
Title stata.com

maximize — Details of iterative maximization

Description Syntax Maximization options
Option for set maxiter Remarks and examples Stored results
Methods and formulas References Also see

Description

All Stata commands maximize likelihood functions using moptimize() and optimize(); see
Methods and formulas below. Commands use the Newton–Raphson method with step halving
and special fixups when they encounter nonconcave regions of the likelihood. For details, see
[M-5] moptimize() and [M-5] optimize(). For more information about programming maximum like-
lihood estimators in ado-files and Mata, see [R] ml and Gould, Pitblado, and Poi (2010).

set maxiter specifies the default maximum number of iterations for estimation commands that
iterate. The initial value is 16000, and # can be 0 to 16000. To change the maximum number of
iterations performed by a particular estimation command, you need not reset maxiter; you can
specify the iterate(#) option. When iterate(#) is not specified, the maxiter value is used.

Syntax

Maximum likelihood optimization

mle cmd . . .
[
, options

]
Set default maximum iterations

set maxiter #
[
, permanently

]

1

http://stata.com
http://www.stata.com/manuals14/m-5moptimize.pdf#m-5moptimize()
http://www.stata.com/manuals14/m-5optimize.pdf#m-5optimize()
http://www.stata.com/manuals14/rml.pdf#rml

2 maximize — Details of iterative maximization

options Description

difficult use a different stepping algorithm in nonconcave regions
technique(algorithm spec) maximization technique
iterate(#) perform maximum of # iterations; default is iterate(16000)[
no

]
log display an iteration log of the log likelihood; typically, the default

trace display current parameter vector in iteration log
gradient display current gradient vector in iteration log
showstep report steps within an iteration in iteration log
hessian display current negative Hessian matrix in iteration log
showtolerance report the calculated result that is compared to the effective

convergence criterion
tolerance(#) tolerance for the coefficient vector; see Options for the defaults
ltolerance(#) tolerance for the log likelihood; see Options for the defaults
nrtolerance(#) tolerance for the scaled gradient; see Options for the defaults
qtolerance(#) when specified with algorithms bhhh, dfp, or bfgs, the q−H

matrix is used as the final check for convergence rather than
nrtolerance() and the H matrix; seldom used

nonrtolerance ignore the nrtolerance() option
from(init specs) initial values for the coefficients

where algorithm spec is

algorithm
[

#
[

algorithm
[

#
]]

. . .
]

algorithm is
{
nr | bhhh | dfp | bfgs

}
and init specs is one of

matname
[
, skip copy

]
{ [

eqname:
]
name = # | /eqname = #

} [
. . .

]
#

[
. . .

]
, copy

Maximization options
difficult specifies that the likelihood function is likely to be difficult to maximize because of

nonconcave regions. When the message “not concave” appears repeatedly, ml’s standard stepping
algorithm may not be working well. difficult specifies that a different stepping algorithm be
used in nonconcave regions. There is no guarantee that difficult will work better than the
default; sometimes it is better and sometimes it is worse. You should use the difficult option
only when the default stepper declares convergence and the last iteration is “not concave” or
when the default stepper is repeatedly issuing “not concave” messages and producing only tiny
improvements in the log likelihood.

technique(algorithm spec) specifies how the likelihood function is to be maximized. The following
algorithms are allowed. For details, see Gould, Pitblado, and Poi (2010).

technique(nr) specifies Stata’s modified Newton–Raphson (NR) algorithm.

maximize — Details of iterative maximization 3

technique(bhhh) specifies the Berndt–Hall–Hall–Hausman (BHHH) algorithm.

technique(dfp) specifies the Davidon–Fletcher–Powell (DFP) algorithm.

technique(bfgs) specifies the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

The default is technique(nr).

