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Description

rotate performs a rotation of the loading matrix after factor, factormat, pca, or pcamat; see
[MV] factor and [MV] pca. Many rotation criteria (such as varimax and oblimin) are available that
can be applied with respect to the orthogonal and oblique class of rotations.

rotate, clear removes the rotation results from the estimation results.

If you want to rotate a given matrix, see [MV] rotatemat.
If you want a Procrustes rotation, which rotates variables optimally toward other variables, see

[MV] procrustes.

Quick start
Orthogonal varimax rotation of loading matrix after pca or factor

rotate

As above, but apply the minimum entropy rotation criterion
rotate, entropy

As above, but apply oblique quartimin rotation criterion
rotate, oblique quartimin

As above, but rotate the Kaiser normalized matrix
rotate, oblique quartimin normalize

Menu
Statistics > Multivariate analysis > Factor and principal component analysis > Postestimation > Rotate loadings

1

http://stata.com
http://www.stata.com/manuals14/mvfactor.pdf#mvfactor
http://www.stata.com/manuals14/mvpca.pdf#mvpca
http://www.stata.com/manuals14/mvrotatemat.pdf#mvrotatemat
http://www.stata.com/manuals14/mvprocrustes.pdf#mvprocrustes
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Syntax
rotate

[
, options

]
rotate, clear

options Description

Main

orthogonal restrict to orthogonal rotations; the default, except with promax()

oblique allow oblique rotations
rotation methods rotation criterion
normalize rotate Kaiser normalized matrix
factors(#) rotate # factors or components; default is to rotate all
components(#) synonym for factors()

Reporting

blanks(#) display loadings as blanks when |loading| < #; default is blanks(0)

detail show rotatemat output; seldom used
format(% fmt) display format for matrices; default is format(%9.5f)

noloading suppress display of rotated loadings
norotation suppress display of rotation matrix

Optimization

optimize options control the maximization process; seldom used

rotation methods Description

∗varimax varimax (orthogonal only); the default
vgpf varimax via the GPF algorithm (orthogonal only)
quartimax quartimax (orthogonal only)
equamax equamax (orthogonal only)
parsimax parsimax (orthogonal only)
entropy minimum entropy (orthogonal only)
tandem1 Comrey’s tandem 1 principle (orthogonal only)
tandem2 Comrey’s tandem 2 principle (orthogonal only)

∗promax
[
(#)

]
promax power # (implies oblique); default is promax(3)

oblimin
[
(#)

]
oblimin with γ = #; default is oblimin(0)

cf(#) Crawford–Ferguson family with κ = #, 0 ≤ # ≤ 1
bentler Bentler’s invariant pattern simplicity
oblimax oblimax
quartimin quartimin
target(Tg) rotate toward matrix Tg
partial(Tg W) rotate toward matrix Tg, weighted by matrix W

∗ varimax and promax ignore all optimize options.

http://www.stata.com/manuals14/d.pdf#dformat
http://www.stata.com/manuals14/mvrotatemat.pdf#mvrotatematOptionsoptopts


rotate — Orthogonal and oblique rotations after factor and pca 3

Options� � �
Main �

orthogonal specifies that an orthogonal rotation be applied. This is the default.

See Rotation criteria below for details on the rotation methods available with orthogonal.

oblique specifies that an oblique rotation be applied. This often yields more interpretable factors
with a simpler structure than that obtained with an orthogonal rotation. In many applications (for
example, after factor and pca) the factors before rotation are orthogonal (uncorrelated), whereas
the oblique rotated factors are correlated.

See Rotation criteria below for details on the rotation methods available with oblique.

clear specifies that rotation results be cleared (removed) from the last estimation command. clear
may not be combined with any other option.

rotate stores its results within the e() results of pca and factor, overwriting any previous
rotation results. Postestimation commands such as predict operate on the last rotated results, if
any, instead of the unrotated results, and allow you to specify norotated to use the unrotated
results. The clear option of rotate allows you to remove the rotation results from e(), thus
freeing you from having to specify norotated for the postestimation commands.

normalize requests that the rotation be applied to the Kaiser normalization (Horst 1965) of the
matrix A, so that the rowwise sums of squares equal 1. Kaiser normalization applies to the rotated
columns only (see the factors() option below).

factors(#), and synonym components(#), specifies the number of factors or components (columns
of the loading matrix) to be rotated, counted “from the left”, that is, with the lowest column index.
The other columns are left unrotated. All columns are rotated by default.

� � �
Reporting �

blanks(#) shows blanks for loadings with absolute values smaller than #.

detail displays the rotatemat output; seldom used.

format(% fmt) specifies the display format for matrices. The default is format(%9.5f).

noloading suppresses the display of the rotated loadings.

norotation suppresses the display of the optimal rotation matrix.

