cpoisson postestimation — Postestimation tools for cpoisson

Postestimation commands Methods and formulas predict Also see margins

Remarks and examples

Postestimation commands

The following postestimation commands are available after cpoisson:

Command	Description
contrast	contrasts and ANOVA-style joint tests of estimates
estat ic	Akaike's and Schwarz's Bayesian information criteria (AIC and BIC)
estat summarize	summary statistics for the estimation sample
estat vce	variance-covariance matrix of the estimators (VCE)
estat (svy)	postestimation statistics for survey data
estimates	cataloging estimation results
*forecast	dynamic forecasts and simulations
*hausman	Hausman's specification test
lincom	point estimates, standard errors, testing, and inference for linear combinations of coefficients
*lrtest	likelihood-ratio test
margins	marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot	graph the results from margins (profile plots, interaction plots, etc.)
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients
predict	predictions, residuals, influence statistics, and other diagnostic measures
predictnl	point estimates, standard errors, testing, and inference for generalized predictions
pwcompare	pairwise comparisons of estimates
suest	seemingly unrelated estimation
test	Wald tests of simple and composite linear hypotheses
testnl	Wald tests of nonlinear hypotheses

* forecast, hausman, and lrtest are not appropriate with svy estimation results.

predict

Description for predict

predict creates a new variable containing predictions such as numbers of events, incidence rates, conditional means, probabilities, conditional probabilities, linear predictions, standard errors, and equation-level scores.

Menu for predict

Statistics > Postestimation

Syntax for predict

```
predict [type] newvar [if] [in] [, statistic <u>nooff</u>set]
```

statistic	Description			
Main				
n	number of events; the default			
ir	incidence rate			
cm	conditional mean, $E(y_j y_j > L_j)$, $E(y_j y_j < U_j)$, or $E(y_j L_j < y_j < U_j)$			
pr(<i>n</i>)	probability $\Pr(y_i = n)$			
pr(a,b)	probability $\Pr(a \le y_i \le b)$			
cpr(n)	conditional probability $Pr(y_j = n y_j > L_j)$, $Pr(y_j = n y_j < U_j)$, or $Pr(y_j = n L_j < y_j < U_j)$			
cpr(a,b)	conditional probability $\Pr(a \le y_j \le b y_j > L_j)$, $\Pr(a \le y_j \le b y_j < U_j)$, or $\Pr(a \le y_j \le b L_j < y_j < U_j)$			
xb	linear prediction			
stdp	standard error of the linear prediction			
<u>sc</u> ore	first derivative of the log likelihood with respect to $\mathbf{x}_j \boldsymbol{\beta}$			

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample.

Options for predict

Main

- n, the default, calculates the predicted number of events, which is $\exp(\mathbf{x}_j\beta)$ if neither offset() nor exposure() was specified when the model was fit; $\exp(\mathbf{x}_j\beta + \text{offset}_j)$ if offset() was specified; or $\exp(\mathbf{x}_j\beta) \times \exp(\operatorname{sup}(\mathbf{x}_j\beta))$ was specified.
- ir calculates the incidence rate $\exp(\mathbf{x}_j\beta)$, which is the predicted number of events when exposure is 1. This is equivalent to specifying both the n and the nooffset options.

cm calculates the conditional mean,

$$E(y_j \mid \Omega_j) = \frac{E(y_j)}{\Pr(\Omega_j)}$$

where Ω_j represents $y_j > L_j$ for a left-censored model, $y_j < U_j$ for a right-censored model, and $L_j < y_j < U_j$ for an interval-censored model. L_j is the left-censoring point found in e(llopt), and U_j is the right-censoring point found in e(ulopt).

- pr(n) calculates the probability $Pr(y_j = n)$, where n is a nonnegative integer that may be specified as a number or a variable.
- pr(a,b) calculates the probability $Pr(a \le y_j \le b)$, where a and b are nonnegative integers that may be specified as numbers or variables;

b missing $(b \ge .)$ means $+\infty$; pr(20,.) calculates $Pr(y_j \ge 20)$; pr(20,*b*) calculates $Pr(y_j \ge 20)$ in observations for which $b \ge .$ and calculates $Pr(20 \le y_j \le b)$ elsewhere.

pr(.,b) produces a syntax error. A missing value in an observation of the variable *a* causes a missing value in that observation for pr(a,b).

