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Description
Mixed-effects models are characterized as containing both fixed effects and random effects. The

fixed effects are analogous to standard regression coefficients and are estimated directly. The random
effects are not directly estimated (although they may be obtained postestimation) but are summarized
according to their estimated variances and covariances. Random effects may take the form of either
random intercepts or random coefficients, and the grouping structure of the data may consist of
multiple levels of nested groups. As such, mixed-effects models are also known in the literature as
multilevel models and hierarchical models. Mixed-effects commands fit mixed-effects models for a
variety of distributions of the response conditional on normally distributed random effects.

Mixed-effects linear regression
mixed Multilevel mixed-effects linear regression

Mixed-effects generalized linear model
meglm Multilevel mixed-effects generalized linear model

Mixed-effects binary regression
melogit Multilevel mixed-effects logistic regression
meqrlogit Multilevel mixed-effects logistic regression (QR decomposition)
meprobit Multilevel mixed-effects probit regression
mecloglog Multilevel mixed-effects complementary log-log regression

Mixed-effects ordinal regression
meologit Multilevel mixed-effects ordered logistic regression
meoprobit Multilevel mixed-effects ordered probit regression

Mixed-effects count-data regression
mepoisson Multilevel mixed-effects Poisson regression
meqrpoisson Multilevel mixed-effects Poisson regression (QR decomposition)
menbreg Multilevel mixed-effects negative binomial regression

Mixed-effects multinomial regression
Although there is no memlogit command, multilevel mixed-effects multinomial
logistic models can be fit using gsem; see [SEM] example 41g.

Mixed-effects survival model
mestreg Multilevel mixed-effects parametric survival models
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Quick start

Linear mixed-effects models

Linear model of y on x with random intercepts by id

mixed y x || id:

Three-level linear model of y on x with random intercepts by doctor and patient

mixed y x || doctor: || patient:

Linear model of y on x with random intercepts and coefficients on x by id

mixed y x || id: x

Same model with covariance between the random slope and intercept

mixed y x || id: x, covariance(unstructured)

Linear model of y on x with crossed random effects for id and week

mixed y x || _all: R.id || _all: R.week

Same model specified to be more computationally efficient

mixed y x || _all: R.id || week:

Full factorial repeated-measures ANOVA of y on a and b with random effects by field

mixed y a##b || field:

Generalized linear mixed-effects models

Logistic model of y on x with random intercepts by id, reporting odds ratios

melogit y x || id: , or

Same model specified as a GLM

meglm y x || id:, family(bernoulli) link(logit)

Three-level ordered probit model of y on x with random intercepts by doctor and
patient

meoprobit y x || doctor: || patient:
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Syntax
Linear mixed-effects models

mixed depvar fe equation
[
|| re equation

] [
|| re equation . . .

] [
, options

]
where the syntax of the fixed-effects equation, fe equation, is[

indepvars
] [

if
] [

in
] [

weight
] [

, fe options
]

and the syntax of a random-effects equation, re equation, is the same as below for a generalized
linear mixed-effects model.

Generalized linear mixed-effects models

mecmd depvar fe equation
[
|| re equation

] [
|| re equation . . .

] [
, options

]
where the syntax of the fixed-effects equation, fe equation, is[

indepvars
] [

if
] [

in
] [

, fe options
]

and the syntax of a random-effects equation, re equation, is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all
representing one group comprising all observations.

Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
Using mixed-effects commands
Mixed-effects models

Linear mixed-effects models
Generalized linear mixed-effects models
Survival mixed-effects models
Alternative mixed-effects model specification
Likelihood calculation
Computation time and the Laplacian approximation
Diagnosing convergence problems
Distribution theory for likelihood-ratio test

Examples
Two-level models
Covariance structures
Three-level models
Crossed-effects models
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Introduction

Multilevel models have been used extensively in diverse fields, from the health and social sciences
to econometrics. Mixed-effects models for binary outcomes have been used, for example, to analyze
the effectiveness of toenail infection treatments (Lesaffre and Spiessens 2001) and to model union
membership of young males (Vella and Verbeek 1998). Ordered outcomes have been studied by, for
example, Tutz and Hennevogl (1996), who analyzed data on wine bitterness, and De Boeck and
Wilson (2004), who studied verbal aggressiveness. For applications of mixed-effects models for count
responses, see, for example, the study on police stops in New York City (Gelman and Hill 2007)
and the analysis of the number of patents (Hall, Griliches, and Hausman 1986). Rabe-Hesketh and
Skrondal (2012) provide more examples of linear and generalized linear mixed-effects models.

For a comprehensive treatment of mixed-effects models, see, for example, Searle, Casella, and Mc-
Culloch (1992); Verbeke and Molenberghs (2000); Raudenbush and Bryk (2002); Demidenko (2004);
Hedeker and Gibbons (2006); McCulloch, Searle, and Neuhaus (2008); and Rabe-Hesketh and
Skrondal (2012).

Using mixed-effects commands

Below we summarize general capabilities of the mixed-effects commands. We let mecmd stand
for any mixed-effects command, such as mixed, melogit, or meprobit.

1. Fit a two-level random-intercept model with levelvar defining the second level:

. mecmd depvar
[

indepvars
]
. . . || levelvar:, . . .

2. Fit a two-level random-coefficients model containing the random-effects covariates revars at the
level levelvar:

. mecmd depvar
[

indepvars
]
. . . || levelvar: revars, . . .

This model assumes an independent covariance structure between the random effects; that is, all
covariances are assumed to be 0. There is no statistical justification, however, for imposing any
particular covariance structure between random effects at the onset of the analysis. In practice,
models with an unstructured random-effects covariance matrix, which allows for distinct variances
and covariances between all random-effects covariates (revars) at the same level, must be explored
first; see Other covariance structures and example 3 in [ME] meqrlogit for details.

Stata’s commands use the default independent covariance structure for computational feasibility.
Numerical methods for fitting mixed-effects models are computationally intensive—computation
time increases significantly as the number of parameters increases; see Computation time and the
Laplacian approximation for details. The unstructured covariance is the most general and contains
many parameters, which may result in an unreasonable computation time even for relatively simple
random-effects models. Whenever feasible, however, you should start your statistical analysis
by fitting mixed-effects models with an unstructured covariance between random effects, as we
show next.

3. Specify the unstructured covariance between the random effects in the above:

. mecmd depvar
[

indepvars
]
. . . || levelvar: revars, covariance(unstructured) . . .

4. Fit a three-level nested model with levelvar1 defining the third level and levelvar2 defining the
second level:

. mecmd depvar
[

indepvars
]
. . . || levelvar1: || levelvar2:, . . .
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5. Fit the above three-level nested model as a two-level model with exchangeable covariance structure
at the second level (mixed, meqrlogit, and meqrpoisson only):

. mecmd depvar
[

indepvars
]
. . . || levelvar1: R.levelvar2, cov(exchangeable) . . .

See example 11 in [ME] mixed for details about this equivalent specification. This specification
may be useful for a more efficient fitting of random-effects models with a mixture of crossed
and nested effects.

6. Fit higher-level nested models:

. mecmd depvar
[

indepvars
]
. . . || levelvar1: || levelvar2: || levelvar3: || . . .

7. Fit a two-way crossed-effects model with the all: notation for each random-effects equation:

. mecmd depvar
[

indepvars
]
. . . || _all: R.factor1 || _all: R.factor2 . . .

When you use the all: notation for each random-effects equation, the total dimension of the
random-effects design equals r1 + r2, where r1 and r2 are the numbers of levels in factor1 and
factor2, respectively. This specification may be infeasible for some mixed-effects models; see
item 8 below for a more efficient specification of this model.

8. Fit a two-way crossed-effects model with the all: notation for the first random-effects equation
only:

. mecmd depvar
[

indepvars
]
. . . || _all: R.factor1 || factor2:, . . .

Compared with the specification in item 7, this specification requires only r1+1 parameters and
is thus more efficient; see Crossed-effects models for details.

9. Fit a two-way full-factorial random-effects model:

. mecmd depvar
[

indepvars
]
. . . || _all: R.factor1 || factor2: || factor1: . . .

10. Fit a two-level mixed-effects model with a blocked-diagonal covariance structure between revars1
and revars2:

. mecmd depvar
[

indepvars
]
. . . || levelvar: revars1, noconstant ///

|| levelvar: revars2, noconstant . . .

11. Fit a linear mixed-effects model where the correlation between the residual errors follows an
autoregressive process of order 1:

. mixed depvar
[

indepvars
]
. . . || levelvar:, residuals(ar 1, t(time)) . . .

More residual error structures are available; see [ME] mixed for details.

