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Description

meprobit fits mixed-effects models for binary or binomial responses. The conditional distribution
of the response given the random effects is assumed to be Bernoulli, with success probability determined
by the standard normal cumulative distribution function.

Quick start
Two-level probit model of y and covariate x and random intercepts by lev2

meprobit y x || lev2:

Add random coefficients for x
meprobit y x || lev2: x

As above, but specify that y records the number of successes from 10 trials
meprobit y x || lev2: x, binomial(10)

As above, but with the number of trials stored in variable n

meprobit y x || lev2: x, binomial(n)

Three-level random-intercept model of y and covariate x with lev2 nested within lev3

meprobit y x || lev3: || lev2:

Two-way crossed random effects by factors a and b

meprobit y x || _all:R.a || b:

Menu
Statistics > Multilevel mixed-effects models > Probit regression
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2 meprobit — Multilevel mixed-effects probit regression

Syntax
meprobit depvar fe equation

[
|| re equation

] [
|| re equation . . .

] [
, options

]
where the syntax of fe equation is[

indepvars
] [

if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all
representing one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation
offset(varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
fweight(varname) frequency weights at higher levels
iweight(varname) importance weights at higher levels
pweight(varname) sampling weights at higher levels

http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals14/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions


meprobit — Multilevel mixed-effects probit regression 3

options Description

Model

binomial(varname | #) set binomial trials if data are in binomial form
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
nolrtest do not perform likelihood-ratio test comparing with probit regression
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method
intpoints(#) set the number of integration (quadrature) points for all levels;

default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values
startgrid

[
(gridspec)

]
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead
dnumerical use numerical derivative techniques
coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect, all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects, and one common pairwise
covariance

identity equal variances for random effects, all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated
fixed(matname) user-selected variances and covariances constrained to specified

values; the remaining variances and covariances unrestricted
pattern(matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted

http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/restimationoptions.pdf#restimationoptionsOptionsconstraintsdescrip
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4 meprobit — Multilevel mixed-effects probit regression

intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature
ghermite nonadaptive Gauss–Hermite quadrature
laplace Laplacian approximation; the default for crossed random-effects

models

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by and svy are allowed; see [U] 11.1.10 Prefix commands.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified.

Weights are not supported under the Laplacian approximation or for crossed models.
startvalues(), startgrid, noestimate, dnumerical, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any of or all the random-effects equations.

offset(varname) specifies that varname be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(matname) covariance structure, (co)variance (i, j) is constrained to equal the

http://www.stata.com/manuals14/u11.pdf#u11.4.3Factorvariables
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value specified in the i, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (i, j) and (k, l) are constrained to be equal if matname[i, j] = matname[k, l].

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas
frequency weights at the first level (the observation level) are specified in the usual manner, for
example, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify
fweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: . . . , fweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2
would hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas
importance weights at the first level (the observation level) are specified in the usual manner,
for example, [iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify
iweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: . . . , iweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) importance weights, and wt2
would hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas
sampling weights at the first level (the observation level) are specified in the usual manner, for
example, [pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify
pweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: . . . , pweight(wt2) . . .

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.

binomial(varname | #) specifies that the data are in binomial form; that is, depvar records the number
of successes from a series of binomial trials. This number of trials is given either as varname,
which allows this number to vary over the observations, or as the constant #. If binomial() is
not specified (the default), depvar is treated as Bernoulli, with any nonzero, nonmissing values
indicating positive responses.

constraints(constraints), collinear; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#), nocnsreport, ; see [R] estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
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nolrtest prevents meprobit from performing a likelihood-ratio test that compares the mixed-effects
probit model with standard (marginal) probit regression. This option may also be specified upon
replay to suppress this test from the output.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite per-
forms mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive Gauss–
Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode-
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. Those that require
special mention for meprobit are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with meprobit but are not shown in the dialog box:

startvalues(svmethod), startgrid
[
(gridspec)

]
, noestimate, and dnumerical; see [ME]

meglm.

coeflegend; see [R] estimation options.

http://www.stata.com/manuals14/d.pdf#dformat
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Remarks and examples stata.com

For a general introduction to me commands, see [ME] me.

meprobit is a convenience command for meglm with a probit link and a bernoulli or binomial
family; see [ME] meglm.

