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Description
Item response theory (IRT) is used in the design, analysis, scoring, and comparison of tests and

similar instruments whose purpose is to measure unobservable characteristics of the respondents. This
entry discusses some fundamental and theoretical aspects of IRT and illustrates these with worked
examples.

Binary response models
irt 1pl One-parameter logistic model
irt 2pl Two-parameter logistic model
irt 3pl Three-parameter logistic model

Categorical response models
irt grm Graded response model
irt nrm Nominal response model
irt pcm Partial credit model
irt rsm Rating scale model

Multiple IRT models combined
irt hybrid Hybrid IRT model

Remarks and examples stata.com

Researchers are often interested in studying abilities, personality traits, and other unobservable
characteristics. Throughout this manual, we most often refer to the unobserved characteristic of interest
as the latent trait, but we will sometimes also use the term ability.

Latent traits cannot be measured directly, because they are unobservable, but they can be quantified
with an instrument. An instrument is simply a collection of items designed to measure a person’s
level of the latent trait. For example, a researcher interested in measuring mathematical ability (latent
trait) may design a test (instrument) consisting of 100 questions (items).

When designing the instrument or analyzing data from the instrument, the researcher is interested
in how each individual item relates to the trait and how the group of items as a whole relates to this
trait. IRT models allow us to study these relationships.

IRT models are used extensively in the study of cognitive and personality traits, health outcomes, and
in the development of item banks and computerized adaptive testing. Some examples of applied work
include measuring computer anxiety in grade school children (King and Bond 1996), assessing physical
functioning in adults with HIV (Wu, Hays, Kelly, Malitz, and Bozzette 1997), and measuring the
degree of public policy involvement of nutritional professionals (Boardley, Fox, and Robinson 1999).
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2 irt — Introduction to IRT models

The bulk of the theoretical work in IRT comes from the fields of psychometrics and educa-
tional measurement with key early contributions from Rasch (1960), Birnbaum (1968), Wright and
Stone (1979), and Lord (1980). Some good introductory IRT reading includes Hambleton, Swami-
nathan, and Rogers (1991), McDonald (1999), Embretson and Reise (2000), Bond and Fox (2007),
and de Ayala (2009). More advanced treatments are presented, for example, in Fischer and Mole-
naar (1995), van der Linden and Hambleton (1997), Baker and Kim (2004), and De Boeck and
Wilson (2004).

The main concept in IRT is the item characteristic curve (ICC). The ICC describes the probability
that a person “succeeds” on a given item (individual test question). In the following graph, we can
see an ICC for one item intended to measure ability. Notice that the probability of this broadly defined
success increases as ability increases.
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Item Characteristic Curve

ICCs will be different for different items. The probability of success on an item is a function of
both the level of the latent trait and the properties of the item. The latent trait is commonly denoted by
θ. The value of θ for a given person is called the person location. The item properties are parameters,
commonly known as difficulty and discrimination, that are estimated in the IRT model.

The difficulty parameter, or item location, commonly denoted by b, represents the location of an
item on the ability scale. For example, the following graph plots the ICC for items q1, q2, and q3,
with difficulty parameters −1, 0, and 1, respectively.
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ICC for items with varying difficulty

Item q1 is the least difficult, and item q3 is the most difficult. Notice that the change in difficulty
shifts the ICC along the ability scale (that is, the horizontal axis or x axis). The probability of success
on item q1 is higher than the probability of success for the other two items at any ability level. We
can say item q1 is less difficult than the others because a person would need only an ability level
greater than −1 on this ability scale to be expected to succeed on item q1. On the other hand, a
person would need an ability level above 0 to be expected to succeed on item q2 and an ability level
above 1 to be expected to succeed on item q3.

In designing an instrument intended to differentiate between all levels of a latent trait, a researcher
should try to have items with difficulties spread across the full range of the trait.

The second item parameter, discrimination, is related to the slope of the ICC. Discrimination is
commonly denoted by a. This item parameter tells us how fast the probability of success changes
with ability near the item difficulty. An item with a large discrimination value has a high correlation
between the latent trait and the probability of success on that item. In other words, an item with a
large discrimination parameter can distinguish better between low and high levels of the latent trait.