12. Fit a two-level linear mixed-effects model accounting for sampling weights expr1 at the first
(residual) level and for sampling weights expr2 at the level of levelvar:

. mixed depvar
[

indepvars
]
[pweight=expr1] . . . || levelvar:, pweight(expr2) . . .

Mixed-effects commands—with the exception of mixed, meqrlogit, and meqrpoisson—allow
constraints on both fixed-effects and random-effects parameters. We provide several examples
below of imposing constraints on variance components.

13. Fit a mixed-effects model with the variance of the random intercept on levelvar constrained to
be 16:

. constraint 1 _b[var(_cons[levelvar]):_cons]=16

. mecmd depvar
[

indepvars
]
. . . || levelvar:, constraints(1) . . .
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14. Fit a mixed-effects model with the variance of the random intercept on levelvar and the variance
of the random slope on revar to be equal:

. constraint 1 _b[var(revar[levelvar]):_cons] = _b[var(_cons[levelvar]):_cons]

. mecmd depvar
[

indepvars
]
. . . || levelvar: revar, constraints(1) . . .

Note that the constraints above are equivalent to imposing an identity covariance structure for
the random-effects equation:

. mecmd depvar
[

indepvars
]
. . . || levelvar: revar, cov(identity) . . .

15. Assuming four random slopes revars, fit a mixed-effects model with the variance components at
the level of levelvar constrained to have a banded structure:

. mat p = (1,.,.,. \ 2,1,.,. \ 3,2,1,. \ 4,3,2,1)

. mecmd depvar
[

indepvars
]
. . . || levelvar: revars, noconstant ///

covariance(pattern(p)) . . .

16. Assuming four random slopes revars, fit a mixed-effects model with the variance components at
the level of levelvar constrained to the specified numbers, and with all the covariances constrained
to be 0:

. mat f = diag((1,2,3,4))

. mecmd depvar
[

indepvars
]
. . . || levelvar: revars, noconstant ///

covariance(fixed(f)) . . .

The variance components in models in items 15 and 16 can also be constrained by using the
constraints() option, but using covariance(pattern()) or covariance(fixed()) is more
convenient.

Mixed-effects models

Linear mixed-effects models

Mixed-effects models for continuous responses, or linear mixed-effects (LME) models, are a
generalization of linear regression allowing for the inclusion of random deviations (effects) other than
those associated with the overall error term. In matrix notation,

y = Xβ+ Zu+ ε (1)

where y is the n× 1 vector of responses, X is an n× p design/covariate matrix for the fixed effects
β, and Z is the n× q design/covariate matrix for the random effects u. The n× 1 vector of errors
ε is assumed to be multivariate normal with mean 0 and variance matrix σ2

εR.

The fixed portion of (1), Xβ, is analogous to the linear predictor from a standard OLS regression
model with β being the regression coefficients to be estimated. For the random portion of (1), Zu+ε,
we assume that u has variance–covariance matrix G and that u is orthogonal to ε so that

Var
[
u
ε

]
=

[
G 0
0 σ2

εR

]
The random effects u are not directly estimated (although they may be predicted) but instead are
characterized by the elements of G, known as variance components, that are estimated along with
the overall residual variance σ2

ε and the residual-variance parameters that are contained within R.
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The general forms of the design matrices X and Z allow estimation for a broad class of linear
models: blocked designs, split-plot designs, growth curves, multilevel or hierarchical designs, etc.
They also allow a flexible method of modeling within-cluster correlation. Subjects within the same
cluster can be correlated as a result of a shared random intercept, or through a shared random slope
on age (for example), or both. The general specification of G also provides additional flexibility: the
random intercept and random slope could themselves be modeled as independent, or correlated, or
independent with equal variances, and so forth. The general structure of R also allows for residual
errors to be heteroskedastic and correlated and allows flexibility in exactly how these characteristics
can be modeled.

In clustered-data situations, it is convenient not to consider all n observations at once but instead
to organize the mixed model as a series of M independent groups (or clusters)

yj = Xjβ+ Zjuj + εj (2)

for j = 1, . . . ,M , with cluster j consisting of nj observations. The response yj comprises the rows
of y corresponding with the jth cluster, with Xj and εj defined analogously. The random effects uj
can now be thought of as M realizations of a q × 1 vector that is normally distributed with mean 0
and q × q variance matrix Σ. The matrix Zj is the nj × q design matrix for the jth cluster random
effects. Relating this to (1),

Z =


Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 0 ZM

 ; u =

 u1
...

uM

 ; G = IM ⊗ Σ; R = IM ⊗ Λ (3)

where Λ denotes the variance matrix of the level-1 residuals and ⊗ is the Kronecker product.

The mixed-model formulation (2) is from Laird and Ware (1982) and offers two key advantages.
First, it makes specifications of random-effects terms easier. If the clusters are schools, you can
simply specify a random effect at the school level, as opposed to thinking of what a school-level
random effect would mean when all the data are considered as a whole (if it helps, think Kronecker
products). Second, representing a mixed-model with (2) generalizes easily to more than one set of
random effects. For example, if classes are nested within schools, then (2) can be generalized to
allow random effects at both the school and the class-within-school levels.

In Stata, you can use mixed to fit linear mixed-effects models; see [ME] mixed for a detailed
discussion and examples. Various predictions, statistics, and diagnostic measures are available after
fitting an LME model with mixed. For the most part, calculation centers around obtaining estimates
of random effects; see [ME] mixed postestimation for a detailed discussion and examples.

Generalized linear mixed-effects models

Generalized linear mixed-effects (GLME) models, also known as generalized linear mixed models
(GLMMs), are extensions of generalized linear models allowing for the inclusion of random deviations
(effects). In matrix notation,

g
{
E(y|X,u)

}
= Xβ+ Zu, y ∼ F (4)

where y is the n×1 vector of responses from the distributional family F , X is an n×p design/covariate
matrix for the fixed effects β, and Z is an n× q design/covariate matrix for the random effects u.
The Xβ + Zu part is called the linear predictor and is often denoted as η. g(·) is called the link
function and is assumed to be invertible such that

E(y|u) = g−1(Xβ+ Zu) = H(η) = µ

http://www.stata.com/manuals14/memixed.pdf#memixed
http://www.stata.com/manuals14/memixedpostestimation.pdf#memixedpostestimation
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For notational convenience here and throughout this manual entry, we suppress the dependence of y
on X. Substituting various definitions for g(·) and F results in a wide array of models. For instance,
if g(·) is the logit function and y is distributed as Bernoulli, we have

logit
{
E(y)

}
= Xβ+ Zu, y ∼ Bernoulli

or mixed-effects logistic regression. If g(·) is the natural log function and y is distributed as Poisson,
we have

ln
{
E(y)

}
= Xβ+ Zu, y ∼ Poisson

or mixed-effects Poisson regression.

In Stata, you can use meglm to fit mixed-effects models for nonlinear responses. Some combinations
of families and links are so common that we implemented them as separate commands in terms of
meglm.

Command meglm equivalent

melogit family(bernoulli) link(logit)

meprobit family(bernoulli) link(probit)

mecloglog family(bernoulli) link(cloglog)

meologit family(ordinal) link(logit)

meoprobit family(ordinal) link(probit)

mepoisson family(poisson) link(log)

menbreg family(nbinomial) link(log)

When no family–link combination is specified, meglm defaults to a Gaussian family with an
identity link. Thus meglm can be used to fit linear mixed-effects models; however, for those models
we recommend using the more specialized mixed, which, in addition to meglm capabilities, accepts
frequency and sampling weights and allows for modeling of the structure of the residual errors; see
[ME] mixed for details.

Various predictions, statistics, and diagnostic measures are available after fitting a GLME model
with meglm and other me commands. For the most part, calculation centers around obtaining estimates
of random effects; see [ME] meglm postestimation for a detailed discussion and examples.

For the random portion of (4), Zu, we assume that u has variance–covariance matrix G such that

Var(u) = G

The random effects u are not directly estimated (although they may be predicted) but instead are
characterized by the elements of G, known as variance components.

Analogously to (2), in clustered-data situations, we can write

E(yj |uj) = g−1(Xjβ+ Zjuj), yj ∼ F (5)

with all the elements defined as before. In terms of the whole dataset, we now have

Z =


Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 0 ZM

 ; u =

 u1
...

uM

 ; G = IM ⊗ Σ (6)

http://www.stata.com/manuals14/memixed.pdf#memixed
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By our convention on counting and ordering model levels, models (2) and (5) are two-level models,
with extensions to three, four, or any number of levels. The observation yij is for individual i within
cluster j, and the individuals comprise the first level while the clusters comprise the second level of
the model. In our hypothetical three-level model with classes nested within schools, the observations
within classes (the students, presumably) would constitute the first level, the classes would constitute
the second level, and the schools would constitute the third level. This differs from certain citations
in the classical ANOVA literature and texts such as Pinheiro and Bates (2000) but is the standard in
the vast literature on hierarchical models, for example, Skrondal and Rabe-Hesketh (2004).