Remarks are presented under the following headings:

Introduction
Two-level models
Three-level models

Introduction

Mixed-effects probit regression is probit regression containing both fixed effects and random effects.
In longitudinal data and panel data, random effects are useful for modeling intracluster correlation;
that is, observations in the same cluster are correlated because they share common cluster-level random
effects.

Comprehensive treatments of mixed models are provided by, for example, Searle, Casella, and Mc-
Culloch (1992); Verbeke and Molenberghs (2000); Raudenbush and Bryk (2002); Demidenko (2004);
Hedeker and Gibbons (2006); McCulloch, Searle, and Neuhaus (2008); and Rabe-Hesketh and
Skrondal (2012). Guo and Zhao (2000) and Rabe-Hesketh and Skrondal (2012, chap. 10) are good
introductory readings on applied multilevel modeling of binary data.

meprobit allows for not just one, but many levels of nested clusters of random effects. For
example, in a three-level model you can specify random effects for schools and then random effects
for classes nested within schools. In this model, the observations (presumably, the students) comprise
the first level, the classes comprise the second level, and the schools comprise the third.

However, for simplicity, we here consider the two-level model, where for a series of M independent
clusters, and conditional on a set of fixed effects xij and a set of random effects uj ,

Pr(yij = 1|xij ,uj) = H(xijβ + zijuj) (1)

for j = 1, . . . ,M clusters, with cluster j consisting of i = 1, . . . , nj observations. The responses are
the binary-valued yij , and we follow the standard Stata convention of treating yij = 1 if depvarij 6= 0
and treating yij = 0 otherwise. The 1 × p row vector xij are the covariates for the fixed effects,
analogous to the covariates you would find in a standard probit regression model, with regression
coefficients (fixed effects) β. For notational convenience here and throughout this manual entry, we
suppress the dependence of yij on xij .

The 1 × q vector zij are the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
zij is simply the scalar 1. The random effects uj are M realizations from a multivariate normal
distribution with mean 0 and q× q variance matrix Σ. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of Σ, known
as variance components. One special case of (1) places zij = xij , so that all covariate effects are
essentially random and distributed as multivariate normal with mean β and variance Σ.

Finally, because this is probit regression, H(·) is the standard normal cumulative distribution
function, which maps the linear predictor to the probability of a success (yij = 1) with H(v) = Φ(v).

Model (1) may also be stated in terms of a latent linear response, where only yij = I(y∗ij > 0)
is observed for the latent

y∗ij = xijβ + zijuj + εij

http://stata.com
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The errors εij are distributed as a standard normal with mean 0 and variance 1 and are independent
of uj .

Model (1) is an example of a generalized linear mixed model (GLMM), which generalizes the
linear mixed-effects (LME) model to non-Gaussian responses. You can fit LMEs in Stata by using
mixed and fit GLMMs by using meglm. Because of the relationship between LMEs and GLMMs, there
is insight to be gained through examination of the linear mixed model. This is especially true for
Stata users because the terminology, syntax, options, and output for fitting these types of models are
nearly identical. See [ME] mixed and the references therein, particularly in Introduction, for more
information.

Log-likelihood calculations for fitting any generalized mixed-effects model require integrating out
the random effects. One widely used modern method is to directly estimate the integral required to
calculate the log likelihood by Gauss–Hermite quadrature or some variation thereof. Because the log
likelihood itself is estimated, this method has the advantage of permitting likelihood-ratio tests for
comparing nested models. Also, if done correctly, quadrature approximations can be quite accurate,
thus minimizing bias.

meprobit supports three types of Gauss–Hermite quadrature and the Laplacian approximation
method; see Methods and formulas of [ME] meglm for details. The simplest random-effects model
you can fit using meprobit is the two-level model with a random intercept,

Pr(yij = 1|uj) = Φ(xijβ + uj)

This model can also be fit using xtprobit with the re option; see [XT] xtprobit.
Below we present two short examples of mixed-effects probit regression; refer to [ME] melogit

for additional examples including crossed random-effects models and to [ME] me and [ME] meglm
for examples of other random-effects models.