� � �
Optimization �

optimize options are seldom used; see [MV] rotatemat.

Rotation criteria
In the descriptions below, the matrix to be rotated is denoted as A, p denotes the number of rows

of A, and f denotes the number of columns of A (factors or components). If A is a loading matrix
from factor or pca, p is the number of variables, and f is the number of factors or components.

Criteria suitable only for orthogonal rotations

varimax and vgpf apply the orthogonal varimax rotation (Kaiser 1958). varimax maximizes the
variance of the squared loadings within factors (columns of A). It is equivalent to cf(1/p) and to
oblimin(1). varimax, the most popular rotation, is implemented with a dedicated fast algorithm
and ignores all optimize options. Specify vgpf to switch to the general GPF algorithm used for
the other criteria.

http://www.stata.com/manuals14/d.pdf#dformat
http://www.stata.com/manuals14/mvrotatemat.pdf#mvrotatemat
http://www.stata.com/manuals14/mvrotatemat.pdf#mvrotatematOptionsoptopts


4 rotate — Orthogonal and oblique rotations after factor and pca

quartimax uses the quartimax criterion (Harman 1976). quartimax maximizes the variance of
the squared loadings within the variables (rows of A). For orthogonal rotations, quartimax is
equivalent to cf(0) and to oblimax.

equamax specifies the orthogonal equamax rotation. equamax maximizes a weighted sum of the
varimax and quartimax criteria, reflecting a concern for simple structure within variables (rows
of A) as well as within factors (columns of A). equamax is equivalent to oblimin(p/2) and
cf(#), where # = f /(2p).

parsimax specifies the orthogonal parsimax rotation. parsimax is equivalent to cf(#), where
# = (f − 1)/(p + f − 2).

entropy applies the minimum entropy rotation criterion (Jennrich 2004).

tandem1 specifies that the first principle of Comrey’s tandem be applied. According to Comrey (1967),
this principle should be used to judge which “small” factors should be dropped.

tandem2 specifies that the second principle of Comrey’s tandem be applied. According to Com-
rey (1967), tandem2 should be used for “polishing”.

Criteria suitable only for oblique rotations

promax
[
(#)

]
specifies the oblique promax rotation. The optional argument specifies the promax

power. Not specifying the argument is equivalent to specifying promax(3). Values smaller than 4
are recommended, but the choice is yours. Larger promax powers simplify the loadings (generate
numbers closer to zero and one) but at the cost of additional correlation between factors. Choosing
a value is a matter of trial and error, but most sources find values in excess of 4 undesirable in
practice. The power must be greater than 1 but is not restricted to integers.

Promax rotation is an oblique rotation method that was developed before the “analytical methods”
(based on criterion optimization) became computationally feasible. Promax rotation comprises an
oblique Procrustean rotation of the original loadings A toward the elementwise #-power of the
orthogonal varimax rotation of A.

Criteria suitable for orthogonal and oblique rotations

oblimin
[
(#)

]
specifies that the oblimin criterion with γ = # be used. When restricted to orthogonal

transformations, the oblimin() family is equivalent to the orthomax criterion function. Special
cases of oblimin() include

γ Special case

0 quartimax / quartimin
1/2 biquartimax / biquartimin
1 varimax / covarimin
p/2 equamax

p = number of rows of A.

γ defaults to zero. Jennrich (1979) recommends γ ≤ 0 for oblique rotations. For γ > 0, it is
possible that optimal oblique rotations do not exist; the iterative procedure used to compute the
solution will wander off to a degenerate solution.

cf(#) specifies that a criterion from the Crawford–Ferguson (1970) family be used with κ = #.
cf(κ) can be seen as (1−κ)cf1(A)+ (κ)cf2(A), where cf1(A) is a measure of row parsimony
and cf2(A) is a measure of column parsimony. cf1(A) attains its greatest lower bound when no
row of A has more than one nonzero element, whereas cf2(A) reaches zero if no column of A
has more than one nonzero element.
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For orthogonal rotations, the Crawford–Ferguson family is equivalent to the oblimin() family.
For orthogonal rotations, special cases include the following:

κ Special case

0 quartimax / quartimin
1/p varimax / covarimin
f/(2p) equamax
( f − 1)/(p + f − 2) parsimax
1 factor parsimony

p = number of rows of A.
f = number of columns of A.

bentler specifies that the “invariant pattern simplicity” criterion (Bentler 1977) be used.

oblimax specifies the oblimax criterion. oblimax maximizes the number of high and low loadings.
oblimax is equivalent to quartimax for orthogonal rotations.

quartimin specifies that the quartimin criterion be used. For orthogonal rotations, quartimin is
equivalent to quartimax.

target(Tg) specifies that A be rotated as near as possible to the conformable matrix Tg. Nearness
is expressed by the Frobenius matrix norm.

partial(Tg W) specifies that A be rotated as near as possible to the conformable matrix Tg.
Nearness is expressed by a weighted (by W) Frobenius matrix norm. W should be nonnegative
and usually is zero–one valued, with ones identifying the target values to be reproduced as closely
as possible by the factor loadings, whereas zeros identify loadings to remain unrestricted.

