STATA FUNCTIONS REFERENCE MANUAL RELEASE 14

A Stata Press Publication
StataCorp LLC
College Station, Texas

Copyright (c) 1985-2015 StataCorp LLC
All rights reserved
Version 14

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
Typeset in $\mathrm{T}_{\mathrm{E}} X$
ISBN-10: 1-59718-151-X
ISBN-13: 978-1-59718-151-8

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means-electronic, mechanical, photocopy, recording, or otherwise-without the prior written permission of StataCorp LLC unless permitted subject to the terms and conditions of a license granted to you by StataCorp LLC to use the software and documentation. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document.
StataCorp provides this manual "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make improvements and/or changes in the product(s) and the program(s) described in this manual at any time and without notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto DVD, CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright (c) 1979 by Consumers Union of U.S., Inc., Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, STETE Stata Press, Mata, IDPTE and NetCourse are registered trademarks of StataCorp LLC.
Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.
NetCourseNow is a trademark of StataCorp LLC.
Other brand and product names are registered trademarks or trademarks of their respective companies.
For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is
StataCorp. 2015. Stata: Release 14. Statistical Software. College Station, TX: StataCorp LLC.

Contents

intro Introduction to functions reference manual 1
Functions by category 2
Functions by name 18
Date and time functions 33
Mathematical functions 46
Matrix functions 52
Programming functions 58
Random-number functions 68
Selecting time-span functions 78
Statistical functions 80
String functions 118
Trigonometric functions 148
Subject and author index 151

Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals. For example,
[U] 26 Overview of Stata estimation commands
[R] regress
[XT] xtreg
The first example is a reference to chapter 26, Overview of Stata estimation commands, in the User's Guide; the second is a reference to the regress entry in the Base Reference Manual; and the third is a reference to the xtreg entry in the Longitudinal-Data/Panel-Data Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM]	Getting Started with Stata for Mac
[GSU]	Getting Started with Stata for Unix
[GSW]	Getting Started with Stata for Windows
[U]	Stata User's Guide
[R]	Stata Base Reference Manual
[BAYES]	Stata Bayesian Analysis Reference Manual
[D]	Stata Data Management Reference Manual
[FN]	Stata Functions Reference Manual
[G]	Stata Graphics Reference Manual
[IRT]	Stata Item Response Theory Reference Manual
[XT]	Stata Longitudinal-Data/Panel-Data Reference Manual
[ME]	Stata Multilevel Mixed-Effects Reference Manual
[MI]	Stata Multiple-Imputation Reference Manual
[MV]	Stata Multivariate Statistics Reference Manual
[PSS]	Stata Power and Sample-Size Reference Manual
[P]	Stata Programming Reference Manual
[SEM]	Stata Structural Equation Modeling Reference Manual
[SVY]	Stata Survey Data Reference Manual
[ST]	Stata Survival Analysis Reference Manual
[TS]	Stata Time-Series Reference Manual
[TE]	Stata Treatment-Effects Reference Manual:
[I]	Sotential Outcomes/Counterfactual Outcomes
Stata Glossary and Index	
[M]	Mata Reference Manual

Title

intro - Introduction to functions reference manual

Description

This manual describes the functions allowed by Stata. For information on Mata functions, see [M-4] intro.

A quick note about missing values: Stata denotes a numeric missing value by ., .a, .b, ..., or .z. A string missing value is denoted by "" (the empty string). Here any one of these may be referred to by missing. If a numeric value x is missing, then $x \geq$. is true. If a numeric value x is not missing, then $x<$. is true.

See [U] 12.2.1 Missing values for details.

Reference

Cox, N. J. 2011. Speaking Stata: Fun and fluency with functions. Stata Journal 11: 460-471.

Also see

[U] 1.3 What's new

Title

Functions by category

Contents

Date and time functions Mathematical functions Matrix functions Programming functions Random-number functions Selecting time-span functions Statistical functions String functions Trigonometric functions

Date and time functions

the e_{b} business date corresponding to e_{d}
the $e_{t C}$ datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to e_{d}, h, m, s
the $e_{t C}$ datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to h, m, s on 01 jan 1960
the $e_{t C}$ datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to s_{1} based on s_{2} and Y
the $e_{t c}$ datetime (ms. since 01 jan 1960 00:00:00.000) corresponding to s_{1} based on s_{2} and Y
the $e_{t C}$ datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to M, D, Y, h, m, s
the $e_{t C}$ datetime (ms. with leap seconds since 01jan1960 00:00:00.000) of $e_{t c}(\mathrm{~ms}$. without leap seconds since 01 jan 1960 00:00:00.000)
the $e_{t c}$ datetime (ms. without leap seconds since 01jan1960 00:00:00.000) of $e_{t C}(\mathrm{~ms}$. with leap seconds since 01 jan 1960 00:00:00.000)
the $e_{t C}$ datetime (ms. with leap seconds since 01jan1960 00:00:00.000) of date e_{d} at time 00:00:00.000
the $e_{t c}$ datetime (ms. since 01 jan 1960 00:00:00.000) of date e_{d} at time 00:00:00.000
a synonym for date $\left(s_{1}, s_{2}[, Y]\right)$
the e_{d} date (days since 01 jan 1960) corresponding to s_{1} based on s_{2} and Y
the numeric day of the month corresponding to e_{d}
the $e_{t c}$ datetime (ms. since 01 jan 1960 00:00:00.000) corresponding to e_{d}, h, m, and s
the e_{d} datetime corresponding to e_{b}
the e_{d} date (days since 01 jan 1960) of datetime $e_{t C}$ (ms. with leap seconds since 01jan1960 00:00:00.000)

```
dofc(e}\mp@subsup{e}{tc}{}
dofh(e
dofm( }\mp@subsup{e}{m}{}
dofq(eq)
dofw ( }\mp@subsup{e}{w}{}\mathrm{ )
dofy( }\mp@subsup{e}{y}{}
dow (e
doy ( }\mp@subsup{e}{d}{}\mathrm{ )
halfyear( ( }\mp@subsup{e}{d}{}
halfyearly( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}[,Y]
hh(e
hhC( }\mp@subsup{e}{tC}{}
hms(h,m,s)
hofd(eg)
hours(ms)
mdy(M,D,Y)
mdyhms( }M,D,Y,h,m,s
minutes(ms)
mm}(\mp@subsup{e}{tc}{}
mmC( }\mp@subsup{e}{tC}{}
mofd(e
month(ed)
monthly( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}[,Y]
msofhours(h)
msofminutes(m)
msofseconds(s)
qofd(ed)
quarter ( }\mp@subsup{e}{d}{}\mathrm{ )
quarterly( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}[,Y]
seconds(ms)
ss}(\mp@subsup{e}{tc}{}
ssC(e}\mp@subsup{e}{tC}{}
```

the e_{d} date (days since 01 jan 1960) of datetime $e_{t c}$ (ms. since 01jan1960 00:00:00.000)
the e_{d} date (days since 01 jan 1960) of the start of half-year e_{h} the e_{d} date (days since 01 jan 1960) of the start of month e_{m} the e_{d} date (days since 01 jan 1960) of the start of quarter e_{q} the e_{d} date (days since 01 jan 1960) of the start of week e_{w} the e_{d} date (days since 01 jan 1960) of 01 jan in year e_{y} the numeric day of the week corresponding to date $e_{d} ; 0=$ Sunday, $1=$ Monday, $\ldots, 6=$ Saturday
the numeric day of the year corresponding to date e_{d} the numeric half of the year corresponding to date e_{d} the e_{h} half-yearly date (half-years since 1960h1) corresponding to s_{1} based on s_{2} and $Y ; Y$ specifies topyear; see date()
the hour corresponding to datetime $e_{t c}$ (ms. since 01jan1960 00:00:00.000)
the hour corresponding to datetime $e_{t C}$ (ms. with leap seconds since 01jan1960 00:00:00.000)
the $e_{t c}$ datetime (ms. since 01 jan 1960 00:00:00.000) corresponding to h, m, s on 01 jan 1960
the e_{h} half-yearly date (half years since 1960h1) containing date e_{d} ms/3,600,000
the e_{d} date (days since 01 jan 1960) corresponding to M, D, Y
the $e_{t c}$ datetime (ms. since 01 jan 1960 00:00:00.000) corresponding to M, D, Y, h, m, s
$m s / 60,000$
the minute corresponding to datetime $e_{t c}$ (ms. since 01 jan 1960 00:00:00.000)
the minute corresponding to datetime $e_{t C}$ (ms. with leap seconds since 01jan1960 00:00:00.000)
the e_{m} monthly date (months since 1960 ml) containing date e_{d} the numeric month corresponding to date e_{d}
the e_{m} monthly date (months since 1960 ml) corresponding to s_{1} based on s_{2} and $Y ; Y$ specifies topyear; see date()
$h \times 3,600,000$
$m \times 60,000$
$s \times 1,000$
the e_{q} quarterly date (quarters since 1960q1) containing date e_{d} the numeric quarter of the year corresponding to date e_{d} the e_{q} quarterly date (quarters since 1960 q 1) corresponding to s_{1} based on s_{2} and $Y ; Y$ specifies topyear; see date()
ms/1,000
the second corresponding to datetime $e_{t c}$ (ms. since 01jan1960 00:00:00.000)
the second corresponding to datetime $e_{t C}$ (ms. with leap seconds since 01 jan 1960 00:00:00.000)

```
tC(l)
tc(l)
td(l)
th(l)
tm(l)
tq(l)
tw (l)
week( }\mp@subsup{e}{d}{}\mathrm{ )
weekly( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}[,Y]
wofd(eg)
year(ed)
yearly( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{[}[,Y]
yh(Y,H)
ym(Y,M)
yofd(ed)
yq(Y,Q)
yw (Y,W)
```


Mathematical functions

invcloglog (x)
convenience function to make typing dates and times in expressions easier
convenience function to make typing dates and times in expressions easier
convenience function to make typing dates in expressions easier
convenience function to make typing half-yearly dates in expressions easier
convenience function to make typing monthly dates in expressions easier
convenience function to make typing quarterly dates in expressions easier
convenience function to make typing weekly dates in expressions easier
the numeric week of the year corresponding to date e_{d}, the $\% \mathrm{td}$ encoded date (days since 01jan1960)
the e_{w} weekly date (weeks since 1960 w 1) corresponding to s_{1} based on s_{2} and $Y ; Y$ specifies topyear; see date()
the e_{w} weekly date (weeks since 1960 w 1) containing date e_{d}
the numeric year corresponding to date e_{d}
the e_{y} yearly date (year) corresponding to s_{1} based on s_{2} and Y; Y specifies topyear, see date()
the e_{h} half-yearly date (half-years since 1960h1) corresponding to year Y, half-year H
the e_{m} monthly date (months since 1960 ml) corresponding to year Y, month M
the e_{y} yearly date (year) containing date e_{d}
the e_{q} quarterly date (quarters since 1960 q 1) corresponding to year Y, quarter Q
the e_{w} weekly date (weeks since 1960 w 1) corresponding to year Y, week W

```
abs(x)
```

abs(x)
ceil(x)
ceil(x)
cloglog(x)
cloglog(x)
comb (}n,k\mathrm{)
comb (}n,k\mathrm{)
digamma(x)
digamma(x)
exp(x)
exp(x)
floor(x)
floor(x)
int(x)

```
int(x)
```

the absolute value of x
the unique integer n such that $n-1<x \leq n$; x (not ".") if x is missing, meaning that ceil(.a) $=. \mathrm{a}$
the complementary $\log -\log$ of x
the combinatorial function $n!/\{k!(n-k)!\}$
the digamma() function, $d \ln \Gamma(x) / d x$
the exponential function e^{x}
the unique integer n such that $n \leq x<n+1$; x (not ".") if x is missing, meaning that floor(.a) $=$. a
the integer obtained by truncating x toward 0 (thus, int (5.2) $=5$ and int $(-5.8)=-5$); x (not ".") if x is missing, meaning that int(.a) $=. a$
the inverse of the complementary \log-log function of x

```
invlogit(x)
ln}(x
lnfactorial(n)
lngamma(x)
log(x)
log10(x)
logit(x)
max}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{n}{}
min}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{n}{}
mod}(x,y
reldif(x,y)
```

round (x, y) or round (x)
$\operatorname{sign}(x)$
$\operatorname{sqrt}(x)$
sum (x)
trigamma (x)
trunc (x)

Matrix functions

```
cholesky(M)
colnumb (M,s)
colsof(M)
corr(M)
det(M)
diag(v)
diag0cnt(M)
el(s,i,j)
get(systemname)
hadamard(M,N)
I (n)
inv(M)
```

the inverse of the logit function of x
the natural logarithm, $\ln (x)$
the natural \log of factorial $=\ln (n!)$
$\ln \{\Gamma(x)\}$
the natural logarithm, $\ln (x)$; thus, a synonym for $\ln (x)$
the base-10 logarithm of x
the \log of the odds ratio of $x, \operatorname{logit}(x)=\ln \{x /(1-x)\}$
the maximum value of $x_{1}, x_{2}, \ldots, x_{n}$
the minimum value of $x_{1}, x_{2}, \ldots, x_{n}$
the modulus of x with respect to y
the "relative" difference $|x-y| /(|y|+1)$; 0 if both arguments are the same type of extended missing value; missing if only one argument is missing or if the two arguments are two different types of missing
x rounded in units of y or x rounded to the nearest integer if the argument y is omitted; x (not ".") if x is missing (meaning that round (.a) $=$.a and that round $(. a, y)=$.a if y is not missing) and if y is missing, then "." is returned
the sign of $x:-1$ if $x<0,0$ if $x=0,1$ if $x>0$, or missing if x is missing
the square root of x
the running sum of x, treating missing values as zero
the second derivative of $\operatorname{lng} \operatorname{lnma}(x)=d^{2} \ln \Gamma(x) / d x^{2}$
a synonym for int (x)
the Cholesky decomposition of the matrix: if $R=$ cholesky (S), then $R R^{T}=S$
the column number of M associated with column name s; missing if the column cannot be found
the number of columns of M
the correlation matrix of the variance matrix
the determinant of matrix M
the square, diagonal matrix created from the row or column vector the number of zeros on the diagonal of M
s [floor (i), floor (j)], the i, j element of the matrix named s; missing if i or j are out of range or if matrix s does not exist
a copy of Stata internal system matrix systemname
a matrix whose i, j element is $M[i, j] \cdot N[i, j]$ (if M and N are not the same size, this function reports a conformability error)
an $n \times n$ identity matrix if n is an integer; otherwise, a round $(n) \times$ round (n) identity matrix
the inverse of the matrix M

invsym(M)

issymmetric (M)
$\mathrm{J}(r, c, z)$
matmissing (M)
matuniform (r, c)
mreldif(X, Y)
nullmat (matname)
rownumb (M, s)
rowsof (M)
sweep (M, i)
trace (M)
$\operatorname{vec}(M)$
vecdiag(M)
the inverse of M if M is positive definite
1 if the matrix is symmetric; otherwise, 0
the $r \times c$ matrix containing elements z
1 if any elements of the matrix are missing; otherwise, 0
the $r \times c$ matrices containing uniformly distributed pseudorandom numbers on the interval $(0,1)$
the relative difference of X and Y, where the relative difference is defined as $\max _{i, j}\left\{\left|x_{i j}-y_{i j}\right| /\left(\left|y_{i j}\right|+1\right)\right\}$
use with the row-join $($,$) and column-join (\backslash)$ operators in programming situations
the row number of M associated with row name s; missing if the row cannot be found
the number of rows of M
matrix M with i th row/column swept
the trace of matrix M
a column vector formed by listing the elements of M, starting with the first column and proceeding column by column
the row vector containing the diagonal of matrix M

Programming functions

autocode $\left(x, n, x_{0}, x_{1}\right)$
byteorder()

```
c(name)
_caller()
```

$\operatorname{chop}(x, \epsilon)$
$\operatorname{clip}(x, a, b)$
$\operatorname{cond}(x, a, b[, c])$
e(name)
e(sample)
epsdouble()
epsfloat()
fileexists (f)
fileread (f)
filereaderror (f)
partitions the interval from x_{0} to x_{1} into n equal-length intervals and returns the upper bound of the interval that contains x
1 if your computer stores numbers by using a hilo byte order and evaluates to 2 if your computer stores numbers by using a lohi byte order
the value of the system or constant result c (name) (see [P] creturn)
version of the program or session that invoked the currently running program; see $[\mathrm{P}]$ version
$\operatorname{round}(x)$ if abs $(x-\operatorname{round}(x))<\epsilon$; otherwise, x; or x if x is missing
x if $a<x<b, b$ if $x \geq b, a$ if $x \leq a$, or missing if x is missing or if $a>b ; x$ if x is missing
a if x is true and nonmissing, b if x is false, and c if x is missing; a if c is not specified and x evaluates to missing
the value of stored result e(name); see [U] 18.8 Accessing results calculated by other programs
1 if the observation is in the estimation sample and 0 otherwise the machine precision of a double-precision number the machine precision of a floating-point number
1 if the file specified by f exists; otherwise, 0
the contents of the file specified by f
0 or positive integer, said value having the interpretation of a return code
filewrite($f, s[, r]$)

```
float(x)
fmtwidth(fmtstr)
has_eprop(name)
inlist(z,a,b,...)
inrange(z,a,b)
irecode(x, x ( , .., 稓)
```

matrix (exp)
maxbyte()
maxdouble()
maxfloat()
maxint()
maxlong()
mi $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
minbyte ()
mindouble()
minfloat()
minint()
minlong()
$\operatorname{missing}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
r(name)
recode $\left(x, x_{1}, \ldots, x_{n}\right)$
replay()
return (name)
s (name)
scalar (exp)
smallestdouble()
writes the string specified by s to the file specified by f and returns the number of bytes in the resulting file
the value of x rounded to float precision
the output length of the \%fint contained in fmtstr; missing if fintstr does not contain a valid \%fmt
1 if name appears as a word in e(properties); otherwise, 0
1 if z is a member of the remaining arguments; otherwise, 0
1 if it is known that $a \leq z \leq b$; otherwise, 0
missing if x is missing or x_{1}, \ldots, x_{n} is not weakly increasing; 0 if $x \leq x_{1}$; 1 if $x_{1}<x \leq x_{2} ; 2$ if $x_{2}<x \leq x_{3} ; \ldots ; n$ if $x>x_{n}$
restricts name interpretation to scalars and matrices; see scalar() the largest value that can be stored in storage type byte the largest value that can be stored in storage type double the largest value that can be stored in storage type float the largest value that can be stored in storage type int the largest value that can be stored in storage type long a synonym for missing $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
the smallest value that can be stored in storage type byte the smallest value that can be stored in storage type double the smallest value that can be stored in storage type float the smallest value that can be stored in storage type int the smallest value that can be stored in storage type long 1 if any x_{i} evaluates to missing; otherwise, 0
the value of the stored result r (name); see [U] 18.8 Accessing results calculated by other programs
missing if x_{1}, \ldots, x_{n} is not weakly increasing; x if x is missing; x_{1} if $x \leq x_{1} ; x_{2}$ if $x \leq x_{2}, \ldots$; otherwise, x_{n} if $x>x_{1}, x_{2}$, \ldots, x_{n-1} or $x_{i} \geq$. is interpreted as $x_{i}=+\infty$
1 if the first nonblank character of local macro ' 0 ' is a comma, or if ' 0 ' is empty
the value of the to-be-stored result r (name); see [P] return the value of stored result s (name); see [U] 18.8 Accessing results calculated by other programs
restricts name interpretation to scalars and matrices the smallest double-precision number greater than zero

Random-number functions

rbeta (a, b)
rbinomial (n, p)
$\operatorname{rchi2}(d f)$
beta (a, b) random variates, where a and b are the beta distribution shape parameters
binomial (n, p) random variates, where n is the number of trials and p is the success probability
chi-squared, with $d f$ degrees of freedom, random variates

```
rexponential(b)
rgamma( }a,b
rhypergeometric( N,K,n)
rigaussian(m,a)
rlogistic()
rlogistic(s)
rlogistic(m,s)
rnbinomial ( }n,p
rnormal()
rnormal(m)
rnormal (m,s)
rpoisson(m)
rt(df)
runiform()
runiform(a,b)
runiformint ( }a,b\mathrm{ )
rweibull ( }a,b
rweibull ( }a,b,g
rweibullph (a,b)
rweibullph(a,b,g)
```

exponential random variates with scale b
$\operatorname{gamma}(a, b)$ random variates, where a is the gamma shape parameter and b is the scale parameter
hypergeometric random variates
inverse Gaussian random variates with mean m and shape parameter a
logistic variates with mean 0 and standard deviation $\pi / \sqrt{3}$
logistic variates with mean 0 , scale s, and standard deviation $s \pi / \sqrt{3}$ logistic variates with mean m, scale s, and standard deviation $s \pi / \sqrt{3}$
negative binomial random variates
standard normal (Gaussian) random variates, that is, variates from a normal distribution with a mean of 0 and a standard deviation of 1
$\operatorname{normal}(m, 1)$ (Gaussian) random variates, where m is the mean and the standard deviation is 1
normal (m, s) (Gaussian) random variates, where m is the mean and s is the standard deviation
Poisson (m) random variates, where m is the distribution mean
Student's t random variates, where $d f$ is the degrees of freedom uniformly distributed random variates over the interval $(0,1)$
uniformly distributed random variates over the interval (a, b) uniformly distributed random integer variates on the interval $[a, b]$ Weibull variates with shape a and scale b

Weibull variates with shape a, scale b, and location g
Weibull (proportional hazards) variates with shape a and scale b
Weibull (proportional hazards) variates with shape a, scale b, and location g

Selecting time-span functions

$\operatorname{tin}\left(d_{1}, d_{2}\right)$
twithin $\left(d_{1}, d_{2}\right)$
true if $d_{1} \leq t \leq d_{2}$, where t is the time variable previously tsset true if $d_{1}<t<d_{2}$, where t is the time variable previously tsset

Statistical functions

betaden (a, b, x)
binomial (n, k, θ)

binomialp (n, k, p)
the probability density of the beta distribution, where a and b are the shape parameters; 0 if $x<0$ or $x>1$
the probability of observing floor (k) or fewer successes in floor (n) trials when the probability of a success on one trial is θ; 0 if $k<0$; or 1 if $k>n$
the probability of observing floor (k) successes in floor (n) trials when the probability of a success on one trial is p
binomialtail (n, k, θ)
binormal (h, k, ρ)
$\operatorname{chi2}(d f, x)$
chi2den $(d f, x)$
chi2tail ($d f, x$)
dgammapda (a, x)
dgammapdada (a, x)
dgammapdadx (a, x)
dgammapdx (a, x)
dgammapdxdx (a, x)
dunnettprob ($k, d f, x$)
exponential (b, x)
exponentialden (b, x)
exponentialtail (b, x)
$\mathrm{F}\left(d f_{1}, d f_{2}, f\right)$
$\operatorname{Fden}\left(d f_{1}, d f_{2}, f\right)$

Ftail $\left(d f_{1}, d f_{2}, f\right)$
gammaden (a, b, g, x)
$\operatorname{gammap}(a, x)$
gammaptail (a, x)
the probability of observing floor (k) or more successes in floor (n) trials when the probability of a success on one trial is θ; 1 if $k<0$; or 0 if $k>n$
the joint cumulative distribution $\Phi(h, k, \rho)$ of bivariate normal with correlation ρ
the cumulative χ^{2} distribution with $d f$ degrees of freedom; 0 if $x<0$
the probability density of the chi-squared distribution with $d f$ degrees of freedom; 0 if $x<0$
the reverse cumulative (upper tail or survivor) χ^{2} distribution with $d f$ degrees of freedom; 1 if $x<0$
$\frac{\partial P(a, x)}{\partial a}$, where $P(a, x)=\operatorname{gammap}(a, x) ; 0$ if $x<0$
$\frac{\partial^{2} P(a, x)}{\partial a^{2}}$, where $P(a, x)=\operatorname{gammap}(a, x) ; 0$ if $x<0$
$\frac{\partial^{2} P(a, x)}{\partial a \partial x}$, where $P(a, x)=\operatorname{gammap}(a, x) ; 0$ if $x<0$
$\frac{\partial P(a, x)}{\partial x}$, where $P(a, x)=\operatorname{gammap}(a, x) ; 0$ if $x<0$
$\frac{\partial^{2} P(a, x)}{\partial x^{2}}$, where $P(a, x)=\operatorname{gammap}(a, x) ; 0$ if $x<0$
the cumulative multiple range distribution that is used in Dunnett's multiple-comparison method with k ranges and $d f$ degrees of freedom; 0 if $x<0$
the cumulative exponential distribution with scale b
the probability density function of the exponential distribution with scale b
the reverse cumulative exponential distribution with scale b
the cumulative F distribution with $d f_{1}$ numerator and $d f_{2}$ denominator degrees of freedom: $\mathrm{F}\left(d f_{1}, d f_{2}, f\right)=\int_{0}^{f} \operatorname{Fden}\left(d f_{1}, d f_{2}, t\right)$ $d t ; 0$ if $f<0$
the probability density function of the F distribution with $d f_{1}$ numerator and $d f_{2}$ denominator degrees of freedom; 0 if $f<0$
the reverse cumulative (upper tail or survivor) F distribution with $d f_{1}$ numerator and $d f_{2}$ denominator degrees of freedom; 1 if $f<0$
the probability density function of the gamma distribution; 0 if $x<g$
the cumulative gamma distribution with shape parameter $a ; 0$ if $x<0$
the reverse cumulative (upper tail or survivor) gamma distribution with shape parameter a; 1 if $x<0$
hypergeometric (N, K, n, k) the cumulative probability of the hypergeometric distribution
hypergeometricp (N, K, n, k) the hypergeometric probability of k successes out of a sample of size n, from a population of size N containing K elements that have the attribute of interest
ibeta (a, b, x)
ibetatail (a, b, x)
the cumulative beta distribution with shape parameters a and $b ; 0$ if $x<0$; or 1 if $x>1$
the reverse cumulative (upper tail or survivor) beta distribution with shape parameters a and b; 1 if $x<0$; or 0 if $x>1$

invchi2 $(d f, p)$
invchi2tail $(d f, p)$
invdunnettprob $(k, d f, p)$

```
invexponential(b,p)
invexponentialtail ( }b,p
```

$\operatorname{invF}\left(d f_{1}, d f_{2}, p\right)$
invFtail $\left(d f_{1}, d f_{2}, p\right)$
invgammap (a, p)
invgammaptail (a, p)
invibeta (a, b, p)
invibetatail (a, b, p)
invigaussian (m, a, p)
invigaussiantail (m, a, p)
invlogistic (p)
invlogistic (s, p)
invlogistic (m, s, p)
the cumulative inverse Gaussian distribution with mean m and shape parameter a; 0 if $x \leq 0$
the probability density of the inverse Gaussian distribution with mean m and shape parameter $a ; 0$ if $x \leq 0$
the reverse cumulative (upper tail or survivor) inverse Gaussian distribution with mean m and shape parameter a; 1 if $x \leq 0$
the inverse of the cumulative binomial; that is, $\theta(\theta=$ probability of success on one trial) such that the probability of observing floor (k) or fewer successes in floor (n) trials is p
the inverse of the right cumulative binomial; that is, $\theta(\theta=$ probability of success on one trial) such that the probability of observing floor (k) or more successes in floor (n) trials is p
the inverse of $\operatorname{chi2}():$ if $\operatorname{chi2}(d f, x)=p$, then $\operatorname{invchi2}(d f, p)=$ x
the inverse of chi2tail(): if chi2tail $(d f, x)=p$, then invchi2tail $(d f, p)=x$
the inverse cumulative multiple range distribution that is used in Dunnett's multiple-comparison method with k ranges and $d f$ degrees of freedom
the inverse cumulative exponential distribution with scale b : if exponential $(b, x)=p$, then invexponential $(b, p)=x$
the inverse reverse cumulative exponential distribution with scale b : if exponentialtail $(b, x)=p$, then invexponentialtail $(b, p)=x$
the inverse cumulative F distribution: if $\mathrm{F}\left(d f_{1}, d f_{2}, f\right)=p$, then $\operatorname{invF}\left(d f_{1}, d f_{2}, p\right)=f$
the inverse reverse cumulative (upper tail or survivor) F distribution: if Ftail $\left(d f_{1}, d f_{2}, f\right)=p$, then invFtail $\left(d f_{1}, d f_{2}, p\right)=f$
the inverse cumulative gamma distribution: if $\operatorname{gamap}(a, x)=p$, then $\operatorname{invgammap}(a, p)=x$
the inverse reverse cumulative (upper tail or survivor) gamma distribution: if gammaptail $(a, x)=p$, then invgammaptail (a, p) $=x$
the inverse cumulative beta distribution: if $\operatorname{ibeta}(a, b, x)=p$, then invibeta $(a, b, p)=x$
the inverse reverse cumulative (upper tail or survivor) beta distribution: if ibetatail $(a, b, x)=p$, then invibetatail (a, b, p) $=x$
the inverse of igaussian(): if $\operatorname{igaussian}(m, a, x)=p$, then invigaussian $(m, a, p)=x$
the inverse of igaussiantail(): if igaussiantail $(m, a, x)=p$, then invigaussiantail (m, a, p x
the inverse cumulative logistic distribution: if $\operatorname{logistic}(x)=p$, then invlogistic $(p)=x$
the inverse cumulative logistic distribution: if $\operatorname{logistic}(s, x)=p$, then invlogistic $(s, p)=x$
the inverse cumulative logistic distribution: if logistic (m, s, x) $=p$, then invlogistic $(m, s, p)=x$

invnbinomial (n, k, q)
invnbinomialtail (n, k, q)