Survival mixed-effects models

Parametric survival mixed-effects models use a trivariate response variable (t0, t, d), where each
response corresponds to a period under observation (t0, t] and results in either failure (d = 1) or
right-censoring (d = 0) at time t. See [ST] streg for background information on parametric survival
models. Two often-used models for adjusting survivor functions for the effects of covariates are the
accelerated failure-time (AFT) model and the multiplicative or proportional hazards (PH) model.

In the AFT parameterization, the natural logarithm of the survival time, log t, is expressed as a
linear function of the covariates. When we incorporate random effects, this yields the model

log(tj) = Xjβ+ Zjuj + vj

where log(·) is an elementwise function, andvj is a vector of observation-level errors. The distributional
form of the error term determines the regression model.

In the PH model, the covariates have a multiplicative effect on the hazard function

h(tj) = h0(tj) exp(Xjβ+ Zjuj)

where all the functions are elementwise, and h0(·) is a baseline hazard function. The functional form
of h0(·) determines the regression model.

In Stata, you can use mestreg to fit multilevel mixed-effects parametric survival models for the
following distributions and parameterizations.

Distribution Parameterization
exponential PH, AFT

loglogistic AFT

weibull PH, AFT

lognormal AFT

gamma AFT

mestreg is suitable only for data that have been set using the stset command. By using stset
on your data, you define the variables t0, t, and d, which serve as the trivariate response. See
[ME] mestreg for more details about the command. Various predictions, statistics, and diagnostic
measures are available after fitting a mixed-effects survival model with mestreg; see [ME] mestreg
postestimation for a detailed discussion and examples.

http://www.stata.com/manuals14/ststreg.pdf#ststreg
http://www.stata.com/manuals14/ststset.pdf#ststset
http://www.stata.com/manuals14/memestreg.pdf#memestreg
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http://www.stata.com/manuals14/memestregpostestimation.pdf#memestregpostestimation
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Alternative mixed-effects model specification

In this section, we present a hierarchical or multistage formulation of mixed-effects models where
each level is described by its own set of equations.

Consider a random-intercept model that we write here in general terms:

yij = β0 + β1xij + uj + εij (7)

This single-equation specification contains both level-1 and level-2 effects. In the hierarchical form,
we specify a separate equation for each level.

yij = γ0j + β1xij + εij

γ0j = β00 + u0j
(8)

The equation for the intercept γ0j consists of the overall mean intercept β00 and a cluster-specific
random intercept u0j . To fit this model in Stata, we must translate the multiple-equation notation into
a single-equation form. We substitute the second equation into the first one and rearrange terms.

yij = β00 + u0j + β1xij + εij

= β00 + β1xij + u0j + εij
(9)

Note that model (9) is the same as model (7) with β00 ≡ β0 and u0j ≡ uj . Thus the Stata syntax
for our generic random-intercept model is

. mixed y x || id:

where id is the variable designating the clusters.

We can extend model (8) to include a random slope. We do so by specifying an additional equation
for the slope on xij .

yij = γ0j + γ1jxij + εij

γ0j = β00 + u0j

γ1j = β10 + u1j

(10)

The additional equation for the slope γ1j consists of the overall mean slope β10 and a cluster-specific
random slope u1j . We substitute the last two equations into the first one to obtain a reduced-form
model.

yij = (β00 + u0j) + (β10 + u1j)xij + εij

= β00 + β10xij + u0j + u1jxij + εij

The Stata syntax for this model becomes

. mixed y x || id: x, covariance(unstructured)

where we specified an unstructured covariance structure for the level-2 u terms.
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Here we further extend the random-slope random-intercept model (10) by adding a level-2 covariate
zj into the level-2 equations.

yij = γ0j + γ1jxij + εij

γ0j = β00 + β01zj + u0j

γ1j = β10 + β11zj + u1j

We substitute as before to obtain a single-equation form:

yij = (β00 + β01zj + u0j) + (β10 + β11zj + u1j)xij + εij

= β00 + β01zj + β10xij + β11zjxij + u0j + u1jxij + εij

Now the fixed-effects portion of the equation contains a constant and variables x, z, and their
interaction. Assuming both x and z are continuous variables, we can use the following Stata syntax
to fit this model:

. mixed y x z c.x#c.z || id: x, covariance(unstructured)

We refer you to Raudenbush and Bryk (2002) and Rabe-Hesketh and Skrondal (2012) for a
more thorough discussion and further examples of multistage mixed-model formulations, including
three-level models.

Likelihood calculation

The key to fitting mixed models lies in estimating the variance components, and for that there exist
many methods. Most of the early literature in LME models dealt with estimating variance components
in ANOVA models. For simple models with balanced data, estimating variance components amounts
to solving a system of equations obtained by setting expected mean-squares expressions equal to their
observed counterparts. Much of the work in extending the ANOVA method to unbalanced data for
general ANOVA designs is attributed to Henderson (1953).

The ANOVA method, however, has its shortcomings. Among these is a lack of uniqueness in that
alternative, unbiased estimates of variance components could be derived using other quadratic forms
of the data in place of observed mean squares (Searle, Casella, and McCulloch 1992, 38–39). As a
result, ANOVA methods gave way to more modern methods, such as minimum norm quadratic unbiased
estimation (MINQUE) and minimum variance quadratic unbiased estimation (MIVQUE); see Rao (1973)
for MINQUE and LaMotte (1973) for MIVQUE. Both methods involve finding optimal quadratic forms
of the data that are unbiased for the variance components.

Stata uses maximum likelihood (ML) to fit LME and GLME models. The ML estimates are based
on the usual application of likelihood theory, given the distributional assumptions of the model. In
addition, for linear mixed-effects models, mixed offers the method of restricted maximum likelihood
(REML). The basic idea behind REML (Thompson 1962) is that you can form a set of linear contrasts
of the response that do not depend on the fixed effects β but instead depend only on the variance
components to be estimated. You then apply ML methods by using the distribution of the linear
contrasts to form the likelihood; see the Methods and formulas section of [ME] mixed for a detailed
discussion of ML and REML methods in the context of linear mixed-effects models.

Log-likelihood calculations for fitting any LME or GLME model require integrating out the random
effects. For LME models, this integral has a closed-form solution; for GLME models, it does not. In
dealing with this difficulty, early estimation methods avoided the integration altogether. Two such
popular methods are the closely related penalized quasi-likelihood (PQL) and marginal quasi-likelihood
(MQL) (Breslow and Clayton 1993). Both PQL and MQL use a combination of iterative reweighted

http://www.stata.com/manuals14/memixed.pdf#memixedMethodsandformulas
http://www.stata.com/manuals14/memixed.pdf#memixed
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least squares (see [R] glm) and standard estimation techniques for fitting LME models. Efficient
computational methods for fitting LME models have existed for some time (Bates and Pinheiro 1998;
Littell et al. 2006), and PQL and MQL inherit this computational efficiency. However, both of these
methods suffer from two key disadvantages. First, they have been shown to be biased, and this bias
can be severe when clusters are small or intracluster correlation is high (Rodrı́guez and Goldman 1995;
Lin and Breslow 1996). Second, because they are “quasi-likelihood” methods and not true likelihood
methods, their use prohibits comparing nested models via likelihood-ratio (LR) tests, blocking the
main avenue of inference involving variance components.

The advent of modern computers has brought with it the development of more computationally
intensive methods, such as bias-corrected PQL (Lin and Breslow 1996), Bayesian Markov-Chain Monte
Carlo, and simulated maximum likelihood, just to name a few; see Ng et al. (2006) for a discussion
of these alternate strategies (and more) for mixed-effects models for binary outcomes.

One widely used modern method is to directly estimate the integral required to calculate the log
likelihood by Gauss–Hermite quadrature or some variation thereof. Because the log likelihood itself
is estimated, this method has the advantage of permitting LR tests for comparing nested models. Also,
if done correctly, quadrature approximations can be quite accurate, thus minimizing bias. meglm and
the other me commands support three types of Gauss–Hermite quadratures: mean–variance adaptive
Gauss–Hermite quadrature (MVAGH), mode-curvature adaptive Gauss–Hermite quadrature (MCAGH),
and nonadaptive Gauss–Hermite quadrature (GHQ); see Methods and formulas of [ME] meglm for
a detailed discussion of these quadrature methods. A fourth method, the Laplacian approximation,
that does not involve numerical integration is also offered; see Computation time and the Laplacian
approximation below and Methods and formulas of [ME] meglm for a detailed discussion of the
Laplacian approximation method.