Two-level models
We begin with a simple application of (1) as a two-level model, because a one-level model, in our

terminology, is just standard probit regression; see [R] probit.

Example 1

In example 1 of [ME] melogit, we analyzed a subsample of data from the 1989 Bangladesh
fertility survey (Huq and Cleland 1990), which polled 1,934 Bangladeshi women on their use of
contraception. The women sampled were from 60 districts, identified by the variable district. Each
district contained either urban or rural areas (variable urban) or both. The variable c use is the binary
response, with a value of 1 indicating contraceptive use. Other covariates include mean-centered age
and three indicator variables recording number of children. Here we refit that model with meprobit:

http://www.stata.com/manuals14/memixed.pdf#memixed
http://www.stata.com/manuals14/memixed.pdf#memixedRemarksandexamplesIntroduction
http://www.stata.com/manuals14/memeglm.pdf#memeglmMethodsandformulas
http://www.stata.com/manuals14/memeglm.pdf#memeglm
http://www.stata.com/manuals14/xtxtprobit.pdf#xtxtprobit
http://www.stata.com/manuals14/memelogit.pdf#memelogit
http://www.stata.com/manuals14/meme.pdf#meme
http://www.stata.com/manuals14/memeglm.pdf#memeglm
http://www.stata.com/manuals14/rprobit.pdf#rprobit
http://www.stata.com/manuals14/memelogit.pdf#memelogitRemarksandexamplesex1
http://www.stata.com/manuals14/memelogit.pdf#memelogit
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. use http://www.stata-press.com/data/r14/bangladesh
(Bangladesh Fertility Survey, 1989)

. meprobit c_use urban age child* || district:

Fitting fixed-effects model:

Iteration 0: log likelihood = -1228.8313
Iteration 1: log likelihood = -1228.2466
Iteration 2: log likelihood = -1228.2466

Refining starting values:

Grid node 0: log likelihood = -1237.3973

Fitting full model:

Iteration 0: log likelihood = -1237.3973 (not concave)
Iteration 1: log likelihood = -1221.2111 (not concave)
Iteration 2: log likelihood = -1207.4451
Iteration 3: log likelihood = -1206.7002
Iteration 4: log likelihood = -1206.5346
Iteration 5: log likelihood = -1206.5336
Iteration 6: log likelihood = -1206.5336

Mixed-effects probit regression Number of obs = 1,934
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration pts. = 7

Wald chi2(5) = 115.36
Log likelihood = -1206.5336 Prob > chi2 = 0.0000

c_use Coef. Std. Err. z P>|z| [95% Conf. Interval]

urban .4490191 .0727176 6.17 0.000 .3064953 .5915429
age -.0162203 .0048005 -3.38 0.001 -.0256291 -.0068114

child1 .674377 .0947829 7.11 0.000 .488606 .8601481
child2 .8281581 .1048136 7.90 0.000 .6227272 1.033589
child3 .8137876 .1073951 7.58 0.000 .6032972 1.024278
_cons -1.02799 .0870307 -11.81 0.000 -1.198567 -.8574132

district
var(_cons) .0798719 .026886 .0412921 .1544972

LR test vs. probit model: chibar2(01) = 43.43 Prob >= chibar2 = 0.0000

Comparing the estimates of meprobit with those of melogit, we observe the familiar result
where the probit estimates are closer to 0 in absolute value due to the smaller variance of the error
term in the probit model. Example 1 of [ME] meprobit postestimation shows that the marginal effect
of covariates is nearly the same between the two models.