$\operatorname{invnF}\left(d f_{1}, d f_{2}, n p, p\right)$
invnFtail $\left(d f_{1}, d f_{2}, n p, p\right)$
invnibeta $(a, b, n p, p)$
invnormal(p)
invnt ($d f, n p, p$)
invnttail ($d f, n p, p$)
invpoisson (k, p)
invpoissontail (k, q)
$\operatorname{invt}(d f, p)$
invttail ($d f, p$)
invtukeyprob ($k, d f, p$)
invweibull (a, b, p)
invweibull (a, b, g, p)
the inverse reverse cumulative logistic distribution: if $\operatorname{logistictail}(x)=p$, then invlogistictail $(p)=x$
the inverse reverse cumulative logistic distribution: if $\operatorname{logistictail}(s, x)=p$, then invlogistictail $(s, p)=x$
the inverse reverse cumulative logistic distribution: if $\operatorname{logistictail}(m, s, x)=p$, then invlogistictail $(m, s, p)=x$
the value of the negative binomial parameter, p, such that $q=$ nbinomial (n, k, p)
the value of the negative binomial parameter, p, such that $q=$ nbinomialtail (n, k, p)
the inverse cumulative noncentral χ^{2} distribution: if $\operatorname{nchi2}(d f, n p, x)=p$, then invnchi2 $(d f, n p, p)=x$
the inverse reverse cumulative (upper tail or survivor) noncentral χ^{2} distribution: if nchi2tail $(d f, n p, x)=p$, then invnchi2tail $(d f, n p, p)=x$
the inverse cumulative noncentral F distribution: if $\mathrm{nF}\left(d f_{1}, d f_{2}, n p, f\right)=p$, then $\operatorname{invnF}\left(d f_{1}, d f_{2}, n p, p\right)=f$
the inverse reverse cumulative (upper tail or survivor) noncentral F distribution: if $\mathrm{nFtail}\left(d f_{1}, d f_{2}, n p, x\right)=p$, then invnFtail $\left(d f_{1}, d f_{2}, n p, p\right)=x$
the inverse cumulative noncentral beta distribution: if $\operatorname{nibeta}(a, b, n p, x)=p$, then invibeta $(a, b, n p, p)=x$
the inverse cumulative standard normal distribution: if normal (z) $=p$, then invnormal $(p)=z$
the inverse cumulative noncentral Student's t distribution: if $\mathrm{nt}(d f, n p, t)=p$, then $\operatorname{invnt}(d f, n p, p)=t$
the inverse reverse cumulative (upper tail or survivor) noncentral Student's t distribution: if nttail $(d f, n p, t)=p$, then invnttail ($d f, n p, p$) $=t$
the Poisson mean such that the cumulative Poisson distribution evaluated at k is p : if poisson $(m, k)=p$, then invpoisson (k, p) $=m$
the Poisson mean such that the reverse cumulative Poisson distribution evaluated at k is q : if poissontail $(m, k)=q$, then invpoissontail $(k, q)=m$
the inverse cumulative Student's t distribution: if $\mathrm{t}(d f, t)=p$, then $\operatorname{invt}(d f, p)=t$
the inverse reverse cumulative (upper tail or survivor) Student's t distribution: if ttail $(d f, t)=p$, then invttail $(d f, p)=t$
the inverse cumulative Tukey's Studentized range distribution with k ranges and $d f$ degrees of freedom
the inverse cumulative Weibull distribution with shape a and scale b : if weibull $(a, b, x)=p$, then invweibull $(a, b, p)=x$
the inverse cumulative Weibull distribution with shape a, scale b, and location g : if weibull $(a, b, g, x)=p$, then invweibull $(a, b, g, p)=x$
invweibullph (a, b, p)
invweibullph (a, b, g, p)
invweibullphtail (a, b, p)
invweibullphtail (a, b, g, p)

Inigammaden (a, b, x)
lnigaussianden(m, a, x)
lniwishartden $(d f, V, X)$
lnmvnormalden (M, V, X)
lnnormal (z)
Innormalden (z)
Innormalden (x, σ)

Innormalden (x, μ, σ)
lnwishartden $(d f, V, X)$
logistic (x)
logistic (s, x)
$\operatorname{logistic}(m, s, x)$
logisticden (x)
logisticden (s, x)
$\operatorname{logisticden}(m, s, x)$
logistictail (x)
the inverse cumulative Weibull (proportional hazards) distribution with shape a and scale b : if weibullph $(a, b, x)=p$, then invweibullph $(a, b, p)=x$
the inverse cumulative Weibull (proportional hazards) distribution with shape a, scale b, and location g : if weibullph $(a, b, g, x)=$ p, then invweibullph $(a, b, g, p)=x$
the inverse reverse cumulative Weibull (proportional hazards) distribution with shape a and scale b : if weibullphtail $(a, b, x)=p$, then invweibullphtail $(a, b, p)=x$
the inverse reverse cumulative Weibull (proportional hazards) distribution with shape a, scale b, and location g : if weibullphtail $(a, b, g, x)=p$, then invweibullphtail $(a, b, g, p)=x$
the inverse reverse cumulative Weibull distribution with shape a and scale b : if weibulltail $(a, b, x)=p$, then invweibulltail $(a, b, p)=x$
the inverse reverse cumulative Weibull distribution with shape a, scale b, and location g : if weibulltail $(a, b, g, x)=p$, then invweibulltail $(a, b, g, p)=x$
the natural logarithm of the inverse gamma density, where a is the shape parameter and b is the scale parameter
the natural logarithm of the inverse Gaussian density with mean m and shape parameter a
the natural logarithm of the density of the inverse Wishart distribution; missing if $d f \leq n-1$
the natural logarithm of the multivariate normal density
the natural logarithm of the cumulative standard normal distribution the natural logarithm of the standard normal density, $N(0,1)$
the natural logarithm of the normal density with mean 0 and standard deviation σ
the natural logarithm of the normal density with mean μ and standard deviation $\sigma, N\left(\mu, \sigma^{2}\right)$
the natural logarithm of the density of the Wishart distribution; missing if $d f \leq n-1$
the cumulative logistic distribution with mean 0 and standard deviation $\pi / \sqrt{3}$
the cumulative logistic distribution with mean 0 , scale s, and standard deviation $s \pi / \sqrt{3}$
the cumulative logistic distribution with mean m, scale s, and standard deviation $s \pi / \sqrt{3}$
the density of the logistic distribution with mean 0 and standard deviation $\pi / \sqrt{3}$
the density of the logistic distribution with mean 0 , scale s, and standard deviation $s \pi / \sqrt{3}$
the density of the logistic distribution with mean m, scale s, and standard deviation $s \pi / \sqrt{3}$
the reverse cumulative logistic distribution with mean 0 and standard deviation $\pi / \sqrt{3}$
logistictail (s, x)
logistictail (m, s, x)
nbetaden $(a, b, n p, x)$
nbinomial (n, k, p)
nbinomialp (n, k, p)
nbinomialtail (n, k, p)
$\operatorname{nchi2}(d f, n p, x)$
nchi2den ($d f, n p, x$)
nchi2tail ($d f, n p, x$)
$\mathrm{nF}\left(d f_{1}, d f_{2}, n p, f\right)$
$\operatorname{nFden}\left(d f_{1}, d f_{2}, n p, f\right)$
$\mathrm{nFtail}\left(d f_{1}, d f_{2}, n p, f\right)$
nibeta $(a, b, n p, x)$
normal (z)
normalden (z)
normalden (x, σ)
normalden (x, μ, σ)
npnchi2 ($d f, x, p$)
$\operatorname{npnF}\left(d f_{1}, d f_{2}, f, p\right)$
$\operatorname{npnt}(d f, t, p)$
$\operatorname{nt}(d f, n p, t)$
$\operatorname{ntden}(d f, n p, t)$
nttail ($d f, n p, t$)
poisson (m, k)
poissonp (m, k)
the reverse cumulative logistic distribution with mean 0 , scale s, and standard deviation $s \pi / \sqrt{3}$
the reverse cumulative logistic distribution with mean m, scale s, and standard deviation $s \pi / \sqrt{3}$
the probability density function of the noncentral beta distribution; 0 if $x<0$ or $x>1$
the cumulative probability of the negative binomial distribution
the negative binomial probability
the reverse cumulative probability of the negative binomial distribution
the cumulative noncentral χ^{2} distribution; 0 if $x<0$
the probability density of the noncentral χ^{2} distribution; 0 if $x<0$
the reverse cumulative (upper tail or survivor) noncentral χ^{2} distribution; 1 if $x<0$
the cumulative noncentral F distribution with $d f_{1}$ numerator and $d f_{2}$ denominator degrees of freedom and noncentrality parameter $n p$; 0 if $f<0$
the probability density function of the noncentral F distribution with $d f_{1}$ numerator and $d f_{2}$ denominator degrees of freedom and noncentrality parameter $n p ; 0$ if $f<0$
the reverse cumulative (upper tail or survivor) noncentral F distribution with $d f_{1}$ numerator and $d f_{2}$ denominator degrees of freedom and noncentrality parameter $n p ; 1$ if $f<0$
the cumulative noncentral beta distribution; 0 if $x<0$; or 1 if $x>1$
the cumulative standard normal distribution
the standard normal density, $N(0,1)$
the normal density with mean 0 and standard deviation σ the normal density with mean μ and standard deviation $\sigma, N\left(\mu, \sigma^{2}\right)$ the noncentrality parameter, $n p$, for noncentral χ^{2} : if $\operatorname{nchi2}(d f, n p, x)=p$, then npnchi2 $(d f, x, p)=n p$
the noncentrality parameter, $n p$, for the noncentral F : if $\mathrm{nF}\left(d f_{1}, d f_{2}, n p, f\right)=p$, then $\operatorname{npnF}\left(d f_{1}, d f_{2}, f, p\right)=n p$
the noncentrality parameter, $n p$, for the noncentral Student's t distribution: if nt $(d f, n p, t)=p$, then npnt $(d f, t, p)=n p$
the cumulative noncentral Student's t distribution with $d f$ degrees of freedom and noncentrality parameter $n p$
the probability density function of the noncentral Student's t distribution with $d f$ degrees of freedom and noncentrality parameter $n p$
the reverse cumulative (upper tail or survivor) noncentral Student's t distribution with $d f$ degrees of freedom and noncentrality parameter $n p$
the probability of observing floor (k) or fewer outcomes that are distributed as Poisson with mean m
the probability of observing f loor (k) outcomes that are distributed as Poisson with mean m

```
poissontail(m,k)
t (df,t)
tden(df,t)
ttail(df,t)
tukeyprob(k,df,x)
weibull ( }a,b,x
weibull ( }a,b,g,x
weibullden( }a,b,x
weibullden( }a,b,g,x
weibullph(a,b,x)
weibullph(a,b,g,x)
weibullphden(a,b,x)
weibullphden( }a,b,g,x
weibullphtail( }a,b,x
weibullphtail( }a,b,g,x
weibulltail( }a,b,x
weibulltail( }a,b,g,x
```


String functions

```
abbrev( }s,n
char(n)
collatorlocale(loc,type)
```

collatorversion (loc)
indexnot (s_{1}, s_{2})
plural (n, s)
plural (n, s_{1}, s_{2})
real (s)
the probability of observing floor (k) or more outcomes that are distributed as Poisson with mean m
the cumulative Student's t distribution with $d f$ degrees of freedom the probability density function of Student's t distribution
the reverse cumulative (upper tail or survivor) Student's t distribution; the probability $T>t$
the cumulative Tukey's Studentized range distribution with k ranges and $d f$ degrees of freedom; 0 if $x<0$
the cumulative Weibull distribution with shape a and scale b
the cumulative Weibull distribution with shape a, scale b, and location g
the probability density function of the Weibull distribution with shape a and scale b
the probability density function of the Weibull distribution with shape a, scale b, and location g
the cumulative Weibull (proportional hazards) distribution with shape a and scale b
the cumulative Weibull (proportional hazards) distribution with shape a, scale b, and location g
the probability density function of the Weibull (proportional hazards) distribution with shape a and scale b
the probability density function of the Weibull (proportional hazards) distribution with shape a, scale b, and location g
the reverse cumulative Weibull (proportional hazards) distribution with shape a and scale b
the reverse cumulative Weibull (proportional hazards) distribution with shape a, scale b, and location g
the reverse cumulative Weibull distribution with shape a and scale b
the reverse cumulative Weibull distribution with shape a, scale b, and location g
name s, abbreviated to a length of n
the character corresponding to ASCII or extended ASCII code n; "" if n is not in the domain
the most closely related locale supported by ICU from loc if type is 1 ; the actual locale where the collation data comes from if type is 2
the version string of a collator based on locale loc
the position in ASCII string s_{1} of the first character of s_{1} not found in ASCII string s_{2}, or 0 if all characters of s_{1} are found in s_{2} the plural of s if $n \neq \pm 1$
the plural of s_{1}, as modified by or replaced with s_{2}, if $n \neq \pm 1$
s converted to numeric or missing

```
regexm(s,re)
regexr ( s s ,re, s2)
regexs(n)
soundex(s)
soundex_nara(s)
strcat ( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}
strdup (s1,n)
string(n)
string(n,s)
stritrim(s)
strlen(s)
strlower(s)
strltrim(s)
strmatch( s},\mp@code{s}\mp@subsup{s}{2}{}
strofreal(n)
strofreal(n,s)
strpos ( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}
strproper(s)
```

strreverse (s)
$\operatorname{strrpos}\left(s_{1}, s_{2}\right)$
strrtrim(s)
strtoname ($s[, p]$)
strtrim(s)
strupper (s)
subinstr $\left(s_{1}, s_{2}, s_{3}, n\right)$
subinword $\left(s_{1}, s_{2}, s_{3}, n\right)$
$\operatorname{substr}\left(s, n_{1}, n_{2}\right)$
tobytes $(s[, n])$
$\operatorname{substr}\left(s, n_{1}, n_{2}\right)$
tobytes $(s[, n])$
$\operatorname{uchar}(n)$
udstrlen (s)
udsubstr $\left(s, n_{1}, n_{2}\right)$
uisdigit(s)
uisletter (s)
ustrcompare ($\left.s_{1}, s_{2}[, l o c]\right)$
ustrcompareex $\left(s_{1}, s_{2}, l o c, s t\right.$

1 if the first Unicode character in s is a Unicode decimal digit; otherwise, 0
1 if the first Unicode character in s is a Unicode letter; otherwise, 0
compares two Unicode strings
compares two Unicode strings
ustrfix $(s[, r e p])$ replaces each invalid UTF-8 sequence with a Unicode character
ustrfrom (s,enc, mode)
ustrinvalident(s)
ustrleft (s, n)
ustrlen(s)
ustrlower(s[,loc])
ustrltrim(s)
ustrnormalize(s,norm)
$\operatorname{ustrpos}\left(s_{1}, s_{2}[, n]\right) \quad$ the position in s_{1} at which s_{2} is first found; otherwise, 0
$\operatorname{ustrregexm}(s, r e[, n o c])$
performs a match of a regular expression and evaluates to 1 if regular expression $r e$ is satisfied by the Unicode string s; otherwise, 0
ustrregexra ($s_{1}, r e, s_{2}[, n o c]$) replaces all substrings within the Unicode string s_{1} that match re with s_{2} and returns the resulting string
ustrregexrf ($s_{1}, r e, s_{2}[, n o c]$) replaces the first substring within the Unicode string s_{1} that matches $r e$ with s_{2} and returns the resulting string

ustrregexs (n)	subexpression n from a previous ustrregexm() match
ustrreverse (s)	reverses the Unicode string s
ustrright (s, n)	the last n Unicode characters of the Unicode string s
ustrrpos $\left(s_{1}, s_{2},[, n]\right)$	the position in s_{1} at which s_{2} is last found; otherwise, 0
ustrrtrim (s)	remove trailing Unicode whitespace characters and blanks from the Unicode string s
ustrsortkey $(s[, l o c])$	generates a null-terminated byte array that can be used by the sort command to produce the same order as ustrcompare()

ustrsortkeyex ($s, l o c$, st, case, cslv, norm, num, alt, fr)
generates a null-terminated byte array that can be used by the sort command to produce the same order as ustrcompare()
ustrtitle(s[,loc])
ustrto ($s, e n c$, mode)
ustrtohex ($s[, n]$)
ustrtoname ($s[, p]$)
ustrtrim(s)
a string with the first characters of Unicode words titlecased and other characters lowercased
converts the Unicode string s in UTF- 8 encoding to a string in encoding enc
escaped hex digit string of s up to 200 Unicode characters
string s translated into a Stata name
removes leading and trailing Unicode whitespace characters and blanks from the Unicode string s
ustrunescape (s)
ustrupper ($s[, l o c]$)
ustrword (s,n[,noc])
ustrwordcount ($s[, l o c]$)
usubinstr $\left(s_{1}, s_{2}, s_{3}, n\right)$
usubstr $\left(s, n_{1}, n_{2}\right)$
word (s, n)
wordbreaklocale(loc,type)
wordcount (s)
the Unicode string corresponding to the escaped sequences of s uppercase all characters in string s under the given locale loc the nth Unicode word in the Unicode string s
the number of nonempty Unicode words in the Unicode string s replaces the first n occurrences of the Unicode string s_{2} with the Unicode string s_{3} in s_{1}
the Unicode substring of s, starting at n_{1}, for a length of n_{2} the nth word in s; missing ("") if n is missing the most closely related locale supported by ICU from loc if type is 1 , the actual locale where the word-boundary analysis data come from if type is 2 ; or an empty string is returned for any other type
the number of words in s

Trigonometric functions

```
```

acos(x)

```
```

acos(x)
acosh(x)
acosh(x)
asin(x)
asin(x)
asinh(x)
asinh(x)
atan(x)
atan(x)
atan2(y,x)
atan2(y,x)
atanh(x)
atanh(x)
cos(x)
cos(x)
cosh(x)
cosh(x)
sin(x)
sin(x)
sinh (x)
sinh (x)
tan(x)
tan(x)
tanh(x)

```
```

tanh(x)

```
```

the radian value of the arccosine of x the inverse hyperbolic cosine of x the radian value of the arcsine of x the inverse hyperbolic sine of x the radian value of the arctangent of x
the radian value of the arctangent of y / x, where the signs of the parameters y and x are used to determine the quadrant of the answer
the inverse hyperbolic tangent of x
the cosine of x, where x is in radians
the hyperbolic cosine of x
the sine of x, where x is in radians
the hyperbolic sine of x
the tangent of x, where x is in radians
the hyperbolic tangent of x

Also see

[D] egen - Extensions to generate
[M-5] intro - Alphabetical index to functions
[U] 13.3 Functions
[U] 14.8 Matrix functions

Title

Functions by name

```
abbrev( }s,n
abs(x)
acos(x)
acosh(x)
asin(x)
asinh(x)
atan(x)
atan2(y,x)
```

atanh (x)
autocode $\left(x, n, x_{0}, x_{1}\right)$
betaden (a, b, x)
binomial (n, k, θ)
binomialp (n, k, p)
binomialtail (n, k, θ)
binormal (h, k, ρ)
bofd("cal", e_{d})
byteorder()
c (name)
_caller()
Cdhms $\left(e_{d}, h, m, s\right)$
$\operatorname{ceil}(x)$
char (n)
$\operatorname{chi} 2(d f, x)$
chi2den $(d f, x)$
name s, abbreviated to a length of n
the absolute value of x
the radian value of the arccosine of x
the inverse hyperbolic cosine of x
the radian value of the arcsine of x
the inverse hyperbolic sine of x
the radian value of the arctangent of x
the radian value of the arctangent of y / x, where the signs of the parameters y and x are used to determine the quadrant of the answer
the inverse hyperbolic tangent of x
partitions the interval from x_{0} to x_{1} into n equal-length intervals and returns the upper bound of the interval that contains x
the probability density of the beta distribution, where a and b are the shape parameters; 0 if $x<0$ or $x>1$
the probability of observing floor (k) or fewer successes in floor (n) trials when the probability of a success on one trial is θ; 0 if $k<0$; or 1 if $k>n$
the probability of observing floor (k) successes in floor (n) trials when the probability of a success on one trial is p
the probability of observing floor (k) or more successes in floor (n) trials when the probability of a success on one trial is θ; 1 if $k<0$; or 0 if $k>n$
the joint cumulative distribution $\Phi(h, k, \rho)$ of bivariate normal with correlation ρ
the e_{b} business date corresponding to e_{d}
1 if your computer stores numbers by using a hilo byte order and evaluates to 2 if your computer stores numbers by using a lohi byte order
the value of the system or constant result c (name) (see $[\mathrm{P}]$ creturn)
version of the program or session that invoked the currently running program; see [P$]$ version
the $e_{t C}$ datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to e_{d}, h, m, s
the unique integer n such that $n-1<x \leq n$; x (not ".") if x is missing, meaning that ceil (.a) $=$. a
the character corresponding to ASCII or extended ASCII code n; " " if n is not in the domain
the cumulative χ^{2} distribution with $d f$ degrees of freedom; 0 if $x<0$
the probability density of the chi-squared distribution with $d f$ degrees of freedom; 0 if $x<0$
chi2tail $(d f, x)$
Chms (h, m, s)
$\operatorname{chop}(x, \epsilon)$
cholesky (M)
$\operatorname{clip}(x, a, b)$
$\operatorname{Clock}\left(s_{1}, s_{2}[, Y]\right)$
$\operatorname{clock}\left(s_{1}, s_{2}[, Y]\right)$
cloglog (x)
Cmdyhms (M, D, Y, h, m, s)
$\operatorname{Cofc}\left(e_{t c}\right)$
$\operatorname{cofC}\left(e_{t C}\right)$
$\operatorname{Cofd}\left(e_{d}\right)$
$\operatorname{cofd}\left(e_{d}\right)$
collatorlocale(loc,type)
collatorversion(loc)
colnumb (M, s)
colsof (M)
comb (n, k)
$\operatorname{cond}(x, a, b[, c])$
$\operatorname{corr}(M)$
$\cos (x)$
$\cosh (x)$
daily $\left(s_{1}, s_{2}[, Y]\right)$
$\operatorname{date}\left(s_{1}, s_{2}[, Y]\right)$
$\operatorname{day}\left(e_{d}\right)$
$\operatorname{det}(M)$
dgammapda (a, x)
the reverse cumulative (upper tail or survivor) χ^{2} distribution with $d f$ degrees of freedom; 1 if $x<0$
the $e_{t C}$ datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to h, m, s on 01 jan 1960
$\operatorname{round}(x)$ if abs $(x-\operatorname{round}(x))<\epsilon$; otherwise, x; or x if x is missing
the Cholesky decomposition of the matrix: if $R=$ cholesky (S), then $R R^{T}=S$
x if $a<x<b, b$ if $x \geq b, a$ if $x \leq a$, or missing if x is missing or if $a>b ; x$ if x is missing
the $e_{t C}$ datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to s_{1} based on s_{2} and Y
the $e_{t c}$ datetime (ms. since 01 jan 1960 00:00:00.000) corresponding to s_{1} based on s_{2} and Y
the complementary $\log -\log$ of x
the $e_{t C}$ datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to M, D, Y, h, m, s
the $e_{t C}$ datetime (ms. with leap seconds since 01jan1960 00:00:00.000) of $e_{t c}$ (ms. without leap seconds since 01jan1960 00:00:00.000)
the $e_{t c}$ datetime (ms. without leap seconds since 01jan1960 00:00:00.000) of $e_{t C}$ (ms. with leap seconds since 01jan1960 00:00:00.000)
the $e_{t C}$ datetime (ms. with leap seconds since 01jan1960 00:00:00.000) of date e_{d} at time 00:00:00.000
the $e_{t c}$ datetime (ms. since 01 jan 1960 00:00:00.000) of date e_{d} at time 00:00:00.000
the most closely related locale supported by ICU from loc if type is 1 ; the actual locale where the collation data comes from if type is 2
the version string of a collator based on locale loc
the column number of M associated with column name s; missing if the column cannot be found
the number of columns of M
the combinatorial function $n!/\{k!(n-k)!\}$
a if x is true and nonmissing, b if x is false, and c if x is missing; a if c is not specified and x evaluates to missing
the correlation matrix of the variance matrix
the cosine of x, where x is in radians
the hyperbolic cosine of x
a synonym for date ($s_{1}, s_{2}[, Y]$)
the e_{d} date (days since 01 jan 1960) corresponding to s_{1} based on s_{2} and Y
the numeric day of the month corresponding to e_{d}
the determinant of matrix M
$\frac{\partial P(a, x)}{\partial a}$, where $P(a, x)=\operatorname{gammap}(a, x) ; 0$ if $x<0$

```
dgammapdada(a,x)
dgammapdadx ( }a,x\mathrm{ )
dgammapdx ( a,x)
dgammapdxdx ( }a,x\mathrm{ )
dhms( }\mp@subsup{e}{d}{},h,m,s
diag(v)
diag0cnt(M)
digamma(x)
dofb(e ( 
dofC}(\mp@subsup{e}{tC}{}
dofc}(\mp@subsup{e}{tc}{}
dofh( }\mp@subsup{e}{h}{}\mathrm{ )
dofm(em)
dofq(eq)
dofw (ew)
dofy(ey)
dow (ed)
doy (e}\mp@subsup{e}{d}{}
dunnettprob( }k,df,x
```

e(name)
$\mathrm{el}(s, i, j)$
e(sample)
epsdouble()
epsfloat()
$\exp (x)$
exponential (b, x)
exponentialden (b, x)
exponentialtail (b, x)
$\mathrm{F}\left(d f_{1}, d f_{2}, f\right)$
$\operatorname{Fden}\left(d f_{1}, d f_{2}, f\right)$
$\frac{\partial^{2} P(a, x)}{\partial a^{2}}$, where $P(a, x)=\operatorname{gammap}(a, x) ; 0$ if $x<0$
$\frac{\partial^{2} P(a, x)}{\partial a \partial x}$, where $P(a, x)=\operatorname{gammap}(a, x) ; 0$ if $x<0$
$\frac{\partial P(a, x)}{\partial x}$, where $P(a, x)=\operatorname{gammap}(a, x) ; 0$ if $x<0$
$\frac{\partial^{2} P(a, x)}{\partial x^{2}}$, where $P(a, x)=\operatorname{gammap}(a, x) ; 0$ if $x<0$
the $e_{t c}$ datetime (ms. since 01 jan 1960 00:00:00.000) corresponding to e_{d}, h, m, and s
the square, diagonal matrix created from the row or column vector the number of zeros on the diagonal of M
the digamma() function, $d \ln \Gamma(x) / d x$
the e_{d} datetime corresponding to e_{b}
the e_{d} date (days since 01 jan 1960) of datetime $e_{t C}$ (ms. with leap seconds since 01jan1960 00:00:00.000)
the e_{d} date (days since 01 jan 1960) of datetime $e_{t c}$ (ms. since 01jan1960 00:00:00.000)
the e_{d} date (days since 01 jan 1960) of the start of half-year e_{h} the e_{d} date (days since 01 jan 1960) of the start of month e_{m} the e_{d} date (days since 01 jan 1960) of the start of quarter e_{q} the e_{d} date (days since 01 jan 1960) of the start of week e_{w} the e_{d} date (days since 01 jan 1960) of 01 jan in year e_{y}
the numeric day of the week corresponding to date $e_{d} ; 0=$ Sunday, $1=$ Monday, $\ldots, 6=$ Saturday
the numeric day of the year corresponding to date e_{d}
the cumulative multiple range distribution that is used in Dunnett's multiple-comparison method with k ranges and $d f$ degrees of freedom; 0 if $x<0$
the value of stored result e(name); see [U] 18.8 Accessing results calculated by other programs
s [floor (i),floor $(j)]$, the i, j element of the matrix named s; missing if i or j are out of range or if matrix s does not exist
1 if the observation is in the estimation sample and 0 otherwise
the machine precision of a double-precision number
the machine precision of a floating-point number the exponential function e^{x}
the cumulative exponential distribution with scale b
the probability density function of the exponential distribution with scale b
the reverse cumulative exponential distribution with scale b the cumulative F distribution with $d f_{1}$ numerator and $d f_{2}$ denominator degrees of freedom: $\mathrm{F}\left(d f_{1}, d f_{2}, f\right)=\int_{0}^{f} \operatorname{Fden}\left(d f_{1}, d f_{2}, t\right)$ $d t ; 0$ if $f<0$
the probability density function of the F distribution with $d f_{1}$ numerator and $d f_{2}$ denominator degrees of freedom; 0 if $f<0$
1 if the file specified by f exists; otherwise, 0

