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Description
kdensity produces kernel density estimates and graphs the result.

Quick start
Graph of the kernel density estimate for v1

kdensity v1

Add a normal curve
kdensity v1, normal

With a kernel bandwidth of 2
kdensity v1, bwidth(2)

Gaussian kernel function for v1
kdensity v1, kernel(gaussian)

Kernel density estimate for v1 and v2 in the same graph area
twoway kdensity v1 || kdensity v2

Separate graphs of kernel density estimate of v1 for each level of catvar
twoway kdensity v1, by(catvar)

Kernel density estimates of v1 for catvar = 0 and 1 in the same graph area
twoway kdensity v1 if catvar==0 || kdensity v1 if catvar==1

Menu
Statistics > Nonparametric analysis > Kernel density estimation
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2 kdensity — Univariate kernel density estimation

Syntax
kdensity varname

[
if
] [

in
] [

weight
] [

, options
]

options Description

Main

kernel(kernel) specify kernel function; default is kernel(epanechnikov)

bwidth(#) half-width of kernel
generate(newvarx newvard) store the estimation points in newvarx and the density

estimate in newvard
n(#) estimate density using # points; default is min(N , 50)
at(varx) estimate density using the values specified by varx
nograph suppress graph

Kernel plot

cline options affect rendition of the plotted kernel density estimate

Density plots

normal add normal density to the graph
normopts(cline options) affect rendition of normal density
student(#) add Student’s t density with # degrees of freedom to the graph
stopts(cline options) affect rendition of the Student’s t density

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

kernel Description

epanechnikov Epanechnikov kernel function; the default
epan2 alternative Epanechnikov kernel function
biweight biweight kernel function
cosine cosine trace kernel function
gaussian Gaussian kernel function
parzen Parzen kernel function
rectangle rectangle kernel function
triangle triangle kernel function

fweights, aweights, and iweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

kernel(kernel) specifies the kernel function for use in calculating the kernel density estimate. The
default kernel is the Epanechnikov kernel (epanechnikov).

http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
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bwidth(#) specifies the half-width of the kernel, the width of the density window around each point.
If bwidth() is not specified, the “optimal” width is calculated and used. The optimal width is
the width that would minimize the mean integrated squared error if the data were Gaussian and a
Gaussian kernel were used, so it is not optimal in any global sense. In fact, for multimodal and highly
skewed densities, this width is usually too wide and oversmooths the density (Silverman 1986).

generate(newvarx newvard) stores the results of the estimation. newvarx will contain the points
at which the density is estimated. newvard will contain the density estimate.

n(#) specifies the number of points at which the density estimate is to be evaluated. The default is
min(N, 50), where N is the number of observations in memory.

at(varx) specifies a variable that contains the values at which the density should be estimated.
This option allows you to more easily obtain density estimates for different variables or different
subsamples of a variable and then overlay the estimated densities for comparison.

nograph suppresses the graph. This option is often used with the generate() option.

� � �
Kernel plot �

cline options affect the rendition of the plotted kernel density estimate. See [G-3] cline options.

� � �
Density plots �

normal requests that a normal density be overlaid on the density estimate for comparison.

normopts(cline options) specifies details about the rendition of the normal curve, such as the color
and style of line used. See [G-3] cline options.

student(#) specifies that a Student’s t density with # degrees of freedom be overlaid on the density
estimate for comparison.

stopts(cline options) affects the rendition of the Student’s t density. See [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks and examples stata.com

Kernel density estimators approximate the density f(x) from observations on x. Histograms do
this, too, and the histogram itself is a kind of kernel density estimate. The data are divided into
nonoverlapping intervals, and counts are made of the number of data points within each interval.
Histograms are bar graphs that depict these frequency counts—the bar is centered at the midpoint of
each interval—and its height reflects the average number of data points in the interval.