Computation time and the Laplacian approximation

Like many programs that fit generalized linear mixed models, me commands can be computationally
intensive. This is particularly true for large datasets with many lowest-level clusters, models with
many random coefficients, models with many estimable parameters (both fixed effects and variance
components), or any combination thereof.

Computation time will also depend on hardware and other external factors but in general is
(roughly) a function of p2{M +M(NQ)

qt}, where p is the number of estimable parameters, M is
the number of lowest-level (smallest) clusters, NQ is the number of quadrature points, and qt is the
total dimension of the random effects, that is, the total number of random intercepts and coefficients
at all levels.

For a given model and a given dataset, the only prevailing factor influencing computation time
is (NQ)

qt . However, because this is a power function, this factor can get prohibitively large. For
example, using five quadrature points for a model with one random intercept and three random
coefficients, we get (NQ)qt = 54 = 625. Even a modest increase to seven quadrature points would
increase this factor by almost fourfold (74 = 2,401), which, depending on M and p, could drastically
slow down estimation. When fitting mixed-effects models, you should always assess whether the
approximation is adequate by refitting the model with a larger number of quadrature points. If the
results are essentially the same, the lower number of quadrature points can be used.

However, we do not deny a tradeoff between speed and accuracy, and in that spirit we give you
the option to choose a (possibly) less accurate solution in the interest of getting quicker results.
Toward this end is the limiting case of NQ = 1, otherwise known as the Laplacian approximation; see
Methods and formulas of [ME] meglm. The computational benefit is evident—1 raised to any power
equals 1—and the Laplacian approximation has been shown to perform well in certain situations
(Liu and Pierce 1994; Tierney and Kadane 1986). When using Laplacian approximation, keep the
following in mind:

http://www.stata.com/manuals14/rglm.pdf#rglm
http://www.stata.com/manuals14/memeglm.pdf#memeglmMethodsandformulas
http://www.stata.com/manuals14/memeglm.pdf#memeglm
http://www.stata.com/manuals14/memeglm.pdf#memeglmMethodsandformulas
http://www.stata.com/manuals14/memeglm.pdf#memeglm
http://www.stata.com/manuals14/memeglm.pdf#memeglmMethodsandformulas
http://www.stata.com/manuals14/memeglm.pdf#memeglm
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1. Fixed-effects parameters and their standard errors are well approximated by the Laplacian method.
Therefore, if your interest lies primarily here, then the Laplacian approximation may be a viable
alternative.

2. Estimates of variance components exhibit bias, particularly the variances.

3. The model log likelihood and comparison LR test are in fair agreement with statistics obtained via
quadrature methods.

Although this is by no means the rule, we find the above observations to be fairly typical based
on our own experience. Pinheiro and Chao (2006) also make observations similar to points 1 and 2
on the basis of their simulation studies: bias due to Laplace (when present) tends to exhibit itself
more in the estimated variance components than in the estimates of the fixed effects as well as at the
lower levels in higher-level models.

Item 3 is of particular interest, because it demonstrates that the Laplacian approximation can
produce a decent estimate of the model log likelihood. Consequently, you can use the Laplacian
approximation during the model building phase of your analysis, during which you are comparing
competing models by using LR tests. Once you settle on a parsimonious model that fits well, you
can then increase the number of quadrature points and obtain more accurate parameter estimates for
further study.

Of course, sometimes the Laplacian approximation will perform either better or worse than observed
here. This behavior depends primarily on cluster size and intracluster correlation, but the relative
influence of these factors is unclear. The idea behind the Laplacian approximation is to approximate
the posterior density of the random effects given the response with a normal distribution; see Methods
and formulas of [ME] meglm. Asymptotic theory dictates that this approximation improves with larger
clusters. Of course, the key question, as always, is “How large is large enough?” Also, there are data
situations where the Laplacian approximation performs well even with small clusters. Therefore, it
is difficult to make a definitive call as to when you can expect the Laplacian approximation to yield
accurate results across all aspects of the model.

In conclusion, consider our above advice as a rule of thumb based on empirical evidence.

Diagnosing convergence problems

Given the flexibility of mixed-effects models, you will find that some models fail to converge
when used with your data. The default gradient-based method used by mixed-effects commands is
the Newton–Raphson algorithm, requiring the calculation of a gradient vector and Hessian (second-
derivative) matrix; see [R] ml.

A failure to converge can take any one of three forms:

1. repeated nonconcave or backed-up iterations without convergence;

2. a Hessian (second-derivative) calculation that has become asymmetric, unstable, or has missing
values; or

3. the message “standard-error calculation has failed” when computing standard errors.

All three situations essentially amount to the same thing: the Hessian calculation has become unstable,
most likely because of a ridge in the likelihood function, a subsurface of the likelihood in which all
points give the same value of the likelihood and for which there is no unique solution.

Such behavior is usually the result of one of the following two situations:

A. A model that is not identified given the data, for example, fitting the three-level nested random
intercept model

yjk = xjkβ+ u
(3)
k + u

(2)
jk + εjk

http://www.stata.com/manuals14/memeglm.pdf#memeglmMethodsandformulas
http://www.stata.com/manuals14/memeglm.pdf#memeglmMethodsandformulas
http://www.stata.com/manuals14/memeglm.pdf#memeglm
http://www.stata.com/manuals14/rml.pdf#rml
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without any replicated measurements at the (j, k) level, that is, with only one i per (j, k)

combination. This model is unidentified for such data because the random intercepts u(2)jk are
confounded with the overall errors εjk.

B. A model that contains a variance component whose estimate is really close to 0. When this occurs,
a ridge is formed by an interval of values near 0, which produce the same likelihood and look
equally good to the optimizer.

For LME models, one useful way to diagnose problems of nonconvergence is to rely on the
expectation-maximization (EM) algorithm (Dempster, Laird, and Rubin 1977), normally used by mixed
only as a means of refining starting values; see Diagnosing convergence problems of [ME] mixed for
details.

If your data and model are nearly unidentified, as opposed to fully unidentified, you may be
able to obtain convergence with standard errors by changing some of the settings of the gradient-
based optimization. Adding the difficult option can be particularly helpful if you are seeing
many “nonconcave” messages; you may also consider changing the technique() or using the
nonrtolerance option; see [R] maximize.

Regardless of how the convergence problem revealed itself, you may try to obtain better starting
values; see Obtaining better starting values in [ME] meglm for details.

Distribution theory for likelihood-ratio test

When determining the asymptotic distribution of an LR test comparing two nested mixed-effects
models, issues concerning boundary problems imposed by estimating strictly positive quantities (that
is, variances) can complicate the situation. For example, when performing LR tests involving linear
mixed-effects models (whether comparing with linear regression within mixed or comparing two
separate linear mixed-effects models with lrtest), you may thus sometimes see a test labeled as
chibar rather than the usual chi2, or you may see a chi2 test with a note attached stating that the
test is conservative or possibly conservative depending on the hypothesis being tested.

At the heart of the issue is the number of variances being restricted to 0 in the reduced model.
If there are none, the usual asymptotic theory holds, and the distribution of the test statistic is χ2

with degrees of freedom equal to the difference in the number of estimated parameters between both
models.

When there is only one variance being set to 0 in the reduced model, the asymptotic distribution
of the LR test statistic is a 50:50 mixture of a χ2

p and a χ2
p+1 distribution, where p is the number

of other restricted parameters in the reduced model that are unaffected by boundary conditions. Stata
labels such test statistics as chibar and adjusts the significance levels accordingly. See Self and
Liang (1987) for the appropriate theory or Gutierrez, Carter, and Drukker (2001) for a Stata-specific
discussion.

When more than one variance parameter is being set to 0 in the reduced model, however, the
situation becomes more complicated. For example, consider a comparison test versus linear regression
for a mixed model with two random coefficients and unstructured covariance matrix

Σ =

[
σ2
0 σ01

σ01 σ2
1

]
Because the random component of the mixed model comprises three parameters (σ2

0 , σ01, σ
2
1),

on the surface it would seem that the LR comparison test would be distributed as χ2
3. However, two

complications need to be considered. First, the variances σ2
0 and σ2

1 are restricted to be positive, and

http://www.stata.com/manuals14/memixed.pdf#memixedRemarksandexamplesDiagnosingconvergenceproblems
http://www.stata.com/manuals14/memixed.pdf#memixed
http://www.stata.com/manuals14/rmaximize.pdf#rmaximize
http://www.stata.com/manuals14/memeglm.pdf#memeglmRemarksandexamplesObtainingbetterstartingvalues
http://www.stata.com/manuals14/memeglm.pdf#memeglm
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second, constraints such as σ2
1 = 0 implicitly restrict the covariance σ01 to be 0 as well. From a

technical standpoint, it is unclear how many parameters must be restricted to reduce the model to
linear regression.

