ivtobit postestimation — Postestimation tools for ivtobit

Postestimation commands	predict	margins
Remarks and examples	Methods and formulas	Also see

Postestimation commands

The following postestimation commands are available after ivtobit:

Command	Description
contrast	contrasts and ANOVA-style joint tests of estimates
*estat ic	Akaike's and Schwarz's Bayesian information criteria (AIC and BIC)
estat summarize	summary statistics for the estimation sample
estat vce	variance-covariance matrix of the estimators (VCE)
estat (svy)	postestimation statistics for survey data
estimates	cataloging estimation results
* [†] forecast	dynamic forecasts and simulations
† hausman	Hausman's specification test
lincom	point estimates, standard errors, testing, and inference for linear combinations of coefficients
[†] lrtest	likelihood-ratio test; not available with two-step estimator
margins	marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot	graph the results from margins (profile plots, interaction plots, etc.)
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients
predict	predictions, residuals, influence statistics, and other diagnostic measures
predictnl	point estimates, standard errors, testing, and inference for generalized predictions
pwcompare	pairwise comparisons of estimates
*suest	seemingly unrelated estimation
test	Wald tests of simple and composite linear hypotheses
testnl	Wald tests of nonlinear hypotheses

* estat ic, forecast, and suest are not appropriate after ivtobit, twostep.

 † forecast, hausman, and lrtest are not appropriate with svy estimation results.

predict

Description for predict

predict creates a new variable containing predictions such as linear predictions, standard errors, probabilities, and expected values.

Menu for predict

Statistics > Postestimation

Syntax for predict

After ML or twostep

```
predict [type] newvar [if] [in] [, statistic]
```

After ML

predict	type	$\{stub*\}$	newvarlist	}	if		in	,	<u>sc</u> ores
---------	------	-------------	------------	---	----	--	----	---	----------------

statistic	Description				
Main					
xb	linear prediction; the default				
stdp	standard error of the linear prediction				
stdf	standard error of the forecast; not available with two-step estimator				
$\underline{pr}(a,b)$	$Pr(a < y_j < b)$ accounting for endogeneity; not available with two-step estimator				
e(<i>a</i> , <i>b</i>)	$E(y_j a < y_j < b)$ accounting for endogeneity; not available with two-step estimator				
$\underline{ystar}(a,b)$	$E(y_j^*), y_j = \max\{a, \min(y_j, b)\}$ accounting for endogeneity; not available with two-step estimator				

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample.

stdf is not allowed with svy estimation results.

where a and b may be numbers or variables; a missing $(a \ge .)$ means $-\infty$, and b missing $(b \ge .)$ means $+\infty$; see [U] 12.2.1 Missing values.

Options for predict

Main

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the linear prediction. It can be thought of as the standard error of the predicted expected value or mean for the observation's covariate pattern. The standard error of the prediction is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the forecast, which is the standard error of the point prediction for 1 observation. It is commonly referred to as the standard error of the future or forecast value. By construction, the standard errors produced by stdf are always larger than those produced by stdp; see *Methods and formulas* in [R] regress postestimation. stdf is not available with the two-step estimator.

pr(*a*,*b*) calculates $Pr(a < x_j b + u_j < b)$, the probability that $y_j | x_j$ would be observed in the interval (a, b) accounting for endogeneity.

a and *b* may be specified as numbers or variable names; *lb* and *ub* are variable names; pr(20,30) calculates $Pr(20 < x_j b + u_j < 30)$; pr(*lb*,*ub*) calculates $Pr(lb < x_j b + u_j < ub)$; and pr(20,*ub*) calculates $Pr(20 < x_j b + u_j < ub)$;

a missing $(a \ge .)$ means $-\infty$; pr(.,30) calculates $Pr(-\infty < \mathbf{x}_j \mathbf{b} + u_j < 30)$; pr(*lb*,30) calculates $Pr(-\infty < \mathbf{x}_j \mathbf{b} + u_j < 30)$ in observations for which $lb \ge .$ and calculates $Pr(lb < \mathbf{x}_j \mathbf{b} + u_j < 30)$ elsewhere.

b missing $(b \ge .)$ means $+\infty$; pr(20,.) calculates $Pr(+\infty > \mathbf{x}_j\mathbf{b} + u_j > 20)$; pr(20,*ub*) calculates $Pr(+\infty > \mathbf{x}_j\mathbf{b} + u_j > 20)$ in observations for which $ub \ge .$ and calculates $Pr(20 < \mathbf{x}_j\mathbf{b} + u_j < ub)$ elsewhere.

pr(a,b) is not available with the two-step estimator.