In more general kernel density estimates, the range is still divided into intervals, and estimates of
the density at the center of intervals are produced. One difference is that the intervals are allowed
to overlap. We can think of sliding the interval—called a window—along the range of the data
and collecting the center-point density estimates. The second difference is that, rather than merely
counting the number of observations in a window, a kernel density estimator assigns a weight between

http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/g-3cline_options.pdf#g-3cline_options
http://www.stata.com/manuals14/g-3cline_options.pdf#g-3cline_options
http://www.stata.com/manuals14/g-3cline_options.pdf#g-3cline_options
http://www.stata.com/manuals14/g-3addplot_option.pdf#g-3addplot_option
http://www.stata.com/manuals14/g-3twoway_options.pdf#g-3twoway_options
http://www.stata.com/manuals14/g-3title_options.pdf#g-3title_options
http://www.stata.com/manuals14/g-3saving_option.pdf#g-3saving_option
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0 and 1—based on the distance from the center of the window—and sums the weighted values. The
function that determines these weights is called the kernel.

Kernel density estimates have the advantages of being smooth and of being independent of the
choice of origin (corresponding to the location of the bins in a histogram).

See Salgado-Ugarte, Shimizu, and Taniuchi (1993) and Fox (1990) for discussions of kernel density
estimators that stress their use as exploratory data-analysis tools.

Cox (2007) gives a lucid introductory tutorial on kernel density estimation with several Stata
produced examples. He provides tips and tricks for working with skewed or bounded distributions
and applying the same techniques to estimate the intensity function of a point process.

Example 1: Histogram and kernel density estimate

Goeden (1978) reports data consisting of 316 length observations of coral trout. We wish to
investigate the underlying density of the lengths. To begin on familiar ground, we might draw a
histogram. In [R] histogram, we suggest setting the bins to min(

√
n, 10 · log10n), which for n = 316

is roughly 18:

. use http://www.stata-press.com/data/r14/trocolen

. histogram length, bin(18)
(bin=18, start=226, width=19.777778)
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The kernel density estimate, on the other hand, is smooth.

. kdensity length
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kernel = epanechnikov, bandwidth = 20.1510

Kernel density estimate

Kernel density estimators are, however, sensitive to an assumption, just as are histograms. In histograms,
we specify a number of bins. For kernel density estimators, we specify a width. In the graph above,
we used the default width. kdensity is smarter than twoway histogram in that its default width
is not a fixed constant. Even so, the default width is not necessarily best.

kdensity stores the width in the returned scalar bwidth, so typing display r(bwidth) reveals
it. Doing this, we discover that the width is approximately 20.

Widths are similar to the inverse of the number of bins in a histogram in that smaller widths
provide more detail. The units of the width are the units of x, the variable being analyzed. The width
is specified as a half-width, meaning that the kernel density estimator with half-width 20 corresponds
to sliding a window of size 40 across the data.

We can specify half-widths for ourselves by using the bwidth() option. Smaller widths do not
smooth the density as much:

. kdensity length, bwidth(10)

0
.0

0
2

.0
0

4
.0

0
6

.0
0

8
D

e
n

s
it
y

200 300 400 500 600
length

kernel = epanechnikov, bandwidth = 10.0000

Kernel density estimate



6 kdensity — Univariate kernel density estimation

. kdensity length, bwidth(15)
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Kernel density estimate

Example 2: Different kernels can produce different results

When widths are held constant, different kernels can produce surprisingly different results. This
is really an attribute of the kernel and width combination; for a given width, some kernels are more
sensitive than others at identifying peaks in the density estimate.

We can see this when using a dataset with lots of peaks. In the automobile dataset, we characterize
the density of weight, the weight of the vehicles. Below we compare the Epanechnikov and Parzen
kernels.

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. kdensity weight, kernel(epanechnikov) nograph generate(x epan)

. kdensity weight, kernel(parzen) nograph generate(x2 parzen)

. label var epan "Epanechnikov density estimate"

. label var parzen "Parzen density estimate"

. line epan parzen x, sort ytitle(Density) legend(cols(1))
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We did not specify a width, so we obtained the default width. That width is not a function of the
selected kernel, but of the data. See Methods and formulas for the calculation of the optimal width.

Example 3: Density with overlaid normal density

In examining the density estimates, we may wish to overlay a normal density or a Student’s t
density for comparison. Using automobile weights, we can get an idea of the distance from normality
by using the normal option.