You can switch between algorithms by specifying more than one in the technique() option. By
default, an algorithm is used for five iterations before switching to the next algorithm. To specify a
different number of iterations, include the number after the technique in the option. For example,
specifying technique(bhhh 10 nr 1000) requests that ml perform 10 iterations with the BHHH
algorithm followed by 1000 iterations with the NR algorithm, and then switch back to BHHH for
10 iterations, and so on. The process continues until convergence or until the maximum number
of iterations is reached.

iterate(#) specifies the maximum number of iterations. When the number of iterations equals
iterate(), the optimizer stops and presents the current results. If convergence is declared before
this threshold is reached, it will stop when convergence is declared. Specifying iterate(0)
is useful for viewing results evaluated at the initial value of the coefficient vector. Specifying
iterate(0) and from() together allows you to view results evaluated at a specified coefficient
vector; however, not all commands allow the from() option. The default value of iterate(#)
for both estimators programmed internally and estimators programmed with ml is the current value
of set maxiter, which is iterate(16000) by default.

log and nolog specify whether an iteration log showing the progress of the log likelihood is to be
displayed. For most commands, the log is displayed by default, and nolog suppresses it. For a
few commands (such as the svy maximum likelihood estimators), you must specify log to see
the log.

trace adds to the iteration log a display of the current parameter vector.

gradient adds to the iteration log a display of the current gradient vector.

showstep adds to the iteration log a report on the steps within an iteration. This option was added so
that developers at StataCorp could view the stepping when they were improving the ml optimizer
code. At this point, it mainly provides entertainment.

hessian adds to the iteration log a display of the current negative Hessian matrix.

showtolerance adds to the iteration log the calculated value that is compared with the effective
convergence criterion at the end of each iteration. Until convergence is achieved, the smallest
calculated value is reported.

shownrtolerance is a synonym of showtolerance.

Below we describe the three convergence tolerances. Convergence is declared when the nrtol-
erance() criterion is met and either the tolerance() or the ltolerance() criterion is also
met.

tolerance(#) specifies the tolerance for the coefficient vector. When the relative change in the
coefficient vector from one iteration to the next is less than or equal to tolerance(), the
tolerance() convergence criterion is satisfied.

tolerance(1e-4) is the default for estimators programmed with ml.

tolerance(1e-6) is the default.

4 maximize — Details of iterative maximization

ltolerance(#) specifies the tolerance for the log likelihood. When the relative change in the log
likelihood from one iteration to the next is less than or equal to ltolerance(), the ltolerance()
convergence is satisfied.

ltolerance(0) is the default for estimators programmed with ml.

ltolerance(1e-7) is the default.

nrtolerance(#) specifies the tolerance for the scaled gradient. Convergence is declared when
gH−1g′ < nrtolerance(). The default is nrtolerance(1e-5).

qtolerance(#) when specified with algorithms bhhh, dfp, or bfgs uses the q−H matrix as the
final check for convergence rather than nrtolerance() and the H matrix.

Beginning with Stata 12, by default, Stata now computes the H matrix when the q−H matrix passes
the convergence tolerance, and Stata requires that H be concave and pass the nrtolerance()
criterion before concluding convergence has occurred.

qtolerance() provides a way for the user to obtain Stata’s earlier behavior.

nonrtolerance specifies that the default nrtolerance() criterion be turned off.

from() specifies initial values for the coefficients. Not all estimators in Stata support this option. You
can specify the initial values in one of three ways: by specifying the name of a vector containing
the initial values (for example, from(b0), where b0 is a properly labeled vector); by specifying
coefficient names with the values (for example, from(age=2.1 /sigma=7.4)); or by specifying
a list of values (for example, from(2.1 7.4, copy)). from() is intended for use when doing
bootstraps (see [R] bootstrap) and in other special situations (for example, with iterate(0)).
Even when the values specified in from() are close to the values that maximize the likelihood,
only a few iterations may be saved. Poor values in from() may lead to convergence problems.

skip specifies that any parameters found in the specified initialization vector that are not also
found in the model be ignored. The default action is to issue an error message.

copy specifies that the list of values or the initialization vector be copied into the initial-value
vector by position rather than by name.

Option for set maxiter
permanently specifies that, in addition to making the change right now, the maxiter setting be

remembered and become the default setting when you invoke Stata.

Remarks and examples stata.com

Only in rare circumstances would you ever need to specify any of these options, except nolog.
The nolog option is useful for reducing the amount of output appearing in log files.

