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Description

mepoisson fits mixed-effects models for count responses. The conditional distribution of the
response given the random effects is assumed to be Poisson.

mepoisson performs optimization with the original metric of variance components. When variance
components are near the boundary of the parameter space, you may consider using the meqrpoisson
command, which provides alternative parameterizations of variance components; see [ME] meqrpoisson.

Quick start
Without weights

Two-level Poisson regression of y on x with random intercepts by lev2

mepoisson y x || lev2:

Add evar measuring exposure
mepoisson y x, exposure(evar) || lev2:

As above, but report incidence-rate ratios
mepoisson y x, exposure(evar) || lev2:, irr

Add indicators for levels of categorical variable a and random coefficients on x

mepoisson y x i.a || lev2: x, irr

Three-level random-intercept model of y on x with lev2 nested within lev3

mepoisson y x || lev3: || lev2:

With weights

Two-level Poisson regression of y on x with random intercepts by lev2 and observation-level frequency
weights wvar1

mepoisson y x [fweight=wvar1] || lev2:

Two-level random-intercept model from a two-stage sampling design with PSUs identified by psu
using PSU-level and observation-level sampling weights wvar2 and wvar1, respectively

mepoisson y x [pweight=wvar1] || psu:, pweight(wvar2)

Add secondary sampling stage with units identified by ssu having weights wvar2 and PSU-level
weights wvar3 for a three-level random-intercept model

mepoisson y x [pw=wvar1] || psu:, pw(wvar3) || ssu:, pw(wvar2)
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2 mepoisson — Multilevel mixed-effects Poisson regression

Same as above, but svyset data first
svyset psu [pw=wvar3] || ssu, weight(wvar2) || _n, weight(wvar1)
svy: mepoisson y x || psu: || ssu:

Menu
Statistics > Multilevel mixed-effects models > Poisson regression

Syntax
mepoisson depvar fe equation

[
|| re equation

] [
|| re equation . . .

] [
, options

]
where the syntax of fe equation is[

indepvars
] [

if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all
representing one group comprising all observations.

fe options Description

Model

noconstant suppress the constant term from the fixed-effects equation
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
fweight(varname) frequency weights at higher levels
iweight(varname) importance weights at higher levels
pweight(varname) sampling weights at higher levels
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options Description

Model

constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

irr report fixed-effects coefficients as incidence-rate ratios
nocnsreport do not display constraints
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
nolrtest do not perform likelihood-ratio test comparing with Poisson

regression
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method
intpoints(#) set the number of integration (quadrature) points for all levels;

default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values
startgrid

[
(gridspec)

]
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead
dnumerical use numerical derivative techniques
coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect, all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects, and one common pairwise
covariance

identity equal variances for random effects, all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated
fixed(matname) user-selected variances and covariances constrained to specified

values; the remaining variances and covariances unrestricted
pattern(matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted

http://www.stata.com/manuals14/restimationoptions.pdf#restimationoptionsOptionsconstraintsdescrip
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intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature
ghermite nonadaptive Gauss–Hermite quadrature
laplace Laplacian approximation; the default for crossed random-effects

models

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by and svy are allowed; see [U] 11.1.10 Prefix commands.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified.

Weights are not supported under the Laplacian approximation or for crossed models.
startvalues(), startgrid, noestimate, dnumerical, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any of or all the random-effects equations.

exposure(varnamee) specifies a variable that reflects the amount of exposure over which the depvar
events were observed for each observation; ln(varnamee) is included in the fixed-effects portion
of the model with the coefficient constrained to be 1.

offset(varnameo) specifies that varnameo be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
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of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(matname) covariance structure, (co)variance (i, j) is constrained to equal the
value specified in the i, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (i, j) and (k, l) are constrained to be equal if matname[i, j] = matname[k, l].

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas
frequency weights at the first level (the observation level) are specified in the usual manner, for
example, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify
fweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: . . . , fweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2
would hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas
importance weights at the first level (the observation level) are specified in the usual manner,
for example, [iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify
iweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: . . . , iweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) importance weights, and wt2
would hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas
sampling weights at the first level (the observation level) are specified in the usual manner, for
example, [pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify
pweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: . . . , pweight(wt2) . . .