fileread (f)	the contents of the file specified by f
filereaderror (f)	0 or positive integer, said value having the interpretation of a return code
filewrite($f, s[, r]$)	writes the string specified by s to the file specified by f and returns the number of bytes in the resulting file
float (x)	the value of x rounded to float precision
floor (x)	the unique integer n such that $n \leq x<n+1$; x (not ".") if x is missing, meaning that floor(.a) $=$. a
fmtwidth(fmtstr)	the output length of the \%fmt contained in fintstr; missing if fmtstr does not contain a valid $\% f m t$
Ftail $\left(d f_{1}, d f_{2}, f\right)$	the reverse cumulative (upper tail or survivor) F distribution with $d f_{1}$ numerator and $d f_{2}$ denominator degrees of freedom; 1 if $f<0$
gammaden (a, b, g, x)	the probability density function of the gamma distribution; 0 if $x<g$
gammap (a, x)	the cumulative gamma distribution with shape parameter $a ; 0$ if $x<0$
gammaptail (a, x)	the reverse cumulative (upper tail or survivor) gamma distribution with shape parameter a; 1 if $x<0$
get (systemname)	a copy of Stata internal system matrix systemname
hadamard (M, N)	a matrix whose i, j element is $M[i, j] \cdot N[i, j]$ (if M and N are not the same size, this function reports a conformability error)
halfyear (e_{d})	the numeric half of the year corresponding to date e_{d}
halfyearly ($s_{1}, s_{2}[, Y]$)	the e_{h} half-yearly date (half-years since 1960h1) corresponding to s_{1} based on s_{2} and $Y ; Y$ specifies topyear; see date()
has_eprop(name)	1 if name appears as a word in e(properties); otherwise, 0
$\mathrm{hh}\left(e_{t c}\right)$	the hour corresponding to datetime $e_{t c}$ (ms. since 01jan1960 00:00:00.000)
$\mathrm{hhC}\left(e_{t C}\right)$	the hour corresponding to datetime $e_{t C}$ (ms. with leap seconds since 01jan1960 00:00:00.000)
$\mathrm{hms}(h, m, s)$	the $e_{t c}$ datetime (ms. since 01 jan 1960 00:00:00.000) corresponding to h, m, s on 01jan 1960
hofd	the e_{h} half-yearly date (half years since 1960h1) containing date e_{d}
hours (ms)	$\mathrm{ms} / 3,600,000$
hypergeometric (N, K	the cumulative probability of the hypergeometric distribution
hypergeometricp(N, K,	the hypergeometric probability of k successes out of a sample of size n, from a population of size N containing K elements that have the attribute of interest
$\mathrm{I}(n)$	an $n \times n$ identity matrix if n is an integer; otherwise, a round $(n) \times$ round (n) identity matrix
ibeta (a, b, x)	the cumulative beta distribution with shape parameters a and $b ; 0$ if $x<0$; or 1 if $x>1$
ibetatail (a, b, x)	the reverse cumulative (upper tail or survivor) beta distribution with shape parameters a and b; 1 if $x<0$; or 0 if $x>1$
igaussian(m, a, x)	the cumulative inverse Gaussian distribution with mean m and shape parameter a; 0 if $x \leq 0$
igaussianden (m, a, x)	the probability density of the inverse Gaussian distribution with mean m and shape parameter a; 0 if $x \leq 0$

igaussiantail (m, a, x)

invbinomialtail (n, k, p)
invchi2 $(d f, p)$
invchi2tail ($d f, p$)
invcloglog (x)
invdunnettprob ($k, d f, p$)
invexponential (b, p)
invexponentialtail (b, p)
$\operatorname{invF}\left(d f_{1}, d f_{2}, p\right)$
$\operatorname{invFtail}\left(d f_{1}, d f_{2}, p\right)$
invgammap (a, p)
invgammaptail (a, p)
invibeta (a, b, p)
invibetatail (a, b, p)
invigaussian (m, a, p)
invigaussiantail (m, a, p)
the reverse cumulative (upper tail or survivor) inverse Gaussian distribution with mean m and shape parameter a; 1 if $x \leq 0$
the position in ASCII string s_{1} of the first character of s_{1} not found in ASCII string s_{2}, or 0 if all characters of s_{1} are found in s_{2}
1 if z is a member of the remaining arguments; otherwise, 0
1 if it is known that $a \leq z \leq b$; otherwise, 0
the integer obtained by truncating x toward 0 (thus, int (5.2) $=5$ and int $(-5.8)=-5$); x (not ".") if x is missing, meaning that $\operatorname{int}(. a)=. a$
the inverse of the matrix M
the inverse of the cumulative binomial; that is, $\theta(\theta=$ probability of success on one trial) such that the probability of observing floor (k) or fewer successes in floor (n) trials is p
the inverse of the right cumulative binomial; that is, $\theta(\theta=$ probability of success on one trial) such that the probability of observing floor (k) or more successes in floor (n) trials is p
the inverse of $\operatorname{chi2}():$ if $\operatorname{chi2}(d f, x)=p$, then $\operatorname{invchi2}(d f, p)=$ x
the inverse of chi2tail(): if chi2tail $(d f, x)=p$, then invchi2tail $(d f, p)=x$
the inverse of the complementary \log-log function of x
the inverse cumulative multiple range distribution that is used in Dunnett's multiple-comparison method with k ranges and $d f$ degrees of freedom
the inverse cumulative exponential distribution with scale b : if exponential $(b, x)=p$, then invexponential $(b, p)=x$
the inverse reverse cumulative exponential distribution with scale b : if exponentialtail $(b, x)=p$, then invexponentialtail $(b, p)=x$
the inverse cumulative F distribution: if $\mathrm{F}\left(d f_{1}, d f_{2}, f\right)=p$, then $\operatorname{invF}\left(d f_{1}, d f_{2}, p\right)=f$
the inverse reverse cumulative (upper tail or survivor) F distribution: if Ftail $\left(d f_{1}, d f_{2}, f\right)=p$, then invFtail $\left(d f_{1}, d f_{2}, p\right)=f$
the inverse cumulative gamma distribution: if $\operatorname{gammap}(a, x)=p$, then $\operatorname{invgammap}(a, p)=x$
the inverse reverse cumulative (upper tail or survivor) gamma distribution: if gammaptail $(a, x)=p$, then invgammaptail (a, p) $=x$
the inverse cumulative beta distribution: if $\operatorname{ibeta}(a, b, x)=p$, then invibeta $(a, b, p)=x$
the inverse reverse cumulative (upper tail or survivor) beta distribution: if ibetatail $(a, b, x)=p$, then invibetatail (a, b, p) $=x$
the inverse of igaussian(): if igaussian $(m, a, x)=p$, then invigaussian $(m, a, p)=x$ the inverse of igaussiantail(): if igaussiantail $(m, a, x)=p$, then invigaussiantail (m, a, p x
invlogistic (p)
invlogistic (s, p)
invlogistic (m, s, p)
invlogistictail (p)
invlogistictail (s, p)
invlogistictail (m, s, p)

invnbinomialtail (n, k, q)
invnchi2 ($d f, n p, p$)
invnchi2tail ($d f, n p, p$)
$\operatorname{invnF}\left(d f_{1}, d f_{2}, n p, p\right)$
invnFtail $\left(d f_{1}, d f_{2}, n p, p\right)$
invnibeta $(a, b, n p, p)$
invnormal (p)
invnt (df,np,p)
invnttail (df, $n p, p$)
invpoisson (k, p)
invpoissontail (k, q)
invsym(M)
invt ($d f, p$)
invttail $(d f, p)$
the inverse cumulative logistic distribution: if $\operatorname{logistic}(x)=p$, then invlogistic $(p)=x$
the inverse cumulative logistic distribution: if $\operatorname{logistic}(s, x)=p$, then invlogistic $(s, p)=x$
the inverse cumulative logistic distribution: if $\operatorname{logistic}(m, s, x)$ $=p$, then invlogistic $(m, s, p)=x$
the inverse reverse cumulative logistic distribution: if $\operatorname{logistictail}(x)=p$, then invlogistictail $(p)=x$
the inverse cumulative logistic distribution: if $\operatorname{logistic}(s, x)=p$, then invlogistic $(s, p)=x$
the inverse cumulative logistic distribution: if $\operatorname{logistic}(m, s, x)$ $=p$, then invlogistic $(m, s, p)=x$
the inverse of the logit function of x
the value of the negative binomial parameter, p, such that $q=$ nbinomial (n, k, p)
the value of the negative binomial parameter, p, such that $q=$ nbinomialtail (n, k, p)
the inverse cumulative noncentral χ^{2} distribution: if $\operatorname{nchi2}(d f, n p, x)=p$, then invnchi2 $(d f, n p, p)=x$
the inverse reverse cumulative (upper tail or survivor) noncentral χ^{2} distribution: if nchi2tail $(d f, n p, x)=p$, then invnchi2tail $(d f, n p, p)=x$
the inverse cumulative noncentral F distribution: if $\mathrm{nF}\left(d f_{1}, d f_{2}, n p, f\right)=p$, then $\operatorname{invnF}\left(d f_{1}, d f_{2}, n p, p\right)=f$
the inverse reverse cumulative (upper tail or survivor) noncentral F distribution: if $\mathrm{nFtail}\left(d f_{1}, d f_{2}, n p, x\right)=p$, then invnFtail $\left(d f_{1}, d f_{2}, n p, p\right)=x$
the inverse cumulative noncentral beta distribution: if $\operatorname{nibeta}(a, b, n p, x)=p$, then invibeta $(a, b, n p, p)=x$
the inverse cumulative standard normal distribution: if normal (z) $=p$, then invnormal $(p)=z$
the inverse cumulative noncentral Student's t distribution: if $\mathrm{nt}(d f, n p, t)=p$, then $\operatorname{invnt}(d f, n p, p)=t$
the inverse reverse cumulative (upper tail or survivor) noncentral Student's t distribution: if nttail $(d f, n p, t)=p$, then invnttail $(d f, n p, p)=t$
the Poisson mean such that the cumulative Poisson distribution evaluated at k is p : if poisson $(m, k)=p$, then invpoisson (k, p) $=m$
the Poisson mean such that the reverse cumulative Poisson distribution evaluated at k is q : if poissontail $(m, k)=q$, then invpoissontail $(k, q)=m$
the inverse of M if M is positive definite
the inverse cumulative Student's t distribution: if $\mathrm{t}(d f, t)=p$, then $\operatorname{invt}(d f, p)=t$
the inverse reverse cumulative (upper tail or survivor) Student's t distribution: if tail $(d f, t)=p$, then invttail $(d f, p)=t$
invtukeyprob ($k, d f, p$)
invweibull (a, b, p)
invweibull (a, b, g, p)
invweibullph (a, b, p)
invweibullph (a, b, g, p)
invweibullphtail (a, b, p)
invweibullphtail (a, b, g, p)
invweibulltail (a, b, p)
invweibulltail (a, b, g, p)
irecode $\left(x, x_{1}, \ldots, x_{n}\right)$
issymmetric (M)
$\mathrm{J}(r, c, z)$
$\ln (x)$
$\operatorname{lnfactorial}(n)$
$\operatorname{lngamma}(x)$
$\operatorname{lnigammaden}(a, b, x)$
lnigaussianden(m, a, x)
lniwishartden ($d f, V, X$)
lnmvnormalden (M, V, X)
lnnormal (z)
Innormalden (z)
lnnormalden (x, σ)
lnnormalden (x, μ, σ)
the inverse cumulative Tukey's Studentized range distribution with k ranges and $d f$ degrees of freedom
the inverse cumulative Weibull distribution with shape a and scale b : if weibull $(a, b, x)=p$, then invweibull $(a, b, p)=x$
the inverse cumulative Weibull distribution with shape a, scale b, and location g : if weibull $(a, b, g, x)=p$, then invweibull $(a, b, g, p)=x$
the inverse cumulative Weibull (proportional hazards) distribution with shape a and scale b : if weibullph $(a, b, x)=p$, then invweibullph $(a, b, p)=x$
the inverse cumulative Weibull (proportional hazards) distribution with shape a, scale b, and location g : if weibullph $(a, b, g, x)=$ p, then invweibullph $(a, b, g, p)=x$
the inverse reverse cumulative Weibull (proportional hazards) distribution with shape a and scale b : if weibullphtail $(a, b, x)=p$, then invweibullphtail $(a, b, p)=x$
the inverse reverse cumulative Weibull (proportional hazards) distribution with shape a, scale b, and location g : if weibullphtail $(a, b, g, x)=p$, then invweibullphtail $(a, b, g, p)=x$
the inverse reverse cumulative Weibull distribution with shape a and scale b : if weibulltail $(a, b, x)=p$, then invweibulltail $(a, b, p)=x$
the inverse reverse cumulative Weibull distribution with shape a, scale b, and location g : if weibulltail $(a, b, g, x)=p$, then invweibulltail $(a, b, g, p)=x$
missing if x is missing or x_{1}, \ldots, x_{n} is not weakly increasing; 0 if $x \leq x_{1} ; 1$ if $x_{1}<x \leq x_{2} ; 2$ if $x_{2}<x \leq x_{3} ; \ldots ; n$ if $x>x_{n}$
1 if the matrix is symmetric; otherwise, 0
the $r \times c$ matrix containing elements z
the natural logarithm, $\ln (x)$
the natural \log of factorial $=\ln (n!)$
$\ln \{\Gamma(x)\}$
the natural logarithm of the inverse gamma density, where a is the shape parameter and b is the scale parameter
the natural logarithm of the inverse Gaussian density with mean m and shape parameter a
the natural logarithm of the density of the inverse Wishart distribution; missing if $d f \leq n-1$
the natural logarithm of the multivariate normal density
the natural logarithm of the cumulative standard normal distribution the natural logarithm of the standard normal density, $N(0,1)$
the natural logarithm of the normal density with mean 0 and standard deviation σ
the natural logarithm of the normal density with mean μ and standard deviation $\sigma, N\left(\mu, \sigma^{2}\right)$

lnwishartden($d f, V, X$)	the natural logarithm of the density of the Wishart distribution; missing if $d f \leq n-1$
$\log (x)$	the natural logarithm, $\ln (x)$; thus, a synonym for $\ln (x)$
$\log 10(x)$	the base-10 logarithm of x
logistic (x)	the cumulative logistic distribution with mean 0 and standard deviation $\pi / \sqrt{3}$
logistic (s, x)	the cumulative logistic distribution with mean 0 , scale s, and standard deviation $s \pi / \sqrt{3}$
logistic (m, s, x)	the cumulative logistic distribution with mean m, scale s, and standard deviation $s \pi / \sqrt{3}$
logisticden (x)	the density of the logistic distribution with mean 0 and standard deviation $\pi / \sqrt{3}$
logisticden (s, x)	the density of the logistic distribution with mean 0 , scale s, and standard deviation $s \pi / \sqrt{3}$
$\operatorname{logisticden}(m, s, x)$	the density of the logistic distribution with mean m, scale s, and standard deviation $s \pi / \sqrt{3}$
logistictail (x)	the reverse cumulative logistic distribution with mean 0 and standard deviation $\pi / \sqrt{3}$
$\operatorname{logistictail}(s, x)$	the reverse cumulative logistic distribution with mean 0 , scale s, and standard deviation $s \pi / \sqrt{3}$
logistictail (m, s, x)	the reverse cumulative logistic distribution with mean m, scale s, and standard deviation $s \pi / \sqrt{3}$
logit (x)	the \log of the odds ratio of $x, \operatorname{logit}(x)=\ln \{x /(1-x)\}$
matmissing (M)	1 if any elements of the matrix are missing; otherwise, 0
matrix (exp)	restricts name interpretation to scalars and matrices; see scalar()
matuniform(r, c)	the $r \times c$ matrices containing uniformly distributed pseudorandom numbers on the interval $(0,1)$
$\max \left(x_{1}, x_{2}, \ldots, x_{n}\right)$	the maximum value of $x_{1}, x_{2}, \ldots, x_{n}$
maxbyte()	the largest value that can be stored in storage type byte
maxdouble()	the largest value that can be stored in storage type double
maxfloat()	the largest value that can be stored in storage type float
maxint()	the largest value that can be stored in storage type int
maxlong()	the largest value that can be stored in storage type long
$\operatorname{mdy}(M, D, Y)$	the e_{d} date (days since 01 jan 1960) corresponding to M, D, Y
mdyhms (M, D, Y, h, m, s)	the $e_{t c}$ datetime (ms. since 01 jan 1960 00:00:00.000) corresponding to M, D, Y, h, m, s
$\operatorname{mi}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$	a synonym for missing ($x_{1}, x_{2}, \ldots, x_{n}$)
$\min \left(x_{1}, x_{2}, \ldots, x_{n}\right)$	the minimum value of $x_{1}, x_{2}, \ldots, x_{n}$
minbyte()	the smallest value that can be stored in storage type byte
mindouble()	the smallest value that can be stored in storage type double
minfloat()	the smallest value that can be stored in storage type float
minint()	the smallest value that can be stored in storage type int
minlong()	the smallest value that can be stored in storage type long

```
minutes(ms)
missing( }\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{n}{}
mm}(\mp@subsup{e}{tc}{}
mmC}(\mp@subsup{e}{tC}{}
mod}(x,y
mofd ( }\mp@subsup{e}{d}{}
month(eg)
monthly( s1, s2[,Y])
mreldif(X,Y)
msofhours(h)
msofminutes(m)
msofseconds(s)
nbetaden ( }a,b,np,x
nbinomial ( }n,k,p
nbinomialp( }n,k,p
nbinomialtail( }n,k,p
nchi2(df , np,x)
nchi2den(df,np,x)
nchi2tail(df , np,x)
nF}(d\mp@subsup{f}{1}{},d\mp@subsup{f}{2}{},np,f
```

$\operatorname{nFden}\left(d f_{1}, d f_{2}, n p, f\right)$
$\operatorname{nFtail}\left(d f_{1}, d f_{2}, n p, f\right)$
nibeta $(a, b, n p, x)$
normal (z)
normalden (z)
normalden (x, σ)
normalden (x, μ, σ)
npnchi2 $(d f, x, p)$
$\operatorname{npnF}\left(d f_{1}, d f_{2}, f, p\right)$
ms/60,000
1 if any x_{i} evaluates to missing; otherwise, 0
the minute corresponding to datetime $e_{t c}$ (ms. since 01jan1960 00:00:00.000)
the minute corresponding to datetime $e_{t C}$ (ms. with leap seconds since 01 jan 1960 00:00:00.000)
the modulus of x with respect to y
the e_{m} monthly date (months since 1960 ml) containing date e_{d} the numeric month corresponding to date e_{d}
the e_{m} monthly date (months since 1960 ml) corresponding to s_{1} based on s_{2} and $Y ; Y$ specifies topyear; see date()
the relative difference of X and Y, where the relative difference is defined as $\max _{i, j}\left\{\left|x_{i j}-y_{i j}\right| /\left(\left|y_{i j}\right|+1\right)\right\}$
$h \times 3,600,000$
$m \times 60,000$
$s \times 1,000$
the probability density function of the noncentral beta distribution; 0 if $x<0$ or $x>1$
the cumulative probability of the negative binomial distribution
the negative binomial probability
the reverse cumulative probability of the negative binomial distribution
the cumulative noncentral χ^{2} distribution; 0 if $x<0$
the probability density of the noncentral χ^{2} distribution; 0 if $x<0$
the reverse cumulative (upper tail or survivor) noncentral χ^{2} distribution; 1 if $x<0$
the cumulative noncentral F distribution with $d f_{1}$ numerator and $d f_{2}$ denominator degrees of freedom and noncentrality parameter $n p$; 0 if $f<0$
the probability density function of the noncentral F distribution with $d f_{1}$ numerator and $d f_{2}$ denominator degrees of freedom and noncentrality parameter $n p ; 0$ if $f<0$
the reverse cumulative (upper tail or survivor) noncentral F distribution with $d f_{1}$ numerator and $d f_{2}$ denominator degrees of freedom and noncentrality parameter $n p ; 1$ if $f<0$
the cumulative noncentral beta distribution; 0 if $x<0$; or 1 if $x>1$
the cumulative standard normal distribution
the standard normal density, $N(0,1)$
the normal density with mean 0 and standard deviation σ the normal density with mean μ and standard deviation $\sigma, N\left(\mu, \sigma^{2}\right)$ the noncentrality parameter, $n p$, for noncentral χ^{2} : if $\operatorname{nchi2}(d f, n p, x)=p$, then npnchi2 $(d f, x, p)=n p$
the noncentrality parameter, $n p$, for the noncentral F : if $\mathrm{nF}\left(d f_{1}, d f_{2}, n p, f\right)=p$, then $\operatorname{npnF}\left(d f_{1}, d f_{2}, f, p\right)=n p$

```
npnt(df,t,p)
nt (df,np,t)
ntden(df,np,t)
nttail(df,np,t)
nullmat (matname)
plural( }n,s
plural( }n,\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}
poisson(m,k)
poissonp(m,k)
poissontail(m,k)
qofd(e
quarter ( }\mp@subsup{e}{d}{}\mathrm{ )
quarterly( s},\mp@code{s}2[,Y]
r(name)
rbeta(a,b)
rbinomial( }n,p
rchi2(df)
recode ( }x,\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n}{}
```

real (s)
regexm $(s, r e)$
$\operatorname{regexr}\left(s_{1}, r e, s_{2}\right)$
regexs (n)
reldif (x, y)
replay()
return (name)
the noncentrality parameter, $n p$, for the noncentral Student's
t distribution: if nt $(d f, n p, t)=p$, then npnt $(d f, t, p)=n p$ the cumulative noncentral Student's t distribution with $d f$ degrees of freedom and noncentrality parameter $n p$
the probability density function of the noncentral Student's
t distribution with $d f$ degrees of freedom and noncentrality parameter $n p$
the reverse cumulative (upper tail or survivor) noncentral Student's t distribution with $d f$ degrees of freedom and noncentrality parameter $n p$
use with the row-join (,) and column-join (\backslash) operators in programming situations
the plural of s if $n \neq \pm 1$
the plural of s_{1}, as modified by or replaced with s_{2}, if $n \neq \pm 1$
the probability of observing floor (k) or fewer outcomes that are distributed as Poisson with mean m
the probability of observing floor (k) outcomes that are distributed as Poisson with mean m
the probability of observing floor (k) or more outcomes that are distributed as Poisson with mean m
the e_{q} quarterly date (quarters since 1960q1) containing date e_{d} the numeric quarter of the year corresponding to date e_{d}
the e_{q} quarterly date (quarters since 1960 q 1) corresponding to s_{1} based on s_{2} and $Y ; Y$ specifies topyear, see date()
the value of the stored result r (name); see [U] 18.8 Accessing results calculated by other programs
beta (a, b) random variates, where a and b are the beta distribution shape parameters
binomial (n, p) random variates, where n is the number of trials and p is the success probability
chi-squared, with $d f$ degrees of freedom, random variates
missing if x_{1}, \ldots, x_{n} is not weakly increasing; x if x is missing; x_{1} if $x \leq x_{1} ; x_{2}$ if $x \leq x_{2}, \ldots$; otherwise, x_{n} if $x>x_{1}, x_{2}$, \ldots, x_{n-1} or $x_{i} \geq$. is interpreted as $x_{i}=+\infty$
s converted to numeric or missing
performs a match of a regular expression and evaluates to 1 if regular expression $r e$ is satisfied by the ASCII string s; otherwise, 0
replaces the first substring within ASCII string s_{1} that matches re with ASCII string s_{2} and returns the resulting string
subexpression n from a previous regexm() match, where $0 \leq n<$ 10
the "relative" difference $|x-y| /(|y|+1)$; 0 if both arguments are the same type of extended missing value; missing if only one argument is missing or if the two arguments are two different types of missing
1 if the first nonblank character of local macro ' 0 ' is a comma, or if ' 0 ' is empty
the value of the to-be-stored result r (name); see [P] return

```
rexponential(b)
rgamma( }a,b
rhypergeometric( N,K,n)
rigaussian(m,a)
rlogistic()
rlogistic(s)
rlogistic(m,s)
rnbinomial( }n,p
rnormal()
rnormal(m)
rnormal (m,s)
round (x,y) or round (x)
```

rownumb (M, s)
rowsof (M)
rpoisson (m)
rt ($d f$)
runiform()
runiform (a, b)
runiformint (a, b)
rweibull (a, b)
rweibull (a, b, g)
rweibullph (a, b)
rweibullph (a, b, g)
s (name)
scalar (exp)
seconds ($m s$)
$\operatorname{sign}(x)$
$\sin (x)$
$\sinh (x)$
smallestdouble()
soundex (s)
exponential random variates with scale b
$\operatorname{gamma}(a, b)$ random variates, where a is the gamma shape parameter and b is the scale parameter
hypergeometric random variates
inverse Gaussian random variates with mean m and shape parameter a
logistic variates with mean 0 and standard deviation $\pi / \sqrt{3}$
logistic variates with mean 0 , scale s, and standard deviation $s \pi / \sqrt{3}$ logistic variates with mean m, scale s, and standard deviation $s \pi / \sqrt{3}$
negative binomial random variates
standard normal (Gaussian) random variates, that is, variates from a normal distribution with a mean of 0 and a standard deviation of 1
$\operatorname{normal}(m, 1)$ (Gaussian) random variates, where m is the mean and the standard deviation is 1
$\operatorname{normal}(m, s)$ (Gaussian) random variates, where m is the mean and s is the standard deviation
x rounded in units of y or x rounded to the nearest integer if the argument y is omitted; x (not ".") if x is missing (meaning that round (.a) $=$. a and that round $(. a, y)=. a$ if y is not missing) and if y is missing, then "." is returned
the row number of M associated with row name s; missing if the row cannot be found
the number of rows of M
Poisson (m) random variates, where m is the distribution mean Student's t random variates, where $d f$ is the degrees of freedom uniformly distributed random variates over the interval $(0,1)$ uniformly distributed random variates over the interval (a, b) uniformly distributed random integer variates on the interval $[a, b]$ Weibull variates with shape a and scale b
Weibull variates with shape a, scale b, and location g
Weibull (proportional hazards) variates with shape a and scale b
Weibull (proportional hazards) variates with shape a, scale b, and location g
the value of stored result s (name); see [U$]$ 18.8 Accessing results calculated by other programs
restricts name interpretation to scalars and matrices
ms/1,000
the sign of x : -1 if $x<0,0$ if $x=0,1$ if $x>0$, or missing if x is missing
the sine of x, where x is in radians
the hyperbolic sine of x
the smallest double-precision number greater than zero
the soundex code for a string, s

```
soundex_nara(s)
sqrt (x)
ss}(\mp@subsup{e}{tc}{}
ssC( }\mp@subsup{e}{tC}{}
strcat ( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}
strdup}(\mp@subsup{s}{1}{},n
string(n)
string(n,s)
stritrim(s)
strlen(s)
strlower(s)
strltrim(s)
strmatch( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}
strofreal(n)
strofreal(n,s)
strpos( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}
strproper(s)
strreverse(s)
strrpos( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}
strrtrim(s)
strtoname(s[,p])
strtrim(s)
strupper(s)
subinstr ( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{},\mp@subsup{s}{3}{},n
subinword( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{},\mp@subsup{s}{3}{},n
substr (s, n},\mp@code{1},\mp@subsup{n}{2}{}
sum(x)
sweep (M,i)
t (df,t)
tan(x)
tanh (x)
tC(l)
tc(l)
```