Remarks and examples stata.com

Remarks are presented under the following headings:
Orthogonal rotations
Oblique rotations
Other types of rotation

In this entry, we focus primarily on the rotation of factor loading matrices in factor analysis.
rotate may also be used after pca, with the same syntax. We advise caution in the interpretation of
rotated loadings in principal component analysis because some of the optimality properties of principal
components are not preserved under rotation. See [MV] pca postestimation for more discussion of
this point.

Orthogonal rotations

The interpretation of a factor analytical solution is not always easy—an understatement, many will
agree. This is due partly to the standard way in which the inherent indeterminacy of factor analysis
is resolved. Orthogonal transformations of the common factors and the associated factor loadings are
possible without affecting the reconstructed (fitted) correlation matrix and preserving the property
that common factors are uncorrelated. This gives considerable freedom in selecting an orthogonal
rotation to facilitate the interpretation of the factor loadings. Thurstone (1935) offered criteria for a
“simple structure” required for a psychologically meaningful factor solution. These informal criteria
for interpretation were then formalized into formal rotation criteria, for example, Harman (1976) and
Gorsuch (1983).

http://stata.com
http://www.stata.com/manuals14/mvpcapostestimation.pdf#mvpcapostestimation
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Example 1: Orthogonal varimax rotation

We illustrate rotate by using a factor analysis of the correlation matrix of eight physical variables
(height, arm span, length of forearm, length of lower leg, weight, bitrochanteric diameter, chest girth,
and chest width) of 305 girls.

. matrix input R = (1000 846 805 859 473 398 301 382 \
> 846 1000 881 826 376 326 277 415 \
> 805 881 1000 801 380 319 237 345 \
> 859 826 801 1000 436 329 327 365 \
> 473 376 380 436 1000 762 730 629 \
> 398 326 319 329 762 1000 583 577 \
> 301 277 237 327 730 583 1000 539 \
> 382 415 345 365 629 577 539 1000)

. matrix R = R/1000

. matrix colnames R = height arm_span fore_arm lower_leg
> weight bitrod ch_girth ch_width

. matrix rownames R = height arm_span fore_arm lower_leg
> weight bitrod ch_girth ch_width

. matlist R, border format(%7.3f)

height arm_s~n fore_~m lower~g weight bitrod ch_gi~h ch_wi~h

height 1.000
arm_span 0.846 1.000
fore_arm 0.805 0.881 1.000

lower_leg 0.859 0.826 0.801 1.000
weight 0.473 0.376 0.380 0.436 1.000
bitrod 0.398 0.326 0.319 0.329 0.762 1.000

ch_girth 0.301 0.277 0.237 0.327 0.730 0.583 1.000
ch_width 0.382 0.415 0.345 0.365 0.629 0.577 0.539 1.000

We extract two common factors with the iterated principal-factor method. See the description of
factormat in [MV] factor for details on running a factor analysis on a Stata matrix rather than on
a dataset.

. factormat R, n(305) fac(2) ipf
(obs=305)

Factor analysis/correlation Number of obs = 305
Method: iterated principal factors Retained factors = 2
Rotation: (unrotated) Number of params = 15

Factor Eigenvalue Difference Proportion Cumulative

Factor1 4.44901 2.93878 0.7466 0.7466
Factor2 1.51023 1.40850 0.2534 1.0000
Factor3 0.10173 0.04705 0.0171 1.0171
Factor4 0.05468 0.03944 0.0092 1.0263
Factor5 0.01524 0.05228 0.0026 1.0288
Factor6 -0.03703 0.02321 -0.0062 1.0226
Factor7 -0.06025 0.01415 -0.0101 1.0125
Factor8 -0.07440 . -0.0125 1.0000

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000

http://www.stata.com/manuals14/mvfactor.pdf#mvfactor
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Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8560 -0.3244 0.1620
arm_span 0.8482 -0.4115 0.1112
fore_arm 0.8082 -0.4090 0.1795

lower_leg 0.8309 -0.3424 0.1923
weight 0.7503 0.5712 0.1108
bitrod 0.6307 0.4922 0.3600

ch_girth 0.5687 0.5096 0.4169
ch_width 0.6074 0.3507 0.5081

The default factor solution is rather poor from the perspective of a “simple structure”, namely,
that variables should have high loadings on few (one) factors and factors should ideally have only
low and high values. A plot of the loadings is illuminating.

