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Description

churdle fits a linear or exponential hurdle model for a bounded dependent variable. The hurdle
model combines a selection model that determines the boundary points of the dependent variable
with an outcome model that determines its nonbounded values. Separate independent covariates are
permitted for each model.

Quick start
Linear hurdle model of y1 on x1 and x2, specifying that y1 is truncated at 0 with x1 and x3 predicting

selection
churdle linear y1 x1 x2, select(x1 x3) ll(0)

Add an upper truncation limit of 40
churdle linear y1 x1 x2, select(x1 x3) ll(0) ul(40)

As above, with the upper truncation limit specified in trunc

churdle linear y1 x1 x2, select(x1 x3) ll(0) ul(trunc)

As above, and use x3 to model the variance of the selection model
churdle linear y1 x1 x2, select(x1 x3, het(x3)) ll(0) ul(trunc)

As above, and use x4 to model the variance of the outcome model
churdle linear y1 x1 x2, select(x1 x3, het(x3)) ll(0) ///

ul(trunc) het(x4)

Exponential hurdle model of y2 on x1 and x2, specifying that y2 is truncated at 4 with x1 and x3
predicting selection

churdle exponential y2 x1 x2, select(x1 x3) ll(4)

Menu
Statistics > Linear models and related > Hurdle regression
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Syntax

Basic syntax

churdle linear depvar, select(varlists) { ll(. . .) | ul(. . .) }

churdle exponential depvar, select(varlists) ll(. . .)

Full syntax for churdle linear

churdle linear depvar
[

indepvars
] [

if
] [

in
] [

weight
]
,

select(varlists
[
, noconstant het(varlisto)

]
)

{ ll(# | varname) | ul(# | varname) }
[

options
]

Full syntax for churdle exponential

churdle exponential depvar
[

indepvars
] [

if
] [

in
] [

weight
]
,

select(varlists
[
, noconstant het(varlisto)

]
) ll(# | varname)

[
options

]
options Description

Model
∗select() specify independent variables and options for selection model
‡ll(# | varname) lower truncation limit
‡ul(# | varname) upper truncation limit
noconstant suppress constant term
constraints(constraints) apply specified linear constraints
het(varlist) specify variables to model the variance

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, bootstrap, or
jackknife

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics
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∗select() is required.
The full specification is select(varlists

[
, noconstant het(varlisto)

]
).

noconstant specifies that the constant be excluded from the selection model.
het(varlisto) specifies the variables in the error-variance function of the selection model.

‡You must specify at least one of ul(# | varname) or ll(# | varname) for the linear model and must specify
ll(# | varname) for the exponential model.

indepvars, varlists, and varlisto may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

select(varlists
[
, noconstant het(varlisto)

]
) specifies the variables and options for the selection

model. select() is required.

ll(# | varname) and ul(# | varname) indicate the lower and upper limits, respectively, for the
dependent variable. You must specify one or both for the linear model and must specify a lower
limit for the exponential model. Observations with depvar≤ ll() have a lower bound; observations
with depvar≥ ul() have an upper bound; and the remaining observations are in the continuous
region.

noconstant, constraints(constraints); see [R] estimation options.

het(varlist) specifies the variables in the error-variance function of the outcome model.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), that
allow for intragroup correlation (cluster, clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#), nocnsreport; see [R] estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.
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The following option is available with churdle but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples stata.com

churdle fits a linear or an exponential hurdle model. It combines a selection model that determines
the boundary points of the dependent variable with an outcome model that determines its nonbounded
values. Hurdle models treat these boundary values as observed instead of censored. That is to say,
observations where the dependent variable is equal to one of the boundary values are not the result
of our inability to observe the distribution above or below a certain point; see Wooldridge (2010)
chapter 17 for a thorough discussion of this point.

These models were proposed by Cragg (1971) to explain the demand for durable goods. In the
Cragg model, individuals purchase zero or a positive amount of the durable good, with different
factors determining each of these choices. This may be generalized to other individual decisions, such
as money donated to charity, cigarette consumption, and time spent volunteering.

Hurdle models are characterized by the relationship yi = sih
∗
i , where yi is the observed value of

the dependent variable.

The selection variable, si, is 1 if the dependent variable is not bounded and 0 otherwise. In the
Cragg model, the lower limit that binds the dependent variable is 0 so the selection model is

si =
{

1 if ziγ + εi > 0
0 otherwise

where zi is a vector of explanatory variables, γ is a vector of coefficients, and εi is a standard normal
error term. churdle allows a different lower limit to be specified in ll() and, for the linear model,
an upper limit in ul(). Conditional heteroskedasticity of the random error εi is allowed if suboption
het() is specified in select().

The continuous latent variable h∗i is observed only if si = 1. The outcome model can be either
the linear model or the exponential model, as proposed in Cragg (1971):

h∗i = xiβ + νi (linear)

h∗i = exp (xiβ + νi) (exponential)

where xi is a vector of explanatory variables, β is a vector of coefficients, and νi is an error term.