- e(a,b) calculates $E(x_jb + u_j | a < x_jb + u_j < b)$, the expected value of $y_j | x_j$ conditional on $y_j | x_j$ being in the interval (a, b), meaning that $y_j | x_j$ is truncated. a and b are specified as they are for pr(). Endogeneity is accounted for when calculating e(a,b). e(a,b) is not available with the two-step estimator.
- ystar(*a*,*b*) calculates $E(y_j^*)$, where $y_j^* = a$ if $x_j b + u_j \le a$, $y_j^* = b$ if $x_j b + u_j \ge b$, and $y_j^* = x_j b + u_j$ otherwise, meaning that y_j^* is censored. *a* and *b* are specified as they are for pr(). Endogeneity is accounted for when calculating ystar(*a*,*b*). ystar(*a*,*b*) is not available with the two-step estimator.

scores, not available with twostep, calculates equation-level score variables.

For models with one endogenous regressor, five new variables are created.

The first new variable will contain $\partial \ln L/\partial(\boldsymbol{z}_i \boldsymbol{\delta})$.

The second new variable will contain $\partial \ln L / \partial (\boldsymbol{x}_i \boldsymbol{\Pi})$.

The third new variable will contain $\partial \ln L / \partial \alpha$.

The fourth new variable will contain $\partial \ln L / \partial \ln \sigma_{u|v}$.

The fifth new variable will contain $\partial \ln L / \partial \ln \sigma_v$.

For models with p endogenous regressors, $p + \{(p+1)(p+2)\}/2 + 1$ new variables are created.

The first new variable will contain $\partial \ln L / \partial (\boldsymbol{z}_i \boldsymbol{\delta})$.

The second through (p+1)th new score variables will contain $\partial \ln L/\partial(x_i \Pi_k)$, k = 1, ..., p, where Π_k is the kth column of Π .

The remaining score variables will contain the partial derivatives of $\ln L$ with respect to s_{11} , $s_{21}, \ldots, s_{p+1,1}, s_{22}, \ldots, s_{p+1,2}, \ldots, s_{p+1,p+1}$, where $s_{m,n}$ denotes the (m, n) element of the Cholesky decomposition of the error covariance matrix.

margins

Description for margins

margins estimates margins of response for linear predictions, probabilities, and expected values.

Menu for margins

Statistics > Postestimation

Syntax for margins

	<pre>marginlist] [, options] marginlist], predict(statistic) [predict(statistic)] [options]</pre>
statistic	Description
xb	linear prediction; the default
$\underline{p}r(a,b)$	$Pr(a < y_j < b)$ accounting for endogeneity; not available with two-step estimator
e(<i>a</i> , <i>b</i>)	$E(y_j a < y_j < b)$ accounting for endogeneity; not available with two-step estimator
$\underline{ys}tar(a,b)$	$E(y_j^*), y_j = \max\{a, \min(y_j, b)\}$ accounting for endogeneity; not available with two-step estimator
stdp	not allowed with margins
stdf	not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples

Remarks are presented under the following headings:

Marginal effects Obtaining predicted values

Marginal effects

Example 1

We can obtain average marginal effects by using the margins command after ivtobit. For the labor-supply model of example 1 in [R] ivtobit, suppose that we wanted to know the average marginal effects on the woman's expected income, conditional on her income being greater than \$10,000.

stata.com

. use http://www.stata-press.com/data/r14/laborsup							
<pre>. ivtobit fem_inc fem_educ kids (other_inc = male_educ), ll (output omitted)</pre>							
. margins, dydx(*) predict(e(10, .))							
Average marginal effects Model VCE : OIM				Number o	f obs =	500	
<pre>Expression : E(fem_inc fem_inc>10), predict(e(10, .)) dy/dx w.r.t. : other_inc fem_educ kids male_educ</pre>							
	I	Delta-method					
	dy/dx	Std. Err.	z	P> z	[95% Conf.	Interval]	
other_inc	2251407 1.164607	.0517915	-4.35 7.97	0.000	3266503	1236311 1.450883	
fem_educ kids	-1.303852	.2588412	-5.04		-1.811171	7965323	
male_educ	3034651	.0309838	-9.79	0.000	3641922	242738	

In our sample, increasing the number of children in the family by one decreases the expected wage by \$1,304 on average (wages in our dataset are measured in thousands of dollars). male_edu has no effect because it appears only as an instrument.

Obtaining predicted values

After fitting your model using ivtobit, you can obtain the linear prediction and its standard error for both the estimation sample and other samples using the predict command. If you used the maximum likelihood estimator, you can also obtain conditional expected values of the observed and latent dependent variables, the standard error of the forecast, and the probability of observing the dependent variable in a specified interval. See [U] **20 Estimation and postestimation commands** and [R] **predict**.

Methods and formulas

The linear prediction is calculated as $z_i \hat{\delta}$, where $\hat{\delta}$ is the estimated value of δ , and z_i and δ are defined in (1*a*) of [R] **ivtobit**. Expected values and probabilities are calculated using the same formulas as those used by the standard tobit model. However, instead of evaluating the standard normal cumulative density and probability density at the linear prediction, expected values and probabilities are evaluated at m_i , where m_i is defined in *Methods and formulas* of [R] **ivtobit**. Using m_i instead of $z_i \hat{\delta}$ in the formulas accounts for endogeneity.

Also see

- [R] ivtobit Tobit model with continuous endogenous covariates
- [U] 20 Estimation and postestimation commands