the U.S. Census soundex code for a string, s
the square root of x
the second corresponding to datetime $e_{t c}$ (ms. since 01jan 1960 00:00:00.000)
the second corresponding to datetime $e_{t C}$ (ms. with leap seconds since 01jan1960 00:00:00.000)
there is no strcat () function; instead the addition operator is used to concatenate strings
there is no $\operatorname{strdup}()$ function; instead the multiplication operator is used to create multiple copies of strings
a synonym for strofreal (n)
a synonym for strofreal (n, s)
s with multiple, consecutive internal blanks (ASCII space character char(32)) collapsed to one blank
the number of characters in ASCII s or length in bytes
lowercase ASCII characters in string s
s without leading blanks (ASCII space character char(32))
1 if s_{1} matches the pattern s_{2}; otherwise, 0
n converted to a string
n converted to a string using the specified display format
the position in s_{1} at which s_{2} is first found; otherwise, 0
a string with the first ASCII letter and any other letters immediately following characters that are not letters; all other ASCII letters converted to lowercase
reverses the ASCII string s
the position in s_{1} at which s_{2} is last found; otherwise, 0
s without trailing blanks (ASCII space character char (32))
s translated into a Stata 13 compatible name
s without leading and trailing blanks (ASCII space character char(32)); equivalent to strltrim(strrtrim(s))
uppercase ASCII characters in string s
s_{1}, where the first n occurrences in s_{1} of s_{2} have been replaced with s_{3}
s_{1}, where the first n occurrences in s_{1} of s_{2} as a word have been replaced with s_{3}
the substring of s, starting at n_{1}, for a length of n_{2}
the running sum of x, treating missing values as zero
matrix M with i th row/column swept
the cumulative Student's t distribution with $d f$ degrees of freedom the tangent of x, where x is in radians
the hyperbolic tangent of x
convenience function to make typing dates and times in expressions easier
convenience function to make typing dates and times in expressions easier

```
td(l)
tden(df,t)
th(l)
tin(d
tm(l)
tobytes(s[,n])
tq(l)
trace(M)
trigamma(x)
trunc(x)
ttail(df,t)
tukeyprob(k,df,x)
tw(l)
twithin(d
uchar(n)
udstrlen(s)
udsubstr ( }s,\mp@subsup{n}{1}{},\mp@subsup{n}{2}{}
uisdigit(s)
uisletter(s)
ustrcompare( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}[,loc]
ustrcompareex( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{},loc,st,case,cslv,norm,num,alt,fr
compares two Unicode strings
ustrpos( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}[,n]
ustrrpos( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{},[,n]
ustrfix(s[,rep])
ustrfrom(s,enc,mode)
ustrinvalidcnt(s)
ustrleft( }s,n
ustrlen(s)
ustrlower(s[,loc])
ustrltrim(s)
convenience function to make typing dates in expressions easier the probability density function of Student's \(t\) distribution convenience function to make typing half-yearly dates in expressions easier
true if \(d_{1} \leq t \leq d_{2}\), where \(t\) is the time variable previously tsset convenience function to make typing monthly dates in expressions easier
escaped decimal or hex digit strings of up to 200 bytes of \(s\)
convenience function to make typing quarterly dates in expressions easier
the trace of matrix \(M\)
the second derivative of \(\operatorname{lng} \operatorname{lnma}(x)=d^{2} \ln \Gamma(x) / d x^{2}\)
a synonym for \(\operatorname{int}(x)\)
the reverse cumulative (upper tail or survivor) Student's \(t\) distribution; the probability \(T>t\)
the cumulative Tukey's Studentized range distribution with \(k\) ranges and \(d f\) degrees of freedom; 0 if \(x<0\)
convenience function to make typing weekly dates in expressions easier
true if \(d_{1}<t<d_{2}\), where \(t\) is the time variable previously tsset the Unicode character corresponding to Unicode code point \(n\) or an empty string if \(n\) is beyond the Unicode code-point range
the number of display columns needed to display the Unicode string \(s\) in the Stata Results window
the Unicode substring of \(s\), starting at character \(n_{1}\), for \(n_{2}\) display columns
1 if the first Unicode character in \(s\) is a Unicode decimal digit; otherwise, 0
1 if the first Unicode character in \(s\) is a Unicode letter; otherwise, 0
compares two Unicode strings
compares two Unicode strings
the position in \(s_{1}\) at which \(s_{2}\) is first found; otherwise, 0
the position in \(s_{1}\) at which \(s_{2}\) is last found; otherwise, 0
replaces each invalid UTF-8 sequence with a Unicode character
converts the string \(s\) in encoding enc to a UTF-8 encoded Unicode string
the number of invalid UTF- 8 sequences in \(s\)
the first \(n\) Unicode characters of the Unicode string \(s\)
the number of characters in the Unicode string \(s\)
lowercase all characters of Unicode string \(s\) under the given locale loc
removes the leading Unicode whitespace characters and blanks from the Unicode string \(s\)
```

ustrnormalize(s,norm)
$\operatorname{ustrregexm}(s, r e[, n o c])$
normalizes Unicode string s to one of the five normalization forms specified by norm
performs a match of a regular expression and evaluates to 1 if regular expression $r e$ is satisfied by the Unicode string s; otherwise, 0 ustrregexra $\left(s_{1}, r e, s_{2}[, n o c]\right)$ replaces all substrings within the Unicode string s_{1} that match re with s_{2} and returns the resulting string
ustrregexrf $\left(s_{1}, r e, s_{2}[, n o c]\right)$ replaces the first substring within the Unicode string s_{1} that matches $r e$ with s_{2} and returns the resulting string

```
ustrregexs(n)
ustrreverse(s)
ustrright( }s,n
ustrrtrim(s)
ustrsortkey (s[,loc])
subexpression \(n\) from a previous ustrregexm() match
reverses the Unicode string \(s\)
the last \(n\) Unicode characters of the Unicode string \(s\)
remove trailing Unicode whitespace characters and blanks from the Unicode string \(s\)
generates a null-terminated byte array that can be used by the sort command to produce the same order as ustrcompare()
```

ustrsortkeyex ($s, l o c$, st, case, cslv, norm,num, alt, fr)
generates a null-terminated byte array that can be used by the sort command to produce the same order as ustrcompare()
ustrtitle(s[,loc])
ustrto(s,enc,mode)
ustrtohex ($s[, n]$)
ustrtoname ($s[, p]$)
ustrtrim(s)
ustrunescape (s)
ustrupper ($s[, l o c]$)
ustrword (s,n[,noc])
ustrwordcount ($s[, l o c]$)
usubinstr $\left(s_{1}, s_{2}, s_{3}, n\right)$
usubstr $\left(s, n_{1}, n_{2}\right)$
$\operatorname{vec}(M)$
$\operatorname{vecdiag}(M)$
week $\left(e_{d}\right)$
weekly $\left(s_{1}, s_{2}[, Y]\right)$
weibull (a, b, x)
weibull (a, b, g, x)
weibullden (a, b, x)
ustrsortkeyex ($s, l o c$, st, case, cslv, norm,num, alt, fr)
a string with the first characters of Unicode words titlecased and other characters lowercased
converts the Unicode string s in UTF- 8 encoding to a string in encoding enc
escaped hex digit string of s up to 200 Unicode characters
string s translated into a Stata name
removes leading and trailing Unicode whitespace characters and blanks from the Unicode string s
the Unicode string corresponding to the escaped sequences of s uppercase all characters in string s under the given locale loc
the nth Unicode word in the Unicode string s
the number of nonempty Unicode words in the Unicode string s replaces the first n occurrences of the Unicode string s_{2} with the Unicode string s_{3} in s_{1}
the Unicode substring of s, starting at n_{1}, for a length of n_{2}
a column vector formed by listing the elements of M, starting with the first column and proceeding column by column
the row vector containing the diagonal of matrix M
the numeric week of the year corresponding to date e_{d}, the $\% \mathrm{td}$ encoded date (days since 01jan1960)
the e_{w} weekly date (weeks since 1960 w 1) corresponding to s_{1} based on s_{2} and $Y ; Y$ specifies topyear; see date()
the cumulative Weibull distribution with shape a and scale b
the cumulative Weibull distribution with shape a, scale b, and location g
the probability density function of the Weibull distribution with shape a and scale b
weibullden (a, b, g, x)
weibullph (a, b, x)
weibullph (a, b, g, x)
weibullphden (a, b, x)
weibullphden (a, b, g, x)
weibullphtail (a, b, x)
weibullphtail (a, b, g, x)
weibulltail (a, b, x)
weibulltail (a, b, g, x)
wofd $\left(e_{d}\right)$
word (s, n)
wordbreaklocale(loc,type)
wordcount (s)
year $\left(e_{d}\right)$
$\operatorname{yearly}\left(s_{1}, s_{2}[, Y]\right)$
$\operatorname{yh}(Y, H)$
$\operatorname{ym}(Y, M)$
$\operatorname{yofd}\left(e_{d}\right)$
$\mathrm{yq}(Y, Q)$
yw (Y, W)
the probability density function of the Weibull distribution with shape a, scale b, and location g
the cumulative Weibull (proportional hazards) distribution with shape a and scale b
the cumulative Weibull (proportional hazards) distribution with shape a, scale b, and location g
the probability density function of the Weibull (proportional hazards) distribution with shape a and scale b
the probability density function of the Weibull (proportional hazards) distribution with shape a, scale b, and location g
the reverse cumulative Weibull (proportional hazards) distribution with shape a and scale b
the reverse cumulative Weibull (proportional hazards) distribution with shape a, scale b, and location g
the reverse cumulative Weibull distribution with shape a and scale b
the reverse cumulative Weibull distribution with shape a, scale b, and location g
the e_{w} weekly date (weeks since 1960 w 1) containing date e_{d}
the nth word in s; missing ("") if n is missing
the most closely related locale supported by ICU from loc if type is 1 , the actual locale where the word-boundary analysis data come from if type is 2 ; or an empty string is returned for any other type
the number of words in s
the numeric year corresponding to date e_{d}
the e_{y} yearly date (year) corresponding to s_{1} based on s_{2} and Y; Y specifies topyear, see date()
the e_{h} half-yearly date (half-years since 1960h1) corresponding to year Y, half-year H
the e_{m} monthly date (months since 1960 ml) corresponding to year Y, month M
the e_{y} yearly date (year) containing date e_{d}
the e_{q} quarterly date (quarters since 1960q1) corresponding to year Y, quarter Q
the e_{w} weekly date (weeks since 1960 w 1) corresponding to year Y, week W

Also see

[D] egen - Extensions to generate
[M-5] intro - Alphabetical index to functions

[U] 13.3 Functions

[U] 14.8 Matrix functions

Title

Contents

```
bofd("cal", e}d\mathrm{ )
Cdhms ( }\mp@subsup{e}{d}{},h,m,s
Chms(h,m,s)
Clock( s1, s2[,Y])
clock( s}, ,\mp@subsup{s}{2}{}[,Y]
Cmdyhms(M,D,Y,h,m,s)
Cofc}(\mp@subsup{e}{tc}{}
cofC( }\mp@subsup{e}{tC}{}
Cofd(ed
cofd(e
daily( s1, s2[,Y])
date( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}[,Y]
day ( }\mp@subsup{e}{d}{}
dhms( }\mp@subsup{e}{d}{},h,m,s
dofb( }\mp@subsup{e}{b}{},"cal"
dofC}(\mp@subsup{e}{tC}{}
dofc}(\mp@subsup{e}{tc}{}
dofh( (eh)
dofm(em}
dofq(eq)
dofw (ew)
dofy( }\mp@subsup{e}{y}{}
```

the e_{b} business date corresponding to e_{d}
the $e_{t C}$ datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to e_{d}, h, m, s
the $e_{t C}$ datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to h, m, s on 01 jan 1960
the $e_{t C}$ datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to s_{1} based on s_{2} and Y
the $e_{t c}$ datetime (ms. since 01 jan 1960 00:00:00.000) corresponding to s_{1} based on s_{2} and Y
the $e_{t C}$ datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to M, D, Y, h, m, s
the $e_{t C}$ datetime (ms. with leap seconds since 01jan1960 00:00:00.000) of $e_{t c}$ (ms. without leap seconds since 01jan1960 00:00:00.000)
the $e_{t c}$ datetime (ms. without leap seconds since 01jan 1960 00:00:00.000) of $e_{t C}$ (ms. with leap seconds since 01jan1960 00:00:00.000)
the $e_{t C}$ datetime (ms. with leap seconds since 01jan1960 00:00:00.000) of date e_{d} at time 00:00:00.000
the $e_{t c}$ datetime (ms. since 01 jan 1960 00:00:00.000) of date e_{d} at time 00:00:00.000
a synonym for date ($s_{1}, s_{2}[, Y]$)
the e_{d} date (days since 01 jan 1960) corresponding to s_{1} based on s_{2} and Y
the numeric day of the month corresponding to e_{d}
the $e_{t c}$ datetime (ms. since 01 jan 1960 00:00:00.000) corresponding to e_{d}, h, m, and s
the e_{d} datetime corresponding to e_{b}
the e_{d} date (days since 01 jan 1960) of datetime $e_{t C}$ (ms. with leap seconds since 01jan1960 00:00:00.000)
the e_{d} date (days since 01 jan 1960) of datetime $e_{t c}$ (ms. since 01jan1960 00:00:00.000)
the e_{d} date (days since 01 jan 1960) of the start of half-year e_{h} the e_{d} date (days since 01 jan 1960) of the start of month e_{m} the e_{d} date (days since 01 jan 1960) of the start of quarter e_{q} the e_{d} date (days since 01 jan 1960) of the start of week e_{w} the e_{d} date (days since 01 jan 1960) of 01 jan in year e_{y}
$\operatorname{dow}\left(e_{d}\right)$
$\operatorname{doy}\left(e_{d}\right)$
halfyear $\left(e_{d}\right)$
halfyearly $\left(s_{1}, s_{2}[, Y]\right)$
$\mathrm{hh}\left(e_{t c}\right)$
$\operatorname{hhC}\left(e_{t C}\right)$
hms (h, m, s)
$\operatorname{hofd}\left(e_{d}\right)$
hours ($m s$)
$\operatorname{mdy}(M, D, Y)$
mdyhms (M, D, Y, h, m, s)
minutes (ms)
$\mathrm{mm}\left(e_{t c}\right)$
$\mathrm{mmC}\left(e_{t C}\right)$
$\operatorname{mofd}\left(e_{d}\right)$
month $\left(e_{d}\right)$
monthly ($s_{1}, s_{2}[, Y]$)
msofhours (h)
msofminutes (m)
msofseconds (s)
qofd $\left(e_{d}\right)$
quarter $\left(e_{d}\right)$
quarterly $\left(s_{1}, s_{2}[, Y]\right)$
seconds ($m s$)
$\mathrm{ss}\left(e_{t c}\right)$
$\operatorname{ssC}\left(e_{t C}\right)$
$\mathrm{tC}(l)$
$\mathrm{tc}(l)$
td (l)
th (l)
the numeric day of the week corresponding to date $e_{d} ; 0=$ Sunday, $1=$ Monday, $\ldots, 6=$ Saturday
the numeric day of the year corresponding to date e_{d} the numeric half of the year corresponding to date e_{d}
the e_{h} half-yearly date (half-years since 1960h1) corresponding to s_{1} based on s_{2} and $Y ; Y$ specifies topyear; see date()
the hour corresponding to datetime $e_{t c}$ (ms. since 01jan1960 00:00:00.000)
the hour corresponding to datetime $e_{t C}$ (ms. with leap seconds since 01jan1960 00:00:00.000)
the $e_{t c}$ datetime (ms. since 01 jan 1960 00:00:00.000) corresponding to h, m, s on 01 jan 1960
the e_{h} half-yearly date (half years since 1960h1) containing date e_{d} ms/3,600,000
the e_{d} date (days since 01 jan 1960) corresponding to M, D, Y
the $e_{t c}$ datetime (ms. since 01 jan 1960 00:00:00.000) corresponding to M, D, Y, h, m, s
$\mathrm{ms} / 60,000$
the minute corresponding to datetime $e_{t c}$ (ms. since 01jan1960 00:00:00.000)
the minute corresponding to datetime $e_{t C}$ (ms. with leap seconds since 01 jan 1960 00:00:00.000)
the e_{m} monthly date (months since 1960 ml) containing date e_{d} the numeric month corresponding to date e_{d}
the e_{m} monthly date (months since 1960 ml) corresponding to s_{1} based on s_{2} and $Y ; Y$ specifies topyear; see date()
$h \times 3,600,000$
$m \times 60,000$
$s \times 1,000$
the e_{q} quarterly date (quarters since 1960q1) containing date e_{d} the numeric quarter of the year corresponding to date e_{d}
the e_{q} quarterly date (quarters since 1960 q 1) corresponding to s_{1} based on s_{2} and $Y ; Y$ specifies topyear; see date()
$m s / 1,000$
the second corresponding to datetime $e_{t c}$ (ms. since 01jan 1960 00:00:00.000)
the second corresponding to datetime $e_{t C}$ (ms. with leap seconds since 01 jan 1960 00:00:00.000)
convenience function to make typing dates and times in expressions easier
convenience function to make typing dates and times in expressions easier
convenience function to make typing dates in expressions easier
convenience function to make typing half-yearly dates in expressions easier

```
tm(l)
tq(l)
tw(l)
week( }\mp@subsup{e}{d}{}\mathrm{ )
weekly ( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}[,Y]
wofd ( }\mp@subsup{e}{d}{}
year ( }\mp@subsup{e}{d}{}
yearly( s1, s2[,Y])
yh(Y,H)
ym(Y,M)
yofd( (ed)
yq(Y,Q)
yw (Y,W)
```

convenience function to make typing monthly dates in expressions easier
convenience function to make typing quarterly dates in expressions easier
convenience function to make typing weekly dates in expressions easier
the numeric week of the year corresponding to date e_{d}, the $\% \mathrm{td}$ encoded date (days since 01jan1960)
the e_{w} weekly date (weeks since 1960 w 1) corresponding to s_{1} based on s_{2} and $Y ; Y$ specifies topyear; see date()
the e_{w} weekly date (weeks since 1960 w 1) containing date e_{d}
the numeric year corresponding to date e_{d}
the e_{y} yearly date (year) corresponding to s_{1} based on s_{2} and Y; Y specifies topyear, see date()
the e_{h} half-yearly date (half-years since 1960h1) corresponding to year Y, half-year H
the e_{m} monthly date (months since 1960m1) corresponding to year Y, month M
the e_{y} yearly date (year) containing date e_{d}
the e_{q} quarterly date (quarters since 1960q1) corresponding to year Y, quarter Q
the e_{w} weekly date (weeks since 1960 w 1) corresponding to year Y, week W

Functions

Stata's date and time functions are described with examples in [U] 24 Working with dates and times and [D] datetime. What follows is a technical description. We use the following notation:

```
e
etc %tc encoded datetime (ms. since 01jan1960 00:00:00.000)
etC % % encoded datetime (ms. with leap seconds since 01jan1960 00:00:00.000)
e}\mp@subsup{e}{}{%}%\textrm{td}\mathrm{ encoded date (days since 01jan1960)
e}\mp@subsup{e}{w}{%tw}\mathrm{ encoded weekly date (weeks since 1960w1)
em %tm encoded monthly date (months since 1960m1)
eq}\quad%\textrm{tq}\mathrm{ encoded quarterly date (quarters since 1960q1)
e}\mp@subsup{e}{h}{%%th encoded half-yearly date (half-years since 1960h1)
e}\mp@subsup{y}{y}{%}%\mathrm{ ty encoded yearly date (years)
M month, 1-12
day of month, 1-31
Y year, 0100-9999
h hour, 0-23
m minute, 0-59
s second, 0-59 or 60 if leap seconds
W week number, 1-52
Q quarter number, 1-4
Half-year number, 1 or 2
```

The date and time functions, where integer arguments are required, allow noninteger values and use the floor () of the value.

A Stata date-and-time (\%t) variable is recorded as the milliseconds, days, weeks, etc., depending upon the units from 01jan1960; negative values indicate dates and times before 01jan1960. Allowable dates and times are those between 01jan0100 and 31dec9999, inclusive, but all functions are based on the Gregorian calendar, and values do not correspond to historical dates before Friday, 15 oct1582.

```
bofd("cal", e}d\mathrm{ )
```

Description: the e_{b} business date corresponding to e_{d}
Domain cal: business calendar names and formats
Domain e_{d} : \%td as defined by business calendar named cal
Range: as defined by business calendar named cal

Cdhms (e_{d}, h, m, s)
Description: the $e_{t C}$ datetime (ms. with leap seconds since 01 jan1960 00:00:00.000) corresponding to e_{d}, h, m, s
Domain e_{d} : \%td dates 01jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$)
Domain h : integers 0 to 23
Domain m : integers 0 to 59
Domain s : reals 0.000 to 60.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $>253,717,919,999,999$) or missing

Chms (h, m, s)
Description: the $e_{t C}$ datetime (ms. with leap seconds since 01jan1960 00:00:00.000) corresponding to h, m, s on 01 jan 1960
Domain h : integers 0 to 23
Domain m : integers 0 to 59
Domain s : reals 0.000 to 60.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $>253,717,919,999,999$) or missing
$\operatorname{Clock}\left(s_{1}, s_{2}[, Y]\right)$
Description: the $e_{t C}$ datetime (ms. with leap seconds since $01 \mathrm{jan} 196000: 00: 00.000$) corresponding to s_{1} based on s_{2} and Y

Function Clock() works the same as function clock() except that Clock() returns a leap second-adjusted \%tC value rather than an unadjusted \%tc value. Use Clock() only if original time values have been adjusted for leap seconds.
Domain s_{1} : strings
Domain s_{2} : strings
Domain Y : integers 1000 to 9998 (but probably 2001 to 2099)
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $>253,717,919,999,999$) or missing
$\operatorname{clock}\left(s_{1}, s_{2}[, Y]\right)$
Description: the $e_{t c}$ datetime (ms. since 01 jan 1960 00:00:00.000) corresponding to s_{1} based on s_{2} and Y
s_{1} contains the date, time, or both, recorded as a string, in virtually any format. Months can be spelled out, abbreviated (to three characters), or indicated as numbers; years can include or exclude the century; blanks and punctuation are allowed.
s_{2} is any permutation of $\mathrm{M}, \mathrm{D},[\# \#] \mathrm{Y}, \mathrm{h}, \mathrm{m}$, and s , with their order defining the order that month, day, year, hour, minute, and second occur (and whether they occur) in s_{1}. \#\#, if specified, indicates the default century for two-digit years in s_{1}. For instance, $s_{2}=$ "MD19Y hm" would translate $s_{1}=" 11 / 15 / 9121: 14 "$ as 15 nov1991 21:14. The space in "MD19Y hm" was not significant and the string would have translated just as well with "MD19Yhm".
Y provides an alternate way of handling two-digit years. Y specifies the largest year that is to be returned when a two-digit year is encountered; see function date() below. If neither \#\# nor Y is specified, clock() returns missing when it encounters a two-digit year.
Domain s_{1} : strings
Domain s_{2} : strings
Domain Y : integers 1000 to 9998 (but probably 2001 to 2099)
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $253,717,919,999,999$) or missing
Cmdyhms (M, D, Y, h, m, s)
Description: the $e_{t C}$ datetime (ms. with leap seconds since $01 \mathrm{jan} 196000: 00: 00.000$) corresponding to M, D, Y, h, m, s
Domain M : integers 1 to 12
Domain D : integers 1 to 31
Domain Y : integers 0100 to 9999 (but probably 1800 to 2100)
Domain h : integers 0 to 23
Domain m : integers 0 to 59
Domain s : reals 0.000 to 60.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $>253,717,919,999,999$) or missing
$\operatorname{Cofc}\left(e_{t c}\right)$
Description: the $e_{t C}$ datetime (ms. with leap seconds since 01jan1960 00:00:00.000) of $e_{t c}$ (ms. without leap seconds since 01jan1960 00:00:00.000)
Domain $e_{t c}$: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $253,717,919,999,999$)
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $>253,717,919,999,999$)
$\operatorname{cofC}\left(e_{t C}\right)$
Description: the $e_{t C}$ datetime (ms. with leap seconds since 01jan1960 00:00:00.000) of $e_{t c}$ (ms. without leap seconds since 01jan1960 00:00:00.000)
Domain $e_{t C}$: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $>253,717,919,999,999$)
Range datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $253,717,919,999,999$)
$\operatorname{Cofd}\left(e_{d}\right)$
Description: the $e_{t C}$ datetime (ms. with leap seconds since 01 jan 1960 00:00:00.000) of date e_{d} at time 00:00:00.000
Domain e_{d} : \%td dates 01 jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$)
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $>253,717,919,999,999$)
$\operatorname{cofd}\left(e_{d}\right)$
Description: the $e_{t c}$ datetime (ms. since 01 jan 1960 00:00:00.000) of date e_{d} at time 00:00:00.000
Domain e_{d} : \%td dates 01jan0100 to 31dec9999 (integers -679,350 to $2,936,549$)
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $253,717,919,999,999$)
$\operatorname{daily}\left(s_{1}, s_{2}[, Y]\right)$
Description: a synonym for date $\left(s_{1}, s_{2}[, Y]\right)$
date $\left(s_{1}, s_{2}[, Y]\right)$
Description: the e_{d} date (days since 01 jan 1960) corresponding to s_{1} based on s_{2} and Y
s_{1} contains the date, recorded as a string, in virtually any format. Months can be spelled out, abbreviated (to three characters), or indicated as numbers; years can include or exclude the century; blanks and punctuation are allowed.
s_{2} is any permutation of M, D, and $[\# \#] Y$, with their order defining the order that month, day, and year occur in s_{1}. \#\#, if specified, indicates the default century for two-digit years in s_{1}. For instance, $s_{2}=$ "MD19Y" would translate $s_{1}=" 11 / 15 / 91 "$ as 15 nov 1991 .
Y provides an alternate way of handling two-digit years. When a two-digit year is encountered, the largest year, topyear, that does not exceed Y is returned.

```
date("1/15/08","MDY",1999) = 15jan1908
date("1/15/08","MDY",2019) = 15jan2008
date("1/15/51","MDY",2000) = 15jan1951
date("1/15/50","MDY",2000) = 15jan1950
date("1/15/49","MDY",2000) = 15jan1949
date("1/15/01","MDY",2050) = 15jan2001
date("1/15/00","MDY",2050) = 15jan2000
```

If neither \#\# nor Y is specified, date() returns missing when it encounters a twodigit year. See Working with two-digit years in [D] datetime translation for more information.
Domain s_{1} : strings
Domain s_{2} : strings
Domain Y : integers 1000 to 9998 (but probably 2001 to 2099)
Range: $\quad \%$ td dates 01 jan 0100 to 31 dec 9999 (integers $-679,350$ to $2,936,549$) or missing
$\operatorname{day}\left(e_{d}\right)$
Description: the numeric day of the month corresponding to e_{d}
Domain e_{d} : \%td dates 01 jan 0100 to 31 dec 9999 (integers $-679,350$ to $2,936,549$)
Range: integers 1 to 31 or missing
dhms $\left(e_{d}, h, m, s\right)$
Description: the $e_{t c}$ datetime (ms. since 01 jan 1960 00:00:00.000) corresponding to e_{d}, h, m, and s
Domain e_{d} : \%td dates 01 jan 0100 to 31 dec 9999 (integers $-679,350$ to $2,936,549$)
Domain h : integers 0 to 23
Domain m : integers 0 to 59
Domain s : reals 0.000 to 59.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $253,717,919,999,999$) or missing
$\operatorname{dofb}\left(e_{b}, " c a l "\right)$
Description: the e_{d} datetime corresponding to e_{b}
Domain $e_{b}: \%$ tb as defined by business calendar named cal
Domain cal: business calendar names and formats
Range: as defined by business calendar named cal

$\operatorname{dofC}\left(e_{t C}\right)$

Description: the e_{d} date (days since 01 jan 1960) of datetime $e_{t C}$ (ms. with leap seconds since 01jan1960 00:00:00.000)
Domain $e_{t C}$: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $>253,717,919,999,999$)
Range: $\quad \%$ td dates 01 jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$)
$\operatorname{dofc}\left(e_{t c}\right)$
Description: the e_{d} date (days since 01jan1960) of datetime $e_{t c}$ (ms. since 01jan 1960 00:00:00.000)
Domain $e_{t c}$: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $253,717,919,999,999$)
Range: $\quad \%$ td dates 01 jan 0100 to 31 dec 9999 (integers $-679,350$ to $2,936,549$)
$\operatorname{dofh}\left(e_{h}\right)$
Description: the e_{d} date (days since 01jan1960) of the start of half-year e_{h}
Domain e_{h} : \%th dates 0100 h 1 to 9999 h 2 (integers $-3,720$ to 16,079)
Range: $\quad \%$ td dates 01 jan 0100 to 01 jul9999 (integers $-679,350$ to $2,936,366$)
$\operatorname{dofm}\left(e_{m}\right)$
Description: the e_{d} date (days since 01 jan 1960) of the start of month e_{m}
Domain $e_{m}: \%$ tm dates 0100 ml to 9999 m 12 (integers $-22,320$ to 96,479)
Range: $\quad \%$ td dates 01 jan 0100 to 01 dec 9999 (integers $-679,350$ to $2,936,519$)
$\operatorname{dofq}\left(e_{q}\right)$
Description: the e_{d} date (days since 01 jan 1960) of the start of quarter e_{q}
Domain e_{q} : \%tq dates 0100q1 to 9999 q 4 (integers $-7,440$ to 32,159)
Range: $\quad \%$ td dates 01 jan0100 to 01 oct 9999 (integers $-679,350$ to $2,936,458$)

```
dofw( }\mp@subsup{e}{w}{}\mathrm{ )
```