Because of these complications, appropriate and sufficiently general distribution theory for the
more-than-one-variance case has yet to be developed. Theory (for example, Stram and Lee [1994])
and empirical studies (for example, McLachlan and Basford [1988]) have demonstrated that, whatever
the distribution of the LR test statistic, its tail probabilities are bounded above by those of the χ2

distribution with degrees of freedom equal to the full number of restricted parameters (three in the
above example).

The mixed and me commands use this reference distribution, the χ2 with full degrees of freedom,
to produce a conservative test and place a note in the output labeling the test as such. Because the
displayed significance level is an upper bound, rejection of the null hypothesis based on the reported
level would imply rejection on the basis of the actual level.

Examples

Two-level models

Example 1: Growth-curve model

Consider a longitudinal dataset, used by both Ruppert, Wand, and Carroll (2003) and Diggle
et al. (2002), consisting of weight measurements of 48 pigs on 9 successive weeks. Pigs are
identified by the variable id. Each pig experiences a linear trend in growth, but overall weight
measurements vary from pig to pig. Because we are not really interested in these particular 48 pigs
per se, we instead treat them as a random sample from a larger population and model the between-pig
variability as a random effect, or in the terminology of (2), as a random-intercept term at the pig
level. We thus wish to fit the model

weightij = β0 + β1weekij + uj + εij

for i = 1, . . . , 9 weeks and j = 1, . . . , 48 pigs. The fixed portion of the model, β0 + β1weekij ,
simply states that we want one overall regression line representing the population average. The random
effect uj serves to shift this regression line up or down according to each pig. Because the random
effects occur at the pig level (id), we fit the model by typing
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. use http://www.stata-press.com/data/r14/pig
(Longitudinal analysis of pig weights)

. mixed weight week || id:

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -1014.9268
Iteration 1: log likelihood = -1014.9268

Computing standard errors:

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 25337.49
Log likelihood = -1014.9268 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.209896 .0390124 159.18 0.000 6.133433 6.286359
_cons 19.35561 .5974059 32.40 0.000 18.18472 20.52651

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Identity
var(_cons) 14.81751 3.124226 9.801716 22.40002

var(Residual) 4.383264 .3163348 3.805112 5.04926

LR test vs. linear model: chibar2(01) = 472.65 Prob >= chibar2 = 0.0000

We explain the output in detail in example 1 of [ME] mixed. Here we only highlight the most important
points.

1. The first estimation table reports the fixed effects. We estimate β0 = 19.36 and β1 = 6.21.

2. The second estimation table shows the estimated variance components. The first section of the
table is labeled id: Identity, meaning that these are random effects at the id (pig) level and
that their variance–covariance matrix is a multiple of the identity matrix; that is, Σ = σ2

uI. The
estimate of σ̂2

u is 14.82 with standard error 3.12.

3. The row labeled var(Residual) displays the estimated standard deviation of the overall error
term; that is, σ̂2

ε = 4.38. This is the variance of the level-one errors, that is, the residuals.

4. An LR test comparing the model with one-level ordinary linear regression is provided and is highly
significant for these data.

http://www.stata.com/manuals14/memixed.pdf#memixedRemarksandexamplesex1
http://www.stata.com/manuals14/memixed.pdf#memixed
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We can predict the random intercept uj and list the predicted random intercept for the first 10
pigs by typing

. predict r_int, reffects

. egen byte tag = tag(id)

. list id r_int if id<=10 & tag

id r_int

1. 1 -1.683105
10. 2 .8987018
19. 3 -1.952043
28. 4 -1.79068
37. 5 -3.189159

46. 6 -3.780823
55. 7 -2.382344
64. 8 -1.952043
73. 9 -6.739143
82. 10 1.16764

In example 3 of [ME] mixed, we show how to fit a random-slope model for these data, and in
example 1 of [ME] mixed postestimation, we show how to plot the estimated regression lines for
each of the pigs.

Example 2: Split-plot design

Here we replicate the example of a split-plot design from Kuehl (2000, 477). The researchers
investigate the effects of nitrogen in four different chemical forms and the effects of thatch accumulation
on the quality of golf turf. The experimental plots were arranged in a randomized complete block
design with two replications. After two years of nitrogen treatment, the second treatment factor, years
of thatch accumulation, was added to the experiment. Each of the eight experimental plots was split
into three subplots. Within each plot, the subplots were randomly assigned to accumulate thatch for
a period of 2, 5, and 8 years.

http://www.stata.com/manuals14/memixed.pdf#memixedRemarksandexamplesex_mixed_pigs
http://www.stata.com/manuals14/memixed.pdf#memixed
http://www.stata.com/manuals14/memixedpostestimation.pdf#memixedpostestimationRemarksandexamplesex1
http://www.stata.com/manuals14/memixedpostestimation.pdf#memixedpostestimation
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. use http://www.stata-press.com/data/r14/clippings, clear
(Turfgrass experiment)

. describe

Contains data from http://www.stata-press.com/data/r14/clippings.dta
obs: 24 Turfgrass experiment

vars: 4 21 Feb 2014 14:57
size: 168

storage display value
variable name type format label variable label

chlorophyll float %9.0g Chlorophyll content (mg/g) of
grass clippings

thatch byte %9.0g Years of thatch accumulation
block byte %9.0g Replication
nitrogen byte %17.0g nitrolab Nitrogen fertilizer

Sorted by:

Nitrogen treatment is stored in the variable nitrogen, and the chemicals used are urea, ammonium
sulphate, isobutylidene diurea (IBDU), and sulphur-coated urea (urea SC). The length of thatch
accumulation is stored in the variable thatch. The response is the chlorophyll content of grass
clippings, recorded in mg/g and stored in the variable chlorophyll. The block variable identifies
the replication group.

There are two sources of variation in this example corresponding to the whole-plot errors and the
subplot errors. The subplot errors are the residual errors. The whole-plot errors represents variation
in the chlorophyll content across nitrogen treatments and replications. We create the variable wpunit
to represent the whole-plot units that correspond to the levels of the nitrogen treatment and block
interaction.

. egen wpunit = group(nitrogen block)

. mixed chlorophyll ibn.nitrogen##ibn.thatch ibn.block, noomitted noconstant ||
> wpunit:, reml
note: 8.thatch omitted because of collinearity
note: 1.nitrogen#8.thatch omitted because of collinearity
note: 2.nitrogen#8.thatch omitted because of collinearity
note: 3.nitrogen#8.thatch omitted because of collinearity
note: 4.nitrogen#2.thatch omitted because of collinearity
note: 4.nitrogen#5.thatch omitted because of collinearity
note: 4.nitrogen#8.thatch omitted because of collinearity
note: 2.block omitted because of collinearity

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log restricted-likelihood = -13.212401
Iteration 1: log restricted-likelihood = -13.203149
Iteration 2: log restricted-likelihood = -13.203125
Iteration 3: log restricted-likelihood = -13.203125
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Computing standard errors:

Mixed-effects REML regression Number of obs = 24
Group variable: wpunit Number of groups = 8

Obs per group:
min = 3
avg = 3.0
max = 3

Wald chi2(13) = 2438.36
Log restricted-likelihood = -13.203125 Prob > chi2 = 0.0000

chlorophyll Coef. Std. Err. z P>|z| [95% Conf. Interval]

nitrogen
urea 5.245833 .3986014 13.16 0.000 4.464589 6.027078

ammonium s.. 5.945833 .3986014 14.92 0.000 5.164589 6.727078
IBDU 7.945834 .3986014 19.93 0.000 7.164589 8.727078

Urea (SC) 8.595833 .3986014 21.56 0.000 7.814589 9.377078

thatch
2 -1.1 .4632314 -2.37 0.018 -2.007917 -.1920828
5 .1500006 .4632314 0.32 0.746 -.7579163 1.057917

nitrogen#
thatch

urea#2 -.1500005 .6551081 -0.23 0.819 -1.433989 1.133988
urea#5 .0999994 .6551081 0.15 0.879 -1.183989 1.383988

ammonium s.. #
2 .8999996 .6551081 1.37 0.169 -.3839887 2.183988

ammonium s.. #
5 -.1000006 .6551081 -0.15 0.879 -1.383989 1.183988

IBDU#2 -.2000005 .6551081 -0.31 0.760 -1.483989 1.083988
IBDU#5 -1.950001 .6551081 -2.98 0.003 -3.233989 -.6660124

block
1 -.2916666 .2643563 -1.10 0.270 -.8097955 .2264622

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

wpunit: Identity
var(_cons) .0682407 .1195933 .0021994 2.117344

var(Residual) .2145833 .1072917 .080537 .5717376

LR test vs. linear model: chibar2(01) = 0.53 Prob >= chibar2 = 0.2324
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We can calculate the cell means for source of nitrogen and years of thatch accumulation by using
margins.