. loadingplot, xlab(0(.2)1) ylab(-.4(.2).6) aspect(1) yline(0) xline(0)
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Factor loadings

There are two groups of variables. We would like to see one group of variables close to one
axis and the other group of variables close to the other axis. Turning the plot by about 45 degrees
counterclockwise should make this possible and offer a much “simpler” structure. This is what the
rotate command accomplishes.

. rotate

Factor analysis/correlation Number of obs = 305
Method: iterated principal factors Retained factors = 2
Rotation: orthogonal varimax (Kaiser off) Number of params = 15

Factor Variance Difference Proportion Cumulative

Factor1 3.39957 0.83989 0.5705 0.5705
Factor2 2.55968 . 0.4295 1.0000

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000
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Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8802 0.2514 0.1620
arm_span 0.9260 0.1770 0.1112
fore_arm 0.8924 0.1550 0.1795

lower_leg 0.8708 0.2220 0.1923
weight 0.2603 0.9064 0.1108
bitrod 0.2116 0.7715 0.3600

ch_girth 0.1515 0.7484 0.4169
ch_width 0.2774 0.6442 0.5081

Factor rotation matrix

Factor1 Factor2

Factor1 0.8018 0.5976
Factor2 -0.5976 0.8018

See [MV] factor for the interpretation of the first panel. Here we will focus on the second and
third panel. The rotated factor loadings satisfy

Factor1rotated = 0.8018× Factor1unrotated − 0.5976× Factor2unrotated

Factor2rotated = 0.5976× Factor1unrotated + 0.8018× Factor2unrotated

The uniqueness—the variance of the specific factors—is not affected, because we are changing
only the coordinates in common factor space. The purpose of rotation is to make factor loadings
easier to interpret. The first factor loads high on the first four variables and low on the last four
variables; for the second factor, the roles are reversed. This is really a simple structure according to
Thurstone’s criteria. This is clear in the plot of the factor loadings.

. loadingplot, xlab(0(.2)1) ylab(0(.2)1) aspect(1) yline(0) xline(0)
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Rotation: orthogonal varimax
Method: iterated principal factors

Factor loadings

rotate provides several different rotations. You may make your intention clearer by typing the
command as

. rotate, orthogonal varimax
(output omitted )

http://www.stata.com/manuals14/mvfactor.pdf#mvfactor
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rotate defaults to orthogonal (angle and length preserving) rotations of the axes; thus, orthogonal
may be omitted. The default rotation method is varimax, probably the most popular method. We
warn that the varimax rotation is not appropriate if you expect a general factor contributing to all
variables (see also Gorsuch 1983, chap. 9). In such a case you could, for instance, consider a quartimax
rotation.

Example 2: Orthogonal varimax rotation with normalization

rotate has performed what is known as “raw varimax”, rotating the axes to maximize the sum
of the variance of the squared loadings in the columns—the variance in a column is large if it
comprises small and large (in the absolute sense) values. In rotating the axes, rows with large initial
loadings—that is, with high communalities—have more influence than rows with only small values.
Kaiser suggested that in the computation of the optimal rotation, all rows should have the same weight.
This is usually known as the Kaiser normalization and sometimes known as the Horst normalization
(Horst 1965). The option normalize applies this normalization method for rotation.

. rotate, normalize

Factor analysis/correlation Number of obs = 305
Method: iterated principal factors Retained factors = 2
Rotation: orthogonal varimax (Kaiser on) Number of params = 15

Factor Variance Difference Proportion Cumulative

Factor1 3.31500 0.67075 0.5563 0.5563
Factor2 2.64425 . 0.4437 1.0000

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8724 0.2775 0.1620
arm_span 0.9203 0.2045 0.1112
fore_arm 0.8874 0.1815 0.1795

lower_leg 0.8638 0.2478 0.1923
weight 0.2332 0.9137 0.1108
bitrod 0.1885 0.7775 0.3600

ch_girth 0.1292 0.7526 0.4169
ch_width 0.2581 0.6522 0.5081

Factor rotation matrix

Factor1 Factor2

Factor1 0.7837 0.6212
Factor2 -0.6212 0.7837

Here the raw and normalized varimax rotated loadings are not much different.