The following is an example of an iteration log:
Iteration 0: log likelihood = -3791.0251
Iteration 1: log likelihood = -3761.738
Iteration 2: log likelihood = -3758.0632 (not concave)
Iteration 3: log likelihood = -3758.0447
Iteration 4: log likelihood = -3757.5861
Iteration 5: log likelihood = -3757.474
Iteration 6: log likelihood = -3757.4613
Iteration 7: log likelihood = -3757.4606
Iteration 8: log likelihood = -3757.4606

(table of results omitted)

http://www.stata.com/manuals14/rbootstrap.pdf#rbootstrap
http://stata.com

maximize — Details of iterative maximization 5

At iteration 8, the model converged. The message “not concave” at the second iteration is notable.
This example was produced using the heckman command; its likelihood is not globally concave, so
it is not surprising that this message sometimes appears. The other message that is occasionally seen
is “backed up”. Neither of these messages should be of any concern unless they appear at the final
iteration.

If a “not concave” message appears at the last step, there are two possibilities. One is that the
result is valid, but there is collinearity in the model that the command did not otherwise catch. Stata
checks for obvious collinearity among the independent variables before performing the maximization,
but strange collinearities or near collinearities can sometimes arise between coefficients and ancillary
parameters. The second, more likely cause for a “not concave” message at the final step is that the
optimizer entered a flat region of the likelihood and prematurely declared convergence.

If a “backed up” message appears at the last step, there are also two possibilities. One is that Stata
found a perfect maximum and could not step to a better point; if this is the case, all is fine, but this
is a highly unlikely occurrence. The second is that the optimizer worked itself into a bad concave
spot where the computed gradient and Hessian gave a bad direction for stepping.

If either of these messages appears at the last step, perform the maximization again with the
gradient option. If the gradient goes to zero, the optimizer has found a maximum that may not
be unique but is a maximum. From the standpoint of maximum likelihood estimation, this is a valid
result. If the gradient is not zero, it is not a valid result, and you should try tightening up the
convergence criterion, or try ltol(0) tol(1e-7) to see if the optimizer can work its way out of
the bad region.

If you get repeated “not concave” steps with little progress being made at each step, try specifying
the difficult option. Sometimes difficult works wonderfully, reducing the number of iterations
and producing convergence at a good (that is, concave) point. Other times, difficult works poorly,
taking much longer to converge than the default stepper.

Stored results
Maximum likelihood estimators store the following in e():
Scalars
e(N) number of observations always stored
e(k) number of parameters always stored
e(k eq) number of equations in e(b) usually stored
e(k eq model) number of equations in overall usually stored

model test
e(k dv) number of dependent variables usually stored
e(df m) model degrees of freedom always stored
e(r2 p) pseudo-R-squared sometimes stored
e(ll) log likelihood always stored
e(ll 0) log likelihood, constant-only model stored when constant-only model is fit
e(N clust) number of clusters stored when vce(cluster clustvar) is specified;

see [U] 20.21 Obtaining robust variance estimates
e(chi2) χ2 usually stored
e(p) significance of model of test usually stored
e(rank) rank of e(V) always stored
e(rank0) rank of e(V) for constant-only model stored when constant-only model is fit
e(ic) number of iterations usually stored
e(rc) return code usually stored
e(converged) 1 if converged, 0 otherwise usually stored

http://www.stata.com/manuals14/u20.pdf#u20.21Obtainingrobustvarianceestimates

6 maximize — Details of iterative maximization

Macros
e(cmd) name of command always stored
e(cmdline) command as typed always stored
e(depvar) names of dependent variables always stored
e(wtype) weight type stored when weights are specified or implied
e(wexp) weight expression stored when weights are specified or implied
e(title) title in estimation output usually stored by commands using ml

e(clustvar) name of cluster variable stored when vce(cluster clustvar) is specified;
see [U] 20.21 Obtaining robust variance estimates

e(chi2type) Wald or LR; type of model χ2 test usually stored
e(vce) vcetype specified in vce() stored when command allows (vce())
e(vcetype) title used to label Std. Err. sometimes stored
e(opt) type of optimization always stored
e(which) max or min; whether optimizer is to always stored

perform maximization or
minimization

e(ml method) type of ml method always stored by commands using ml

e(user) name of likelihood-evaluator program always stored
e(technique) from technique() option sometimes stored
e(singularHmethod) m-marquardt or hybrid; method sometimes stored1

used when Hessian is singular
e(crittype) optimization criterion always stored1

e(properties) estimator properties always stored
e(predict) program used to implement predict usually stored