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.

constraints(constraints), collinear; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#); see [R] estimation options.

irr reports estimated fixed-effects coefficients transformed to incidence-rate ratios, that is, exp(β)
rather than β. Standard errors and confidence intervals are similarly transformed. This option
affects how results are displayed, not how they are estimated or stored. irr may be specified
either at estimation or upon replay.

nocnsreport; see [R] estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.
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nolrtest prevents mepoisson from performing a likelihood-ratio test that compares the mixed-effects
Poisson model with standard (marginal) Poisson regression. This option may also be specified
upon replay to suppress this test from the output.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite per-
forms mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive Gauss–
Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode-
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. Those that require
special mention for mepoisson are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with mepoisson but are not shown in the dialog box:

startvalues(svmethod), startgrid
[
(gridspec)

]
, noestimate, and dnumerical; see [ME]

meglm.

coeflegend; see [R] estimation options.
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Remarks and examples stata.com

For a general introduction to me commands, see [ME] me.

Remarks are presented under the following headings:

Introduction
A two-level model
A three-level model

Introduction

Mixed-effects Poisson regression is Poisson regression containing both fixed effects and random
effects. In longitudinal data and panel data, random effects are useful for modeling intracluster
correlation; that is, observations in the same cluster are correlated because they share common
cluster-level random effects.

Comprehensive treatments of mixed models are provided by, for example, Searle, Casella, and Mc-
Culloch (1992); Verbeke and Molenberghs (2000); Raudenbush and Bryk (2002); Demidenko (2004);
Hedeker and Gibbons (2006); McCulloch, Searle, and Neuhaus (2008); and Rabe-Hesketh and Skro-
ndal (2012). Rabe-Hesketh and Skrondal (2012, chap. 13) is a good introductory read on applied
multilevel modeling of count data.

mepoisson allows for not just one, but many levels of nested clusters. For example, in a three-level
model you can specify random effects for schools and then random effects for classes nested within
schools. In this model, the observations (presumably, the students) comprise the first level, the classes
comprise the second level, and the schools comprise the third level.

However, for simplicity, for now we consider the two-level model, where for a series of M
independent clusters, and conditional on a set of random effects uj ,

Pr(yij = y|xij ,uj) = exp (−µij)µyij/y! (1)

for µij = exp(xijβ + zijuj), j = 1, . . . ,M clusters, with cluster j consisting of i = 1, . . . , nj
observations. The responses are counts yij . The 1× p row vector xij are the covariates for the fixed
effects, analogous to the covariates you would find in a standard Poisson regression model, with
regression coefficients (fixed effects) β. For notational convenience here and throughout this manual
entry, we suppress the dependence of yij on xij .

The 1 × q vector zij are the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
zij is simply the scalar 1. The random effects uj are M realizations from a multivariate normal
distribution with mean 0 and q× q variance matrix Σ. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of Σ, known
as variance components. One special case of (1) places zij = xij so that all covariate effects are
essentially random and distributed as multivariate normal with mean β and variance Σ.

As noted in chapter 13.7 of Rabe-Hesketh and Skrondal (2012), the inclusion of a random intercept
causes the marginal variance of yij to be greater than the marginal mean, provided the variance of
the random intercept is not 0. Thus the random intercept in a mixed-effects Poisson model produces
overdispersion, a measure of variability above and beyond that allowed by a Poisson process; see
[R] nbreg and [ME] menbreg.

Model (1) is a member of the class of generalized linear mixed models (GLMMs), which generalize
the linear mixed-effects (LME) model to non-Gaussian responses. You can fit LMEs in Stata by using
mixed and fit GLMMs by using meglm. Because of the relationship between LMEs and GLMMs, there
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is insight to be gained through examination of the linear mixed model. This is especially true for
Stata users because the terminology, syntax, options, and output for fitting these types of models are
nearly identical. See [ME] mixed and the references therein, particularly in the Introduction, for more
information.

Log-likelihood calculations for fitting any generalized mixed-effects model require integrating out
the random effects. One widely used modern method is to directly estimate the integral required to
calculate the log likelihood by Gauss–Hermite quadrature or some variation thereof. Because the log
likelihood itself is estimated, this method has the advantage of permitting likelihood-ratio tests for
comparing nested models. Also, if done correctly, quadrature approximations can be quite accurate,
thus minimizing bias.

mepoisson supports three types of Gauss–Hermite quadrature and the Laplacian approximation
method; see Methods and formulas of [ME] meglm for details.

