Title

mean postestimation — Postestimation tools for mean

Postestimation commands Remarks and examples Reference Also see

Postestimation commands

The following postestimation commands are available after mean:

Command	Description			
estat vce	variance-covariance matrix of the estimators (VCE)			
estat (svy)	postestimation statistics for survey data			
estimates	cataloging estimation results			
hausman	Hausman's specification test			
lincom	point estimates, standard errors, testing, and inference for linear combinations of coefficients			
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients			
test	Wald tests of simple and composite linear hypotheses			
testnl	Wald tests of nonlinear hypotheses			

Remarks and examples

stata.com

For an example of testing fr a difference in weighted means using lincom after mean, see Pollock (2015, 106-107).

Example 1

We have a dataset with monthly rates of returns on the Dow and NASDAQ stock indices. We can use mean to compute the average quarterly rates of return for the two indices separately;

. use http://www.stata-press.com/data/r14/rates . mean dow nasdaq										
Mean estimatio	-	Number of obs = 357								
	Mean	Std. Err.	[95% Conf.	Interval]						
dow nasdaq	.2489137 10.78477	6.524386 4.160821	-12.58227 2.601887	13.0801 18.96765						

If you chose just one of the indices for your portfolio, you either did rather well or rather poorly, depending on which one you picked. However, as we now show with the postestimation command lincom, if you diversified your portfolio, you would have earned a respectable 5.5% rate of return without having to guess which index would be the better performer.

. lincom .5*dow + .5*nasdaq (1) .5*dow + .5*nasdaq = 0									
_	Mean	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]		
_	(1)	5.51684	4.262673	1.29	0.196	-2.866347	13.90003		

Reference

Pollock, P. H., III. 2015. A Stata Companion to Political Analysis. 3rd ed. Washington, DC: CQ Press.

Also see

- [R] mean Estimate means
- [U] 20 Estimation and postestimation commands