Description: the e_{d} date (days since 01 jan 1960) of the start of week e_{w}
Domain e_{w} : \%tw dates 0100 w 1 to 9999 w 52 (integers $-96,720$ to 418,079)
Range: $\quad \%$ td dates 01 jan0100 to 24 dec 9999 (integers $-679,350$ to $2,936,542$)
dofy $\left(e_{y}\right)$
Description: the e_{d} date (days since 01 jan 1960) of 01 jan in year e_{y}
Domain e_{y} : \%ty dates 0100 to 9999 (integers 0100 to 9999)
Range: $\quad \%$ td dates 01 jan0100 to 01jan9999 (integers $-679,350$ to $2,936,185$)
$\operatorname{dow}\left(e_{d}\right)$
Description: the numeric day of the week corresponding to date $e_{d} ; 0=$ Sunday, $1=$ Monday, $\ldots, 6=$ Saturday
Domain e_{d} : \%td dates 01jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$)
Range: integers 0 to 6 or missing
$\operatorname{doy}\left(e_{d}\right)$
Description: the numeric day of the year corresponding to date e_{d}
Domain e_{d} : \%td dates 01 jan 0100 to 31 dec 9999 (integers $-679,350$ to $2,936,549$)
Range: integers 1 to 366 or missing
halfyear (e_{d})
Description: the numeric half of the year corresponding to date e_{d}
Domain e_{d} : \%td dates 01jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$)
Range: integers 1, 2 , or missing
halfyearly $\left(s_{1}, s_{2}[, Y]\right)$
Description: the e_{h} half-yearly date (half-years since 1960h1) corresponding to s_{1} based on s_{2} and $Y ; Y$ specifies topyear; see date()
Domain s_{1} : strings
Domain s_{2} : strings "HY" and "YH"; Y may be prefixed with \#\#
Domain Y : integers 1000 to 9998 (but probably 2001 to 2099)
Range: $\quad \%$ th dates 0100 h 1 to 9999 h 2 (integers $-3,720$ to 16,079) or missing
$\mathrm{hh}\left(e_{t c}\right)$
Description: the hour corresponding to datetime $e_{t c}$ (ms. since 01jan1960 00:00:00.000)
Domain $e_{t c}$: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $253,717,919,999,999$)
Range: integers 0 through 23, missing
$\operatorname{hhC}\left(e_{t C}\right)$
Description: the hour corresponding to datetime $e_{t C}$ (ms. with leap seconds since 01jan1960 00:00:00.000)
Domain $e_{t C}$: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $>253,717,919,999,999$)
Range: integers 0 through 23, missing
hms (h, m, s)
Description: the $e_{t c}$ datetime (ms. since 01 jan 1960 00:00:00.000) corresponding to h, m, s on 01jan 1960
Domain h : integers 0 to 23
Domain m : integers 0 to 59
Domain s : reals 0.000 to 59.999
Range: datetimes 01jan1960 00:00:00.000 to 01jan1960 23:59:59.999 (integers 0 to 86,399,999 or missing)
$\operatorname{hofd}\left(e_{d}\right)$
Description: the e_{h} half-yearly date (half years since 1960h1) containing date e_{d}
Domain e_{d} : \%td dates 01jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$)
Range: $\quad \%$ th dates 0100 h 1 to 9999 h 2 (integers $-3,720$ to 16,079)
hours ($m s$)
Description: $m s / 3,600,000$
Domain ms : real; milliseconds
Range: real or missing
$\operatorname{mdy}(M, D, Y)$
Description: the e_{d} date (days since 01 jan 1960) corresponding to M, D, Y
Domain M : integers 1 to 12
Domain D : integers 1 to 31
Domain Y : integers 0100 to 9999 (but probably 1800 to 2100)
Range: $\quad \%$ td dates 01 jan 0100 to 31 dec 9999 (integers $-679,350$ to $2,936,549$) or missing
mdyhms (M, D, Y, h, m, s)
Description: the $e_{t c}$ datetime (ms. since 01 jan 1960 00:00:00.000) corresponding to M, D, Y, h, m, s
Domain M : integers 1 to 12
Domain D : integers 1 to 31
Domain Y : integers 0100 to 9999 (but probably 1800 to 2100)
Domain h : integers 0 to 23
Domain m : integers 0 to 59
Domain s : reals 0.000 to 59.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $253,717,919,999,999$) or missing
minutes (ms)
Description: $m s / 60,000$
Domain ms : real; milliseconds
Range: real or missing
$\mathrm{mm}\left(e_{t c}\right)$
Description: the minute corresponding to datetime $e_{t c}$ (ms. since 01jan1960 00:00:00.000)
Domain $e_{t c}$: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $253,717,919,999,999$)
Range: integers 0 through 59, missing
$\mathrm{mmC}\left(e_{t C}\right)$
Description: the minute corresponding to datetime $e_{t C}$ (ms. with leap seconds since 01jan1960 00:00:00.000)
Domain $e_{t C}$: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $>253,717,919,999,999$)
Range: integers 0 through 59, missing
$\operatorname{mofd}\left(e_{d}\right)$
Description: the e_{m} monthly date (months since 1960 m 1) containing date e_{d}
Domain e_{d} : \%td dates 01jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$)
Range: $\quad \%$ tm dates 0100 ml to 9999 m 12 (integers $-22,320$ to 96,479)

$\operatorname{month}\left(e_{d}\right)$

Description: the numeric month corresponding to date e_{d}
Domain e_{d} : \%td dates 01 jan 0100 to 31 dec 9999 (integers $-679,350$ to $2,936,549$)
Range: integers 1 to 12 or missing

```
monthly( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}[,Y]
```

Description: the e_{m} monthly date (months since 1960 ml) corresponding to s_{1} based on s_{2} and $Y ; Y$ specifies topyear; see date()
Domain s_{1} : strings
Domain s_{2} : strings "MY" and "YM"; Y may be prefixed with \#\#
Domain Y : integers 1000 to 9998 (but probably 2001 to 2099)
Range: $\quad \%$ tm dates 0100 ml to 9999 m 12 (integers $-22,320$ to 96,479) or missing

msofhours (h)

Description: $h \times 3,600,000$
Domain h : real; hours
Range: real or missing; milliseconds

```
msofminutes(m)
```

Description: $m \times 60,000$
Domain m : real; minutes
Range: real or missing; milliseconds
msofseconds (s)
Description: $s \times 1,000$
Domain s : real; seconds
Range: real or missing; milliseconds
qofd $\left(e_{d}\right)$
Description: the e_{q} quarterly date (quarters since 1960 q 1) containing date e_{d}
Domain e_{d} : \%td dates 01 jan 0100 to 31 dec 9999 (integers $-679,350$ to $2,936,549$)
Range: $\quad \% \mathrm{tq}$ dates 0100 q 1 to 9999 q 4 (integers $-7,440$ to 32,159)
quarter $\left(e_{d}\right)$
Description: the numeric quarter of the year corresponding to date e_{d}
Domain e_{d} : \%td dates 01 jan0100 to 31 dec9999 (integers $-679,350$ to $2,936,549$)
Range: integers 1 to 4 or missing
quarterly $\left(s_{1}, s_{2}[, Y]\right)$
Description: the e_{q} quarterly date (quarters since 1960q1) corresponding to s_{1} based on s_{2} and $Y ; Y$ specifies topyear, see date()
Domain s_{1} : strings
Domain s_{2} : strings "QY" and "YQ"; Y may be prefixed with \#\#
Domain Y : integers 1000 to 9998 (but probably 2001 to 2099)
Range: $\quad \% \mathrm{tq}$ dates 0100 q 1 to 9999 q 4 (integers $-7,440$ to 32,159) or missing

```
seconds(ms)
```

Description: $m s / 1,000$
Domain $m s$: real; milliseconds
Range: real or missing

$\mathrm{ss}\left(e_{t c}\right)$

Description: the second corresponding to datetime $e_{t c}$ (ms. since 01jan1960 00:00:00.000)
Domain $e_{t c}$: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $253,717,919,999,999$)
Range: real 0.000 through 59.999, missing
$\operatorname{ssC}\left(e_{t C}\right)$
Description: the second corresponding to datetime $e_{t C}$ (ms . with leap seconds since 01 jan 1960 00:00:00.000)
Domain $e_{t C}$: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $>253,717,919,999,999$)
Range: real 0.000 through 60.999 , missing
$\mathrm{tC}(l)$
Description: convenience function to make typing dates and times in expressions easier
Same as tc(), except returns leap second-adjusted values; for example, typing tc (29nov2007 9:15) is equivalent to typing 1511946900000, whereas $\mathrm{tC}(29 n o v 2007$ 9:15) is 1511946923000 .
Domain l : datetime literal strings 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $>253,717,919,999,999$)
$\mathrm{tc}(l)$
Description: convenience function to make typing dates and times in expressions easier
For example, typing tc (2 jan 1960 13:42) is equivalent to typing 135720000; the date but not the time may be omitted, and then 01jan1960 is assumed; the seconds portion of the time may be omitted and is assumed to be 0.000 ; $\mathrm{tc}(11: 02)$ is equivalent to typing 39720000.
Domain l : datetime literal strings 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers $-58,695,840,000,000$ to $253,717,919,999,999$)

td (l)

Description: convenience function to make typing dates in expressions easier
For example, typing $\operatorname{td}(2 \mathrm{jan} 1960)$ is equivalent to typing 1.
Domain l : date literal strings 01jan0100 to 31dec9999
Range: $\quad \%$ td dates 01 jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$)
$\operatorname{th}(l)$
Description: convenience function to make typing half-yearly dates in expressions easier
For example, typing th(1960h2) is equivalent to typing 1.
Domain l : half-year literal strings 0100 h 1 to 9999 h 2
Range: $\quad \%$ th dates 0100 h 1 to 9999 h 2 (integers $-3,720$ to 16,079)

tm (l)

Description: convenience function to make typing monthly dates in expressions easier
For example, typing $\operatorname{tm}(1960 \mathrm{~m} 2)$ is equivalent to typing 1.
Domain l : month literal strings 0100 m 1 to 9999 m 12
Range: $\quad \%$ tm dates 0100 ml to 9999 m 12 (integers $-22,320$ to 96,479)
$\mathrm{tq}(l)$
Description: convenience function to make typing quarterly dates in expressions easier
For example, typing $\mathrm{tq}(1960 \mathrm{q} 2)$ is equivalent to typing 1.
Domain l : quarter literal strings $0100 q 1$ to $9999 q 4$
Range: \quad \%tq dates 0100 q 1 to 9999 q 4 (integers $-7,440$ to 32,159)
tw (l)
Description: convenience function to make typing weekly dates in expressions easier
For example, typing tw (1960w2) is equivalent to typing 1.
Domain l : week literal strings 0100w1 to 9999w52
Range: $\quad \%$ tw dates 0100 w 1 to 9999 w 52 (integers $-96,720$ to 418,079)
week $\left(e_{d}\right)$
Description: the numeric week of the year corresponding to date e_{d}, the $\% \mathrm{td}$ encoded date (days since 01jan 1960)
Note: The first week of a year is the first 7-day period of the year.
Domain e_{d} : \%td dates 01 jan 0100 to 31 dec 9999 (integers $-679,350$ to $2,936,549$)
Range integers 1 to 52 or missing
weekly $\left(s_{1}, s_{2}[, Y]\right)$
Description: the e_{w} weekly date (weeks since 1960 w 1) corresponding to s_{1} based on s_{2} and Y;
Y specifies topyear; see date()
Domain s_{1} : strings
Domain s_{2} : strings "WY" and "YW"; Y may be prefixed with \#\#
Domain Y : integers 1000 to 9998 (but probably 2001 to 2099)
Range: $\quad \%$ tw dates 0100 w 1 to 9999 w 52 (integers $-96,720$ to 418,079) or missing
wofd $\left(e_{d}\right)$
Description: the e_{w} weekly date (weeks since 1960 w 1) containing date e_{d}
Domain e_{d} : \%td dates 01 jan 0100 to 31 dec 9999 (integers $-679,350$ to $2,936,549$)
Range: $\quad \%$ tw dates 0100 w 1 to 9999 w 52 (integers $-96,720$ to 418,079)
year $\left(e_{d}\right)$
Description: the numeric year corresponding to date e_{d}
Domain e_{d} : \%td dates 01jan0100 to 31dec9999 (integers $-679,350$ to $2,936,549$)
Range: integers 0100 to 9999 (but probably 1800 to 2100)
$\operatorname{yearly}\left(s_{1}, s_{2}[, Y]\right)$
Description: the e_{y} yearly date (year) corresponding to s_{1} based on s_{2} and $Y ; Y$ specifies topyear; see date()
Domain s_{1} : strings
Domain s_{2} : string "Y"; Y may be prefixed with \#\#
Domain Y : integers 1000 to 9998 (but probably 2001 to 2099)
Range: \%ty dates 0100 to 9999 (integers 0100 to 9999) or missing

yh (Y, H)

Description: the e_{h} half-yearly date (half-years since 1960h1) corresponding to year Y, half-year H
Domain Y : integers 1000 to 9999 (but probably 1800 to 2100)
Domain H : integers 1, 2
Range: \quad \%th dates 1000 h 1 to 9999 h 2 (integers $-1,920$ to 16,079)
$y m(Y, M)$
Description: the e_{m} monthly date (months since 1960 m 1) corresponding to year Y, month M
Domain Y : integers 1000 to 9999 (but probably 1800 to 2100)
Domain M : integers 1 to 12
Range: $\quad \%$ tm dates 1000 m 1 to 9999 m 12 (integers $-11,520$ to 96,479)
yofd $\left(e_{d}\right)$
Description: the e_{y} yearly date (year) containing date e_{d}
Domain e_{d} : \%td dates 01 jan0100 to 31 dec9999 (integers $-679,350$ to $2,936,549$)
Range: $\quad \%$ ty dates 0100 to 9999 (integers 0100 to 9999)
$y q(Y, Q)$
Description: the e_{q} quarterly date (quarters since 1960 q 1) corresponding to year Y, quarter Q
Domain Y : integers 1000 to 9999 (but probably 1800 to 2100)
Domain Q : integers 1 to 4
Range: \quad \%tq dates 1000 q 1 to 9999 q 4 (integers $-3,840$ to 32,159)
yw (Y, W)
Description: the e_{w} weekly date (weeks since 1960 w 1) corresponding to year Y, week W
Domain Y : integers 1000 to 9999 (but probably 1800 to 2100)
Domain W : integers 1 to 52
Range: \quad \%tw dates 1000 w 1 to 9999 w 52 (integers $-49,920$ to 418,079)

Also see

[D] egen - Extensions to generate
[M-5] date() - Date and time manipulation
[M-5] intro - Alphabetical index to functions
[U] 13.3 Functions

Title

Mathematical functions

Contents Functions References Also see

Contents

```
abs(x)
ceil(x)
cloglog(x)
comb ( }n,k
digamma(x)
exp(x)
floor(x)
int(x)
invcloglog(x)
invlogit(x)
ln}(x
lnfactorial(n)
lngamma(x)
log(x)
log10(x)
logit(x)
max}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{n}{}
min}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{n}{}
mod}(x,y
reldif(x,y)
```

round (x, y) or round (x)
$\operatorname{sign}(x)$
$\operatorname{sqrt}(x)$
sum (x)
trigamma (x)
trunc (x)
the absolute value of x
the unique integer n such that $n-1<x \leq n$; x (not ".") if x is missing, meaning that ceil (.a) $=. \mathrm{a}$
the complementary $\log -\log$ of x
the combinatorial function $n!/\{k!(n-k)!\}$
the digamma() function, $d \ln \Gamma(x) / d x$
the exponential function e^{x}
the unique integer n such that $n \leq x<n+1$; x (not ".") if x is missing, meaning that floor (.a) $=$.a
the integer obtained by truncating x toward 0 (thus, int (5.2) $=5$ and $\operatorname{int}(-5.8)=-5) ; x$ (not ".") if x is missing, meaning that $\operatorname{int}(. a)=. a$
the inverse of the complementary log-log function of x
the inverse of the logit function of x
the natural logarithm, $\ln (x)$
the natural \log of factorial $=\ln (n!)$
$\ln \{\Gamma(x)\}$
the natural logarithm, $\ln (x) ;$ thus, a synonym for $\ln (x)$
the base-10 logarithm of x
the \log of the odds ratio of $x, \operatorname{logit}(x)=\ln \{x /(1-x)\}$
the maximum value of $x_{1}, x_{2}, \ldots, x_{n}$
the minimum value of $x_{1}, x_{2}, \ldots, x_{n}$
the modulus of x with respect to y
the "relative" difference $|x-y| /(|y|+1)$; 0 if both arguments are the same type of extended missing value; missing if only one argument is missing or if the two arguments are two different types of missing
x rounded in units of y or x rounded to the nearest integer if the argument y is omitted; x (not ".") if x is missing (meaning that round (.a) $=$. a and that round $(. a, y)=$. a if y is not missing) and if y is missing, then "." is returned
the sign of $x:-1$ if $x<0,0$ if $x=0,1$ if $x>0$, or missing if x is missing
the square root of x
the running sum of x, treating missing values as zero
the second derivative of $\operatorname{lng} \operatorname{lnma}(x)=d^{2} \ln \Gamma(x) / d x^{2}$
a synonym for int (x)

Functions

abs (x)
Description: the absolute value of x
Domain: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: 0 to $8 \mathrm{e}+307$
ceil (x)
Description: the unique integer n such that $n-1<x \leq n ; x$ (not ".") if x is missing, meaning that ceil (.a) $=$. a
Also see floor (x), int (x), and round (x).
Domain: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: integers in $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
cloglog (x)
Description: the complementary $\log -\log$ of x

$$
\operatorname{clog} \log (x)=\ln \{-\ln (1-x)\}
$$

Domain: 0 to 1
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
$\operatorname{comb}(n, k)$
Description: the combinatorial function $n!/\{k!(n-k)!\}$
Domain n : integers 1 to $1 \mathrm{e}+305$
Domain k : integers 0 to n
Range: $\quad 0$ to $8 \mathrm{e}+307$ or missing

digamma (x)

Description: the digamma() function, $d \ln \Gamma(x) / d x$
This is the derivative of Ingamma (x). The digamma (x) function is sometimes called the psi function, $\psi(x)$.
Domain: $\quad-1 \mathrm{e}+15$ to $8 \mathrm{e}+307$
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
$\exp (x)$
Description: the exponential function e^{x}
This function is the inverse of $\ln (x)$.
Domain: $\quad-8 \mathrm{e}+307$ to 709
Range: 0 to $8 \mathrm{e}+307$
floor (x)
Description: the unique integer n such that $n \leq x<n+1$; x (not ".") if x is missing, meaning that floor (.a) $=. \mathrm{a}$
Also see ceil $(x), \operatorname{int}(x)$, and round (x).
Domain: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: integers in $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
int (x)
Description: the integer obtained by truncating x toward 0 (thus, $\operatorname{int}(5.2)=5$ and $\operatorname{int}(-5.8)=$ -5); x (not ".") if x is missing, meaning that $\operatorname{int}(. \mathrm{a})=. \mathrm{a}$

One way to obtain the closest integer to x is $\operatorname{int}(x+\operatorname{sign}(x) / 2)$, which simplifies to int ($x+0.5$) for $x \geq 0$. However, use of the round () function is preferred. Also see ceil (x), int (x), and round (x).
Domain: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: integers in $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
invcloglog (x)
Description: the inverse of the complementary $\log -\log$ function of x

$$
\operatorname{invclog} \log (x)=1-\exp \{-\exp (x)\}
$$

Domain: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: $\quad 0$ to 1 or missing
invlogit (x)
Description: the inverse of the logit function of x invlogit $(x)=\exp (x) /\{1+\exp (x)\}$
Domain: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: $\quad 0$ to 1 or missing
$\ln (x)$
Description: the natural logarithm, $\ln (x)$
This function is the inverse of $\exp (x)$. The logarithm of x in base b can be calculated via $\log _{b}(x)=\log _{a}(x) / \log _{a}(b)$. Hence,
$\log _{5}(x)=\ln (x) / \ln (5)=\log (x) / \log (5)=\log 10(x) / \log 10(5)$
$\log _{2}(x)=\ln (x) / \ln (2)=\log (x) / \log (2)=\log 10(x) / \log 10(2)$
You can calculate $\log _{b}(x)$ by using the formula that best suits your needs.
Domain: $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Range: $\quad-744$ to 709
lnfactorial(n)
Description: the natural \log of factorial $=\ln (n!)$
To calculate n !, use round $(\exp (\operatorname{lnf}$ actorial $(n)), 1)$ to ensure that the result is an integer. Logs of factorials are generally more useful than the factorials themselves because of overflow problems.
Domain: integers 0 to $1 \mathrm{e}+305$
Range: 0 to $8 \mathrm{e}+307$

Ingamma (x)

Description: $\ln \{\Gamma(x)\}$
Here the gamma function, $\Gamma(x)$, is defined by $\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t$. For integer values of $x>0$, this is $\ln ((x-1)!$).
$\operatorname{lngamma}(x)$ for $x<0$ returns a number such that \exp (lngamma (x)) is equal to the absolute value of the gamma function, $\Gamma(x)$. That is, Ingamma (x) always returns a real (not complex) result.
Domain: $-2,147,483,648$ to $1 \mathrm{e}+305$ (excluding negative integers)
Range: $\quad-8 e+307$ to $8 e+307$
$\log (x)$
Description: the natural logarithm, $\ln (x)$; thus, a synonym for $\ln (x)$
Domain: $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Range: $\quad-744$ to 709
$\log 10(x)$
Description: the base-10 logarithm of x
Domain: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Range: $\quad-323$ to 308
$\operatorname{logit}(x)$
Description: the \log of the odds ratio of $x, \operatorname{logit}(x)=\ln \{x /(1-x)\}$
Domain: 0 to 1 (exclusive)
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
$\max \left(x_{1}, x_{2}, \ldots, x_{n}\right)$
Description: the maximum value of $x_{1}, x_{2}, \ldots, x_{n}$
Unless all arguments are missing, missing values are ignored. $\max (2,10, ., 7)=10$
$\max (., .,)=$..
Domain x_{1} : $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
Domain $x_{2}:-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
Domain $x_{n}:-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
$\min \left(x_{1}, x_{2}, \ldots, x_{n}\right)$
Description: the minimum value of $x_{1}, x_{2}, \ldots, x_{n}$
Unless all arguments are missing, missing values are ignored. $\min (2,10, ., 7)=2$
$\min (., .,)=$..
Domain x_{1} : $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
Domain $x_{2}:-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
Domain $x_{n}:-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
$\bmod (x, y)$
Description: the modulus of x with respect to y
$\bmod (x, y)=x-y$ floor (x / y)
$\bmod (x, 0)=$.
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain y : 0 to $8 \mathrm{e}+307$
Range: 0 to $8 \mathrm{e}+307$

reldif (x, y)

Description: the "relative" difference $|x-y| /(|y|+1) ; 0$ if both arguments are the same type of extended missing value; missing if only one argument is missing or if the two arguments are two different types of missing
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
Domain y : $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing

```
round(x,y) or round (x)
```

Description: x rounded in units of y or x rounded to the nearest integer if the argument y is omitted; x (not ".") if x is missing (meaning that round(.a) $=$.a and that round (.a,y) =. a if y is not missing) and if y is missing, then "." is returned

For $y=1$, or with y omitted, this amounts to the closest integer to x; round $(5.2,1)$ is 5 , as is round $(4.8,1)$; round $(-5.2,1)$ is -5 , as is round $(-4.8,1)$. The rounding definition is generalized for $y \neq 1$. With $y=0.01$, for instance, x is rounded to two decimal places; round (sqrt (2),.01) is $1.41 . y$ may also be larger than 1 ; round $(28,5)$ is 30 , which is 28 rounded to the closest multiple of 5 . For $y=0$, the function is defined as returning x unmodified. Also see $\operatorname{int}(x)$, ceil (x), and floor (x).
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain y : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
$\operatorname{sign}(x)$
Description: the sign of $x:-1$ if $x<0,0$ if $x=0,1$ if $x>0$, or missing if x is missing
Domain: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
Range: $\quad-1,0,1$ or missing

sqrt (x)

Description: the square root of x
Domain: 0 to $8 \mathrm{e}+307$
Range: 0 to $1 \mathrm{e}+154$
sum (x)
Description: the running sum of x, treating missing values as zero
For example, following the command generate $\mathrm{y}=\operatorname{sum}(\mathrm{x})$, the j th observation on y contains the sum of the first through j th observations on x. See [D] egen for an alternative sum function, total (), that produces a constant equal to the overall sum.
Domain: all real numbers or missing
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ (excluding missing)

trigamma (x)

Description: the second derivative of $\operatorname{lngamma}(x)=d^{2} \ln \Gamma(x) / d x^{2}$
The trigamma() function is the derivative of digamma (x).
Domain: $\quad-1 \mathrm{e}+15$ to $8 \mathrm{e}+307$
Range: $\quad 0$ to $8 \mathrm{e}+307$ or missing
trunc (x)
Description: a synonym for $\operatorname{int}(x)$

References

Abramowitz, M., and I. A. Stegun, ed. 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. 7th ed. Washington, DC: National Bureau of Standards.
Cox, N. J. 2003. Stata tip 2: Building with floors and ceilings. Stata Journal 3: 446-447.
-_ 2007. Stata tip 43: Remainders, selections, sequences, extractions: Uses of the modulus. Stata Journal 7: 143-145.

Oldham, K. B., J. C. Myland, and J. Spanier. 2009. An Atlas of Functions. 2nd ed. New York: Springer.

Also see

[D] egen - Extensions to generate
[M-4] mathematical - Important mathematical functions
[M-5] intro - Alphabetical index to functions
[U] 13.3 Functions

Title

Matrix functions

Contents Functions Reference Also see

Contents

```
cholesky(M)
colnumb (M,s)
colsof(M)
corr(M)
det(M)
diag(v)
diag0cnt(M)
el (s,i,j)
get(systemname)
hadamard( }M,N
I(n)
inv(M)
invsym(M)
issymmetric(M)
J (r,c,z)
matmissing(M)
matuniform(r,c)
mreldif(X,Y)
nullmat (matname)
rownumb (M,s)
rowsof(M)
sweep (M,i)
trace(M)
vec(M)
vecdiag(M)
```

the Cholesky decomposition of the matrix: if $R=\operatorname{cholesky}(S)$, then $R R^{T}=S$
the column number of M associated with column name s; missing if the column cannot be found
the number of columns of M
the correlation matrix of the variance matrix
the determinant of matrix M
the square, diagonal matrix created from the row or column vector the number of zeros on the diagonal of M
s [floor (i),floor (j)], the i, j element of the matrix named s; missing if i or j are out of range or if matrix s does not exist
a copy of Stata internal system matrix systemname
a matrix whose i, j element is $M[i, j] \cdot N[i, j]$ (if M and N are not the same size, this function reports a conformability error)
an $n \times n$ identity matrix if n is an integer; otherwise, a round $(n) \times$ round (n) identity matrix
the inverse of the matrix M
the inverse of M if M is positive definite
1 if the matrix is symmetric; otherwise, 0
the $r \times c$ matrix containing elements z
1 if any elements of the matrix are missing; otherwise, 0
the $r \times c$ matrices containing uniformly distributed pseudorandom numbers on the interval $(0,1)$
the relative difference of X and Y, where the relative difference is defined as $\max _{i, j}\left\{\left|x_{i j}-y_{i j}\right| /\left(\left|y_{i j}\right|+1\right)\right\}$
use with the row-join (,) and column-join (\backslash) operators in programming situations
the row number of M associated with row name s; missing if the row cannot be found
the number of rows of M
matrix M with i th row/column swept
the trace of matrix M
a column vector formed by listing the elements of M, starting with the first column and proceeding column by column
the row vector containing the diagonal of matrix M

Functions

We divide the basic matrix functions into two groups, according to whether they return a matrix or a scalar:

> Matrix functions returning a matrix

Matrix functions returning a scalar

Matrix functions returning a matrix

In addition to the functions listed below, see [P] matrix svd for singular value decomposition, $[\mathrm{P}]$ matrix symeigen for eigenvalues and eigenvectors of symmetric matrices, and $[\mathrm{P}]$ matrix eigenvalues for eigenvalues of nonsymmetric matrices.
cholesky (M)
Description: the Cholesky decomposition of the matrix: if $R=$ cholesky (S), then $R R^{T}=S$ R^{T} indicates the transpose of R. Row and column names are obtained from M.
Domain: $\quad n \times n$, positive-definite, symmetric matrices
Range: $\quad n \times n$ lower-triangular matrices
$\operatorname{corr}(M)$
Description: the correlation matrix of the variance matrix
Row and column names are obtained from M.
Domain: $\quad n \times n$ symmetric variance matrices
Range: $\quad n \times n$ symmetric correlation matrices
$\operatorname{diag}(v)$
Description: the square, diagonal matrix created from the row or column vector
Row and column names are obtained from the column names of M if M is a row vector or from the row names of M if M is a column vector.
Domain: $\quad 1 \times n$ and $n \times 1$ vectors
Range: $\quad n \times n$ diagonal matrices
get (systemname)
Description: a copy of Stata internal system matrix systemname
This function is included for backward compatibility with previous versions of Stata.
Domain: existing names of system matrices
Range: matrices
hadamard (M, N)
Description: a matrix whose i, j element is $M[i, j] \cdot N[i, j]$ (if M and N are not the same size, this function reports a conformability error)
Domain M: $m \times n$ matrices
Domain N : $m \times n$ matrices
Range: $\quad m \times n$ matrices

I (n)

Description: an $n \times n$ identity matrix if n is an integer; otherwise, a round $(n) \times$ round (n) identity matrix
Domain: real scalars 1 to matsize
Range: identity matrices

inv(M)

Description: the inverse of the matrix M
If M is singular, this will result in an error.
The function invsym() should be used in preference to inv() because invsym() is more accurate. The row names of the result are obtained from the column names of M, and the column names of the result are obtained from the row names of M.
Domain: $\quad n \times n$ nonsingular matrices
Range: $\quad n \times n$ matrices
invsym (M)
Description: the inverse of M if M is positive definite
If M is not positive definite, rows will be inverted until the diagonal terms are zero or negative; the rows and columns corresponding to these terms will be set to 0 , producing a g2 inverse. The row names of the result are obtained from the column names of M, and the column names of the result are obtained from the row names of M.
Domain: $\quad n \times n$ symmetric matrices
Range: $\quad n \times n$ symmetric matrices
$\mathrm{J}(r, c, z)$
Description: the $r \times c$ matrix containing elements z
Domain r : integer scalars 1 to matsize
Domain c : integer scalars 1 to matsize
Domain z : scalars $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: $\quad r \times c$ matrices
matuniform (r, c)
Description: the $r \times c$ matrices containing uniformly distributed pseudorandom numbers on the interval $(0,1)$
Domain r : integer scalars 1 to matsize
Domain c : integer scalars 1 to matsize
Range: $\quad r \times c$ matrices

nullmat (matname)

Description: use with the row-join (,) and column-join (
) operators in programming situations
Consider the following code fragment, which is an attempt to create the vector (1, 2, 3, 4):

```
forvalues i = 1/4 {
    mat v = (v, 'i')
}
```