For the linear model, νi has a truncated normal distribution with lower truncation point −xiβ. For
the exponential model, νi has a normal distribution. churdle extends the Cragg hurdle models to
allow for conditional heteroskedasticity of the random error νi if the user specifies the het() option.

The parameters and regressors in the models for h∗i and for si may differ.

http://www.stata.com/manuals14/restimationoptions.pdf#restimationoptions
http://stata.com
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Example 1: Linear hurdle model

Consider a dataset that contains the number of hours an individual exercises per day (hours), their
age (age), whether they are single (single), hours they work per day (whours), whether they smoke
(smoke), their weight in kilograms (weight), their distance from the nearest gym (distance), and
their average commute from work (commute).
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Figure 1

Figure 1 shows that 43.9% of the individuals in the sample do not exercise and that the hours
exercised varies among individuals that decide to exercise.

We model the decision to exercise or not as a function of commute, whours, and age. These
variables are written in select(). Once a decision to exercise is made, the time an individual
exercises is modeled as a linear function of age, smoke, distance, and single.
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. use http://www.stata-press.com/data/r14/fitness

. churdle linear hours age i.smoke distance i.single,
> select(commute whours age) ll(0)
Iteration 0: log likelihood = -23657.236
Iteration 1: log likelihood = -23344.182
Iteration 2: log likelihood = -23340.051
Iteration 3: log likelihood = -23340.044
Iteration 4: log likelihood = -23340.044

Cragg hurdle regression Number of obs = 19,831
LR chi2(4) = 9059.26
Prob > chi2 = 0.0000

Log likelihood = -23340.044 Pseudo R2 = 0.1625

hours Coef. Std. Err. z P>|z| [95% Conf. Interval]

hours
age .0015116 .000763 1.98 0.048 .0000162 .003007

smoke
smoking -1.06646 .0460578 -23.15 0.000 -1.156731 -.9761879
distance -.1333868 .0126344 -10.56 0.000 -.1581497 -.1086238

single
single .9940893 .0258775 38.42 0.000 .9433703 1.044808

_cons .9138855 .0396227 23.06 0.000 .8362264 .9915447

selection_ll
commute -.2953345 .0624665 -4.73 0.000 -.4177666 -.1729024
whours .0022974 .0069306 0.33 0.740 -.0112864 .0158811

age -.0485347 .0006501 -74.65 0.000 -.049809 -.0472604
_cons 2.649945 .0499795 53.02 0.000 2.551987 2.747903

lnsigma
_cons .0083199 .0099648 0.83 0.404 -.0112107 .0278506

/sigma 1.008355 .010048 .9888519 1.028242

The coefficients in the outcome model for the latent variable appear under hours. Because we
only specified a lower limit to bind the dependent variable, the output shows parameter estimates for
a single selection model under selection ll. Information about the estimated standard deviation
of the error term in the outcome model appears under lnsigma and /sigma.

The coefficient estimates are not directly interpretable. To obtain the effect of a covariate on the
model, we need to use the margins command; see [R] churdle postestimation. Consider the effect
of age:

http://www.stata.com/manuals14/rchurdlepostestimation.pdf#rchurdlepostestimation
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. margins, dydx(age)

Average marginal effects Number of obs = 19,831
Model VCE : OIM

Expression : Conditional mean estimates of dependent variable, predict()
dy/dx w.r.t. : age

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

age -.0216855 .000289 -75.03 0.000 -.022252 -.021119

Each additional year of age is associated with about −0.02 fewer hours, or 1.2 minutes, of exercise.

Example 2: Linear hurdle with models for the outcome and selection variances

In this example, we illustrate the possibility of fitting a heteroskedastic probit for the selection and
latent model. In both cases, this is done by specifying age and single as the variables that affect
the conditional variance. As in example 1, we have separate parameters for the outcome model and
lower-limit selection model.

. churdle linear hours age i.smoke distance i.single,
> select(commute whours age, het(age single)) ll(0) het(age single) nolog

Cragg hurdle regression Number of obs = 19,831
LR chi2(4) = 9060.63
Prob > chi2 = 0.0000

Log likelihood = -23339.355 Pseudo R2 = 0.1626

hours Coef. Std. Err. z P>|z| [95% Conf. Interval]

hours
age .0012559 .0008198 1.53 0.126 -.0003508 .0028626

smoke
smoking -1.065564 .0457657 -23.28 0.000 -1.155263 -.9758649
distance -.1332939 .0126102 -10.57 0.000 -.1580094 -.1085783

single
single 1.002511 .032535 30.81 0.000 .9387436 1.066278

_cons .9166356 .0388318 23.61 0.000 .8405268 .9927445

selection_ll
commute -.2959986 .0641594 -4.61 0.000 -.4217488 -.1702484
whours .0024514 .0069769 0.35 0.725 -.0112231 .0161259

age -.048886 .0021405 -22.84 0.000 -.0530814 -.0446906
_cons 2.669613 .1139478 23.43 0.000 2.44628 2.892947

lnsigma
age .0003537 .0004026 0.88 0.380 -.0004354 .0011427

single -.0080667 .019253 -0.42 0.675 -.0458019 .0296685

lnsigma_ll
age -.0002035 .0008424 -0.24 0.809 -.0018546 .0014475

single .0268271 .0270133 0.99 0.321 -.0261179 .0797721
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The coefficients on age and single have no effect on the conditional variance of the outcome
model or on the conditional variance of the selection model. Thus, there is no evidence that the
variance depends on age and marital status.