Unlike a logistic regression, coefficients from a probit regression cannot be interpreted in terms of
odds ratios. Most commonly, probit regression coefficients are interpreted in terms of partial effects,
as we demonstrate in example 1 of [ME] meprobit postestimation. For now, we only note that urban
women and women with more children are more likely to use contraceptives and that contraceptive
use decreases with age. The estimated variance of the random intercept at the district level, σ̂2, is
0.08 with standard error 0.03. The reported likelihood-ratio test shows that there is enough variability
between districts to favor a mixed-effects probit regression over an ordinary probit regression; see
Distribution theory for likelihood-ratio test in [ME] me for a discussion of likelihood-ratio testing of
variance components.

http://www.stata.com/manuals14/memeprobitpostestimation.pdf#memeprobitpostestimationRemarksandexamplesex1
http://www.stata.com/manuals14/memeprobitpostestimation.pdf#memeprobitpostestimation
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http://www.stata.com/manuals14/memeprobitpostestimation.pdf#memeprobitpostestimation
http://www.stata.com/manuals14/meme.pdf#memeRemarksandexamplesDistributiontheoryforlikelihood-ratiotest
http://www.stata.com/manuals14/meme.pdf#meme
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Three-level models
Two-level models extend naturally to models with three or more levels with nested random effects.

Below we replicate example 2 of [ME] melogit with meprobit.

Example 2

Rabe-Hesketh, Toulopoulou, and Murray (2001) analyzed data from a study that measured the
cognitive ability of patients with schizophrenia compared with their relatives and control subjects.
Cognitive ability was measured as the successful completion of the “Tower of London”, a computerized
task, measured at three levels of difficulty. For all but one of the 226 subjects, there were three
measurements (one for each difficulty level). Because patients’ relatives were also tested, a family
identifier, family, was also recorded.

We fit a probit model with response dtlm, the indicator of cognitive function, and with covariates
difficulty and a set of indicator variables for group, with the controls (group==1) being the base
category. We also allow for random effects due to families and due to subjects within families.

http://www.stata.com/manuals14/memelogit.pdf#memelogitRemarksandexamples3level_melogit
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. use http://www.stata-press.com/data/r14/towerlondon
(Tower of London data)

. meprobit dtlm difficulty i.group || family: || subject:

Fitting fixed-effects model:

Iteration 0: log likelihood = -317.11238
Iteration 1: log likelihood = -314.50535
Iteration 2: log likelihood = -314.50121
Iteration 3: log likelihood = -314.50121

Refining starting values:

Grid node 0: log likelihood = -326.18533

Fitting full model:

Iteration 0: log likelihood = -326.18533 (not concave)
Iteration 1: log likelihood = -313.16256 (not concave)
Iteration 2: log likelihood = -308.47528
Iteration 3: log likelihood = -305.02228
Iteration 4: log likelihood = -304.88972
Iteration 5: log likelihood = -304.88845
Iteration 6: log likelihood = -304.88845

Mixed-effects probit regression Number of obs = 677

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

family 118 2 5.7 27
subject 226 2 3.0 3

Integration method: mvaghermite Integration pts. = 7

Wald chi2(3) = 83.28
Log likelihood = -304.88845 Prob > chi2 = 0.0000

dtlm Coef. Std. Err. z P>|z| [95% Conf. Interval]

difficulty -.9329891 .1037376 -8.99 0.000 -1.136311 -.7296672

group
2 -.1632243 .204265 -0.80 0.424 -.5635763 .2371276
3 -.6220196 .228063 -2.73 0.006 -1.069015 -.1750244

_cons -.8405154 .1597223 -5.26 0.000 -1.153565 -.5274654

family
var(_cons) .2120948 .1736281 .0426292 1.055244

family>
subject

var(_cons) .3559141 .219331 .106364 1.190956

LR test vs. probit model: chi2(2) = 19.23 Prob > chi2 = 0.0001

Note: LR test is conservative and provided only for reference.

Notes:

1. This is a three-level model with two random-effects equations, separated by ||. The first is a
random intercept (constant only) at the family level, and the second is a random intercept at the
subject level. The order in which these are specified (from left to right) is significant—meprobit
assumes that subject is nested within family.
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2. The information on groups is now displayed as a table, with one row for each upper level. Among
other things, we see that we have 226 subjects from 118 families. You can suppress this table
with the nogroup or the noheader option, which will suppress the rest of the header as well.