The above program will not work because, the first time through the loop, v will not yet exist, and thus forming (v, 'i') makes no sense. nullmat() relaxes that restriction:

```
forvalues i = 1/4 {
    mat v = (nullmat(v), 'i')
}
```

The nullmat () function informs Stata that if v does not exist, the function row-join is to be generalized. Joining nothing with ' i ' results in (' i '). Thus the first time through the loop, $\mathrm{v}=(1)$ is formed. The second time through, v does exist, so $\mathrm{v}=(1,2)$ is formed, and so on. nullmat () can be used only with the , and \backslash operators.
Domain: matrix names, existing and nonexisting
Range: matrices including null if matname does not exist

sweep (M, i)

Description: matrix M with i th row/column swept
The row and column names of the resultant matrix are obtained from M, except that the nth row and column names are interchanged. If $B=\operatorname{sweep}(A, k)$, then

$$
\begin{aligned}
B_{k k} & =\frac{1}{A_{k k}} \\
B_{i k} & =-\frac{A_{i k}}{A_{k k}}, \quad i \neq k \\
B_{k j} & =\frac{A_{k j}}{A_{k k}}, \quad j \neq k \\
B_{i j} & =A_{i j}-\frac{A_{i k} A_{k j}}{A_{k k}}, \quad i \neq k, j \neq k
\end{aligned}
$$

Domain $M: n \times n$ matrices
Domain i : integer scalars 1 to n
Range: $\quad n \times n$ matrices
$\operatorname{vec}(M)$
Description: a column vector formed by listing the elements of M, starting with the first column and proceeding column by column
Domain: matrices
Range: \quad column vectors ($n \times 1$ matrices)

vecdiag (M)

Description: the row vector containing the diagonal of matrix M
$\operatorname{vecdiag}()$ is the opposite of diag(). The row name is set to r 1 ; the column names are obtained from the column names of M.
Domain: $\quad n \times n$ matrices
Range: $\quad 1 \times n$ vectors

Matrix functions returning a scalar

colnumb (M, s)
Description: the column number of M associated with column name s; missing if the column cannot be found
Domain M : matrices
Domain s : strings
Range: \quad integer scalars 1 to matsize or missing
colsof (M)
Description: the number of columns of M
Domain: matrices
Range: integer scalars 1 to matsize
$\operatorname{det}(M)$
Description: the determinant of matrix M
Domain: $\quad n \times n$ (square) matrices
Range: scalars $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
diag0cnt (M)
Description: the number of zeros on the diagonal of M
Domain: $\quad n \times n$ (square) matrices
Range: \quad integer scalars 0 to n
el (s, i, j)
Description: s [floor (i), floor (j)], the i, j element of the matrix named s; missing if i or j are out of range or if matrix s does not exist
Domain s : strings containing matrix name
Domain i : scalars 1 to matsize
Domain j : scalars 1 to matsize
Range: scalars $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
issymmetric (M)
Description: 1 if the matrix is symmetric; otherwise, 0
Domain M : matrices
Range: \quad integers 0 and 1
matmissing (M)
Description: 1 if any elements of the matrix are missing; otherwise, 0
Domain M : matrices
Range: integers 0 and 1
mreldif (X, Y)
Description: the relative difference of X and Y, where the relative difference is defined as $\max _{i, j}\left\{\left|x_{i j}-y_{i j}\right| /\left(\left|y_{i j}\right|+1\right)\right\}$
Domain X : matrices
Domain Y : matrices with same number of rows and columns as X
Range: \quad scalars $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
rownumb (M, s)
Description: the row number of M associated with row name s; missing if the row cannot be found
Domain M : matrices
Domain s : strings
Range: \quad integer scalars 1 to matsize or missing
rowsof (M)
Description: the number of rows of M
Domain: matrices
Range: integer scalars 1 to matsize
trace (M)
Description: the trace of matrix M
Domain: $\quad n \times n$ (square) matrices
Range: scalars $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$

Jacques Salomon Hadamard (1865-1963) was born in Versailles, France. He studied at the Ecole Normale Supérieure in Paris and obtained a doctorate in 1892 for a thesis on functions defined by Taylor series. Hadamard taught at Bordeaux for 4 years and in a productive period published an outstanding theorem on prime numbers, proved independently by Charles de la Vallée Poussin, and worked on what are now called Hadamard matrices. In 1897, he returned to Paris, where he held a series of prominent posts. In his later career, his interests extended from pure mathematics toward mathematical physics. Hadamard produced papers and books in many different areas. He campaigned actively against anti-Semitism at the time of the Dreyfus affair. After the fall of France in 1940, he spent some time in the United States and then Great Britain.

Reference

Mazýa, V. G., and T. O. Shaposhnikova. 1998. Jacques Hadamard, A Universal mathematician. Providence, RI: American Mathematical Society.

Also see

[D] egen - Extensions to generate
[M-5] intro - Alphabetical index to functions
[U] 13.3 Functions
[U] 14.8 Matrix functions

Title

Programming functions

Contents Functions References Also see

Contents

autocode $\left(x, n, x_{0}, x_{1}\right)$
byteorder()
c (name)
_caller()
$\operatorname{chop}(x, \epsilon)$
$\operatorname{clip}(x, a, b)$
$\operatorname{cond}(x, a, b[, c])$
e(name)
e(sample)
epsdouble()
epsfloat()
fileexists (f)
fileread (f)
filereaderror (f)
filewrite $(f, s[, r])$
float (x)
fmtwidth(fmtstr)
has_eprop (name)
inlist (z, a, b, \ldots)
inrange (z, a, b)
irecode $\left(x, x_{1}, \ldots, x_{n}\right)$
matrix (exp)
maxbyte()
maxdouble()
partitions the interval from x_{0} to x_{1} into n equal-length intervals and returns the upper bound of the interval that contains x
1 if your computer stores numbers by using a hilo byte order and evaluates to 2 if your computer stores numbers by using a lohi byte order
the value of the system or constant result c (name) (see $[\mathrm{P}]$ creturn)
version of the program or session that invoked the currently running program; see [P] version
$\operatorname{round}(x)$ if abs $(x-\operatorname{round}(x))<\epsilon$; otherwise, x; or x if x is missing
x if $a<x<b, b$ if $x \geq b, a$ if $x \leq a$, or missing if x is missing or if $a>b ; x$ if x is missing
a if x is true and nonmissing, b if x is false, and c if x is missing; a if c is not specified and x evaluates to missing
the value of stored result e(name); see [U] 18.8 Accessing results calculated by other programs
1 if the observation is in the estimation sample and 0 otherwise the machine precision of a double-precision number
the machine precision of a floating-point number
1 if the file specified by f exists; otherwise, 0
the contents of the file specified by f
0 or positive integer, said value having the interpretation of a return code
writes the string specified by s to the file specified by f and returns the number of bytes in the resulting file
the value of x rounded to float precision
the output length of the $\% f m t$ contained in fmtstr; missing if fmtstr does not contain a valid $\% f m t$
1 if name appears as a word in e(properties); otherwise, 0
1 if z is a member of the remaining arguments; otherwise, 0
1 if it is known that $a \leq z \leq b$; otherwise, 0
missing if x is missing or x_{1}, \ldots, x_{n} is not weakly increasing; 0 if $x \leq x_{1} ; 1$ if $x_{1}<x \leq x_{2} ; 2$ if $x_{2}<x \leq x_{3} ; \ldots ; n$ if $x>x_{n}$
restricts name interpretation to scalars and matrices; see scalar() the largest value that can be stored in storage type byte the largest value that can be stored in storage type double

```
maxfloat()
maxint()
maxlong()
mi ( }\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{n}{}
minbyte()
mindouble()
minfloat()
minint()
minlong()
missing( }\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{n}{}
r(name)
recode (x, 和,\ldots, . , 和)
```

replay()
return(name)
s(name)
scalar (exp)
smallestdouble()
the largest value that can be stored in storage type float the largest value that can be stored in storage type int the largest value that can be stored in storage type long a synonym for missing $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
the smallest value that can be stored in storage type byte the smallest value that can be stored in storage type double the smallest value that can be stored in storage type float the smallest value that can be stored in storage type int the smallest value that can be stored in storage type long 1 if any x_{i} evaluates to missing; otherwise, 0
the value of the stored result r (name); see [U] 18.8 Accessing results calculated by other programs
missing if x_{1}, \ldots, x_{n} is not weakly increasing; x if x is missing; x_{1} if $x \leq x_{1} ; x_{2}$ if $x \leq x_{2}, \ldots$; otherwise, x_{n} if $x>x_{1}, x_{2}$, \ldots, x_{n-1} or $x_{i} \geq$. is interpreted as $x_{i}=+\infty$
1 if the first nonblank character of local macro ' 0 ' is a comma, or if ' 0 ' is empty
the value of the to-be-stored result r (name); see [P] return the value of stored result s (name); see [U] 18.8 Accessing results calculated by other programs
restricts name interpretation to scalars and matrices
the smallest double-precision number greater than zero

Functions

autocode (x, n, x_{0}, x_{1})
Description: partitions the interval from x_{0} to x_{1} into n equal-length intervals and returns the upper bound of the interval that contains x
This function is an automated version of recode(). See [U] 25 Working with categorical data and factor variables for an example.
The algorithm for autocode() is

```
if \(\left(n \geq .\left|x_{0} \geq .\left|x_{1} \geq .|n \leq 0| x_{0} \geq x_{1}\right)\right.\right.\)
    then return missing
    if \(x \geq\)., then return \(x\)
    otherwise
    for \(i=1\) to \(n-1\)
        xтар \(=x_{0}+i *\left(x_{1}-x_{0}\right) / n\)
        if \(x \leq\) xmap then return xmap
    end
    otherwise
        return \(x_{1}\)
```

 Domain \(x\) : \(\quad-8 \mathrm{e}+307\) to \(8 \mathrm{e}+307\)
 Domain \(n\) : integers 1 to \(8 \mathrm{e}+307\)
 Domain \(x_{0}:-8 \mathrm{e}+307\) to \(8 \mathrm{e}+307\)
 Domain \(x_{1}\) : \(x_{0}\) to \(8 \mathrm{e}+307\)
 Range: \(\quad x_{0}\) to \(x_{1}\)

byteorder ()

Description: 1 if your computer stores numbers by using a hilo byte order and evaluates to 2 if your computer stores numbers by using a lohi byte order

Consider the number 1 written as a 2-byte integer. On some computers (called hilo), it is written as " 0001 ", and on other computers (called lohi), it is written as " 01 00 " (with the least significant byte written first). There are similar issues for 4 byte integers, 4-byte floats, and 8-byte floats. Stata automatically handles byte-order differences for Stata-created files. Users need not be concerned about this issue. Programmers producing customary binary files can use byteorder() to determine the native byte ordering; see $[\mathrm{P}]$ file.
Range: 1 and 2
c (name)
Description: the value of the system or constant result c (name) (see [P] creturn)
Referencing c (name) will return an error if the result does not exist.
Domain: names
Range: real values, strings, or missing

```
_caller()
```

Description: version of the program or session that invoked the currently running program; see [P] version

The current version at the time of this writing is 14 , so 14 is the upper end of this range. If Stata 14.1 were the current version, 14.1 would be the upper end of this range, and likewise, if Stata 15 were the current version, 15 would be the upper end of this range. This is a function for use by programmers.
Range: $\quad 1$ to 14.2
$\operatorname{chop}(x, \epsilon)$
Description: round (x) if abs $(x-\operatorname{round}(x))<\epsilon$; otherwise, x; or x if x is missing
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain ϵ : $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
$\operatorname{clip}(x, a, b)$
Description: x if $a<x<b, b$ if $x \geq b, a$ if $x \leq a$, or missing if x is missing or if $a>b ; x$ if x is missing
If a or b is missing, this is interpreted as $a=-\infty$ or $b=+\infty$, respectively.
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain $a: \quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain b : $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
$\operatorname{cond}(x, a, b[, c])$)
Description: a if x is true and nonmissing, b if x is false, and c if x is missing; a if c is not specified and x evaluates to missing

Note that expressions such as $x>2$ will never evaluate to missing.
cond $(x>2,50,70)$ returns 50 if $x>2$ (includes $x \geq$.)
cond ($x>2,50,70$) returns 70 if $x \leq 2$
If you need a case for missing values in the above examples, try cond(missing $(x), ., \operatorname{cond}(x>2,50,70))$ returns . if x is missing, returns 50 if $x>2$, and returns 70 if $x \leq 2$

If the first argument is a scalar that may contain a missing value or a variable containing missing values, the fourth argument has an effect.
cond(wage, $1,0,$.) returns 1 if wage is not zero and not missing
cond(wage, $1,0,$.) returns 0 if wage is zero
cond (wage, $1,0,$.) returns . if wage is missing
Caution: If the first argument to cond() is a logical expression, that is, cond ($x>2,50,70,$.), the fourth argument is never reached.
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing; $0 \Rightarrow$ false, otherwise interpreted as true
Domain a : numbers and strings
Domain b : numbers if a is a number; strings if a is a string
Domain c : numbers if a is a number; strings if a is a string
Range: $\quad a, b$, and c

e(name)

Description: the value of stored result e(name); see [U] 18.8 Accessing results calculated by other programs
$e($ name $)=$ scalar missing if the stored result does not exist
$e($ name $)=$ specified matrix if the stored result is a matrix
$e($ name $)=$ scalar numeric value if the stored result is a scalar
Domain: names
Range: strings, scalars, matrices, or missing
e(sample)
Description: 1 if the observation is in the estimation sample and 0 otherwise
Range: 0 and 1
epsdouble()
Description: the machine precision of a double-precision number
If $d<$ epsdouble() and (double) $x=1$, then $x+d=$ (double) 1 . This function takes no arguments, but the parentheses must be included.
Range: a double-precision number close to 0
epsfloat()
Description: the machine precision of a floating-point number
If $d<$ epsfloat() and (float) $x=1$, then $x+d=$ (float) 1 . This function takes no arguments, but the parentheses must be included.
Range: a floating-point number close to 0

fileexists(f)

Description: 1 if the file specified by f exists; otherwise, 0
If the file exists but is not readable, fileexists() will still return 1, because it does exist. If the "file" is a directory, fileexists() will return 0.
Domain: filenames
Range: 0 and 1

fileread (f)

Description: the contents of the file specified by f
If the file does not exist or an I/O error occurs while reading the file, then "fileread() error \#" is returned, where \# is a standard Stata error return code.
Domain: filenames
Range: strings
filereaderror (f)
Description: 0 or positive integer, said value having the interpretation of a return code It is used like this
. generate $\operatorname{strL} s=$ fileread(filename) if fileexists (filename)
. assert filereaderror (s)==0
or this
. generate $\operatorname{strL} s=$ fileread(filename) if fileexists(filename)
. generate $r c=$ filereaderror (s)
That is, filereaderror (s) is used on the result returned by fileread(filename) to determine whether an I/O error occurred.
In the example, we only fileread() files that fileexists(). That is not required. If the file does not exist, that will be detected by filereaderror() as an error. The way we showed the example, we did not want to read missing files as errors. If we wanted to treat missing files as errors, we would have coded

```
. generate strL s= fileread(filename)
```

. assert filereaderror $(s)==0$
or
. generate strL $s=$ fileread(filename)
. generate $r c=$ filereaderror (s)
Domain: strings
Range: integers
filewrite ($f, s[, r]$)
Description: writes the string specified by s to the file specified by f and returns the number of bytes in the resulting file

If the optional argument r is specified as 1 , the file specified by f will be replaced if it exists. If r is specified as 2 , the file specified by f will be appended to if it exists. Any other values of r are treated as if r were not specified; that is, f will only be written to if it does not already exist.
When the file f is freshly created or is replaced, the value returned by filewrite() is the number of bytes written to the file, strlen (s). If r is specified as 2 , and thus filewrite() is appending to an existing file, the value returned is the total number of bytes in the resulting file; that is, the value is the sum of the number of the bytes in the file as it existed before filewrite() was called and the number of bytes newly written to it, strlen (s).

If the file exists and r is not specified as 1 or 2 , or an error occurs while writing to the file, then a negative number (\#) is returned, where abs(\#) is a standard Stata error return code.
Domain f : filenames
Domain s : strings
Domain r : integers 1 or 2
Range: integers

float (x)

Description: the value of x rounded to float precision
Although you may store your numeric variables as byte, int, long, float, or double, Stata converts all numbers to double before performing any calculations. Consequently, difficulties can arise in comparing numbers that have no finite binary representation.

For example, if the variable x is stored as a float and contains the value 1.1 (a repeating "decimal" in binary), the expression $x==1.1$ will evaluate to false because the literal 1.1 is the double representation of 1.1 , which is different from the float representation stored in x . (They differ by 2.384×10^{-8}.) The expression $x==f$ loat (1.1) will evaluate to true because the float () function converts the literal 1.1 to its float representation before it is compared with x. (See [U] 13.12 Precision and problems therein for more information.)
Domain: $\quad-1 \mathrm{e}+38$ to $1 \mathrm{e}+38$
Range: $\quad-1 e+38$ to $1 e+38$

fmtwidth(fmtstr)

Description: the output length of the \%fmt contained in fmtstr; missing if fmtstr does not contain a valid $\%$ fmt
For example, fmtwidth("\%9.2f") returns 9 and fmtwidth("\%tc") returns 18.
Range: strings
has_eprop (name)
Description: 1 if name appears as a word in e(properties); otherwise, 0
Domain: names
Range: $\quad 0$ or 1
inlist (z, a, b, \ldots)
Description: 1 if z is a member of the remaining arguments; otherwise, 0
All arguments must be reals or all must be strings. The number of arguments is between 2 and 255 for reals and between 2 and 10 for strings.
Domain: all reals or all strings
Range: 0 or 1
inrange (z, a, b)
Description: 1 if it is known that $a \leq z \leq b$; otherwise, 0
The following ordered rules apply:
$z \geq$. returns 0 .
$a \geq$. and $b=$. returns 1 .
$a \geq$. returns 1 if $z \leq b$; otherwise, it returns 0 .
$b \geq$. returns 1 if $a \leq z$; otherwise, it returns 0 .
Otherwise, 1 is returned if $a \leq z \leq b$.
If the arguments are strings, "." is interpreted as "".
Domain: all reals or all strings
Range: 0 or 1
irecode $\left(x, x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$
Description: missing if x is missing or x_{1}, \ldots, x_{n} is not weakly increasing; 0 if $x \leq x_{1}$; 1 if $x_{1}<x \leq x_{2} ; 2$ if $x_{2}<x \leq x_{3} ; \ldots ; n$ if $x>x_{n}$ Also see autocode() and recode() for other styles of recode functions.
irecode (3, $-10,-5,-3,-3,0,15,.)=5$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain x_{i} : $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: nonnegative integers
matrix (exp)
Description: restricts name interpretation to scalars and matrices; see scalar()
Domain: any valid expression
Range: evaluation of \exp
maxbyte()
Description: the largest value that can be stored in storage type byte
This function takes no arguments, but the parentheses must be included.
Range: one integer number
maxdouble()
Description: the largest value that can be stored in storage type double
This function takes no arguments, but the parentheses must be included.
Range: one double-precision number
maxfloat()
Description: the largest value that can be stored in storage type float
This function takes no arguments, but the parentheses must be included.
Range: one floating-point number
maxint()
Description: the largest value that can be stored in storage type int
This function takes no arguments, but the parentheses must be included.
Range: one integer number
maxlong()
Description: the largest value that can be stored in storage type long
This function takes no arguments, but the parentheses must be included.
Range: one integer number
$\operatorname{mi}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
Description: a synonym for missing $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
minbyte()
Description: the smallest value that can be stored in storage type byte This function takes no arguments, but the parentheses must be included.
Range: one integer number
mindouble()
Description: the smallest value that can be stored in storage type double
This function takes no arguments, but the parentheses must be included.
Range: one double-precision number
minfloat()
Description: the smallest value that can be stored in storage type float
This function takes no arguments, but the parentheses must be included.
Range: one floating-point number
minint()
Description: the smallest value that can be stored in storage type int
This function takes no arguments, but the parentheses must be included.
Range: one integer number
minlong()
Description: the smallest value that can be stored in storage type long
This function takes no arguments, but the parentheses must be included.
Range: one integer number
missing $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
Description: 1 if any x_{i} evaluates to missing; otherwise, 0
Stata has two concepts of missing values: a numeric missing value (., .a, .b, ..., .z) and a string missing value (""). missing() returns 1 (meaning true) if any expression x_{i} evaluates to missing. If x is numeric, missing (x) is equivalent to $x \geq$.. If x is string, missing (x) is equivalent to $x=="$ ".
Domain x_{i} : any string or numeric expression
Range: 0 and 1

r (name)

Description: the value of the stored result r (name); see [U] 18.8 Accessing results calculated by other programs
$r($ name $)=$ scalar missing if the stored result does not exist
$r($ name $)=$ specified matrix if the stored result is a matrix
$r($ name $)=$ scalar numeric value if the stored result is a scalar that can be interpreted as a number
Domain: names
Range: strings, scalars, matrices, or missing
$\operatorname{recode}\left(x, x_{1}, x_{2}, \ldots, x_{n}\right)$
Description: missing if x_{1}, \ldots, x_{n} is not weakly increasing; x if x is missing; x_{1} if $x \leq x_{1} ; x_{2}$ if $x \leq x_{2}, \ldots$; otherwise, x_{n} if $x>x_{1}, x_{2}, \ldots, x_{n-1}$ or $x_{i} \geq$. is interpreted as $x_{i}=+\infty$
Also see autocode() and irecode() for other styles of recode functions.
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
Domain x_{1} : $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain x_{2} : x_{1} to $8 \mathrm{e}+307$
...
Domain $x_{n}: x_{n-1}$ to $8 \mathrm{e}+307$
Range: $\quad x_{1}, x_{2}, \ldots, x_{n}$ or missing
replay()
Description: 1 if the first nonblank character of local macro ' 0 ' is a comma, or if ' 0 ' is empty This is a function for use by programmers writing estimation commands; see [P] ereturn.
Range: integers 0 and 1 , meaning false and true, respectively

return (name)

Description: the value of the to-be-stored result r (name); see [P] return
return $($ name $)=$ scalar missing if the stored result does not exist $\operatorname{return}($ name $)=$ specified matrix if the stored result is a matrix return $($ name $)=$ scalar numeric value if the stored result is a scalar
Domain: names
Range: strings, scalars, matrices, or missing
s (name)
Description: the value of stored result s(name); see [U] 18.8 Accessing results calculated by other programs
$s($ name $)=$. if the stored result does not exist
Domain: names
Range: strings or missing

scalar (exp)

Description: restricts name interpretation to scalars and matrices
Names in expressions can refer to names of variables in the dataset, names of matrices, or names of scalars. Matrices and scalars can have the same names as variables in the dataset. If names conflict, Stata assumes that you are referring to the name of the variable in the dataset.
matrix() and scalar() explicitly state that you are referring to matrices and scalars. matrix() and scalar() are the same function; scalars and matrices may not have the same names and so cannot be confused. Typing scalar(x) makes it clear that you are referring to the scalar or matrix named x and not the variable named x, should there happen to be a variable of that name.
Domain: any valid expression
Range: evaluation of exp
smallestdouble()
Description: the smallest double-precision number greater than zero
If $0<d<$ smallestdouble(), then d does not have full double precision; these are called the denormalized numbers. This function takes no arguments, but the parentheses must be included.
Range: a double-precision number close to 0

References

Kantor, D., and N. J. Cox. 2005. Depending on conditions: A tutorial on the cond() function. Stata Journal 5: 413-420.

Rising, W. R. 2010. Stata tip 86: The missing() function. Stata Journal 10: 303-304.

Also see

[D] egen - Extensions to generate
[M-4] programming - Programming functions
[M-5] intro - Alphabetical index to functions
[U] 13.3 Functions

Title

Random-number functions

| Contents | Functions | Remarks and examples |
| :--- | :--- | :--- | Methods and formulas

Contents

```
rbeta(a,b)
rbinomial( }n,p
rchi2(df)
rexponential(b)
rgamma(a,b)
rhypergeometric( N,K,n)
rigaussian(m,a)
rlogistic()
rlogistic(s)
rlogistic(m,s)
rnbinomial( }n,p\mathrm{ )
rnormal()
rnormal(m)
rnormal (m,s)
rpoisson(m)
rt(df)
runiform()
runiform(a,b)
runiformint (a,b)
rweibull(a,b)
rweibull ( }a,b,g
rweibullph (a,b)
rweibullph(a,b,g)
```

beta (a, b) random variates, where a and b are the beta distribution shape parameters
binomial (n, p) random variates, where n is the number of trials and p is the success probability
chi-squared, with $d f$ degrees of freedom, random variates
exponential random variates with scale b
$\operatorname{gamma}(a, b)$ random variates, where a is the gamma shape parameter and b is the scale parameter
hypergeometric random variates
inverse Gaussian random variates with mean m and shape parameter a
logistic variates with mean 0 and standard deviation $\pi / \sqrt{3}$
logistic variates with mean 0 , scale s, and standard deviation $s \pi / \sqrt{3}$
logistic variates with mean m, scale s, and standard deviation $s \pi / \sqrt{3}$
negative binomial random variates
standard normal (Gaussian) random variates, that is, variates from a normal distribution with a mean of 0 and a standard deviation of 1
normal $(m, 1)$ (Gaussian) random variates, where m is the mean and the standard deviation is 1
$\operatorname{normal}(m, s)$ (Gaussian) random variates, where m is the mean and s is the standard deviation
Poisson (m) random variates, where m is the distribution mean
Student's t random variates, where $d f$ is the degrees of freedom uniformly distributed random variates over the interval $(0,1)$
uniformly distributed random variates over the interval (a, b)
uniformly distributed random integer variates on the interval $[a, b]$
Weibull variates with shape a and scale b
Weibull variates with shape a, scale b, and location g
Weibull (proportional hazards) variates with shape a and scale b
Weibull (proportional hazards) variates with shape a, scale b, and location g

Functions

The term "pseudorandom number" is used to emphasize that the numbers are generated by formulas and are thus not truly random. From now on, we will drop the "pseudo" and just say random numbers.