Below we present two short examples of mixed-effects Poisson regression; refer to [ME] me and
[ME] meglm for additional examples including crossed random-effects models.

A two-level model
We begin with a simple application of (1) as a two-level model, because a one-level model, in our

terminology, is just standard Poisson regression; see [R] poisson.

Example 1

Breslow and Clayton (1993) fit a mixed-effects Poisson model to data from a randomized trial of
the drug progabide for the treatment of epilepsy.

. use http://www.stata-press.com/data/r14/epilepsy
(Epilepsy data; progabide drug treatment)

. describe

Contains data from http://www.stata-press.com/data/r14/epilepsy.dta
obs: 236 Epilepsy data; progabide drug

treatment
vars: 8 31 May 2014 14:09
size: 4,956 (_dta has notes)

storage display value
variable name type format label variable label

subject byte %9.0g Subject ID: 1-59
seizures int %9.0g No. of seizures
treat byte %9.0g 1: progabide; 0: placebo
visit float %9.0g Dr. visit; coded as (-.3, -.1,

.1, .3)
lage float %9.0g log(age), mean-centered
lbas float %9.0g log(0.25*baseline seizures),

mean-centered
lbas_trt float %9.0g lbas/treat interaction
v4 byte %8.0g Fourth visit indicator

Sorted by: subject

Originally from Thall and Vail (1990), data were collected on 59 subjects (31 progabide, 28
placebo). The number of epileptic seizures (seizures) was recorded during the two weeks prior to
each of four doctor visits (visit). The treatment group is identified by the indicator variable treat.
Data were also collected on the logarithm of age (lage) and the logarithm of one-quarter the number
of seizures during the eight weeks prior to the study (lbas). The variable lbas trt represents the
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interaction between lbas and treatment. lage, lbas, and lbas trt are mean centered. Because the
study originally noted a substantial decrease in seizures prior to the fourth doctor visit, an indicator
v4 for the fourth visit was also recorded.

Breslow and Clayton (1993) fit a random-effects Poisson model for the number of observed seizures,

log(µij) = β0 + β1treatij + β2lbasij + β3lbas trtij + β4lageij + β5v4ij + uj

for j = 1, . . . , 59 subjects and i = 1, . . . , 4 visits. The random effects uj are assumed to be normally
distributed with mean 0 and variance σ2

u.
. mepoisson seizures treat lbas lbas_trt lage v4 || subject:

Fitting fixed-effects model:

Iteration 0: log likelihood = -1016.4106
Iteration 1: log likelihood = -819.20112
Iteration 2: log likelihood = -817.66006
Iteration 3: log likelihood = -817.65925
Iteration 4: log likelihood = -817.65925

Refining starting values:

Grid node 0: log likelihood = -680.40523

Fitting full model:

Iteration 0: log likelihood = -680.40523 (not concave)
Iteration 1: log likelihood = -672.95766 (not concave)
Iteration 2: log likelihood = -667.14039
Iteration 3: log likelihood = -665.51823
Iteration 4: log likelihood = -665.29165
Iteration 5: log likelihood = -665.29067
Iteration 6: log likelihood = -665.29067

Mixed-effects Poisson regression Number of obs = 236
Group variable: subject Number of groups = 59

Obs per group:
min = 4
avg = 4.0
max = 4

Integration method: mvaghermite Integration pts. = 7

Wald chi2(5) = 121.70
Log likelihood = -665.29067 Prob > chi2 = 0.0000

seizures Coef. Std. Err. z P>|z| [95% Conf. Interval]

treat -.9330306 .4007512 -2.33 0.020 -1.718489 -.1475727
lbas .8844225 .1312033 6.74 0.000 .6272689 1.141576

lbas_trt .3382561 .2033021 1.66 0.096 -.0602087 .736721
lage .4842226 .3471905 1.39 0.163 -.1962582 1.164703

v4 -.1610871 .0545758 -2.95 0.003 -.2680536 -.0541206
_cons 2.154578 .2199928 9.79 0.000 1.7234 2.585756

subject
var(_cons) .2528664 .0589844 .1600801 .399434

LR test vs. Poisson model: chibar2(01) = 304.74 Prob >= chibar2 = 0.0000

The number of seizures before the fourth visit does exhibit a significant drop, and the patients on
progabide demonstrate a decrease in frequency of seizures compared with the placebo group. The
subject-specific random effects also appear significant: σ̂2

u = 0.25 with standard error 0.06.

