) Prob > chi2 = 0.0557

The likelihood-ratio chi-squared is 10.79 with 5 degrees of freedom—just slightly greater than the
magic p = 0.05 level—so we should not call this difference significant.

Technical note
In certain circumstances, you should fit a multinomial logit model with conditional logit; see

[R] clogit. With substantial data manipulation, clogit can handle the same class of models with
some interesting additions. For example, if we had available the price and deductible of the most
competitive insurance plan of each type, mlogit could not use this information, but clogit could.

http://www.stata.com/manuals14/rclogit.pdf#rclogit
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Stored results
mlogit stores the following in e():

Scalars
e(N) number of observations
e(N cd) number of completely determined observations
e(k out) number of outcomes
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(r2 p) pseudo-R-squared
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(N clust) number of clusters
e(chi2) χ2

e(p) significance
e(k eq base) equation number of the base outcome
e(baseout) the value of depvar to be treated as the base outcome
e(ibaseout) index of the base outcome
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) mlogit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(chi2type) Wald or LR; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(eqnames) names of equations
e(baselab) value label corresponding to base outcome
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(out) outcome values
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
The multinomial logit model is described in Greene (2012, 763–766).

Suppose that there are k categorical outcomes and—without loss of generality—let the base
outcome be 1. The probability that the response for the jth observation is equal to the ith outcome is

pij = Pr(yj = i) =



1

1 +
k∑

m=2
exp(xjβm)

, if i = 1

exp(xjβi)

1 +
k∑

m=2
exp(xjβm)

, if i > 1

where xj is the row vector of observed values of the independent variables for the jth observation
and βm is the coefficient vector for outcome m. The log pseudolikelihood is

lnL =
∑
j

wj

k∑
i=1

Ii(yj) lnpik

where wj is an optional weight and

Ii(yj) =

{
1, if yj = i

0, otherwise

Newton–Raphson maximum likelihood is used; see [R] maximize.

For constrained equations, the set of constraints is orthogonalized, and a subset of maximizable
parameters is selected. For example, a parameter that is constrained to zero is not a maximizable
parameter. If two parameters are constrained to be equal to each other, only one is a maximizable
parameter.

Let r be the vector of maximizable parameters. r is physically a subset of the solution parameters,
b. A matrix, T, and a vector, m, are defined as

b = Tr+m

http://www.stata.com/manuals14/rmaximize.pdf#rmaximize
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so that
∂f

∂b
=
∂f

∂r
T′

∂2f

∂b2
= T

∂2f

∂r2
T′

T consists of a block form in which one part is a permutation of the identity matrix and the other
part describes how to calculate the constrained parameters from the maximizable parameters.

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Maximum likelihood estimators and Methods and formulas.

mlogit also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] variance estimation.
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Also see
[R] mlogit postestimation — Postestimation tools for mlogit

[R] clogit — Conditional (fixed-effects) logistic regression

[R] logistic — Logistic regression, reporting odds ratios

[R] logit — Logistic regression, reporting coefficients

[R] mprobit — Multinomial probit regression

[R] nlogit — Nested logit regression

[R] ologit — Ordered logistic regression

[R] rologit — Rank-ordered logistic regression

[R] slogit — Stereotype logistic regression

[MI] estimation — Estimation commands for use with mi estimate

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands
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