Example 3: Exponential hurdle model

Returning to example 1, if we believe that the conditional mean of the latent variable has an
exponential form instead of a linear form, we use churdle exponential.

. churdle exponential hours age i.smoke distance i.single,
> select(commute whours age) ll(0) nolog

Cragg hurdle regression Number of obs = 19,831
LR chi2(4) = 8663.21
Prob > chi2 = 0.0000

Log likelihood = -15666.195 Pseudo R2 = 0.2166

hours Coef. Std. Err. z P>|z| [95% Conf. Interval]

hours
age .0008368 .0005341 1.57 0.117 -.00021 .0018836

smoke
smoking -.6431348 .0258509 -24.88 0.000 -.6938016 -.592468
distance -.0772879 .0079132 -9.77 0.000 -.0927976 -.0617783

single
single .5975111 .016108 37.09 0.000 .5659401 .6290821

_cons -.0770619 .0254833 -3.02 0.002 -.1270082 -.0271157

selection_ll
commute -.2953345 .0624665 -4.73 0.000 -.4177666 -.1729024
whours .0022974 .0069306 0.33 0.740 -.0112864 .0158811

age -.0485347 .0006501 -74.65 0.000 -.049809 -.0472604
_cons 2.649945 .0499795 53.02 0.000 2.551987 2.747903

lnsigma
_cons -.186917 .0067067 -27.87 0.000 -.200062 -.1737721

/sigma .8295126 .0055633 .81868 .8404884

What was said previously regarding the interpretation of the effects of the different regressors also
holds true for churdle exponential. We again use margins to estimate the effect of age on time
spent exercising.

. margins, dydx(age)

Average marginal effects Number of obs = 19,831
Model VCE : OIM

Expression : Conditional mean estimates of dependent variable, predict()
dy/dx w.r.t. : age

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

age -.0245582 .0004805 -51.11 0.000 -.0255 -.0236164
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With the exponential outcome model of the latent variable, our estimate is that each additional
year of age decreases exercise time by about 0.025 hours, or 1.5 minutes.

Stored results
churdle stores the following in e():

Scalars
e(N) number of observations
e(k eq model) number of equations in overall model test
e(df m) model degrees of freedom
e(r2 p) pseudo-R-squared
e(chi2) χ2

e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(N clust) number of clusters
e(p) significance
e(rank) rank of e(v)
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) churdle
e(cmdline) command as typed
e(depvar) name of dependent variable
e(estimator) linear or exponential
e(model) Linear or Exponential
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(chi2type) Wald or LR; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample
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Methods and formulas
Let `` refer to the lower limit and u` to the upper limit. Also let the probabilities of being at

these limits be given by
Pr (yi = ``|zi) = Φ (``− z′iγ``)

Pr (yi = u`|zi) = Φ (z′iγu` − u`)

where zi are the covariates of the selection model for individual i, which may be distinct from the
covariates xi for the latent model; Φ corresponds to the standard normal cumulative distribution
function; γ`` is the parameter vector for the lower-limit selection model; and γu` is the parameter
vector for the upper-limit selection model.

Under the assumptions that νi has a truncated normal distribution with lower truncation point
``− x′iβ and upper truncation point u`− x′iβ and has a homoskedastic variance, the log-likelihood
function is given by

lnL =

n∑
i=1

(yi ≤ ``) log Φ (``− z′iγ``) + (yi ≥ u`) log {1− Φ (u`− z′iγu`)}

+ (u` > yi > ``) [ log {Φ (u`− z′iγu`)− Φ (``− z′iγ``)}]

− (u` > yi > ``)

[
log

{
Φ

(
u`− x′iβ

σ

)
− Φ

(
``− x′iβ

σ

)}]
+ (u` > yi > ``)

[
log

{
φ

(
yi − x′iβ

σ

)}
− log(σ)

]

Without the homoskedasticity assumption, the heteroskedasticity can be modeled using the form
σ2 (wi) = exp (2w′iθ), where wi are the variables that affect the conditional variance of νi. The
log-likelihood function is obtained by replacing σ with exp (w′iθ).

The log-likelihood function for the exponential model is given by

lnL =

n∑
i=1

(yi ≤ ``) log Φ (``− z′iγ) + (yi > ``) [log {1− Φ (``− z′iγ)}]

+ (yi > ``) {log {φ [log(yi − ``)− x′iβ)/σ]} − log(σ)− log(yi − ``)}

Analogous to the linear case, we can model heteroskedasticity by σ2 (wi) = exp (2w′iθ).

Estimation of both of the aforementioned likelihood functions is done by maximum likelihood.
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Also see
[R] churdle postestimation — Postestimation tools for churdle

[R] intreg — Interval regression

[R] tobit — Tobit regression

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands
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