In the graph above, all three items have the same discrimination. In the graph below, all three
items have the same difficulty, but they have different discrimination values. A highly discriminating
item differentiates better, around its difficulty value, between persons of similar levels of the latent
trait.
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Imagine two persons, one with ability just below zero, and the other with ability just above zero.
According to the ICC for item q1, these persons would have a similar probability of success on
this item. According to the ICC for item q3, the person with the higher ability level would have a
substantially higher probability of success on this item.

Using an IRT model, we can estimate the discrimination and difficulty parameters, a and b, for
each item on an instrument designed to measure a particular latent trait. Throughout this manual, we
assume that a single latent trait is sufficient to explain a person’s response behavior on the group
of items. More technically, we assume a unidimensional latent space. We also assume that after we
condition on ability, a person’s responses to an item are independent of his or her responses to other
items. This is called a conditional independence or a local independence assumption.

We can now express a generic functional form of an ICC as

Pr(success|a, b, θ) = F{a(θ − b)}

The difference term (θ − b) tells us that the probability of success is a function of the distance
between item location and person location. When θ = b, that is, when item difficulty is matched to
a person’s latent trait level, the individual is equally likely to pass or fail the item. When θ > b,
the individual is more likely to succeed than to fail. Because we can obtain the same distance with
different choices of θ and b, we need to provide a metric for θ to identify the model. We do so by
assuming θ ∼ N(0, 1), which also puts the item difficulty parameter on the same scale as the standard
normal distribution. With the standard normal scale, items with negative difficulties are considered
to be relatively easy, and items with positive difficulties are considered to be relatively hard.

For any IRT model, we assume F (·) to be of correct functional form and increasing with the value
of the latent trait. Because probabilities are bounded between 0 and 1, F (·) is usually a variation of
a cumulative logistic distribution.

Through choices of F (·) and specification of certain constraints on the estimated parameters, we
can fit a variety of different types of IRT models. Using the irt commands, we can fit IRT models
to binary, ordinal, and nominal items. Below we demonstrate an IRT model with binary items and an
IRT model with ordinal items. For additional information and examples of the models available for
binary items, see [IRT] irt 1pl, [IRT] irt 2pl, and [IRT] irt 3pl. For models with ordinal items, see
[IRT] irt grm, [IRT] irt rsm, and [IRT] irt pcm. For models with nominal items, see [IRT] irt nrm. In
addition to fitting these models, we can better understand each item and its relationship to the latent
trait through a variety of graphs, as demonstrated in the examples below.
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From a broader statistical perspective, IRT models can be viewed as extensions of (unidimensional)
confirmatory factor analysis (CFA) models to binary and categorical outcomes and as special cases of
generalized linear mixed-effects models; see chapter 1 in De Boeck and Wilson (2004) and chapter 3
in Skrondal and Rabe-Hesketh (2004) for a theoretical discussion and Zheng and Rabe-Hesketh (2007)
for applied examples.

Example 1: Binary IRT models

In this example, we present IRT analysis of binary data and highlight some postestimation features
of irt. We use an abridged version of the mathematics and science data from De Boeck and
Wilson (2004). Student responses to test items are coded 1 for correct and 0 for incorrect. Here we
list the first five observations.

. use http://www.stata-press.com/data/r14/masc1
(Data from De Boeck & Wilson (2004))

. list in 1/5

q1 q2 q3 q4 q5 q6 q7 q8 q9

1. 1 1 1 0 0 0 0 1 0
2. 0 0 1 0 0 0 0 1 1
3. 0 0 0 1 0 0 1 0 0
4. 0 0 1 0 0 0 0 0 1
5. 0 1 1 0 0 0 0 1 0

Looking across the rows, we see that the first student correctly answered items q1, q2, q3, and
q8, the second student correctly answered items q3, q8, and q9, and so on.

Let’s say the goal of the test is to assess students’ mathematical ability and perhaps classify the
students into groups, for example, gifted, average, and remedial. We could look at the total test score
for each student, but the problem is that the total score depends on the composition of the test.
If the test comprises easy items, most students will appear to be gifted, and if the test comprises
hard items, most students will be assigned to the remedial group. When the model fits the data, an
attractive property of IRT is that, except for measurement error, parameter estimates are invariant;
that is, examinee ability estimates are not test dependent, and item parameter estimates are not group
dependent.
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We fit a 1PL model to binary items q1–q9 as follows.