In the first example, loadingplot after rotate showed the rotated loadings, not the unrotated
loadings. How can this be? Remember that Stata estimation commands store their results in e(),
which we can list using ereturn list.
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. ereturn list

scalars:
e(f) = 2
e(N) = 305

e(df_m) = 15
e(df_r) = 13

e(chi2_i) = 2092.68137837692
e(df_i) = 28
e(p_i) = 0

e(evsum) = 5.95922412962743
e(r_f) = 2

macros:
e(r_normalization) : "kaiser"

e(r_class) : "orthogonal"
e(r_criterion) : "varimax"

e(r_ctitle) : "varimax"
e(cmdline) : "factormat R, n(305) fac(2) ipf"

e(cmd) : "factor"
e(marginsnotok) : "_ALL"

e(properties) : "nob noV eigen"
e(title) : "Factor analysis"

e(predict) : "factor_p"
e(estat_cmd) : "factor_estat"

e(rotate_cmd) : "factor_rotate"
e(rngstate) : "XAA1055b80bcee95e83ca9e2d41adfb0f0806ad6e5dec1468.."
e(factors) : "factors(2)"
e(mtitle) : "iterated principal factors"
e(method) : "ipf"

e(matrixname) : "R"

matrices:
e(r_Ev) : 1 x 2

e(r_Phi) : 2 x 2
e(r_T) : 2 x 2
e(r_L) : 8 x 2

e(C) : 8 x 8
e(Phi) : 2 x 2

e(L) : 8 x 2
e(Psi) : 1 x 8
e(Ev) : 1 x 8

functions:
e(sample)

When you replay an estimation command, it simply knows where to look, so that it can redisplay
the output. rotate does something that few other postestimation commands are allowed to do: it
adds information to the estimation results computed by factor or pca. But to avoid confusion, it
writes in e() fields with the prefix r . For instance, the matrix e(r L) contains the rotated loadings.

If you replay factor after rotate, factor will display the rotated results. And this is what all
factor and pca postestimation commands do. For instance, if you predict after rotate, predict
will use the rotated results. Of course, it is still possible to operate on the unrotated results. factor,
norotated replays the unrotated results. predict with the norotated option computes the factor
scores for the unrotated results.

rotate stores information only about the most recent rotation, overwriting any information from
the previous rotation. If you need the previous results again, run rotate with the respective options
again; you do not need to run factor again. It is also possible to use estimates store to
store estimation results for different rotations, which you may later restore and replay at will. See
[R] estimates store for details.

http://www.stata.com/manuals14/restimatesstore.pdf#restimatesstore
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If you no longer need the rotation results, you may type

. rotate, clear

to clean up the rotation result and return the factor results back to their pristine state (as if rotate
had never been called).

Example 3: Orthogonal quartimax and orthogonal oblimin rotations

rotate provides many more orthogonal rotations. Previously we stated that the varimax rotation
can be thought of as the rotation that maximizes the varimax criterion, namely, the variance of the
squared loadings summed over the columns. A column of loadings with a high variance tends to
contain a series of large values and a series of low values, achieving the simplicity aim of factor
analytic interpretation. The other types of rotation simply maximize other concepts of simplicity.
For instance, the quartimax rotation aims at rowwise simplicity—preferably, the loadings within
variables fall into a grouping of a few large ones and a few small ones, using again the variance in
squared loadings as the criterion to be maximized.

. rotate, quartimax normalize

Factor analysis/correlation Number of obs = 305
Method: iterated principal factors Retained factors = 2
Rotation: orthogonal quartimax (Kaiser on) Number of params = 15

Factor Variance Difference Proportion Cumulative

Factor1 3.32371 0.68818 0.5577 0.5577
Factor2 2.63553 . 0.4423 1.0000

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8732 0.2749 0.1620
arm_span 0.9210 0.2017 0.1112
fore_arm 0.8880 0.1788 0.1795

lower_leg 0.8646 0.2452 0.1923
weight 0.2360 0.9130 0.1108
bitrod 0.1909 0.7769 0.3600

ch_girth 0.1315 0.7522 0.4169
ch_width 0.2601 0.6514 0.5081

Factor rotation matrix

Factor1 Factor2

Factor1 0.7855 0.6188
Factor2 -0.6188 0.7855

Here the quartimax and the varimax rotated results are rather similar. This need not be the case—
varimax focuses on simplicity within columns (factors) and quartimax within rows (variables). It is
possible to compromise, rotating to strive for a weighted sum of row simplicity and column simplicity.
This is known as the orthogonal oblimin criterion; in the orthogonal case, oblimin() is equivalent
to the Crawford–Ferguson (option cf()) family and to the orthomax family. These are parameterized
families of criteria with, for instance, the following special cases:
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oblimin(0) quartimax rotation
oblimin(0.5) biquartimax rotation
oblimin(1) varimax rotation

. rotate, oblimin(0.5) normalize

Factor analysis/correlation Number of obs = 305
Method: iterated principal factors Retained factors = 2
Rotation: orthogonal oblimin (Kaiser on) Number of params = 15

Factor Variance Difference Proportion Cumulative

Factor1 3.31854 0.67783 0.5569 0.5569
Factor2 2.64071 . 0.4431 1.0000

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8727 0.2764 0.1620
arm_span 0.9206 0.2033 0.1112
fore_arm 0.8877 0.1804 0.1795

lower_leg 0.8642 0.2468 0.1923
weight 0.2343 0.9134 0.1108
bitrod 0.1895 0.7772 0.3600

ch_girth 0.1301 0.7525 0.4169
ch_width 0.2589 0.6518 0.5081

Factor rotation matrix

Factor1 Factor2

Factor1 0.7844 0.6202
Factor2 -0.6202 0.7844

Because the varimax and orthomax rotation are relatively close, the factor loadings resulting from
an optimal rotation of a compromise criterion are close as well.