. kdensity weight, kernel(epanechnikov) normal
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Normal density

kernel = epanechnikov, bandwidth = 295.7504

Kernel density estimate

Example 4: Compare two densities

We also may want to compare two or more densities. In this example, we will compare the density
estimates of the weights for the foreign and domestic cars.

. use http://www.stata-press.com/data/r14/auto, clear
(1978 Automobile Data)

. kdensity weight, nograph generate(x fx)

. kdensity weight if foreign==0, nograph generate(fx0) at(x)

. kdensity weight if foreign==1, nograph generate(fx1) at(x)

. label var fx0 "Domestic cars"

. label var fx1 "Foreign cars"
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. line fx0 fx1 x, sort ytitle(Density)

0
.0

0
0

2
.0

0
0

4
.0

0
0

6
.0

0
0

8
.0

0
1

D
e

n
s
it
y

1000 2000 3000 4000 5000
Weight (lbs.)

Domestic cars Foreign cars

Technical note
Although all the examples we included had densities of less than 1, the density may exceed 1.

The probability density f(x) of a continuous variable, x, has the units and dimensions of the
reciprocal of x. If x is measured in meters, f(x) has units 1/meter. Thus the density is not measured
on a probability scale, so it is possible for f(x) to exceed 1.

To see this, think of a uniform density on the interval 0 to 1. The area under the density curve is
1: this is the product of the density, which is constant at 1, and the range, which is 1. If the variable
is then transformed by doubling, the area under the curve remains 1 and is the product of the density,
constant at 0.5, and the range, which is 2. Conversely, if the variable is transformed by halving, the
area under the curve also remains at 1 and is the product of the density, constant at 2, and the range,
which is 0.5. (Strictly, the range is measured in certain units, and the density is measured in the
reciprocal of those units, so the units cancel on multiplication.)

Stored results
kdensity stores the following in r():

Scalars
r(bwidth) kernel bandwidth
r(n) number of points at which the estimate was evaluated
r(scale) density bin width

Macros
r(kernel) name of kernel
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Methods and formulas
A kernel density estimate is formed by summing the weighted values calculated with the kernel

function K, as in

f̂K =
1

qh

n∑
i=1

wiK

(
x−Xi

h

)
where q =

∑
i wi if weights are frequency weights (fweight) or analytic weights (aweight), and

q = 1 if weights are importance weights (iweights). Analytic weights are rescaled so that
∑
i wi = n

(see [U] 11 Language syntax). If weights are not used, then wi = 1, for i = 1, . . . , n. kdensity
includes seven different kernel functions. The Epanechnikov is the default function if no other kernel
is specified and is the most efficient in minimizing the mean integrated squared error.

Kernel Formula

Biweight K[z] =

{
15
16 (1− z

2)2 if |z| < 1

0 otherwise

Cosine K[z] =
{
1 + cos(2πz) if |z| < 1/2
0 otherwise

Epanechnikov K[z] =

{
3
4 (1−

1
5z

2)/
√
5 if |z| <

√
5

0 otherwise

Epan2 K[z] =

{
3
4 (1− z

2) if |z| < 1

0 otherwise

Gaussian K[z] = 1√
2π
e−z

2/2

Parzen K[z] =


4
3 − 8z2 + 8|z|3 if |z| ≤ 1/2

8(1− |z|)3/3 if 1/2 < |z| ≤ 1

0 otherwise

Rectangular K[z] =
{
1/2 if |z| < 1
0 otherwise

Triangular K[z] =
{
1− |z| if |z| < 1
0 otherwise

From the definitions given in the table, we can see that the choice of h will drive how many
values are included in estimating the density at each point. This value is called the window width or
bandwidth. If the window width is not specified, it is determined as

m = min
(√

variancex,
interquartile rangex

1.349

)
h =

0.9m

n1/5

where x is the variable for which we wish to estimate the kernel and n is the number of observations.

Most researchers agree that the choice of kernel is not as important as the choice of bandwidth.
There is a great deal of literature on choosing bandwidths under various conditions; see, for example,
Parzen (1962) or Tapia and Thompson (1978). Also see Newton (1988) for a comparison with sample
spectral density estimation in time-series applications.

http://www.stata.com/manuals14/u11.pdf#u11Languagesyntax
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