. irt 1pl q1-q9

Fitting fixed-effects model:

Iteration 0: log likelihood = -4275.6606
Iteration 1: log likelihood = -4269.7861
Iteration 2: log likelihood = -4269.7825
Iteration 3: log likelihood = -4269.7825

Fitting full model:

Iteration 0: log likelihood = -4153.3609
Iteration 1: log likelihood = -4142.374
Iteration 2: log likelihood = -4142.3516
Iteration 3: log likelihood = -4142.3516

One-parameter logistic model Number of obs = 800
Log likelihood = -4142.3516

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Discrim .852123 .0458445 18.59 0.000 .7622695 .9419765

q1
Diff -.7071339 .1034574 -6.84 0.000 -.9099066 -.5043612

q2
Diff -.1222008 .0963349 -1.27 0.205 -.3110138 .0666122

q3
Diff -1.817693 .1399523 -12.99 0.000 -2.091994 -1.543391

q4
Diff .3209596 .0976599 3.29 0.001 .1295498 .5123695

q5
Diff 1.652719 .1329494 12.43 0.000 1.392144 1.913295

q6
Diff .6930617 .1031842 6.72 0.000 .4908243 .8952991

q7
Diff 1.325001 .1205805 10.99 0.000 1.088668 1.561335

q8
Diff -2.413443 .1691832 -14.27 0.000 -2.745036 -2.08185

q9
Diff -1.193206 .1162054 -10.27 0.000 -1.420965 -.965448

Looking at the output table, we see that the first row reports the estimate of the item discrimination
parameter, labeled Discrim. In a 1PL model, this parameter is shared by all items. The estimate
of 0.85 suggests the items are not particularly discriminating; that is, in the vicinity of a given
difficulty estimate, any two students with distinct abilities would have similar predicted probabilities
of responding correctly to an item. The remaining rows report the estimates of the difficulty parameters,
labeled Diff, for each item. The items appear to cover a wide range of the item difficulty spectrum,
with item q8 being the lowest (̂b8 = −2.41) and item q5 being the highest (̂b5 = 1.65).

We use estat report to arrange the output in a particular sort order, which, in our example,
makes it easy to see which items are easy and which are hard; see [IRT] estat report for details.

http://www.stata.com/manuals14/irtestatreport.pdf#irtestatreport


irt — Introduction to IRT models 7

. estat report, sort(b) byparm

One-parameter logistic model Number of obs = 800
Log likelihood = -4142.3516

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Discrim .852123 .0458445 18.59 0.000 .7622695 .9419765

Diff
q8 -2.413443 .1691832 -14.27 0.000 -2.745036 -2.08185
q3 -1.817693 .1399523 -12.99 0.000 -2.091994 -1.543391
q9 -1.193206 .1162054 -10.27 0.000 -1.420965 -.965448
q1 -.7071339 .1034574 -6.84 0.000 -.9099066 -.5043612
q2 -.1222008 .0963349 -1.27 0.205 -.3110138 .0666122
q4 .3209596 .0976599 3.29 0.001 .1295498 .5123695
q6 .6930617 .1031842 6.72 0.000 .4908243 .8952991
q7 1.325001 .1205805 10.99 0.000 1.088668 1.561335
q5 1.652719 .1329494 12.43 0.000 1.392144 1.913295

To visualize the item locations on the difficulty spectrum, we plot the ICCs for all items using
irtgraph icc; see [IRT] irtgraph icc for details.

. irtgraph icc, blocation legend(off) xlabel(,alt)
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The probabilities represent the expected scores for each item along the latent trait continuum.
For the 1PL model, the midpoint probability for each item corresponds with the estimated difficulty
parameter.

The sum of the probabilities gives us the expected score on the whole test. A plot of the expected
score against the latent trait is called a test characteristic curve (TCC). Below we plot the TCC for
our model using irtgraph tcc; see [IRT] irtgraph tcc for details. The scorelines(2 7) option
specifies that droplines corresponding to the expected scores of 2 and 7 also be plotted. According
to the estimated TCC, these expected scores correspond with the latent trait locations −2.1 and 1.6,
respectively.

http://www.stata.com/manuals14/irtirtgraphicc.pdf#irtirtgraphicc
http://www.stata.com/manuals14/irtirtgraphtcc.pdf#irtirtgraphtcc
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. irtgraph tcc, scorelines(2 7)
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The invariance property of IRT holds only if the model fits the data. One informal method to check
item fit is to superimpose empirical proportions on an ICC. If the predicted ICC follows closely the
empirical trace line implied by the proportions, an item is assumed to have a satisfactory fit.