. margins thatch#nitrogen

Predictive margins Number of obs = 24

Expression : Linear prediction, fixed portion, predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

thatch#
nitrogen
2#urea 3.85 .3760479 10.24 0.000 3.11296 4.58704

2 #
ammonium s.. 5.6 .3760479 14.89 0.000 4.86296 6.33704

2#IBDU 6.5 .3760479 17.29 0.000 5.76296 7.23704
2#Urea (SC) 7.35 .3760479 19.55 0.000 6.61296 8.087041

5#urea 5.35 .3760479 14.23 0.000 4.61296 6.087041
5 #

ammonium s.. 5.85 .3760479 15.56 0.000 5.11296 6.58704
5#IBDU 6 .3760479 15.96 0.000 5.26296 6.73704

5#Urea (SC) 8.6 .3760479 22.87 0.000 7.86296 9.337041
8#urea 5.1 .3760479 13.56 0.000 4.36296 5.837041

8 #
ammonium s.. 5.8 .3760479 15.42 0.000 5.06296 6.53704

8#IBDU 7.8 .3760479 20.74 0.000 7.06296 8.537041
8#Urea (SC) 8.45 .3760479 22.47 0.000 7.712959 9.18704

It is easier to see the effect of the treatments if we plot the impact of the four nitrogen and the
three thatch treatments. We can use marginsplot to plot the means of chlorophyll content versus
years of thatch accumulation by nitrogen source.
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. marginsplot, ytitle(Chlorophyll (mg/g)) title("")
> subtitle("Mean chlorophyll content of grass clippings versus"
> "nitrogen source for years of thatch accumulation") xsize(3) ysize(3.2)
> legend(cols(1) position(5) ring(0) region(lwidth(none)))
> ylabel(0(2)10, angle(0))

Variables that uniquely identify margins: thatch nitrogen
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We can see an increase in the mean chlorophyll content over the years of thatch accumulation for
all but one nitrogen source.

The marginal means can be obtained by using margins on one variable at a time.

. margins thatch

Predictive margins Number of obs = 24

Expression : Linear prediction, fixed portion, predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

thatch
2 5.825 .188024 30.98 0.000 5.45648 6.19352
5 6.45 .188024 34.30 0.000 6.08148 6.81852
8 6.7875 .188024 36.10 0.000 6.41898 7.15602
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. margins nitrogen

Predictive margins Number of obs = 24

Expression : Linear prediction, fixed portion, predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

nitrogen
urea 4.766667 .2643563 18.03 0.000 4.248538 5.284796

ammonium s.. 5.75 .2643563 21.75 0.000 5.231871 6.268129
IBDU 6.766667 .2643563 25.60 0.000 6.248538 7.284796

Urea (SC) 8.133333 .2643563 30.77 0.000 7.615205 8.651462

Marchenko (2006) shows more examples of fitting other experimental designs using linear mixed-
effects models.

Example 3: Binomial counts

We use the data taken from Agresti (2013, 219) on graduate school applications to the 23 departments
within the College of Liberal Arts and Sciences at the University of Florida during the 1997–1998
academic year. The dataset contains the department ID (department), the number of applications
(napplied), and the number of students admitted (nadmitted) cross-classified by gender (female).

. use http://www.stata-press.com/data/r14/admissions, clear
(Graduate school admissions data)

. describe

Contains data from http://www.stata-press.com/data/r14/admissions.dta
obs: 46 Graduate school admissions data

vars: 4 25 Feb 2014 09:28
size: 460 (_dta has notes)

storage display value
variable name type format label variable label

department long %8.0g dept department id
nadmitted byte %8.0g number of admissions
napplied float %9.0g number of applications
female byte %8.0g =1 if female, =0 if male

Sorted by:

We wish to investigate whether admission decisions are independent of gender. Given department
and gender, the probability of admission follows a binomial model, that is, Pr(Yij = yij) =
Binomial(nij , πij), where i = {0, 1} and j = 1, . . . , 23. We fit a mixed-effects binomial logistic
model with a random intercept at the department level.
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. melogit nadmitted female || department:, binomial(napplied) or

Fitting fixed-effects model:

Iteration 0: log likelihood = -302.47786
Iteration 1: log likelihood = -300.00004
Iteration 2: log likelihood = -299.99934
Iteration 3: log likelihood = -299.99934

Refining starting values:

Grid node 0: log likelihood = -145.08843

Fitting full model:

Iteration 0: log likelihood = -145.08843
Iteration 1: log likelihood = -140.8514
Iteration 2: log likelihood = -140.61709
Iteration 3: log likelihood = -140.61628
Iteration 4: log likelihood = -140.61628

Mixed-effects logistic regression Number of obs = 46
Binomial variable: napplied
Group variable: department Number of groups = 23

Obs per group:
min = 2
avg = 2.0
max = 2

Integration method: mvaghermite Integration pts. = 7

Wald chi2(1) = 2.14
Log likelihood = -140.61628 Prob > chi2 = 0.1435

nadmitted Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

female 1.176898 .1310535 1.46 0.144 .9461357 1.463944
_cons .7907009 .2057191 -0.90 0.367 .4748457 1.316655

department
var(_cons) 1.345383 .460702 .6876497 2.632234

LR test vs. logistic model: chibar2(01) = 318.77 Prob >= chibar2 = 0.0000

The odds of being admitted are higher for females than males but without statistical significance.
The estimate of σ̂2

u is 1.35 with the standard error of 0.46. An LR test comparing the model with
the one-level binomial regression model favors the random-intercept model, indicating that there is a
significant variation in the number of admissions between departments.

We can further assess the model fit by performing a residual analysis. For example, here we predict
and plot Anscombe residuals.
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. predict anscres, anscombe
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

. twoway (scatter anscres department if female, msymbol(S))
> (scatter anscres department if !female, msymbol(T)),
> yline(-2 2) xline(1/23, lwidth(vvthin) lpattern(dash))
> xlabel(1/23) legend(label(1 "females") label(2 "males"))
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Anscombe residuals are constructed to be approximately normally distributed, thus residuals that
are above two in absolute value are usually considered outliers. In the graph above, the residual
for female admissions in department 2 is a clear outlier, suggesting a poor fit for that particular
observation; see [ME] meglm postestimation for more information about Anscombe residuals and
other model diagnostics tools.

Covariance structures

Example 4: Growth-curve model with correlated random effects

Here we extend the model from example 1 of [ME] me to allow for a random slope on week and
an unstructured covariance structure between the random intercept and the random slope on week.

http://www.stata.com/manuals14/memeglmpostestimation.pdf#memeglmpostestimation
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. use http://www.stata-press.com/data/r14/pig, clear
(Longitudinal analysis of pig weights)

. mixed weight week || id: week, covariance(unstructured)

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -868.96185
Iteration 1: log likelihood = -868.96185

Computing standard errors:

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4649.17
Log likelihood = -868.96185 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.209896 .0910745 68.18 0.000 6.031393 6.388399
_cons 19.35561 .3996387 48.43 0.000 18.57234 20.13889

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Unstructured
var(week) .3715251 .0812958 .2419532 .570486

var(_cons) 6.823363 1.566194 4.351297 10.69986
cov(week,_cons) -.0984378 .2545767 -.5973991 .4005234

var(Residual) 1.596829 .123198 1.372735 1.857505

LR test vs. linear model: chi2(3) = 764.58 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

The unstructured covariance structure allows for correlation between the random effects. Other
covariance structures supported by mixed, besides the default independent, include identity and
exchangeable; see [ME] mixed for details. You can also specify multiple random-effects equations
at the same level, in which case the covariance types can be combined to form more complex
blocked-diagonal covariance structures; see example 5 below.

We can predict the fitted values and plot the estimated regression line for each of the pigs. The
fitted values are based on both the fixed and the random effects.

http://www.stata.com/manuals14/memixed.pdf#memixed
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. predict wgt_hat, fitted

. twoway connected wgt_hat week if id<=10, connect(L) ytitle("Predicted weight")
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Example 5: Blocked-diagonal covariance structures

In this example, we fit a logistic mixed-effects model with a blocked-diagonal covariance structure
of random effects.