After adjusting for the random-effects structure, the probability of successful completion of the
Tower of London decreases dramatically as the level of difficulty increases. Also, schizophrenics
(group==3) tended not to perform as well as the control subjects.

The above extends to models with more than two levels of nesting in the obvious manner, by
adding more random-effects equations, each separated by ||. The order of nesting goes from left to
right as the groups go from biggest (highest level) to smallest (lowest level).

Stored results
meprobit stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k dv) number of dependent variables
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(k rs) number of variances
e(k rc) number of covariances
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) significance
e(ll c) log likelihood, comparison model
e(chi2 c) χ2, comparison model
e(df c) degrees of freedom, comparison model
e(p c) significance, comparison model
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) meglm
e(cmd2) meprobit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression (first-level weights)
e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates
e(ivars) grouping variables
e(model) probit
e(title) title in estimation output
e(link) probit
e(family) bernoulli or binomial
e(clustvar) name of cluster variable
e(offset) offset
e(binomial) binomial number of trials
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e(intmethod) integration method
e(n quad) number of integration points
e(chi2type) Wald; type of model χ2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
Model (1) assumes Bernoulli data, a special case of the binomial. Because binomial data are also

supported by meprobit (option binomial()), the methods presented below are in terms of the more
general binomial mixed-effects model.

For a two-level binomial model, consider the response yij as the number of successes from a
series of rij Bernoulli trials (replications). For cluster j, j = 1, . . . ,M , the conditional distribution
of yj = (yj1, . . . , yjnj

)′, given a set of cluster-level random effects uj , is

f(yj |uj) =

nj∏
i=1

[(
rij
yij

){
Φ(ηij)

}yij {
1− Φ(ηij)

}rij−yij]

= exp

(
nj∑
i=1

[
yij log

{
Φ(ηij)

}
− (rij − yij) log

{
Φ(−ηij)

}
+ log

(
rij
yij

)])

for ηij = xijβ + zijuj + offsetij .
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Defining rj = (rj1, . . . , rjnj )′ and

c (yj , rj) =

nj∑
i=1

log

(
rij
yij

)

where c(yj , rj) does not depend on the model parameters, we can express the above compactly in
matrix notation,

f(yj |uj) = exp
[
y′j log

{
Φ(ηj)

}
− (rj − yj)

′ log
{

Φ(−ηj)
}

+ c (yj , rj)
]

where ηj is formed by stacking the row vectors ηij . We extend the definitions of Φ(·), log(·), and
exp(·) to be vector functions where necessary.

Because the prior distribution of uj is multivariate normal with mean 0 and q× q variance matrix
Σ, the likelihood contribution for the jth cluster is obtained by integrating uj out of the joint density
f(yj ,uj),

Lj(β,Σ) = (2π)−q/2 |Σ|−1/2
∫
f(yj |uj) exp

(
−u′jΣ−1uj/2

)
duj

= exp {c (yj , rj)} (2π)−q/2 |Σ|−1/2
∫

exp {h (β,Σ,uj)} duj
(2)

where
h (β,Σ,uj) = y′j log

{
Φ(ηj)

}
− (rj − yj)

′ log
{

Φ(−ηj)
}
− u′jΣ

−1uj/2

and for convenience, in the arguments of h(·) we suppress the dependence on the observable data
(yj , rj ,Xj ,Zj).

The integration in (2) has no closed form and thus must be approximated. meprobit offers
four approximation methods: mean–variance adaptive Gauss–Hermite quadrature (default unless a
crossed random-effects model is fit), mode-curvature adaptive Gauss–Hermite quadrature, nonadaptive
Gauss–Hermite quadrature, and Laplacian approximation (default for crossed random-effects models).

The Laplacian approximation is based on a second-order Taylor expansion of h (β,Σ,uj) about
the value of uj that maximizes it; see Methods and formulas in [ME] meglm for details.