For information on setting the random-number seed, see $[R]$ set seed.

```
runiform()
```

Description: uniformly distributed random variates over the interval $(0,1)$
runiform() can be seeded with the set seed command; see [R] set seed.
Range: $\quad c$ (epsdouble) to $1-c$ (epsdouble)

```
runiform(a,b)
    Description: uniformly distributed random variates over the interval (a,b)
    Domain a: c(mindouble) to c(maxdouble)
    Domain b: c(mindouble) to c(maxdouble)
    Range: }\quada+c(epsdouble) to b-c(epsdouble
```

runiformint (a, b)
Description: uniformly distributed random integer variates on the interval $[a, b]$
If a or b is nonintegral, runiformint (a, b) returns runiformint(floor (a),
floor (b)).
Domain a : $\quad-2^{53}$ to 2^{53} (may be nonintegral)
Domain b : -2^{53} to 2^{53} (may be nonintegral)
Range: $\quad-2^{53}$ to 2^{53}

```
rbeta(a,b)
    Description: beta(a,b) random variates, where }a\mathrm{ and b are the beta distribution shape parameters
                Besides using the standard methodology for generating random variates from a given
                distribution, rbeta() uses the specialized algorithms of Johnk (Gentle 2003), Atkinson
                and Whittaker (1970, 1976), Devroye (1986), and Schmeiser and Babu (1980).
    Domain a: 0.05 to 1e+5
    Domain b: }0.15\mathrm{ to 1e+5
    Range: }0\mathrm{ to 1 (exclusive)
rbinomial( }n,p\mathrm{ )
    Description: binomial( }n,p\mathrm{ ) random variates, where }n\mathrm{ is the number of trials and }p\mathrm{ is the success
            probability
            Besides using the standard methodology for generating random variates from
            a given distribution, rbinomial() uses the specialized algorithms of Ka-
            chitvichyanukul (1982), Kachitvichyanukul and Schmeiser (1988), and Kemp (1986).
    Domain n: 1 to 1e+11
    Domain p: 1e-8 to 1-1e-8
    Range: }0\mathrm{ to }
```


rchi2(df)

Description: chi-squared, with $d f$ degrees of freedom, random variates
Domain $d f$: $2 \mathrm{e}-4$ to $2 \mathrm{e}+8$
Range: $\quad 0$ to c (maxdouble)
rexponential (b)
Description: exponential random variates with scale b
Domain b : $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Range: $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
rgamma (a, b)
Description: $\operatorname{gamma}(a, b)$ random variates, where a is the gamma shape parameter and b is the scale parameter

Methods for generating gamma variates are taken from Ahrens and Dieter (1974), Best (1983), and Schmeiser and Lal (1980).
Domain a : $\quad 1 \mathrm{e}-4$ to $1 \mathrm{e}+8$
Domain b : $\quad c$ (smallestdouble) to c (maxdouble)
Range: $\quad 0$ to c (maxdouble)
rhypergeometric (N, K, n)
Description: hypergeometric random variates
The distribution parameters are integer valued, where N is the population size, K is the number of elements in the population that have the attribute of interest, and n is the sample size.
Besides using the standard methodology for generating random variates from a given distribution, rhypergeometric() uses the specialized algorithms of Kachitvichyanukul (1982) and Kachitvichyanukul and Schmeiser (1985).
Domain N : 2 to $1 \mathrm{e}+6$
Domain K : 1 to $N-1$
Domain n : 1 to $N-1$
Range: $\quad \max (0, n-N+K)$ to $\min (K, n)$

```
rigaussian ( \(m, a\) )
```

Description: inverse Gaussian random variates with mean m and shape parameter a rigaussian() is based on a method proposed by Michael, Schucany, and Haas (1976).
Domain m : $1 \mathrm{e}-10$ to 1000
Domain a : 0.001 to $1 \mathrm{e}+10$
Range: $\quad 0$ to c (maxdouble)
rlogistic()
Description: logistic variates with mean 0 and standard deviation $\pi / \sqrt{3}$
The variates x are generated by $x=\operatorname{invlogistic}(0,1, u)$, where u is a random uniform $(0,1)$ variate.
Range: c(mindouble) to c(maxdouble)

rlogistic(s)

Description: logistic variates with mean 0 , scale s, and standard deviation $s \pi / \sqrt{3}$
The variates x are generated by $x=\operatorname{invlogistic~}(0, s, u)$, where u is a random uniform $(0,1)$ variate.
Domain s : 0 to c (maxdouble)
Range: $\quad c$ (mindouble) to c (maxdouble)
rlogistic (m, s)
Description: logistic variates with mean m, scale s, and standard deviation $s \pi / \sqrt{3}$
The variates x are generated by $x=\operatorname{invlogistic~}(m, s, u$), where u is a random uniform $(0,1)$ variate.
Domain m : c (mindouble) to c (maxdouble)
Domain s : 0 to c (maxdouble)
Range: $\quad c$ (mindouble) to c (maxdouble)
rnbinomial (n, p)
Description: negative binomial random variates
If n is integer valued, rnbinomial() returns the number of failures before the nth success, where the probability of success on a single trial is $p . n$ can also be nonintegral.
Domain n : $\quad 1 \mathrm{e}-4$ to $1 \mathrm{e}+5$
Domain p : $1 \mathrm{e}-4$ to $1-1 \mathrm{e}-4$
Range: $\quad 0$ to $2^{53}-1$

rnormal()

Description: standard normal (Gaussian) random variates, that is, variates from a normal distribution with a mean of 0 and a standard deviation of 1
Range: c (mindouble) to c(maxdouble)
rnormal (m)
Description: normal $(m, 1)$ (Gaussian) random variates, where m is the mean and the standard deviation is 1
Domain m : c (mindouble) to $c(m a x d o u b l e)$
Range: $\quad c$ (mindouble) to c (maxdouble)
rnormal (m, s)
Description: normal (m, s) (Gaussian) random variates, where m is the mean and s is the standard deviation

The methods for generating normal (Gaussian) random variates are taken from Knuth (1998, 122-128); Marsaglia, MacLaren, and Bray (1964); and Walker (1977).
Domain m : c (mindouble) to c (maxdouble)
Domain s : 0 to c(maxdouble)
Range: $\quad c$ (mindouble) to c (maxdouble)

rpoisson(m)

Description: Poisson (m) random variates, where m is the distribution mean
Poisson variates are generated using the probability integral transform methods of Kemp and Kemp (1990, 1991) and the method of Kachitvichyanukul (1982).
Domain m : $1 \mathrm{e}-6$ to $1 \mathrm{e}+11$
Range: $\quad 0$ to $2^{53}-1$

rt (df)

Description: Student's t random variates, where $d f$ is the degrees of freedom
Student's t variates are generated using the method of Kinderman and Monahan (1977, 1980).
Domain $d f$: 1 to $2^{53}-1$
Range: $\quad c$ (mindouble) to c (maxdouble)
rweibull (a, b)
Description: Weibull variates with shape a and scale b
The variates x are generated by $x=\operatorname{invweibull}(a, b, 0, u)$, where u is a random uniform $(0,1)$ variate.
Domain a : 0.01 to $1 \mathrm{e}+6$
Domain b: $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Range: $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
rweibull (a, b, g)
Description: Weibull variates with shape a, scale b, and location g
The variates x are generated by $x=\operatorname{invweibull}(a, b, g, u)$, where u is a random uniform $(0,1)$ variate.
Domain a : 0.01 to $1 \mathrm{e}+6$
Domain b: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain $g: \quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: $\quad g+c(e p s d o u b l e)$ to $8 \mathrm{e}+307$
rweibullph (a, b)
Description: Weibull (proportional hazards) variates with shape a and scale b
The variates x are generated by $x=$ invweibullph $(a, b, 0, u)$, where u is a random uniform $(0,1)$ variate.
Domain a : $\quad 0.01$ to $1 \mathrm{e}+6$
Domain b: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Range: $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
rweibullph (a, b, g)
Description: Weibull (proportional hazards) variates with shape a, scale b, and location g
The variates x are generated by $x=\operatorname{invweibullph}(a, b, g, u)$, where u is a random uniform $(0,1)$ variate.
Domain a : $\quad 0.01$ to $1 \mathrm{e}+6$
Domain b: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain g : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: $\quad g+\mathrm{c}(\mathrm{epsdouble})$ to $8 \mathrm{e}+307$

Remarks and examples

It is ironic that the first thing to note about random numbers is how to make them reproducible. Before using a random-number function, type

```
set seed #
```

where \# is any integer between 0 and $2^{31}-1$, inclusive, to draw the same sequence of random numbers. It does not matter which integer you choose as your seed; they are all equally good. See [R] set seed.
runiform () is the basis for all the other random-number functions because all the other randomnumber functions transform uniform $(0,1)$ random numbers to the specified distribution.
runiform() implements the Mersenne Twister 64-bit (MT64) and the "keep it simple stupid" 32-bit (KISS32) algorithms for generating uniform (0,1) random numbers. runiform () uses the MT64 algorithm by default.
runiform() uses the KISS32 algorithm only when the user version is less than 14 or when the random-number generator has been set to kiss32; see [P] version for details about setting the user version. We recommend that you do not change the default random-number generator, but see $[R]$ set rng for details.

- Technical note

Although we recommend that you use runiform(), we made generator-specific versions of runiform() available for advanced users who want to hardcode their generator choice. The function runiform_mt64() always uses the MT64 algorithm to generate uniform $(0,1)$ random numbers, and the function runiform_kiss32() always uses the KISS32 algorithm to generate uniform $(0,1)$ random numbers. In fact, generator-specific versions are available for all the implemented distributions. For example, rnormal_mt64() and rnormal_kiss32() use transforms of MT64 and KISS32 uniform variates, respectively, to generate standard normal variates.

- Technical note

Both the MT64 and the KISS32 generators produce uniform variates that pass many tests for randomness. Many researchers prefer the MT64 to the KISS32 generator because the MT64 generator has a longer period and a finer resolution and requires a higher dimension before patterns appear; see Matsumoto and Nishimura (1998).

The MT64 generator has a period of $2^{19937}-1$ and a resolution of 2^{-53}; see Matsumoto and Nishimura (1998). The KISS32 generator has a period of about 2^{126} and a resolution of 2^{-32}; see Methods and formulas below.

- Technical note

This technical note explains how to restart a random-number generator from its current spot.
The current spot in the sequence of a random-number generator is part of the state of a randomnumber generator. If you tell me the state of a random-number generator, I know where it is in its sequence, and I can compute the next random number. The state of a random-number generator is a complicated object that requires more space than the integers used to seed a generator. For instance, an MT64 state is a 5008-digit, base-16 number preceded by three letters.

If you want to restart a random-number generator from where it left off, you should store the current state in a macro and then set the state of the random-number generator when you want to restart it. For example, suppose we set a seed and draw some random numbers.

```
. set obs 3
number of observations (_N) was 0, now 3
. set seed 12345
. generate x = runiform()
. list x
```

x
.3576297
.4004426
.6893833

We store the state of the random-number generator so that we can pick up right here in the sequence.

```
. local rngstate "'c(rngstate)'"
```

We draw some more random numbers.

```
. replace x = runiform()
(3 real changes made)
. list x
\begin{tabular}{r}
\(|r|\) \\
\hline .5597356 \\
.5744513 \\
.2076905 \\
\hline
\end{tabular}
```

Now, we set the state of the random-number generator to where it was and draw those same random numbers again.

```
. set rngstate 'rngstate'
. replace x = runiform()
(O real changes made)
. list x
```

x
.5597356
.5744513
.2076905

Methods and formulas

All the nonuniform generators are based on the uniform MT64 and KISS32 generators.
The MT64 generator is well documented in Matsumoto and Nishimura (1998) and on their website http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html. The MT64 implements the 64-bit version discussed at http://www.math.sci.hiroshima-u.ac.jp/ \sim m-mat/MT/emt64.html. The default seed for the MT64 generator is 123456789 .

KISS32 generator

The KISS32 uniform generator implemented in runiform() is based on George Marsaglia's (G. Marsaglia, 1994, pers. comm.) 32-bit pseudorandom-integer generator KISS32. The integer KISS32 generator is composed of two 32-bit pseudorandom-integer generators and two 16-bit integer generators (combined to make one 32 -bit integer generator). The four generators are defined by the recursions

$$
\begin{align*}
x_{n} & =69069 x_{n-1}+1234567 \quad \bmod 2^{32} \tag{1}\\
y_{n} & =y_{n-1}\left(I+L^{13}\right)\left(I+R^{17}\right)\left(I+L^{5}\right) \tag{2}\\
z_{n} & =65184\left(z_{n-1} \bmod 2^{16}\right)+\operatorname{int}\left(z_{n-1} / 2^{16}\right) \tag{3}\\
w_{n} & =63663\left(w_{n-1} \bmod 2^{16}\right)+\operatorname{int}\left(w_{n-1} / 2^{16}\right) \tag{4}
\end{align*}
$$

In (2), the 32 -bit word y_{n} is viewed as a 1×32 binary vector; L is the 32×32 matrix that produces a left shift of one (L has 1 s on the first left subdiagonal, 0 s elsewhere); and R is L transpose, affecting a right shift by one. In (3) and (4), $\operatorname{int}(x)$ is the integer part of x.

The integer KISS32 generator produces the 32-bit random integer

$$
R_{n}=x_{n}+y_{n}+z_{n}+2^{16} w_{n} \quad \bmod 2^{32}
$$

The KISS32 uniform implemented in runiform() takes the output from the integer KISS32 generator and divides it by 2^{32} to produce a real number on the interval $(0,1)$. (Zeros are discarded, and the first nonzero result is returned.)

The recursion (5)-(8) have, respectively, the periods

$$
\begin{gather*}
2^{32} \tag{5}\\
2^{32}-1 \tag{6}\\
\left(65184 \cdot 2^{16}-2\right) / 2 \approx 2^{31} \tag{7}\\
\left(63663 \cdot 2^{16}-2\right) / 2 \approx 2^{31} \tag{8}
\end{gather*}
$$

Thus the overall period for the integer KISS32 generator is

$$
2^{32} \cdot\left(2^{32}-1\right) \cdot\left(65184 \cdot 2^{15}-1\right) \cdot\left(63663 \cdot 2^{15}-1\right) \approx 2^{126}
$$

When Stata first comes up, it initializes the four recursions in KISS32 by using the seeds

$$
\begin{aligned}
x_{0} & =123456789 \\
y_{0} & =521288629 \\
z_{0} & =362436069 \\
w_{0} & =2262615
\end{aligned}
$$

Successive calls to the KISS32 uniform implemented in runiform() then produce the sequence

$$
\frac{R_{1}}{2^{32}}, \frac{R_{2}}{2^{32}}, \frac{R_{3}}{2^{32}}, \ldots
$$

Hence, the KISS32 uniform implemented in runiform() gives the same sequence of random numbers in every Stata session (measured from the start of the session) unless you reinitialize the seed. The full seed is the set of four numbers (x, y, z, w), but you can reinitialize the seed by simply issuing the command
where \# is any integer between 0 and $2^{31}-1$, inclusive. When this command is issued, the initial value x_{0} is set equal to $\#$, and the other three recursions are restarted at the seeds y_{0}, z_{0}, and w_{0} given above. The first 100 random numbers are discarded, and successive calls to the KISS32 uniform implemented in runiform() give the sequence

$$
\frac{R_{101}^{\prime}}{2^{32}}, \frac{R_{102}^{\prime}}{2^{32}}, \frac{R_{103}^{\prime}}{2^{32}}, \ldots
$$

However, if the command

```
. set seed 123456789
```

is given, the first 100 random numbers are not discarded, and you get the same sequence of random numbers that the KISS32 generator produces when Stata restarts; also see [R] set seed.

Acknowledgments

We thank the late George Marsaglia, formerly of Florida State University, for providing his KISS32 random-number generator.

We thank John R. Gleason of Syracuse University (retired) for directing our attention to Wichura (1988) for calculating the cumulative normal density accurately, for sharing his experiences about techniques with us, and for providing C code to make the calculations.

We thank Makoto Matsumoto and Takuji Nishimura for deriving the Mersenne Twister and distributing their code for their generator so that it could be rapidly and effectively tested.

References

Ahrens, J. H., and U. Dieter. 1974. Computer methods for sampling from gamma, beta, Poisson, and binomial distributions. Computing 12: 223-246.
Atkinson, A. C., and J. C. Whittaker. 1970. Algorithm AS 134: The generation of beta random variables with one parameter greater than and one parameter less than 1. Applied Statistics 28: 90-93.
1976. A switching algorithm for the generation of beta random variables with at least one parameter less than 1. Journal of the Royal Statistical Society, Series A 139: 462-467.

Best, D. J. 1983. A note on gamma variate generators with shape parameters less than unity. Computing 30: 185-188.
Buis, M. L. 2007. Stata tip 48: Discrete uses for uniform(). Stata Journal 7: 434-435.
Devroye, L. 1986. Non-uniform Random Variate Generation. New York: Springer.
Gentle, J. E. 2003. Random Number Generation and Monte Carlo Methods. 2nd ed. New York: Springer.
Gould, W. W. 2012a. Using Stata's random-number generators, part 1. The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2012/07/18/using-statas-random-number-generators-part-1/.
——. 2012b. Using Stata's random-number generators, part 2: Drawing without replacement. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/.
__. 2012c. Using Stata's random-number generators, part 3: Drawing with replacement. The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-with-replacement/.

2012d. Using Stata's random-number generators, part 4: Details. The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2012/10/24/using-statas-random-number-generators-part-4-details/.

Hilbe, J. M. 2010. Creating synthetic discrete-response regression models. Stata Journal 10: 104-124.
Hilbe, J. M., and W. Linde-Zwirble. 1995. sg44: Random number generators. Stata Technical Bulletin 28: $20-21$. Reprinted in Stata Technical Bulletin Reprints, vol. 5, pp. 118-121. College Station, TX: Stata Press.
——. 1998. sg44.1: Correction to random number generators. Stata Technical Bulletin 41: 23. Reprinted in Stata Technical Bulletin Reprints, vol. 7, p. 166. College Station, TX: Stata Press.
Kachitvichyanukul, V. 1982. Computer Generation of Poisson, Binomial, and Hypergeometric Random Variables. PhD thesis, Purdue University.
Kachitvichyanukul, V., and B. W. Schmeiser. 1985. Computer generation of hypergeometric random variates. Journal of Statistical Computation and Simulation 22: 127-145.
_-. 1988. Binomial random variate generation. Communications of the Association for Computing Machinery 31: 216-222.
Kemp, A. W., and C. D. Kemp. 1990. A composition-search algorithm for low-parameter Poisson generation. Journal of Statistical Computation and Simulation 35: 239-244.
Kemp, C. D. 1986. A modal method for generating binomial variates. Communications in Statistics-Theory and Methods 15: 805-813.
Kemp, C. D., and A. W. Kemp. 1991. Poisson random variate generation. Applied Statistics 40: 143-158.
Kinderman, A. J., and J. F. Monahan. 1977. Computer generation of random variables using the ratio of uniform deviates. ACM Transactions on Mathematical Software 3: 257-260.
__. 1980. New methods for generating Student's t and gamma variables. Computing 25: 369-377.
Knuth, D. E. 1998. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. 3rd ed. Reading, MA: Addison-Wesley.
Lee, S. 2015. Generating univariate and multivariate nonnormal data. Stata Journal 15: 95-109.
Lukácsy, K. 2011. Generating random samples from user-defined distributions. Stata Journal 11: 299-304.
Marsaglia, G., M. D. MacLaren, and T. A. Bray. 1964. A fast procedure for generating normal random variables. Communications of the Association for Computing Machinery 7: 4-10.
Matsumoto, M., and T. Nishimura. 1998. Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Transactions on Modeling and Computer Simulation 8: 3-30.
Michael, J. R., W. R. Schucany, and R. W. Haas. 1976. Generating random variates using transformations with multiple roots. American Statistician 30: 88-90.
Schmeiser, B. W., and A. J. G. Babu. 1980. Beta variate generation via exponential majorizing functions. Operations Research 28: 917-926.

Schmeiser, B. W., and R. Lal. 1980. Squeeze methods for generating gamma variates. Journal of the American Statistical Association 75: 679-682.
Walker, A. J. 1977. An efficient method for generating discrete random variables with general distributions. ACM Transactions on Mathematical Software 3: 253-256.
Wichura, M. J. 1988. Algorithm AS241: The percentage points of the normal distribution. Applied Statistics 37: 477-484.

Also see

[D] egen - Extensions to generate
[M-5] intro - Alphabetical index to functions
[M-5] runiform() - Uniform and nonuniform pseudorandom variates
[R] set rng - Set which random-number generator (RNG) to use
$[R]$ set seed - Specify random-number seed and state
[U] 13.3 Functions

Title

Selecting time-span functions

Contents Functions Also see

Contents

$\operatorname{tin}\left(d_{1}, d_{2}\right)$
twithin $\left(d_{1}, d_{2}\right)$

true if $d_{1} \leq t \leq d_{2}$, where t is the time variable previously tsset true if $d_{1}<t<d_{2}$, where t is the time variable previously tsset

Functions

$\operatorname{tin}\left(d_{1}, d_{2}\right)$
Description: true if $d_{1} \leq t \leq d_{2}$, where t is the time variable previously tsset
You must have previously tsset the data to use tin(); see [TS] tsset. When you tsset the data, you specify a time variable, t, and the format on t states how it is recorded. You type d_{1} and d_{2} according to that format.
If t has a \%tc format, you could type tin(5jan1992 11:15, 14apr2002 12:25).
If t has a \%td format, you could type $\operatorname{tin}(5 j a n 1992$, 14apr2002).
If t has a \%tw format, you could type $\operatorname{tin}(1985 \mathrm{w} 1,2002 \mathrm{w} 15)$.
If t has a \%tm format, you could type $\operatorname{tin}(1985 \mathrm{~m} 1,2002 \mathrm{~m} 4)$.
If t has a \%tq format, you could type $\operatorname{tin}(1985 q 1,2002 q 2)$.
If t has a \%th format, you could type $\operatorname{tin}(1985 h 1,2002 h 1)$.
If t has a \%ty format, you could type $\operatorname{tin}(1985,2002)$.
Otherwise, t is just a set of integers, and you could type $\operatorname{tin}(12,38)$.
The details of the $\% \mathrm{t}$ format do not matter. If your t is formatted $\% \mathrm{tdnn} / \mathrm{dd} / \mathrm{yy}$ so that 5 jan 1992 displays as $1 / 5 / 92$, you would still type the date in day-month-year order: tin(5jan1992, 14apr2002).
Domain d_{1} : date or time literals or strings recorded in units of t previously tsset or blank to indicate no minimum date
Domain d_{2} : date or time literals or strings recorded in units of t previously tsset or blank to indicate no maximum date
Range: $\quad 0$ and $1,1 \Rightarrow$ true
twithin $\left(d_{1}, d_{2}\right)$
Description: true if $d_{1}<t<d_{2}$, where t is the time variable previously tsset
See $\operatorname{tin}()$ above; twithin() is similar, except the range is exclusive.
Domain d_{1} : date or time literals or strings recorded in units of t previously tsset or blank to indicate no minimum date
Domain d_{2} : date or time literals or strings recorded in units of t previously tsset or blank to indicate no maximum date
Range: $\quad 0$ and $1,1 \Rightarrow$ true

Also see

[D] egen - Extensions to generate
[M-5] intro - Alphabetical index to functions
[U] 13.3 Functions

Title

Statistical functions

Contents Functions References Also see

Contents

```
betaden( }a,b,x
binomial( }n,k,0
binomialp( }n,k,p
binomialtail( }n,k,0
```

binormal (h, k, ρ)
$\operatorname{chi2}(d f, x)$
$\operatorname{chi2den}(d f, x)$
chi2tail ($d f, x$)
dgammapda (a, x)
dgammapdada (a, x)
dgammapdadx (a, x)
dgammapdx (a, x)
dgammapdxdx (a, x)
dunnettprob ($k, d f, x$)
exponential (b, x)
exponentialden (b, x)
exponentialtail (b, x)
$\mathrm{F}\left(d f_{1}, d f_{2}, f\right)$
$\operatorname{Fden}\left(d f_{1}, d f_{2}, f\right)$
the probability density of the beta distribution, where a and b are the shape parameters; 0 if $x<0$ or $x>1$
the probability of observing floor (k) or fewer successes in floor (n) trials when the probability of a success on one trial is θ; 0 if $k<0$; or 1 if $k>n$
the probability of observing floor (k) successes in floor (n) trials when the probability of a success on one trial is p
the probability of observing floor (k) or more successes in floor (n) trials when the probability of a success on one trial is θ; 1 if $k<0$; or 0 if $k>n$
the joint cumulative distribution $\Phi(h, k, \rho)$ of bivariate normal with correlation ρ
the cumulative χ^{2} distribution with $d f$ degrees of freedom; 0 if $x<0$
the probability density of the chi-squared distribution with $d f$ degrees of freedom; 0 if $x<0$
the reverse cumulative (upper tail or survivor) χ^{2} distribution with $d f$ degrees of freedom; 1 if $x<0$
$\frac{\partial P(a, x)}{\partial a}$, where $P(a, x)=\operatorname{gammap}(a, x) ; 0$ if $x<0$
$\frac{\partial^{2} P(a, x)}{\partial a^{2}}$, where $P(a, x)=\operatorname{gammap}(a, x) ; 0$ if $x<0$
$\frac{\partial^{2} P(a, x)}{\partial a \partial x}$, where $P(a, x)=\operatorname{gammap}(a, x) ; 0$ if $x<0$
$\frac{\partial P(a, x)}{\partial x}$, where $P(a, x)=\operatorname{gammap}(a, x) ; 0$ if $x<0$
$\frac{\partial^{2} P(a, x)}{\partial x^{2}}$, where $P(a, x)=\operatorname{gammap}(a, x) ; 0$ if $x<0$
the cumulative multiple range distribution that is used in Dunnett's multiple-comparison method with k ranges and $d f$ degrees of freedom; 0 if $x<0$
the cumulative exponential distribution with scale b
the probability density function of the exponential distribution with scale b
the reverse cumulative exponential distribution with scale b
the cumulative F distribution with $d f_{1}$ numerator and $d f_{2}$ denominator degrees of freedom: $\mathrm{F}\left(d f_{1}, d f_{2}, f\right)=\int_{0}^{f} \operatorname{Fden}\left(d f_{1}, d f_{2}, t\right)$ $d t ; 0$ if $f<0$
the probability density function of the F distribution with $d f_{1}$ numerator and $d f_{2}$ denominator degrees of freedom; 0 if $f<0$

Ftail $\left(d f_{1}, d f_{2}, f\right)$
gammaden (a, b, g, x)
$\operatorname{gammap}(a, x)$
gammaptail (a, x)
hypergeometric (N, K, n, k)
ibeta (a, b, x)
ibetatail (a, b, x)
igaussian (m, a, x)
igaussianden (m, a, x)
igaussiantail(m, a, x)
invbinomial (n, k, p)
invbinomialtail (n, k, p)
invchi2 ($d f, p$)
invchi2tail ($d f, p$)
invdunnettprob $(k, d f, p)$
invexponential (b, p)
invexponentialtail (b, p)
$\operatorname{invFtail}\left(d f_{1}, d f_{2}, p\right)$
invgammap (a, p)
invgammaptail (a, p)
hypergeometricp (N, K, n, k) the hypergeometric probability of k successes out of a sample of size n, from a population of size N containing K elements that have the attribute of interest
$\operatorname{invF}\left(d f_{1}, d f_{2}, p\right) \quad$ the inverse cumulative F distribution: if $\mathrm{F}\left(d f_{1}, d f_{2}, f\right)=p$, then $\operatorname{invF}\left(d f_{1}, d f_{2}, p\right)=f$
the reverse cumulative (upper tail or survivor) F distribution with $d f_{1}$ numerator and $d f_{2}$ denominator degrees of freedom; 1 if $f<0$
the probability density function of the gamma distribution; 0 if $x<g$
the cumulative gamma distribution with shape parameter $a ; 0$ if $x<0$
the reverse cumulative (upper tail or survivor) gamma distribution with shape parameter a; 1 if $x<0$
the cumulative probability of the hypergeometric distribution
he cumulative beta distribution with shape parameters a and $b ; 0$ if $x<0$; or 1 if $x>1$
the reverse cumulative (upper tail or survivor) beta distribution with shape parameters a and b; 1 if $x<0$; or 0 if $x>1$
the cumulative inverse Gaussian distribution with mean m and shape parameter a; 0 if $x \leq 0$
the probability density of the inverse Gaussian distribution with mean m and shape parameter $a ; 0$ if $x \leq 0$
the reverse cumulative (upper tail or survivor) inverse Gaussian distribution with mean m and shape parameter $a ; 1$ if $x \leq 0$
the inverse of the cumulative binomial; that is, θ ($\theta=$ probability of success on one trial) such that the probability of observing floor (k) or fewer successes in floor (n) trials is p
the inverse of the right cumulative binomial; that is, $\theta(\theta=$ probability of success on one trial) such that the probability of observing floor (k) or more successes in floor (n) trials is p
the inverse of $\operatorname{chi2}():$ if $\operatorname{chi2}(d f, x)=p$, then invchi2 $(d f, p)=$ x
the inverse of chi2tail(): if chi2tail $(d f, x)=p$, then invchi2tail $(d f, p)=x$
the inverse cumulative multiple range distribution that is used in Dunnett's multiple-comparison method with k ranges and $d f$ degrees of freedom
the inverse cumulative exponential distribution with scale b : if exponential $(b, x)=p$, then invexponential $(b, p)=x$
the inverse reverse cumulative exponential distribution with scale b : if exponentialtail $(b, x)=p$, then
invexponentialtail $(b, p)=x$
the inverse reverse cumulative (upper tail or survivor) F distribution: if Ftail $\left(d f_{1}, d f_{2}, f\right)=p$, then $\operatorname{invFtail}\left(d f_{1}, d f_{2}, p\right)=f$
the inverse cumulative gamma distribution: if $\operatorname{gammap}(a, x)=p$, then $\operatorname{invgammap}(a, p)=x$
the inverse reverse cumulative (upper tail or survivor) gamma distribution: if gammaptail $(a, x)=p$, then invgammaptail (a, p)

invlogistic (p)
invlogistic (s, p)
invlogistic (m, s, p)
invlogistictail (p)
invlogistictail (s, p)
invlogistictail (m, s, p)
invnbinomial (n, k, q)
invnbinomialtail (n, k, q)
invnchi2 ($d f, n p, p$)
invnchi2tail ($d f, n p, p$)
$\operatorname{invnF}\left(d f_{1}, d f_{2}, n p, p\right)$
invnFtail $\left(d f_{1}, d f_{2}, n p, p\right)$
invnibeta $(a, b, n p, p)$
invnormal (p)
invnt (df $, n p, p)$
invnttail (df, $n p, p)$
invpoisson (k, p)
the inverse cumulative beta distribution: if ibeta $(a, b, x)=p$, then invibeta $(a, b, p)=x$
the inverse reverse cumulative (upper tail or survivor) beta distribution: if ibetatail $(a, b, x)=p$, then invibetatail (a, b, p) $=x$
the inverse of igaussian(): if igaussian $(m, a, x)=p$, then invigaussian $(m, a, p)=x$
the inverse of igaussiantail(): if igaussiantail (m, a, x) $=p$, then invigaussiantail (m, a, p x
the inverse cumulative logistic distribution: if $\operatorname{logistic}(x)=p$, then invlogistic $(p)=x$
the inverse cumulative logistic distribution: if $\operatorname{logistic}(s, x)=p$, then invlogistic $(s, p)=x$
the inverse cumulative logistic distribution: if $\operatorname{logistic}(m, s, x)$ $=p$, then invlogistic $(m, s, p)=x$
the inverse reverse cumulative logistic distribution: if $\operatorname{logistictail}(x)=p$, then invlogistictail $(p)=x$
the inverse reverse cumulative logistic distribution: if $\operatorname{logistictail}(s, x)=p$, then invlogistictail $(s, p)=x$
the inverse reverse cumulative logistic distribution: if $\operatorname{logistictail}(m, s, x)=p$, then invlogistictail $(m, s, p)=x$
the value of the negative binomial parameter, p, such that $q=$ nbinomial (n, k, p)
the value of the negative binomial parameter, p, such that $q=$ nbinomialtail (n, k, p)
the inverse cumulative noncentral χ^{2} distribution: if $\operatorname{nchi2}(d f, n p, x)=p$, then invnchi2 $(d f, n p, p)=x$
the inverse reverse cumulative (upper tail or survivor) noncentral χ^{2} distribution: if nchi2tail $(d f, n p, x)=p$, then invnchi2tail $(d f, n p, p)=x$
the inverse cumulative noncentral F distribution: if $\mathrm{nF}\left(d f_{1}, d f_{2}, n p, f\right)=p$, then $\operatorname{invnF}\left(d f_{1}, d f_{2}, n p, p\right)=f$
the inverse reverse cumulative (upper tail or survivor) noncentral F distribution: if $\mathrm{nFtail}\left(d f_{1}, d f_{2}, n p, x\right)=p$, then $\operatorname{invnFtail}\left(d f_{1}, d f_{2}, n p, p\right)=x$
the inverse cumulative noncentral beta distribution: if $\operatorname{nibeta}(a, b, n p, x)=p$, then invibeta $(a, b, n p, p)=x$
the inverse cumulative standard normal distribution: if normal (z) $=p$, then invnormal $(p)=z$
the inverse cumulative noncentral Student's t distribution: if $\mathrm{nt}(d f, n p, t)=p$, then invnt $(d f, n p, p)=t$
the inverse reverse cumulative (upper tail or survivor) noncentral Student's t distribution: if nttail $(d f, n p, t)=p$, then invnttail $(d f, n p, p)=t$
the Poisson mean such that the cumulative Poisson distribution evaluated at k is p : if poisson $(m, k)=p$, then invpoisson (k, p) $=m$
invpoissontail (k, q)
invt ($d f, p$)
invttail (df, p)
invtukeyprob ($k, d f, p$)
invweibull (a, b, p)
invweibull (a, b, g, p)
invweibullph (a, b, p)
invweibullph (a, b, g, p)
invweibullphtail (a, b, p)
invweibullphtail (a, b, g, p)
invweibulltail (a, b, p)
invweibulltail (a, b, g, p)