We use the data from the 1989 Bangladesh fertility survey (Huq and Cleland 1990), which polled
1,934 Bangladeshi women on their use of contraception. The women sampled were from 60 districts,
identified by the variable district. Each district contained either urban or rural areas (variable
urban) or both. The variable c use is the binary response, with a value of 1 indicating contraceptive
use. Other covariates include mean-centered age and three indicator variables recording number of
children. Below we fit a standard logistic regression model amended to have random coefficients on
each indicator variable for children and an overall district random intercept.
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. use http://www.stata-press.com/data/r14/bangladesh, clear
(Bangladesh Fertility Survey, 1989)

. melogit c_use urban age child* || district: child*, cov(exchangeable)
> || district:, or

Fitting fixed-effects model:

Iteration 0: log likelihood = -1229.5485
Iteration 1: log likelihood = -1228.5268
Iteration 2: log likelihood = -1228.5263
Iteration 3: log likelihood = -1228.5263

Refining starting values:

Grid node 0: log likelihood = -1234.3979

Fitting full model:

Iteration 0: log likelihood = -1234.3979 (not concave)
Iteration 1: log likelihood = -1208.0052
Iteration 2: log likelihood = -1206.4497
Iteration 3: log likelihood = -1206.2417
Iteration 4: log likelihood = -1206.2397
Iteration 5: log likelihood = -1206.2397

Mixed-effects logistic regression Number of obs = 1,934
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration pts. = 7

Wald chi2(5) = 100.01
Log likelihood = -1206.2397 Prob > chi2 = 0.0000
( 1) [var(child1[district])]_cons - [var(child3[district])]_cons = 0
( 2) [cov(child2[district],child1[district])]_cons -

[cov(child3[district],child2[district])]_cons = 0
( 3) [cov(child3[district],child1[district])]_cons -

[cov(child3[district],child2[district])]_cons = 0
( 4) [var(child2[district])]_cons - [var(child3[district])]_cons = 0

c_use Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

urban 2.105163 .2546604 6.15 0.000 1.660796 2.668426
age .9735765 .0077461 -3.37 0.001 .9585122 .9888775

child1 2.992596 .502149 6.53 0.000 2.153867 4.157931
child2 3.879345 .7094125 7.41 0.000 2.710815 5.551584
child3 3.774627 .7055812 7.11 0.000 2.616744 5.444863
_cons .1859471 .0274813 -11.38 0.000 .1391841 .2484214

district
var(child1) .0841518 .0880698 .0108201 .654479
var(child2) .0841518 .0880698 .0108201 .654479
var(child3) .0841518 .0880698 .0108201 .654479
var(_cons) .1870273 .0787274 .0819596 .426786

district
cov(child2,

child1) .0616875 .0844681 0.73 0.465 -.1038669 .2272419
cov(child3,

child1) .0616875 .0844681 0.73 0.465 -.1038669 .2272419
cov(child3,

child2) .0616875 .0844681 0.73 0.465 -.1038669 .2272419

LR test vs. logistic model: chi2(3) = 44.57 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
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The fixed effects can be interpreted just as you would the output from logit. Urban women have
roughly double the odds of using contraception as compared with their rural counterparts. Having
any number of children will increase the odds from three- to fourfold when compared with the base
category of no children. Contraceptive use also decreases with age.

Because we specified cov(exchangeable), the estimated variances on each indicator variable
for children are constrained to be the same, and the estimated covariances on each indicator variable
for children are constrained to be the same. More complex covariance structures with constraints can
be specified using covariance(pattern()) and covariance(fixed()); see example 6 below.

Example 6: Meta analysis

In this example, we present a mixed-effects model for meta analysis of clinical trials. The term
“meta-analysis” refers to a statistical analysis that involves summary data from similar but independent
studies.

Turner et al. (2000) performed a study of nine clinical trials examining the effect of taking diuretics
during pregnancy on the risk of pre-eclampsia. The summary data consist of the log odds-ratio
(variable or) estimated from each study, and the corresponding estimated variance (variable varor).
The square root of the variance is stored in the variable std and the trial identifier is stored in the
variable trial.

. use http://www.stata-press.com/data/r14/diuretics
(Meta analysis of clinical trials studying diuretics and pre-eclampsia)

. list

trial or varor std

1. 1 .04 .16 .4
2. 2 -.92 .12 .3464102
3. 3 -1.12 .18 .4242641
4. 4 -1.47 .3 .5477226
5. 5 -1.39 .11 .3316625

6. 6 -.3 .01 .1
7. 7 -.26 .12 .3464102
8. 8 1.09 .69 .8306624
9. 9 .14 .07 .2645751

In a random-effects modeling of summary data, the observed log odds-ratios are treated as a
continuous outcome and assumed to be normally distributed, and the true treatment effect varies
randomly among the trials. The random-effects model can be written as

yi ∼ N(θ + νi, σ
2
i )

νi ∼ N(0, τ2)

where yi is the observed treatment effect corresponding to the ith study, θ+ νi is the true treatment
effect, σ2

i is the variance of the observed treatment effect, and τ is the between-trial variance
component. Our aim is to estimate θ, the global mean.

Notice that the responses yi do not provide enough information to estimate this model, because
we cannot estimate the group-level variance component from a dataset that contains one observation
per group. However, we already have estimates for the σi’s, therefore we can constrain each σi to
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be equal to its estimated value, which will allow us to estimate θ and τ . We use meglm to estimate
this model because the mixed command does not support constraints.

In meglm, one way to constrain a group of individual variances to specific values is by using the fixed
covariance structure (an alternative way is to define each constraint individually with the constraint
command and specify them in the constraints() option). The covariance(fixed()) option
requires a Stata matrix defining the constraints, thus we first create matrix f with the values of σi,
stored in variable varor, on the main diagonal. We will use this matrix to constrain the variances.

. mkmat varor, mat(f)

. mat f = diag(f)

In the random-effects equation part, we need to specify nine random slopes, one for each trial.
Because random-effects equations do not support factor variables (see [U] 11.4.3 Factor variables), we
cannot use the i.trial notation. Instead, we tabulate the variable trial and use the generate()
option to create nine dummy variables named tr1, tr2, . . . , tr9. We can then fit the model.
Because the model is computationally demanding, we use Laplacian approximation instead of the
default mean-variance adaptive quadrature; see Computation time and the Laplacian approximation
above for details.

http://www.stata.com/manuals14/u11.pdf#u11.4.3Factorvariables
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. qui tabulate trial, gen(tr)

. meglm or || _all: tr1-tr9, nocons cov(fixed(f)) intm(laplace) nocnsreport

Fitting fixed-effects model:

Iteration 0: log likelihood = -10.643432
Iteration 1: log likelihood = -10.643432

Refining starting values:

Grid node 0: log likelihood = -10.205455

Fitting full model:

Iteration 0: log likelihood = -10.205455
Iteration 1: log likelihood = -9.4851561 (backed up)
Iteration 2: log likelihood = -9.4587068
Iteration 3: log likelihood = -9.4552982
Iteration 4: log likelihood = -9.4552759
Iteration 5: log likelihood = -9.4552759

Mixed-effects GLM Number of obs = 9
Family: Gaussian
Link: identity
Group variable: _all Number of groups = 1

Obs per group:
min = 9
avg = 9.0
max = 9

Integration method: laplace

Wald chi2(0) = .
Log likelihood = -9.4552759 Prob > chi2 = .

or Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons -.5166151 .2059448 -2.51 0.012 -.9202594 -.1129707

_all
var(tr1) .16 (constrained)
var(tr2) .12 (constrained)
var(tr3) .18 (constrained)
var(tr4) .3 (constrained)
var(tr5) .11 (constrained)
var(tr6) .01 (constrained)
var(tr7) .12 (constrained)
var(tr8) .69 (constrained)
var(tr9) .07 (constrained)

var(e.or) .2377469 .1950926 .0476023 1.187413

We estimate θ̂ = −0.52, which agrees with the estimate reported by Turner et al. (2000).

We can fit the above model in a more efficient way. We can consider the trials as nine independent
random variables, each with variance unity, and each being multiplied by a different standard error.
To accomplish this, we treat trial as a random-effects level, use the standard deviations of the log
odds-ratios as a random covariate at the trial level, and constrain the variance component of trial
to unity.
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. constraint 1 _b[var(std[trial]):_cons] = 1

. meglm or || trial: std, nocons constraints(1)

Fitting fixed-effects model:

Iteration 0: log likelihood = -10.643432
Iteration 1: log likelihood = -10.643432

Refining starting values:

Grid node 0: log likelihood = -10.205455

Fitting full model:

Iteration 0: log likelihood = -10.205455
Iteration 1: log likelihood = -9.4851164 (backed up)
Iteration 2: log likelihood = -9.45869
Iteration 3: log likelihood = -9.4552794
Iteration 4: log likelihood = -9.4552759
Iteration 5: log likelihood = -9.4552759

Mixed-effects GLM Number of obs = 9
Family: Gaussian
Link: identity
Group variable: trial Number of groups = 9

Obs per group:
min = 1
avg = 1.0
max = 1

Integration method: mvaghermite Integration pts. = 7

Wald chi2(0) = .
Log likelihood = -9.4552759 Prob > chi2 = .
( 1) [var(std[trial])]_cons = 1

or Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons -.5166151 .2059448 -2.51 0.012 -.9202594 -.1129708

trial
var(std) 1 (constrained)

var(e.or) .2377469 .1950926 .0476023 1.187413

The results are the same, but this model took a fraction of the time compared with the less efficient
specification.