The orthogonal quartimax rotation may be obtained in different ways, namely, directly or by the
appropriate member of the oblimin() or cf() families:

. rotate, quartimax
(output omitted )

. rotate, oblimin(0)
(output omitted )

. rotate, cf(0)
(output omitted )

Technical note
The orthogonal varimax rotation also belongs to the oblimin and Crawford–Ferguson families.

. rotate, varimax
(output omitted )

. rotate, oblimin(1)
(output omitted )

. rotate, cf(0.125)
(output omitted )
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(The 0.125 = 1/8 above is 1 divided by the number of variables.) All three produce the orthogonal
varimax rotation. (There is actually a fourth way, namely rotate, vgpf.) There is, however, a subtle
difference in algorithms used. The varimax rotation as specified by the varimax option (which is
also the default) is computed by the classic algorithm of cycling through rotations of two factors at
a time. The other ways use the general “gradient projection” algorithm proposed by Jennrich; see
[MV] rotatemat for more information.

Oblique rotations

In addition to orthogonal rotations, oblique rotations are also available.

Example 4: Oblique oblimin rotation

The rotation methods that we have discussed so far are all orthogonal: the angles between the
axes are unchanged, so the rotated factors are uncorrelated.

Returning to our original factor analysis,

. factormat R, n(305) fac(2) ipf
(output omitted )

we examine the correlation matrix of the common factors,

. estat common

Correlation matrix of the common factors

Factors Factor1 Factor2

Factor1 1
Factor2 0 1

and see that they are uncorrelated.

The indeterminacy in the factor analytic model, however, allows us to consider other transformations
of the common factors, namely, oblique rotations. These are rotations of the axes that preserve the
norms of the rows of the loadings but not the angles between the axes or the angles between the
rows. There are advantages and disadvantages of oblique rotations. See, for instance, Gorsuch (1983,
chap. 9). In many substantive theories, there seems little reason to impose the restriction that the
common factors be uncorrelated. The additional freedom in choosing the axes generally leads to
more easily interpretable factors, sometimes to a great extent. However, although most researchers
are willing to accept mildly correlated factors, they would prefer to use fewer of such factors.

rotate provides an extensive menu of oblique rotations; with a few exceptions, criteria suitable
for orthogonal rotations are also suitable for oblique rotation. Again oblique rotation can be conceived
of as maximizing some “simplicity” criterion. We illustrate with the oblimin oblique rotation.

http://www.stata.com/manuals14/mvrotatemat.pdf#mvrotatemat
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. rotate, oblimin oblique normalize

Factor analysis/correlation Number of obs = 305
Method: iterated principal factors Retained factors = 2
Rotation: oblique oblimin (Kaiser on) Number of params = 15

Factor Variance Proportion Rotated factors are correlated

Factor1 3.95010 0.6629
Factor2 3.35832 0.5635

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8831 0.0648 0.1620
arm_span 0.9560 -0.0288 0.1112
fore_arm 0.9262 -0.0450 0.1795

lower_leg 0.8819 0.0344 0.1923
weight 0.0047 0.9408 0.1108
bitrod -0.0069 0.8032 0.3600

ch_girth -0.0653 0.7923 0.4169
ch_width 0.1042 0.6462 0.5081

Factor rotation matrix

Factor1 Factor2

Factor1 0.9112 0.7930
Factor2 -0.4120 0.6092

The oblique rotation yields a much “simpler” structure in the Thurstone (1935) sense than that of
the orthogonal rotations. This time, the common factors are moderately correlated.