Matrices
e(b) coefficient vector always stored
e(Cns) constraints matrix sometimes stored
e(ilog) iteration log (up to 20 iterations) usually stored
e(gradient) gradient vector usually stored
e(V) variance–covariance matrix of always stored

the estimators
e(V modelbased) model-based variance only stored when e(V) is neither the OIM nor

OPG variance

Functions
e(sample) marks estimation sample always stored

1. Type ereturn list, all to view these results; see [P] return.

See Stored results in the manual entry for any maximum likelihood estimator for a list of returned
results.

Methods and formulas
Optimization is currently performed by moptimize() and optimize(), with the former imple-

mented in terms of the latter; see [M-5] moptimize() and [M-5] optimize(). Some estimators use
moptimize() and optimize() directly, and others use the ml ado-file interface to moptimize().

Prior to Stata 11, Stata had three separate optimization engines: an internal one used by estimation
commands implemented in C code; ml implemented in ado-code separately from moptimize()
and used by most estimators; and moptimize() and optimize() used by a few recently written

http://www.stata.com/manuals14/u20.pdf#u20.21Obtainingrobustvarianceestimates
http://www.stata.com/manuals14/preturn.pdf#preturn
http://www.stata.com/manuals14/m-5moptimize.pdf#m-5moptimize()
http://www.stata.com/manuals14/m-5optimize.pdf#m-5optimize()

maximize — Details of iterative maximization 7

estimators. These days, the internal optimizer and the old version of ml are used only under version
control. In addition, arch and arima (see [TS] arch and [TS] arima) are currently implemented using
the old ml.

Let L1 be the log likelihood of the full model (that is, the log-likelihood value shown on the
output), and let L0 be the log likelihood of the “constant-only” model. The likelihood-ratio χ2 model
test is defined as 2(L1 − L0). The pseudo-R2 (McFadden 1974) is defined as 1 − L1/L0. This
is simply the log likelihood on a scale where 0 corresponds to the “constant-only” model and 1
corresponds to perfect prediction for a discrete model (in which case the overall log likelihood is 0).

Some maximum likelihood routines can report coefficients in an exponentiated form, for example,
odds ratios in logistic. Let b be the unexponentiated coefficient, s its standard error, and b0 and b1
the reported confidence interval for b. In exponentiated form, the point estimate is eb, the standard
error ebs, and the confidence interval eb0 and eb1 . The displayed Z (or t) statistics and p-values are
the same as those for the unexponentiated results. This is justified because eb = 1 and b = 0 are
equivalent hypotheses, and normality is more likely to hold in the b metric.

References
Gould, W. W., J. S. Pitblado, and B. P. Poi. 2010. Maximum Likelihood Estimation with Stata. 4th ed. College

Station, TX: Stata Press.

McFadden, D. L. 1974. Conditional logit analysis of qualitative choice behavior. In Frontiers in Econometrics, ed.
P. Zarembka, 105–142. New York: Academic Press.

Also see
[R] ml — Maximum likelihood estimation

[SVY] ml for svy — Maximum pseudolikelihood estimation for survey data

[M-5] moptimize() — Model optimization

[M-5] optimize() — Function optimization

http://www.stata.com/manuals14/tsarch.pdf#tsarch
http://www.stata.com/manuals14/tsarima.pdf#tsarima
http://www.stata-press.com/books/ml4.html
http://www.stata.com/manuals14/rml.pdf#rml
http://www.stata.com/manuals14/svymlforsvy.pdf#svymlforsvy
http://www.stata.com/manuals14/m-5moptimize.pdf#m-5moptimize()
http://www.stata.com/manuals14/m-5optimize.pdf#m-5optimize()