To calculate the empirical proportions, we predict the latent trait and collapse the items by the
latent trait. We then call irtgraph icc with option addplot() to superimpose the proportions on
the ICC.

. predict Theta, latent
(option ebmeans assumed)
(using 7 quadrature points)

. collapse q*, by(Theta)

. irtgraph icc q1, addplot(scatter q1 Theta)
> title("ICC and empirical proportions for q1")
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We see that the fit of the ICC to the implied empirical trace line is poor. This is true for all items
in the model. It is possible that a 2PL model may be more appropriate for this item. Before we fit a
2PL model, we store our estimates for later use.
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. estimates store onep

To fit a 2PL model to the data, we type

. use http://www.stata-press.com/data/r14/masc1
(Data from De Boeck & Wilson (2004))

. irt 2pl q1-q9

Fitting fixed-effects model:

Iteration 0: log likelihood = -4275.6606
Iteration 1: log likelihood = -4269.7861
Iteration 2: log likelihood = -4269.7825
Iteration 3: log likelihood = -4269.7825

Fitting full model:

Iteration 0: log likelihood = -4146.9386
Iteration 1: log likelihood = -4119.3568
Iteration 2: log likelihood = -4118.4716
Iteration 3: log likelihood = -4118.4697
Iteration 4: log likelihood = -4118.4697

Two-parameter logistic model Number of obs = 800
Log likelihood = -4118.4697

Coef. Std. Err. z P>|z| [95% Conf. Interval]

q1
Discrim 1.615292 .2436467 6.63 0.000 1.137754 2.092831

Diff -.4745635 .074638 -6.36 0.000 -.6208513 -.3282757

q2
Discrim .6576171 .1161756 5.66 0.000 .4299171 .885317

Diff -.1513023 .1202807 -1.26 0.208 -.3870481 .0844435

q3
Discrim .9245051 .1569806 5.89 0.000 .6168289 1.232181

Diff -1.70918 .242266 -7.05 0.000 -2.184012 -1.234347

q4
Discrim .8186403 .1284832 6.37 0.000 .5668179 1.070463

Diff .3296791 .1076105 3.06 0.002 .1187663 .5405919

q5
Discrim .8956621 .1535128 5.83 0.000 .5947825 1.196542

Diff 1.591164 .2325918 6.84 0.000 1.135293 2.047036

q6
Discrim .9828441 .147888 6.65 0.000 .6929889 1.272699

Diff .622954 .1114902 5.59 0.000 .4044373 .8414708

q7
Discrim .3556064 .1113146 3.19 0.001 .1374337 .5737791

Diff 2.840278 .8717471 3.26 0.001 1.131685 4.548871

q8
Discrim 1.399926 .233963 5.98 0.000 .9413668 1.858485

Diff -1.714416 .1925531 -8.90 0.000 -2.091814 -1.337019

q9
Discrim .6378452 .1223972 5.21 0.000 .3979512 .8777392

Diff -1.508254 .2787386 -5.41 0.000 -2.054571 -.9619361
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Now each item has its own discrimination parameter that models the slope of the ICC for that
item. In a 1PL model, the discrimination for all items was estimated to be 0.85. Looking at item q1
in the output table above, we see that its discrimination is estimated to be 1.62, which corresponds
to a steeper slope and should result in a better item fit.

Because the 1PL model is nested in a 2PL model, we can perform a likelihood-ratio test to see
which model is preferred.

. lrtest onep .

Likelihood-ratio test LR chi2(8) = 47.76
(Assumption: onep nested in .) Prob > chi2 = 0.0000

The near-zero significance level favors the model that allows for a separate discrimination parameter
for each item.

Continuing with the 2PL model, we can also plot the amount of information an item provides
for estimating the latent trait. A plot of item information against the latent trait is called an item
information function (IIF). We use irtgraph iif to obtain the IIFs for all items in the model; see
[IRT] irtgraph iif for details.