- cpr(n) calculates the conditional probability $Pr(y_j = n | \Omega_j)$, where Ω_j represents $y_j > L_j$ for a left-censored model, $y_j < U_j$ for a right-censored model, and $L_j < y_j < U_j$ for an interval-censored model. L_j is the left-censoring point found in e(llopt), and U_j is the right-censoring point found in e(ulopt). n is an integer in the noncensored range.
- $\operatorname{cpr}(a,b)$ calculates the conditional probability $\operatorname{Pr}(a \leq y_j \leq b \mid \Omega_j)$, where Ω_j represents $y_j > L_j$ for a left-censored model, $y_j < U_j$ for a right-censored model, and $L_j < y_j < U_j$ for an intervalcensored model. L_j is the left-censoring point found in e(llopt), and U_j is the right-censoring point found in e(ulopt). *a* and *b* must fall in the noncensored range if they are not missing. A missing value in an observation of the variable *a* causes a missing value in that observation for $\operatorname{cpr}(a,b)$.
- xb calculates the linear prediction, which is $\mathbf{x}_j\beta$ if neither offset() nor exposure() was specified when the model was fit; $\mathbf{x}_j\beta$ + offset_j if offset() was specified; or $\mathbf{x}_j\beta$ + ln(exposure_j) if exposure() was specified; see nooffset below.
- stdp calculates the standard error of the linear prediction.
- score calculates the equation-level score, $\partial \ln L / \partial (\mathbf{x}_j \boldsymbol{\beta})$.
- nooffset is relevant only if you specified offset() or exposure() when you fit the model. It modifies the calculations made by predict so that they ignore the offset or exposure variable; the linear prediction is treated as $x_j\beta$ rather than as $x_j\beta$ +offset_j or $x_j\beta$ + ln(exposure_j). Specifying predict ..., nooffset is equivalent to specifying predict ..., ir.

margins

Description for margins

margins estimates margins of response for numbers of events, incidence rates, conditional means, probabilities, and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins	[marginlist] [, options]
margins	[marginlist], predict(statistic) [predict(statistic)] [options]
statistic	Description
n	number of events; the default
ir	incidence rate
cm	conditional mean, $E(y_j y_j > L_j)$, $E(y_j y_j < U_j)$, or $E(y_j L_j < y_j < U_j)$
pr(n)	probability $Pr(y_j = n)$
pr(a,b)	probability $\Pr(a \le y_i \le b)$
cpr(n)	conditional probability $\Pr(y_j = n \mid y_j > L_j)$, $\Pr(y_j = n \mid y_j < U_j)$, or $\Pr(y_j = n \mid L_j < y_j < U_j)$
cpr(a,b)	conditional probability $\Pr(a \le y_j \le b \mid y_j > L_j)$, $\Pr(a \le y_j \le b \mid y_j < U_j)$, or $\Pr(a \le y_j \le b \mid L_j < y_j < U_j)$
xb	linear prediction
stdp	not allowed with margins
score	not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b). For the full syntax, see [R] margins.

Remarks and examples

stata.com

Example 1: Obtaining marginal effects

Continuing with example 1 of [R] **cpoisson**, we estimate the effect of having another child on the uncensored number of trips to amusement parks. We use margins to estimate the average number of trips when each household has its actual number of children and when each household has one additional child. We include the post option so that we can use the results in subsequent commands.

```
. use http://www.stata-press.com/data/r14/trips
(Visits to the ABC amusement park)
. cpoisson trips income children, ul(3)
  (output omitted)
```

<pre>. margins, at(children = generate(children)) > at(children = generate(children+1)) post</pre>							
Predictive man Model VCE	rgins : OIM			Number of	obs =	500	
Expression : Predicted number of events, predict()							
1at	children	= childr	en				
2at	children	= childr	ren+1				
	-	Delta-method Std. Err.	Z	P> z	[95% Conf.	Interval]	
_at 1 2	2.525517 2.889658	.0836237 .1337997	30.20 21.60	0.000	2.361618 2.627416	2.689417 3.151901	

An average of 2.53 trips are taken when each household has its observed number of children. If each household has one additional child, then the average number of trips increases to 2.89.

We now use contrast to compute the effect of having an additional child. The Wald test, in this case, is superfluous, so we suppress it with the nowald option.

. contrast rat, nowald						
Contrasts of predictive margins						
Model VCE	: OIM					
Expression	: Predicted number of events, predict()					
1at	: children	= children	L			
2at	: children = children+1					
	I					
	I	Delta-method				
	Contrast	Std. Err.	[95% Conf.	Interval]		
at						
(2 vs 1)	.3641407	.0849951	.1975535	.530728		

Adding one child to each household increases the average by 0.36 trips.

Methods and formulas

Using the notation under *Methods and formulas* of [R] **cpoisson**, we see that the equation-level scores are given by

score
$$(\mathbf{x}\beta)_j = d_j \{-\exp(\xi_j) + y_j\}$$

+ $(1 - d_j) \frac{\Psi_1(L_j | \mathbf{x}_j) - \Psi_1(U_j - 1 | \mathbf{x}_j)}{1 - F(U_j - 1 | \mathbf{x}_j) + F(L_j | \mathbf{x}_j)}$

where $\Psi_1(C) = \sum_{k=0}^{C} f(k|\mathbf{x}_j) \{k - \exp(\xi_j)\}; f(y_j|\mathbf{x}_j) \text{ and } F(y_j|\mathbf{x}_j) \text{ denote the probability mass function and the cumulative distribution function of the Poisson, respectively. <math>L_j$ is the left-censoring point found in e(llopt), and U_j is the right-censoring point found in e(ulopt).

4

6 cpoisson postestimation — Postestimation tools for cpoisson

Also see

- [R] cpoisson Censored Poisson regression
- [U] 20 Estimation and postestimation commands