. estat common

Correlation matrix of the oblimin(0) rotated common factors

Factors Factor1 Factor2

Factor1 1
Factor2 .4716 1

Technical note
The numerical maximization of a simplicity criterion with respect to the class of orthogonal or

oblique rotations proceeds in a stepwise method, making small improvements from an initial guess,
until no more small improvements are possible. Such a procedure is not guaranteed to converge to
the global optimum but to a local optimum instead. In practice, we experience few such problems. To
some extent, this is because we have a reasonable starting value using the unrotated factors or loadings.
As a safeguard, Stata starts the improvement from multiple initial positions chosen at random from
the classes of orthonormal and normal rotation matrices. If the maximization procedure converges to
the same criterion value at each trial, we may be reasonably certain that we have found the global
optimum. Let us illustrate.
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. set seed 123

. rotate, oblimin oblique normalize protect(10)

Trial 1 : min criterion .0181657
Trial 2 : min criterion .0181657
Trial 3 : min criterion .0181657
Trial 4 : min criterion .0181657
Trial 5 : min criterion .0181657
Trial 6 : min criterion .0181657
Trial 7 : min criterion .0181657
Trial 8 : min criterion .0181657
Trial 9 : min criterion 458260.7
Trial 10 : min criterion .0181657

Factor analysis/correlation Number of obs = 305
Method: iterated principal factors Retained factors = 2
Rotation: oblique oblimin (Kaiser on) Number of params = 15

Factor Variance Proportion Rotated factors are correlated

Factor1 3.95010 0.6629
Factor2 3.35832 0.5635

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8831 0.0648 0.1620
arm_span 0.9560 -0.0288 0.1112
fore_arm 0.9262 -0.0450 0.1795

lower_leg 0.8819 0.0344 0.1923
weight 0.0047 0.9408 0.1108
bitrod -0.0069 0.8032 0.3600

ch_girth -0.0653 0.7923 0.4169
ch_width 0.1042 0.6462 0.5081

Factor rotation matrix

Factor1 Factor2

Factor1 0.9112 0.7930
Factor2 -0.4120 0.6092

Here three of the random trials converged to distinct rotations from the rest. Specifying options
log and trace would demonstrate that in these cases, the initial configurations were so far off that
no improvements could be found. In a real application, we would probably rerun rotate with more
trials, say, protect(50), for more reassurance.

Technical note
There is another but almost trivial source of nonuniqueness. All simplicity criteria supported by

rotate and rotatemat are invariant with respect to permutations of the rows and of the columns.
Also, the signs of rotated loadings are undefined. rotatemat, the computational engine of rotate,
makes sure that all columns have a positive orientation, that is, have a positive sum. rotate, after
factor and pca, also sorts the columns into decreasing order of explained variance.
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Other types of rotation

rotate supports a few rotation methods that do not fit into the scheme of “simplicity maximization”.
The first is known as the target rotation, which seeks to rotate the factor loading matrix to approximate
as much as possible a target matrix of the same size as the factor loading matrix.

Example 5: Rotation toward a target matrix

We continue with our same example. If we had expected a factor loading structure in which the
first group of four variables would load especially high on the first factor and the second group of
four variables on the second factor, we could have set up the following target matrix.

. matrix W = ( 1,0 \ 1,0 \ 1,0 \ 1,0 \ 0,1 \ 0,1 \ 0,1 \ 0,1 )

. matrix list W

W[8,2]
c1 c2

r1 1 0
r2 1 0
r3 1 0
r4 1 0
r5 0 1
r6 0 1
r7 0 1
r8 0 1

It is also possible to request an orthogonal or oblique rotation toward the target W.

. rotate, target(W) normalize

Factor analysis/correlation Number of obs = 305
Method: iterated principal factors Retained factors = 2
Rotation: orthogonal target (Kaiser on) Number of params = 15

Factor Variance Difference Proportion Cumulative

Factor1 3.30616 0.65307 0.5548 0.5548
Factor2 2.65309 . 0.4452 1.0000

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8715 0.2802 0.1620
arm_span 0.9197 0.2073 0.1112
fore_arm 0.8869 0.1843 0.1795

lower_leg 0.8631 0.2505 0.1923
weight 0.2304 0.9144 0.1108
bitrod 0.1861 0.7780 0.3600

ch_girth 0.1268 0.7530 0.4169
ch_width 0.2561 0.6530 0.5081

Factor rotation matrix

Factor1 Factor2

Factor1 0.7817 0.6236
Factor2 -0.6236 0.7817
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With this target matrix, the result is not far different from the varimax and other orthogonal
rotations.

Example 6: Oblique promax rotation

For our last example, we return to the early days of factor analysis, the time before fast computing.
Analytical methods for orthogonal rotation, such as varimax, were developed relatively early. Analogous
methods for oblique rotations proved more complicated. Hendrickson and White (1964) proposed a
computationally simple method to obtain an oblique rotation that comprises an oblique Procrustes
rotation of the factor loadings toward a signed power of the varimax rotation of the factor loadings.
The promax method has one parameter, the power to which the varimax loadings are raised. Larger
promax powers simplify the factor loadings (that is, generate more zeros and ones) at the cost of
more correlation between the common factors. Generally, we recommend that you keep the power in
the range (1,4] and not restricted to integers. Specifying promax is equivalent to promax(3).