Gaussian quadrature relies on transforming the multivariate integral in (2) into a set of nested
univariate integrals. Each univariate integral can then be evaluated using a form of Gaussian quadrature;
see Methods and formulas in [ME] meglm for details.

The log likelihood for the entire dataset is simply the sum of the contributions of the M individual
clusters, namely, L(β,Σ) =

∑M
j=1 Lj(β,Σ).

Maximization of L(β,Σ) is performed with respect to (β,σ2), where σ2 is a vector comprising
the unique elements of Σ. Parameter estimates are stored in e(b) as (β̂, σ̂2), with the corresponding
variance–covariance matrix stored in e(V).

meprobit supports multilevel weights and survey data; see Methods and formulas in [ME] meglm
for details.

http://www.stata.com/manuals14/memeglm.pdf#memeglmMethodsandformulas
http://www.stata.com/manuals14/memeglm.pdf#memeglm
http://www.stata.com/manuals14/memeglm.pdf#memeglmMethodsandformulas
http://www.stata.com/manuals14/memeglm.pdf#memeglm
http://www.stata.com/manuals14/memeglm.pdf#memeglmMethodsandformulas
http://www.stata.com/manuals14/memeglm.pdf#memeglm


meprobit — Multilevel mixed-effects probit regression 15

References
Demidenko, E. 2004. Mixed Models: Theory and Applications. Hoboken, NJ: Wiley.

Guo, G., and H. Zhao. 2000. Multilevel modeling of binary data. Annual Review of Sociology 26: 441–462.

Hedeker, D., and R. D. Gibbons. 2006. Longitudinal Data Analysis. Hoboken, NJ: Wiley.

Huq, N. M., and J. Cleland. 1990. Bangladesh Fertility Survey 1989 (Main Report). National Institute of Population
Research and Training.

McCulloch, C. E., S. R. Searle, and J. M. Neuhaus. 2008. Generalized, Linear, and Mixed Models. 2nd ed. Hoboken,
NJ: Wiley.

Rabe-Hesketh, S., and A. Skrondal. 2012. Multilevel and Longitudinal Modeling Using Stata. 3rd ed. College Station,
TX: Stata Press.

Rabe-Hesketh, S., T. Toulopoulou, and R. M. Murray. 2001. Multilevel modeling of cognitive function in schizophrenic
patients and their first degree relatives. Multivariate Behavioral Research 36: 279–298.

Raudenbush, S. W., and A. S. Bryk. 2002. Hierarchical Linear Models: Applications and Data Analysis Methods.
2nd ed. Thousand Oaks, CA: Sage.

Searle, S. R., G. Casella, and C. E. McCulloch. 1992. Variance Components. New York: Wiley.

Verbeke, G., and G. Molenberghs. 2000. Linear Mixed Models for Longitudinal Data. New York: Springer.

Also see
[ME] meprobit postestimation — Postestimation tools for meprobit

[ME] mecloglog — Multilevel mixed-effects complementary log-log regression

[ME] melogit — Multilevel mixed-effects logistic regression

[ME] me — Introduction to multilevel mixed-effects models

[SEM] intro 5 — Tour of models (Multilevel mixed-effects models)

[SVY] svy estimation — Estimation commands for survey data

[XT] xtprobit — Random-effects and population-averaged probit models

[U] 20 Estimation and postestimation commands

http://www.stata-press.com/books/mlmus3.html
http://www.stata.com/manuals14/memeprobitpostestimation.pdf#memeprobitpostestimation
http://www.stata.com/manuals14/memecloglog.pdf#memecloglog
http://www.stata.com/manuals14/memelogit.pdf#memelogit
http://www.stata.com/manuals14/meme.pdf#meme
http://www.stata.com/manuals14/semintro5.pdf#semintro5
http://www.stata.com/manuals14/semintro5.pdf#semintro5RemarksandexamplesMultilevelmixed-effectsmodels
http://www.stata.com/manuals14/svysvyestimation.pdf#svysvyestimation
http://www.stata.com/manuals14/xtxtprobit.pdf#xtxtprobit
http://www.stata.com/manuals14/u20.pdf#u20Estimationandpostestimationcommands