Three-level models

The methods we have discussed so far extend from two-level models to models with three or
more levels with nested random effects. By “nested”, we mean that the random effects shared within
lower-level subgroups are unique to the upper-level groups. For example, assuming that classroom
effects would be nested within schools would be natural, because classrooms are unique to schools.
Below we illustrate a three-level mixed-effects ordered probit model.

Example 7: Three-level ordinal response model

In this example, we fit a three-level ordered probit model. The data are from the Television,
School, and Family Smoking Prevention and Cessation Project (Flay et al. 1988; Rabe-Hesketh and
Skrondal 2012, chap. 11), where schools were randomly assigned into one of four groups defined
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by two treatment variables. Students within each school are nested in classes, and classes are nested
in schools. The dependent variable is the tobacco and health knowledge (THK) scale score collapsed
into four ordered categories. We regress the outcome on the treatment variables and their interaction
and control for the pretreatment score.

. use http://www.stata-press.com/data/r14/tvsfpors, clear

. meoprobit thk prethk cc##tv || school: || class:

Fitting fixed-effects model:

Iteration 0: log likelihood = -2212.775
Iteration 1: log likelihood = -2127.8111
Iteration 2: log likelihood = -2127.7612
Iteration 3: log likelihood = -2127.7612

Refining starting values:

Grid node 0: log likelihood = -2195.6424

Fitting full model:

Iteration 0: log likelihood = -2195.6424 (not concave)
Iteration 1: log likelihood = -2167.9576 (not concave)
Iteration 2: log likelihood = -2140.2644 (not concave)
Iteration 3: log likelihood = -2128.6948 (not concave)
Iteration 4: log likelihood = -2119.9225
Iteration 5: log likelihood = -2117.0947
Iteration 6: log likelihood = -2116.7004
Iteration 7: log likelihood = -2116.6981
Iteration 8: log likelihood = -2116.6981

Mixed-effects oprobit regression Number of obs = 1,600

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

school 28 18 57.1 137
class 135 1 11.9 28

Integration method: mvaghermite Integration pts. = 7

Wald chi2(4) = 124.20
Log likelihood = -2116.6981 Prob > chi2 = 0.0000

thk Coef. Std. Err. z P>|z| [95% Conf. Interval]

prethk .238841 .0231446 10.32 0.000 .1934784 .2842036
1.cc .5254813 .1285816 4.09 0.000 .2734659 .7774967
1.tv .1455573 .1255827 1.16 0.246 -.1005803 .3916949

cc#tv
1 1 -.2426203 .1811999 -1.34 0.181 -.5977656 .1125251

/cut1 -.074617 .1029791 -0.72 0.469 -.2764523 .1272184
/cut2 .6863046 .1034813 6.63 0.000 .4834849 .8891242
/cut3 1.413686 .1064889 13.28 0.000 1.204972 1.622401

school
var(_cons) .0186456 .0160226 .0034604 .1004695

school>class
var(_cons) .0519974 .0224014 .0223496 .1209745

LR test vs. oprobit model: chi2(2) = 22.13 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
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Notes:

1. Our model now has two random-effects equations, separated by ||. The first is a random intercept
(constant only) at the school level (level three), and the second is a random intercept at the
class level (level two). The order in which these are specified (from left to right) is significant—
meoprobit assumes that class is nested within school.

2. The information on groups is now displayed as a table, with one row for each grouping. You can
suppress this table with the nogroup or the noheader option, which will also suppress the rest
of the header.

3. The variance-component estimates are now organized and labeled according to level. The variance
component for class is labeled school>class to emphasize that classes are nested within schools.

The above extends to models with more than two levels of nesting in the obvious manner, by
adding more random-effects equations, each separated by ||. The order of nesting goes from left to
right as the groups go from biggest (highest level) to smallest (lowest level).

Crossed-effects models

Not all mixed-effects models contain nested levels of random effects.

Example 8: Crossed random effects

Returning to our longitudinal analysis of pig weights, suppose that we wish to fit

weightij = β0 + β1weekij + ui + vj + εij (11)

for the i = 1, . . . , 9 weeks and j = 1, . . . , 48 pigs and

ui ∼ N(0, σ2
u); vj ∼ N(0, σ2

v); εij ∼ N(0, σ2
ε )

all independently. That is, we assume an overall population-average growth curve β0 + β1week and
a random pig-specific shift. In other words, the effect due to week, ui, is systematic to that week and
common to all pigs. The rationale behind (11) could be that, assuming that the pigs were measured
contemporaneously, we might be concerned that week-specific random factors such as weather and
feeding patterns had significant systematic effects on all pigs.

Model (11) is an example of a two-way crossed-effects model, with the pig effects vj being crossed
with the week effects ui. One way to fit such models is to consider all the data as one big cluster,
and treat ui and vj as a series of 9 + 48 = 57 random coefficients on indicator variables for week
and pig. The random effects u and the variance components G are now represented as
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u =



u1
...
u9
v1
...
v48


∼ N(0,G); G =

[
σ2
uI9 0
0 σ2

vI48

]

Because G is block diagonal, it can be represented as repeated-level equations. All we need is an ID
variable to identify all the observations as one big group and a way to tell mixed-effects commands
to treat week and pig as factor variables (or equivalently, as two sets of overparameterized indicator
variables identifying weeks and pigs, respectively). The mixed-effects commands support the special
group designation all for the former and the R.varname notation for the latter.

. use http://www.stata-press.com/data/r14/pig
(Longitudinal analysis of pig weights)

. mixed weight week || _all: R.id || _all: R.week

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -1013.824
Iteration 1: log likelihood = -1013.824

Computing standard errors:

Mixed-effects ML regression Number of obs = 432
Group variable: _all Number of groups = 1

Obs per group:
min = 432
avg = 432.0
max = 432

Wald chi2(1) = 13258.28
Log likelihood = -1013.824 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.209896 .0539313 115.14 0.000 6.104192 6.315599
_cons 19.35561 .6333982 30.56 0.000 18.11418 20.59705

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
var(R.id) 14.83623 3.126142 9.816733 22.42231

_all: Identity
var(R.week) .0849874 .0868856 .0114588 .6303302

var(Residual) 4.297328 .3134404 3.724888 4.957741

LR test vs. linear model: chi2(2) = 474.85 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We estimate σ̂2
u = 0.08 and σ̂2

v = 14.84.

The R.varname notation is equivalent to giving a list of overparameterized (none dropped) indicator
variables for use in a random-effects specification. When you use R.varname, mixed-effects commands
handle the calculations internally rather than creating the indicators in the data. Because the set of
indicators is overparameterized, R.varname implies noconstant.
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Note that the column dimension of our random-effects design is 57. Computation time and memory
requirements grow (roughly) quadratically with the dimension of the random effects. As a result,
fitting such crossed-effects models is feasible only when the total column dimension is small to
moderate. For this reason, mixed-effects commands use the Laplacian approximation as the default
estimation method for crossed-effects models; see Computation time and the Laplacian approximation
above for more details.

It is often possible to rewrite a mixed-effects model in a way that is more computationally efficient.
For example, we can treat pigs as nested within the all group, yielding the equivalent and more
efficient (total column dimension 10) way to fit (11):

. mixed weight week || _all: R.week || id:

The results of both estimations are identical, but the latter specification, organized at the cluster (pig)
level with random-effects dimension 1 (a random intercept) is much more computationally efficient.
Whereas with the first form we are limited in how many pigs we can analyze, there is no such
limitation with the second form.

All the mixed-effects commands—except mixed, meqrlogit, and meqrpoisson—automatically
attempt to recast the less efficient model specification into a more efficient one. However, this automatic
conversion may not be sufficient for some complicated mixed-effects specifications, especially if both
crossed and nested effects are involved. Therefore, we strongly encourage you to always specify the
more efficient syntax; see Rabe-Hesketh and Skrondal (2012) and Marchenko (2006) for additional
techniques to make calculations more efficient in more complex mixed-effects models.
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