. rotate, promax normalize

Factor analysis/correlation Number of obs = 305
Method: iterated principal factors Retained factors = 2
Rotation: oblique promax (Kaiser on) Number of params = 15

Factor Variance Proportion Rotated factors are correlated

Factor1 3.92727 0.6590
Factor2 3.31295 0.5559

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8797 0.0744 0.1620
arm_span 0.9505 -0.0176 0.1112
fore_arm 0.9205 -0.0340 0.1795

lower_leg 0.8780 0.0443 0.1923
weight 0.0214 0.9332 0.1108
bitrod 0.0074 0.7966 0.3600

ch_girth -0.0509 0.7851 0.4169
ch_width 0.1152 0.6422 0.5081

Factor rotation matrix

Factor1 Factor2

Factor1 0.9069 0.7832
Factor2 -0.4214 0.6218

In this simple two-factor example, the promax solution is similar to the oblique oblimin solution.
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Stored results
rotate adds stored results named e(r name) to the stored results that were already defined by

factor or pca.

rotate adds to the following results:
Scalars

e(r f) number of factors/components in rotated solution
e(r fmin) rotation criterion value

Macros
e(r class) orthogonal or oblique
e(r criterion) rotation criterion
e(r ctitle) title for rotation
e(r normalization) kaiser or none

Matrices
e(r L) rotated loadings
e(r T) rotation
e(r Phi) correlations between common factors (after factor only)
e(r Ev) explained variance by common factors (factor) or rotated components (pca)

The factors/components in the rotated solution are in decreasing order of e(r Ev).

Technical note
The rest of this section contains information of interest to programmers who want to provide rotate

support to other estimation commands. Similar to other postestimation commands, such as estat and
predict, rotate invokes a handler command. The name of this command is extracted from the field
e(rotate cmd). The estimation command cmd should set this field appropriately. For instance, pca
sets the macro e(rotate cmd) to pca rotate. The command pca rotate implements rotation
after pca and pcamat, using rotatemat as the computational engine. pca rotate does not display
output itself; it relies on pca to do so.

For consistent behavior for end users and programmers alike, we recommend that the estimation
command cmd, the driver commands, and other postestimation commands adhere to the following
guidelines:

Driver command

• The rotate driver command for cmd should be named cmd rotate.

• cmd rotate should be an e-class command, that is, returning in e().

• Make sure that cmd rotate is invoked after the correct estimation command (for example, if
"‘e(cmd)’" != "pca" . . . ).

• Allow at least the option detail and any option available to rotatemat.

• Extract from e() the matrix you want to rotate; invoke rotatemat on the matrix; and run this
command quietly (that is, suppress all output) unless the option detail was specified.

• Extract the r() objects returned by rotatemat; see Methods and formulas of [MV] rotatemat
for details.

• Compute derived results needed for your estimator.

• Store in e() fields (macros, scalars, matrices) named r name, adding to the existing e() fields.

Store the macros returned by rotatemat under the same named prefixed with r . In particular, the
macro e(r criterion) should be set to the name of the rotation criterion returned by rotatemat
as r(criterion). Other commands can check this field to find out whether rotation results are
available.

http://www.stata.com/manuals14/mvrotatemat.pdf#mvrotatematMethodsandformulas
http://www.stata.com/manuals14/mvrotatemat.pdf#mvrotatemat
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We suggest that only the most recent rotation results be stored, overwriting any existing e(r *)
results. The programmer command rotate clear clears any existing r * fields from e().

• Display the rotation results by replaying cmd.

Estimation command cmd

• In cmd, define e(rotate cmd) to cmd rotate.

• cmd should be able to display the rotated results and should default to do so if rotated results are
available. Include an option noROTated to display the unrotated results.

• You may use the programmer command rotate text to obtain a standard descriptive text for
the rotation method.

Other postestimation commands

• Other postestimation commands after cmd should operate on the rotated results whenever they are
appropriate and available, unless the option noROTated specifies otherwise.

• Mention that you operate on the unrotated results only if rotated results are available, but the user
or you as the programmer decided not to use them.

Methods and formulas
See Methods and formulas of [MV] rotatemat.

� �
Henry Felix Kaiser (1927–1992) was born in Morristown, New Jersey, and educated in California,
where he earned degrees at Berkeley in between periods of naval service during and after World
War II. A specialist in psychological and educational statistics and measurement, Kaiser worked at
the Universities of Illinois and Wisconsin before returning to Berkeley in 1968. He made several
contributions to factor analysis, including varimax rotation (the subject of his PhD) and a measure
for assessing sampling adequacy. Kaiser is remembered as an eccentric who spray-painted his
shoes in unusual colors and listed ES (Eagle Scout) as his highest degree.� �
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