. irtgraph iif, legend(pos(1) col(1) ring(0))
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For a 2PL model, IIFs are unimodal and symmetric, and each item provides the maximum amount
of information at its estimated difficulty parameter. The height of an IIF and therefore the amount of
information an item provides around the difficulty parameter is proportional to the item’s estimated
discrimination. Items q1 and q8 are most discriminating and have the steepest IIFs.

We can sum up all the IIFs to obtain a test information function (TIF). The TIF plot tells us how
well the instrument can estimate person locations; see [IRT] irtgraph tif for details.

http://www.stata.com/manuals14/irtirtgraphiif.pdf#irtirtgraphiif
http://www.stata.com/manuals14/irtirtgraphtif.pdf#irtirtgraphtif
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. irtgraph tif, se
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The test provides maximum information for persons approximately located at θ = −0.5. As we
move away from that point in either direction, the standard error of the TIF increases, and the
instrument provides less and less information about θ.

The TIF is useful in designing instruments targeted at obtaining precise estimates of a person’s
latent trait level at specified intervals. If our interest lies in identifying gifted and remedial students,
we would like the instrument to be more precise at the extrema of the ability range. If we wish to
have a similar precision of ability estimate across the entire ability range, we would like to see a
relatively flat TIF. Because the TIF is a sum of IIFs, we can obtain the desired shape of the TIF by
incorporating items targeted at a specified ability interval.

The last binary model, not shown here, is a 3PL model. This model adds to the 2PL model by
accommodating the possibility of guessing. We discuss this model in the [IRT] irt 3pl entry.

Example 2: Categorical IRT models

Categorical IRT models include models for ordered and unordered responses. Here we present a
graded response model (GRM) for ordered responses.

The GRM is an extension of the 2PL model to categorical outcomes. To illustrate the model, we
use the data from Zheng and Rabe-Hesketh (2007). charity.dta contains five survey questions,
ta1 through ta5, measuring faith and trust in charity organizations. Responses are strongly agree
(0), agree (1), disagree (2), and strongly disagree (3). Higher scores indicate higher levels of distrust.
Here we list the first five observations.

http://www.stata.com/manuals14/irtirt3pl.pdf#irtirt3pl
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. use http://www.stata-press.com/data/r14/charity
(Data from Zheng & Rabe-Hesketh (2007))

. list in 1/5, nolabel

ta1 ta2 ta3 ta4 ta5

1. . 2 1 1 .
2. 0 0 0 0 0
3. 1 1 2 0 2
4. 1 2 2 0 1
5. . 1 1 1 1

Looking across the first row, we see that the first respondent did not provide an answer to items
ta1 and ta5, answered 2 on item ta2, and answered 1 on items ta3 and ta4. All irt commands
exclude missing items for a given observation from the likelihood calculation but keep the nonmissing
items for that observation. If you wish to remove the entire observation from the model, add the
listwise option at estimation time.



irt — Introduction to IRT models 13

We fit a GRM as follows:

. irt grm ta1-ta5

Fitting fixed-effects model:

Iteration 0: log likelihood = -5467.3926
Iteration 1: log likelihood = -5467.3926

Fitting full model:

Iteration 0: log likelihood = -5271.0634
Iteration 1: log likelihood = -5162.5917
Iteration 2: log likelihood = -5159.2947
Iteration 3: log likelihood = -5159.2791
Iteration 4: log likelihood = -5159.2791

Graded response model Number of obs = 945
Log likelihood = -5159.2791

Coef. Std. Err. z P>|z| [95% Conf. Interval]

ta1
Discrim .907542 .0955772 9.50 0.000 .7202142 1.09487

Diff
>=1 -1.540098 .1639425 -9.39 0.000 -1.861419 -1.218776
>=2 1.296135 .1427535 9.08 0.000 1.016343 1.575927
=3 3.305059 .3248468 10.17 0.000 2.668371 3.941747

ta2
Discrim .9434675 .0967483 9.75 0.000 .7538444 1.133091

Diff
>=1 -1.661331 .167878 -9.90 0.000 -1.990366 -1.332296
>=2 .0068314 .082222 0.08 0.934 -.1543208 .1679836
=3 2.531091 .2412513 10.49 0.000 2.058247 3.003935