Because this is a simple random-intercept model, you can obtain equivalent results by using
xtpoisson with the re and normal options.
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A three-level model
mepoisson can also fit higher-level models with multiple levels of nested random effects.

Example 2

Rabe-Hesketh and Skrondal (2012, exercise 13.7) describe data from the Atlas of Cancer Mortality
in the European Economic Community (EEC) (Smans, Mair, and Boyle 1993). The data were analyzed
in Langford, Bentham, and McDonald (1998) and record the number of deaths among males due to
malignant melanoma during 1971–1980.

. use http://www.stata-press.com/data/r14/melanoma
(Skin cancer (melanoma) data)

. describe

Contains data from http://www.stata-press.com/data/r14/melanoma.dta
obs: 354 Skin cancer (melanoma) data

vars: 6 30 May 2014 17:10
size: 4,956 (_dta has notes)

storage display value
variable name type format label variable label

nation byte %11.0g n Nation ID
region byte %9.0g Region ID: EEC level-I areas
county int %9.0g County ID: EEC level-II/level-III

areas
deaths int %9.0g No. deaths during 1971-1980
expected float %9.0g No. expected deaths
uv float %9.0g UV dose, mean-centered

Sorted by:

Nine European nations (variable nation) are represented, and data were collected over geographical
regions defined by EEC statistical services as level I areas (variable region), with deaths being recorded
for each of 354 counties, which are level II or level III EEC-defined areas (variable county, which
identifies the observations). Counties are nested within regions, and regions are nested within nations.

The variable deaths records the number of deaths for each county, and expected records the
expected number of deaths (the exposure) on the basis of crude rates for the combined countries.
Finally, the variable uv is a measure of exposure to ultraviolet (UV) radiation.

In modeling the number of deaths, one possibility is to include dummy variables for the nine nations
as fixed effects. Another is to treat these as random effects and fit the three-level random-intercept
Poisson model,

log(µijk) = log(expectedijk) + β0 + β1uvijk + uk + vjk

for nation k, region j, and county i. The model includes an exposure term for expected deaths.
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. mepoisson deaths c.uv##c.uv, exposure(expected) || nation: || region:

Fitting fixed-effects model:

Iteration 0: log likelihood = -2136.0274
Iteration 1: log likelihood = -1723.127
Iteration 2: log likelihood = -1722.9762
Iteration 3: log likelihood = -1722.9762

Refining starting values:

Grid node 0: log likelihood = -1166.9773

Fitting full model:

Iteration 0: log likelihood = -1166.9773 (not concave)
Iteration 1: log likelihood = -1152.6069 (not concave)
Iteration 2: log likelihood = -1151.902 (not concave)
Iteration 3: log likelihood = -1127.412 (not concave)
Iteration 4: log likelihood = -1101.9248
Iteration 5: log likelihood = -1094.1984
Iteration 6: log likelihood = -1088.05
Iteration 7: log likelihood = -1086.9097
Iteration 8: log likelihood = -1086.8995
Iteration 9: log likelihood = -1086.8994

Mixed-effects Poisson regression Number of obs = 354

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

nation 9 3 39.3 95
region 78 1 4.5 13

Integration method: mvaghermite Integration pts. = 7

Wald chi2(2) = 25.70
Log likelihood = -1086.8994 Prob > chi2 = 0.0000

deaths Coef. Std. Err. z P>|z| [95% Conf. Interval]

uv .0057002 .0137919 0.41 0.679 -.0213315 .0327318

c.uv#c.uv -.0058377 .0013879 -4.21 0.000 -.008558 -.0031174

_cons .1289989 .1581224 0.82 0.415 -.1809154 .4389132
ln(expected) 1 (exposure)

nation
var(_cons) .1841878 .0945722 .0673298 .5038655

nation>region
var(_cons) .0382645 .0087757 .0244105 .0599811

LR test vs. Poisson model: chi2(2) = 1272.15 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

By including an exposure variable that is an expected rate, we are in effect specifying a linear model
for the log of the standardized mortality ratio, the ratio of observed deaths to expected deaths that is
based on a reference population, the reference population being all nine nations.
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Looking at the estimated variance components, we can see that there is more unobserved variability
between nations than between regions within each nation. This may be due to, for example, country-
specific informational campaigns on the risks of sun exposure.