ta3
Discrim 1.734201 .1554383 11.16 0.000 1.429548 2.038855

Diff
>=1 -1.080079 .0835119 -12.93 0.000 -1.243759 -.9163983
>=2 1.016567 .0796635 12.76 0.000 .8604297 1.172705
=3 2.232606 .1497814 14.91 0.000 1.93904 2.526172

ta4
Discrim 1.93344 .1857629 10.41 0.000 1.569351 2.297528

Diff
>=1 -.3445057 .0578468 -5.96 0.000 -.4578833 -.2311282
>=2 1.466254 .0983823 14.90 0.000 1.273428 1.65908
=3 2.418954 .162392 14.90 0.000 2.100672 2.737237

ta5
Discrim 1.42753 .1263962 11.29 0.000 1.179798 1.675262

Diff
>=1 -.8552358 .0833158 -10.26 0.000 -1.018532 -.6919399
>=2 .6805315 .07469 9.11 0.000 .5341418 .8269211
=3 2.074243 .1538858 13.48 0.000 1.772632 2.375853

Because the GRM is derived in terms of cumulative probabilities, the estimated category difficulties
represent a point at which a person with ability equal to a given difficulty has a 50% chance of
responding in a category equal to or higher than the difficulty designates; see [IRT] irt grm for details.
For example, looking at the estimated parameters of item ta5, we see that a person with θ = −0.86
has a 50% chance of answering 0 versus greater than or equal to 1, a person with θ = 0.68 has a
50% chance of answering 0 or 1 versus greater than or equal to 2, and a person with θ = 2.07 has a
50% chance of answering 0, 1, or 2 versus 3.

http://www.stata.com/manuals14/irtirtgrm.pdf#irtirtgrm
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We can use irtgraph icc to plot these probabilities; here we show them for item ta5 together
with the estimated category difficulties. In a GRM, the midpoint probability for each category is located
at the estimated category difficulty.

. irtgraph icc ta5, blocation legend(pos(11) col(1) ring(0))
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Boundary Characteristic Curves

When we plot characteristic curves for categorical items in ways reminiscent of ICCs for binary
items, the resulting curves are called boundary characteristic curves (BCCs).

We can also plot the probabilities of respondents choosing exactly category k. For categorical
items, the resulting curves are called category characteristic curves (CCCs). In fact, this is the default
behavior of irtgraph icc.

. irtgraph icc ta5, xlabel(-4 -.7 .7 1.85 4, grid)
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Category Characteristic Curves

The points where the adjacent categories cross represent transitions from one category to the next.
Thus, respondents with low levels of distrust, below approximately θ = −0.7, are most likely to
choose the first category on item ta5 (strongly agree), respondents located approximately between
−0.7 and 0.7 are most likely to choose the second category on item ta5 (agree), and so on.
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As in the first example, we can plot the test characteristic function for the whole instrument.

. irtgraph tcc, thetalines(-3/3)
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Test Characteristic Curve

Because we have 5 items, each with a minimum score of 0 and a maximum score of 3, the expected
score ranges from 0 to 15. We also asked irtgraph icc to plot the expected scores for different
values of θ. For respondents located at θ = −3 and below, the expected score is less than 1, which
means those respondents are most likely to choose the answer coded 0 on each and every item.

For categorical items, the item information function is no longer unimodal or symmetric, because
each category contributes its own information, which may peak over a different ability range. We see
this in the graph below.

. irtgraph iif, legend(pos(11) col(1) ring(0))
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Item Information Functions

Because the test information function is the sum of the individual IIFs, its plot will also exhibit
peaks and valleys.
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. irtgraph tif, se
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In the above example, we presented the GRM. The irt command also supports other models
for categorical responses; see [IRT] irt nrm for a discussion of the nominal response model (NRM),
[IRT] irt pcm for a discussion of the partial credit model (PCM), and [IRT] irt rsm for a discussion
of the rating scale model (RSM).

In addition to binary and categorical IRT models, the irt command allows you to apply different
models to subsets of items and perform a single calibration for the whole instrument. We call such
models hybrid IRT models; see [IRT] irt hybrid for a further discussion and examples.
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