Stored results
mepoisson stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k dv) number of dependent variables
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(k rs) number of variances
e(k rc) number of covariances
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) significance
e(ll c) log likelihood, comparison model
e(chi2 c) χ2, comparison model
e(df c) degrees of freedom, comparison model
e(p c) significance, comparison model
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) meglm
e(cmd2) mepoisson
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression (first-level weights)
e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates
e(ivars) grouping variables
e(model) poisson
e(title) title in estimation output
e(link) log
e(family) poisson
e(clustvar) name of cluster variable
e(offset) offset
e(exposure) exposure variable
e(intmethod) integration method
e(n quad) number of integration points
e(chi2type) Wald; type of model χ2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
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e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
In a two-level Poisson model, for cluster j, j = 1, . . . ,M , the conditional distribution of

yj = (yj1, . . . , yjnj
)′, given a set of cluster-level random effects uj , is

f(yj |uj) =
nj∏
i=1

[{ exp (xijβ+ zijuj)}yij exp {− exp (xijβ+ zijuj)} /yij !]

= exp

[
nj∑
i=1

{yij (xijβ+ zijuj)− exp (xijβ+ zijuj)− log(yij !)}

]

Defining c (yj) =
∑nj

i=1 log(yij !), where c(yj) does not depend on the model parameters, we
can express the above compactly in matrix notation,

f(yj |uj) = exp
{
y′j (Xjβ+ Zjuj)− 1′ exp (Xjβ+ Zjuj)− c (yj)

}
where Xj is formed by stacking the row vectors xij and Zj is formed by stacking the row vectors
zij . We extend the definition of exp(·) to be a vector function where necessary.

Because the prior distribution of uj is multivariate normal with mean 0 and q× q variance matrix
Σ, the likelihood contribution for the jth cluster is obtained by integrating uj out of the joint density
f(yj ,uj),

Lj(β,Σ) = (2π)−q/2 |Σ|−1/2
∫
f(yj |uj) exp

(
−u′jΣ−1uj/2

)
duj

= exp {−c (yj)} (2π)−q/2 |Σ|−1/2
∫

exp {h (β,Σ,uj)} duj
(2)
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where
h (β,Σ,uj) = y′j (Xjβ+ Zjuj)− 1′ exp (Xjβ+ Zjuj)− u′jΣ

−1uj/2

and for convenience, in the arguments of h(·) we suppress the dependence on the observable data
(yj ,Xj ,Zj).

The integration in (2) has no closed form and thus must be approximated. mepoisson offers
four approximation methods: mean–variance adaptive Gauss–Hermite quadrature (default unless a
crossed random-effects model is fit), mode-curvature adaptive Gauss–Hermite quadrature, nonadaptive
Gauss–Hermite quadrature, and Laplacian approximation (default for crossed random-effects models).

The Laplacian approximation is based on a second-order Taylor expansion of g (β,Σ,uj) about
the value of uj that maximizes it; see Methods and formulas in [ME] meglm for details.

Gaussian quadrature relies on transforming the multivariate integral in (2) into a set of nested
univariate integrals. Each univariate integral can then be evaluated using a form of Gaussian quadrature;
see Methods and formulas in [ME] meglm for details.

The log likelihood for the entire dataset is simply the sum of the contributions of the M individual
clusters, namely, L(β,Σ) =

∑M
j=1 Lj(β,Σ).

Maximization of L(β,Σ) is performed with respect to (β,σ2), where σ2 is a vector comprising
the unique elements of Σ. Parameter estimates are stored in e(b) as (β̂, σ̂2), with the corresponding
variance–covariance matrix stored in e(V).

mepoisson supports multilevel weights and survey data; see Methods and formulas in [ME] meglm
for details.
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