Inigammaden (a, b, x)
lnigaussianden (m, a, x)
lniwishartden ($d f, V, X$)
lnmvnormalden (M, V, X)
lnnormal (z)
lnnormalden (z)
lnnormalden (x, σ)
lnnormalden (x, μ, σ)
lnwishartden $(d f, V, X)$
the Poisson mean such that the reverse cumulative Poisson distribution evaluated at k is q : if poissontail $(m, k)=q$, then invpoissontail $(k, q)=m$
the inverse cumulative Student's t distribution: if $\mathrm{t}(d f, t)=p$, then $\operatorname{invt}(d f, p)=t$
the inverse reverse cumulative (upper tail or survivor) Student's t distribution: if ttail $(d f, t)=p$, then invttail $(d f, p)=t$
the inverse cumulative Tukey's Studentized range distribution with k ranges and $d f$ degrees of freedom
the inverse cumulative Weibull distribution with shape a and scale b : if weibull $(a, b, x)=p$, then invweibull $(a, b, p)=x$
the inverse cumulative Weibull distribution with shape a, scale b, and location g : if weibull $(a, b, g, x)=p$, then invweibull $(a, b, g, p)=x$
the inverse cumulative Weibull (proportional hazards) distribution with shape a and scale b : if weibullph $(a, b, x)=p$, then invweibullph $(a, b, p)=x$
the inverse cumulative Weibull (proportional hazards) distribution with shape a, scale b, and location g : if weibullph $(a, b, g, x)=$ p, then invweibullph $(a, b, g, p)=x$
the inverse reverse cumulative Weibull (proportional hazards) distribution with shape a and scale b : if weibullphtail $(a, b, x)=p$, then invweibullphtail $(a, b, p)=x$
the inverse reverse cumulative Weibull (proportional hazards) distribution with shape a, scale b, and location g : if weibullphtail $(a, b, g, x)=p$, then invweibullphtail $(a, b, g, p)=x$
the inverse reverse cumulative Weibull distribution with shape a and scale b : if weibulltail $(a, b, x)=p$, then invweibulltail $(a, b, p)=x$
the inverse reverse cumulative Weibull distribution with shape a, scale b, and location g : if weibulltail $(a, b, g, x)=p$, then invweibulltail $(a, b, g, p)=x$
the natural logarithm of the inverse gamma density, where a is the shape parameter and b is the scale parameter
the natural logarithm of the inverse Gaussian density with mean m and shape parameter a
the natural logarithm of the density of the inverse Wishart distribution; missing if $d f \leq n-1$
the natural logarithm of the multivariate normal density
the natural logarithm of the cumulative standard normal distribution the natural logarithm of the standard normal density, $N(0,1)$
the natural logarithm of the normal density with mean 0 and standard deviation σ
the natural logarithm of the normal density with mean μ and standard deviation $\sigma, N\left(\mu, \sigma^{2}\right)$
the natural logarithm of the density of the Wishart distribution; missing if $d f \leq n-1$

logistic (x)	the cumulative logistic distribution with mean 0 and standard deviation $\pi / \sqrt{3}$
logistic (s, x)	the cumulative logistic distribution with mean 0 , scale s, and standard deviation $s \pi / \sqrt{3}$
$\operatorname{logistic}(m, s, x)$	the cumulative logistic distribution with mean m, scale s, and standard deviation $s \pi / \sqrt{3}$
logisticden (x)	the density of the logistic distribution with mean 0 and standard deviation $\pi / \sqrt{3}$
logisticden (s, x)	the density of the logistic distribution with mean 0 , scale s, and standard deviation $s \pi / \sqrt{3}$
$\operatorname{logisticden~(~} m, s, x$)	the density of the logistic distribution with mean m, scale s, and standard deviation $s \pi / \sqrt{3}$
logistictail (x)	the reverse cumulative logistic distribution with mean 0 and standard deviation $\pi / \sqrt{3}$
logistictail (s, x)	the reverse cumulative logistic distribution with mean 0 , scale s, and standard deviation $s \pi / \sqrt{3}$
logistictail (m, s, x)	the reverse cumulative logistic distribution with mean m, scale s, and standard deviation $s \pi / \sqrt{3}$
nbetaden $(a, b, n p, x)$	the probability density function of the noncentral beta distribution; 0 if $x<0$ or $x>1$
nbinomial (n, k	the cumulative probability of the negative binomial distribution
nbinomialp (n, k, p)	the negative binomial probability
nbinomialtail (n, k, p)	the reverse cumulative probability of the negative binomial distribution
nchi2 ($d f, n p, x$)	the cumulative noncentral χ^{2} distribution; 0 if $x<0$
nchi2den ($d f, n p, x$)	the probability density of the noncentral χ^{2} distribution; 0 if $x<0$
nchi2tail ($d f, n p, x$)	the reverse cumulative (upper tail or survivor) noncentral χ^{2} distribution; 1 if $x<0$
$\mathrm{nF}\left(d f_{1}, d f_{2}, n p, f\right)$	the cumulative noncentral F distribution with $d f_{1}$ numerator and $d f_{2}$ denominator degrees of freedom and noncentrality parameter $n p ; 0$ if $f<0$
$n \mathrm{Fden}\left(d f_{1}, d f_{2}, n p, f\right)$	the probability density function of the noncentral F distribution with $d f_{1}$ numerator and $d f_{2}$ denominator degrees of freedom and noncentrality parameter $n p ; 0$ if $f<0$
$\mathrm{nFtail}\left(d f_{1}, d f_{2}, n p, f\right)$	the reverse cumulative (upper tail or survivor) noncentral F distribution with $d f_{1}$ numerator and $d f_{2}$ denominator degrees of freedom and noncentrality parameter $n p ; 1$ if $f<0$
nibeta $(a, b, n p, x)$	the cumulative noncentral beta distribution; 0 if $x<0$; or 1 if $x>1$
normal (z)	the cumulative standard normal distribution
normalden (z)	the standard normal density, $N(0,1)$
normalden (x, σ)	the normal density with mean 0 and standard deviation σ
normalden (x, μ, σ)	the normal density with mean μ and standard deviation $\sigma, N\left(\mu, \sigma^{2}\right)$
npnchi2 ($d f, x, p$)	the noncentrality parameter, $n p$, for noncentral χ^{2} : if $\operatorname{nchi2}(d f, n p, x)=p$, then npnchi2 $(d f, x, p)=n p$

$\mathrm{npnF}\left(d f_{1}, d f_{2}, f, p\right)$
npnt ($d f, t, p$)
$\mathrm{nt}(d f, n p, t)$
ntden ($d f, n p, t$)
nttail ($d f, n p, t$)
poisson (m, k)
poissonp (m, k)
poissontail (m, k)
$\mathrm{t}(d f, t)$
$\operatorname{tden}(d f, t)$
ttail $(d f, t)$
tukeyprob ($k, d f, x$)
weibull (a, b, x)
weibull (a, b, g, x)
weibullden (a, b, x)
weibullden (a, b, g, x)
weibullph (a, b, x)
weibullph (a, b, g, x)
weibullphden (a, b, x)
weibullphden (a, b, g, x)
weibullphtail (a, b, x)
weibullphtail (a, b, g, x)
weibulltail (a, b, x)
weibulltail (a, b, g, x)
the noncentrality parameter, $n p$, for the noncentral F : if $\mathrm{nF}\left(d f_{1}, d f_{2}, n p, f\right)=p$, then $\operatorname{npnF}\left(d f_{1}, d f_{2}, f, p\right)=n p$ the noncentrality parameter, $n p$, for the noncentral Student's t distribution: if nt $(d f, n p, t)=p$, then npnt $(d f, t, p)=n p$ the cumulative noncentral Student's t distribution with $d f$ degrees of freedom and noncentrality parameter $n p$
the probability density function of the noncentral Student's t distribution with $d f$ degrees of freedom and noncentrality parameter $n p$
the reverse cumulative (upper tail or survivor) noncentral Student's t distribution with $d f$ degrees of freedom and noncentrality parameter $n p$
the probability of observing floor (k) or fewer outcomes that are distributed as Poisson with mean m
the probability of observing floor (k) outcomes that are distributed as Poisson with mean m
the probability of observing floor (k) or more outcomes that are distributed as Poisson with mean m
the cumulative Student's t distribution with $d f$ degrees of freedom the probability density function of Student's t distribution
the reverse cumulative (upper tail or survivor) Student's t distribution; the probability $T>t$
the cumulative Tukey's Studentized range distribution with k ranges and $d f$ degrees of freedom; 0 if $x<0$
the cumulative Weibull distribution with shape a and scale b
the cumulative Weibull distribution with shape a, scale b, and location g
the probability density function of the Weibull distribution with shape a and scale b
the probability density function of the Weibull distribution with shape a, scale b, and location g
the cumulative Weibull (proportional hazards) distribution with shape a and scale b
the cumulative Weibull (proportional hazards) distribution with shape a, scale b, and location g
the probability density function of the Weibull (proportional hazards) distribution with shape a and scale b
the probability density function of the Weibull (proportional hazards) distribution with shape a, scale b, and location g
the reverse cumulative Weibull (proportional hazards) distribution with shape a and scale b
the reverse cumulative Weibull (proportional hazards) distribution with shape a, scale b, and location g
the reverse cumulative Weibull distribution with shape a and scale b
the reverse cumulative Weibull distribution with shape a, scale b, and location g

Functions

Statistical functions are listed alphabetically under the following headings:

```
Beta and noncentral beta distributions Binomial distributions
Chi-squared and noncentral chi-squared distributions
Dunnett's multiple range distributions
Exponential distributions
\(F\) and noncentral \(F\) distributions
Gamma and inverse gamma distributions
Hypergeometric distributions
Inverse Gaussian distributions
Logistic distributions
Negative binomial distributions
Normal (Gaussian), log of the normal, binormal, and multivariate normal distributions
Poisson distributions
Student's \(t\) and noncentral Student's \(t\) distributions
Tukey's Studentized range distributions
Weibull distributions
Weibull (proportional hazards) distributions
Wishart and inverse Wishart distributions
```


Beta and noncentral beta distributions

betaden (a, b, x)

Description: the probability density of the beta distribution, where a and b are the shape parameters; 0 if $x<0$ or $x>1$
The probability density of the beta distribution is

$$
\operatorname{betaden}(a, b, x)=\frac{x^{a-1}(1-x)^{b-1}}{\int_{0}^{\infty} t^{a-1}(1-t)^{b-1} d t}=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} x^{a-1}(1-x)^{b-1}
$$

Domain a: 1e-323 to $8 \mathrm{e}+307$
Domain b: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $0 \leq x \leq 1$
Range: 0 to $8 \mathrm{e}+307$

ibeta(a, b, x)

Description: the cumulative beta distribution with shape parameters a and b; 0 if $x<0$; or 1 if $x>1$
The cumulative beta distribution with shape parameters a and b is defined by

$$
I_{x}(a, b)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \int_{0}^{x} t^{a-1}(1-t)^{b-1} d t
$$

ibeta() returns the regularized incomplete beta function, also known as the incomplete beta function ratio. The incomplete beta function without regularization is given by (gamma $(a) * \operatorname{gamma}(b) / \operatorname{gamma}(a+b)) * \operatorname{ibeta}(a, b, x)$ or, better when a or b might be large, $\exp (\operatorname{lngamma}(a)+\operatorname{lngamma}(b)$-lngamma $(a+b)) *$ ibeta (a, b, x).
Here is an example of the use of the regularized incomplete beta function. Although Stata has a cumulative binomial function (see binomial ()), the probability that an event occurs k or fewer times in n trials, when the probability of one event is p, can be evaluated as $\operatorname{cond}(k==n, 1,1-i \operatorname{beta}(k+1, n-k, p))$. The reverse cumulative binomial (the probability that an event occurs k or more times) can be evaluated as $\operatorname{cond}(k==0,1$, $\operatorname{ibeta}(k, n-k+1, p)$). See Press et al. (2007, 270-273) for a more complete description and for suggested uses for this function.
Domain a : $\quad 1 \mathrm{e}-10$ to $1 \mathrm{e}+17$
Domain b : $\quad 1 \mathrm{e}-10$ to $1 \mathrm{e}+17$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $0 \leq x \leq 1$
Range: 0 to 1
ibetatail (a, b, x)
Description: the reverse cumulative (upper tail or survivor) beta distribution with shape parameters a and b; 1 if $x<0$; or 0 if $x>1$

The reverse cumulative (upper tail or survivor) beta distribution with shape parameters a and b is defined by

$$
\operatorname{ibetatail}(a, b, x)=1-\operatorname{ibeta}(a, b, x)=\int_{x}^{1} \operatorname{betaden}(a, b, t) d t
$$

ibetatail() is also known as the complement to the incomplete beta function (ratio).
Domain a: $\quad 1 \mathrm{e}-10$ to $1 \mathrm{e}+17$
Domain b: $\quad 1 \mathrm{e}-10$ to $1 \mathrm{e}+17$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $0 \leq x \leq 1$
Range: 0 to 1
invibeta (a, b, p)
Description: the inverse cumulative beta distribution: if ibeta $(a, b, x)=p$,
then invibeta $(a, b, p)=x$
Domain a : $\quad 1 \mathrm{e}-10$ to $1 \mathrm{e}+17$
Domain b: $\quad 1 \mathrm{e}-10$ to $1 \mathrm{e}+17$
Domain p : 0 to 1
Range: $\quad 0$ to 1
invibetatail (a, b, p)
Description: the inverse reverse cumulative (upper tail or survivor) beta distribution: if ibetatail $(a, b, x)=p$, then invibetatail $(a, b, p)=x$
Domain a : $\quad 1 \mathrm{e}-10$ to $1 \mathrm{e}+17$
Domain b: $1 \mathrm{e}-10$ to $1 \mathrm{e}+17$
Domain p : 0 to 1
Range: $\quad 0$ to 1
nbetaden $(a, b, n p, x)$
Description: the probability density function of the noncentral beta distribution; 0 if $x<0$ or $x>1$
The probability density function of the noncentral beta distribution is defined as

$$
\sum_{j=0}^{\infty} \frac{e^{-n p / 2}(n p / 2)^{j}}{\Gamma(j+1)}\left\{\frac{\Gamma(a+b+j)}{\Gamma(a+j) \Gamma(b)} x^{a+j-1}(1-x)^{b-1}\right\}
$$

where a and b are shape parameters, $n p$ is the noncentrality parameter, and x is the value of a beta random variable.
nbetaden $(a, b, 0, x)=\operatorname{betaden}(a, b, x)$, but betaden() is the preferred function to use for the central beta distribution. nbetaden() is computed using an algorithm described in Johnson, Kotz, and Balakrishnan (1995).
Domain a : $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain b: 1e-323 to $8 \mathrm{e}+307$
Domain np: 0 to 1,000
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $0 \leq x \leq 1$
Range: 0 to $8 \mathrm{e}+307$
nibeta ($a, b, n p, x$)
Description: the cumulative noncentral beta distribution; 0 if $x<0$; or 1 if $x>1$
The cumulative noncentral beta distribution is defined as

$$
I_{x}(a, b, n p)=\sum_{j=0}^{\infty} \frac{e^{-n p / 2}(n p / 2)^{j}}{\Gamma(j+1)} I_{x}(a+j, b)
$$

where a and b are shape parameters, $n p$ is the noncentrality parameter, x is the value of a beta random variable, and $I_{x}(a, b)$ is the cumulative beta distribution, ibeta(). $\operatorname{nibeta}(a, b, 0, x)=\operatorname{ibeta}(a, b, x)$, but ibeta() is the preferred function to use for the central beta distribution. nibeta() is computed using an algorithm described in Johnson, Kotz, and Balakrishnan (1995).
Domain a: 1e-323 to $8 \mathrm{e}+307$
Domain b: 1e-323 to $8 \mathrm{e}+307$
Domain np: 0 to 10,000
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $0 \leq x \leq 1$
Range: $\quad 0$ to 1
invnibeta ($a, b, n p, p$)
Description: the inverse cumulative noncentral beta distribution: if
$\operatorname{nibeta}(a, b, n p, x)=p$, then invibeta $(a, b, n p, p)=x$
Domain a : $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain b : $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain $n p$: 0 to 1,000
Domain p : 0 to 1
Range: 0 to 1

Binomial distributions

binomialp (n, k, p)
Description: the probability of observing floor (k) successes in floor (n) trials when the probability of a success on one trial is p
Domain n : 1 to $1 \mathrm{e}+6$
Domain k : 0 to n
Domain p : 0 to 1
Range: 0 to 1
binomial (n, k, θ)
Description: the probability of observing floor (k) or fewer successes in floor (n) trials when the probability of a success on one trial is θ; 0 if $k<0$; or 1 if $k>n$
Domain n : 0 to $1 \mathrm{e}+17$
Domain k : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $0 \leq k<n$
Domain θ : 0 to 1
Range: 0 to 1
binomialtail (n, k, θ)
Description: the probability of observing floor (k) or more successes in floor (n) trials when the probability of a success on one trial is $\theta ; 1$ if $k<0$; or 0 if $k>n$
Domain n : $\quad 0$ to $1 \mathrm{e}+17$
Domain k : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $0 \leq k<n$
Domain θ : 0 to 1
Range: 0 to 1
invbinomial (n, k, p)
Description: the inverse of the cumulative binomial; that is, θ ($\theta=$ probability of success on one trial) such that the probability of observing floor (k) or fewer successes in floor (n) trials is p
Domain n : 1 to $1 \mathrm{e}+17$
Domain k : 0 to $n-1$
Domain p : 0 to 1 (exclusive)
Range: 0 to 1
invbinomialtail (n, k, p)
Description: the inverse of the right cumulative binomial; that is, θ ($\theta=$ probability of success on one trial) such that the probability of observing floor (k) or more successes in floor (n) trials is p
Domain n : 1 to $1 \mathrm{e}+17$
Domain k : 1 to n
Domain p : 0 to 1 (exclusive)
Range: $\quad 0$ to 1

Chi-squared and noncentral chi-squared distributions

chi2den $(d f, x)$
Description: the probability density of the chi-squared distribution with $d f$ degrees of freedom; 0 if $x<0$ $\operatorname{chi2den}(d f, x)=\operatorname{gammaden}(d f / 2,2,0, x)$
Domain $d f$: $2 \mathrm{e}-10$ to $2 \mathrm{e}+17$ (may be nonintegral)
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: $\quad 0$ to $8 \mathrm{e}+307$
$\operatorname{chi2}(d f, x)$
Description: the cumulative χ^{2} distribution with $d f$ degrees of freedom; 0 if $x<0$
$\operatorname{chi2}(d f, x)=\operatorname{gammap}(d f / 2, x / 2)$
Domain $d f$: $2 \mathrm{e}-10$ to $2 \mathrm{e}+17$ (may be nonintegral)
Domain x : $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $x \geq 0$
Range: $\quad 0$ to 1
chi2tail ($d f, x$)
Description: the reverse cumulative (upper tail or survivor) χ^{2} distribution with $d f$ degrees of freedom; 1 if $x<0$
$\operatorname{chi2tail}(d f, x)=1-\operatorname{chi2}(d f, x)$
Domain $d f$: $2 \mathrm{e}-10$ to $2 \mathrm{e}+17$ (may be nonintegral)
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $x \geq 0$
Range: 0 to 1
invchi2($d f, p$)
Description: the inverse of $\operatorname{chi2}()$: if $\operatorname{chi2}(d f, x)=p$, then invchi2 $(d f, p)=x$
Domain $d f$: $2 \mathrm{e}-10$ to $2 \mathrm{e}+17$ (may be nonintegral)
Domain p : 0 to 1
Range: 0 to $8 \mathrm{e}+307$
invchi2tail ($d f, p$)
Description: the inverse of chi2tail() : if chi2tail $(d f, x)=p$, then invchi2tail $(d f, p)=$
Domain $d f: \stackrel{x}{2} \mathrm{e}-10$ to $2 \mathrm{e}+17$ (may be nonintegral)
Domain p : 0 to 1
Range: 0 to $8 \mathrm{e}+307$
nchi2den ($d f, n p, x$)
Description: the probability density of the noncentral χ^{2} distribution; 0 if $x<0$
$d f$ denotes the degrees of freedom, $n p$ is the noncentrality parameter, and x is the value of χ^{2}.
$\operatorname{nchi2den}(d f, 0, x)=\operatorname{chi} 2 \operatorname{den}(d f, x)$, but chi2den() is the preferred function to use for the central χ^{2} distribution.
Domain $d f$: 2e-10 to 1e+6 (may be nonintegral)
Domain $n p: 0$ to 10,000
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: $\quad 0$ to $8 \mathrm{e}+307$
nchi2 ($d f, n p, x$)
Description: the cumulative noncentral χ^{2} distribution; 0 if $x<0$
The cumulative noncentral χ^{2} distribution is defined as

$$
\int_{0}^{x} \frac{e^{-t / 2} e^{-n p / 2}}{2^{d f / 2}} \sum_{j=0}^{\infty} \frac{t^{d f / 2+j-1} n p^{j}}{\Gamma(d f / 2+j) 2^{2 j} j!} d t
$$

where $d f$ denotes the degrees of freedom, $n p$ is the noncentrality parameter, and x is the value of χ^{2}.
$\operatorname{nchi2}(d f, 0, x)=\operatorname{chi2}(d f, x)$, but chi2() is the preferred function to use for the central χ^{2} distribution.
Domain $d f$: $2 \mathrm{e}-10$ to $1 \mathrm{e}+6$ (may be nonintegral)
Domain $n p: 0$ to 10,000
Domain x : $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $x \geq 0$
Range: 0 to 1
nchi2tail ($d f, n p, x$)
Description: the reverse cumulative (upper tail or survivor) noncentral χ^{2} distribution; 1 if $x<0$ $d f$ denotes the degrees of freedom, $n p$ is the noncentrality parameter, and x is the value of χ^{2}.
Domain $d f$: 2e-10 to 1e+6 (may be nonintegral)
Domain $n p: 0$ to 10,000
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: 0 to 1
invnchi2 ($d f, n p, p$)
Description: the inverse cumulative noncentral χ^{2} distribution: if nchi2 $(d f, n p, x)=p$, then invnchi2 $(d f, n p, p)=x$
Domain $d f$: $2 \mathrm{e}-10$ to $1 \mathrm{e}+6$ (may be nonintegral)
Domain $n p: 0$ to 10,000
Domain p : 0 to 1
Range: 0 to $8 \mathrm{e}+307$
invnchi2tail ($d f, n p, p$)
Description: the inverse reverse cumulative (upper tail or survivor) noncentral χ^{2} distribution: if nchi2tail $(d f, n p, x)=p$, then invnchi2tail $(d f, n p, p)=x$
Domain $d f$: 2e-10 to 1e+6 (may be nonintegral)
Domain $n p: 0$ to 10,000
Domain p : 0 to 1
Range: $\quad 0$ to $8 \mathrm{e}+307$
npnchi2 ($d f, x, p$)
Description: the noncentrality parameter, $n p$, for noncentral χ^{2} : if
nchi2 $(d f, n p, x)=p$, then npnchi2 $(d f, x, p)=n p$
Domain $d f$: $2 \mathrm{e}-10$ to $1 \mathrm{e}+6$ (may be nonintegral)
Domain x : 0 to $8 \mathrm{e}+307$
Domain p : 0 to 1
Range: 0 to 10,000

Dunnett's multiple range distributions

dunnettprob ($k, d f, x$)
Description: the cumulative multiple range distribution that is used in Dunnett's multiple-comparison method with k ranges and $d f$ degrees of freedom; 0 if $x<0$
dunnettprob() is computed using an algorithm described in Miller (1981).
Domain k : 2 to $1 \mathrm{e}+6$
Domain $d f$: 2 to $1 \mathrm{e}+6$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $x \geq 0$
Range: 0 to 1
invdunnettprob ($k, d f, p$)
Description: the inverse cumulative multiple range distribution that is used in Dunnett's multiplecomparison method with k ranges and $d f$ degrees of freedom

If dunnettprob $(k, d f, x)=p$, then invdunnettprob $(k, d f, p)=x$.
invdunnettprob() is computed using an algorithm described in Miller (1981).
Domain k : 2 to $1 \mathrm{e}+6$
Domain $d f$: 2 to $1 \mathrm{e}+6$
Domain p : 0 to 1 (right exclusive)
Range: 0 to $8 \mathrm{e}+307$

Charles William Dunnett (1921-2007) was a Canadian statistician best known for his work on multiple-comparison procedures. He was born in Windsor, Ontario, and graduated in mathematics and physics from McMaster University. After naval service in World War II, Dunnett's career included further graduate work, teaching, and research at Toronto, Columbia, the New York State Maritime College, the Department of National Health and Welfare in Ottawa, Cornell, Lederle Laboratories, and Aberdeen before he became Professor of Clinical Epidemiology and Biostatistics at McMaster University in 1974. He was President and Gold Medalist of the Statistical Society of Canada. Throughout his career, Dunnett took a keen interest in computing. According to Google Scholar, his 1955 paper on comparing treatments with a control has been cited over 4,000 times.

Exponential distributions

exponentialden (b, x)
Description: the probability density function of the exponential distribution with scale b
The probability density function of the exponential distribution is

$$
\frac{1}{b} \exp (-x / b)
$$

where b is the scale and x is the value of an exponential variate.
Domain b: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $x \geq 0$
Range: $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$

```
exponential \((b, x)\)
```

Description: the cumulative exponential distribution with scale b
The cumulative distribution function of the exponential distribution is

$$
1-\exp (-x / b)
$$

for $x \geq 0$ and 0 for $x<0$, where b is the scale and x is the value of an exponential variate.
The mean of the exponential distribution is b and its variance is b^{2}.
Domain b: $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $x \geq 0$
Range: 0 to 1
exponentialtail (b, x)
Description: the reverse cumulative exponential distribution with scale b
The reverse cumulative distribution function of the exponential distribution is

$$
\exp (-x / b)
$$

where b is the scale and x is the value of an exponential variate.
Domain b : $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $x \geq 0$
Range: 0 to 1
invexponential (b, p)
Description: the inverse cumulative exponential distribution with scale b : if
exponential $(b, x)=p$, then invexponential $(b, p)=x$
Domain b: 1e-323 to $8 \mathrm{e}+307$
Domain p : 0 to 1
Range: $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
invexponentialtail (b, p)
Description: the inverse reverse cumulative exponential distribution with scale b :
if exponentialtail $(b, x)=p$, then invexponentialtail $(b, p)=x$
Domain b: $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain p : 0 to 1
Range: $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$

F and noncentral F distributions

Fden $\left(d f_{1}, d f_{2}, f\right)$
Description: the probability density function of the F distribution with $d f_{1}$ numerator and $d f_{2}$ denominator degrees of freedom; 0 if $f<0$

The probability density function of the F distribution with $d f_{1}$ numerator and $d f_{2}$ denominator degrees of freedom is defined as

$$
\operatorname{Fden}\left(d f_{1}, d f_{2}, f\right)=\frac{\Gamma\left(\frac{d f_{1}+d f_{2}}{2}\right)}{\Gamma\left(\frac{d f_{1}}{2}\right) \Gamma\left(\frac{d f_{2}}{2}\right)}\left(\frac{d f_{1}}{d f_{2}}\right)^{\frac{d f_{1}}{2}} \cdot f^{\frac{d f_{1}}{2}-1}\left(1+\frac{d f_{1}}{d f_{2}} f\right)^{-\frac{1}{2}\left(d f_{1}+d f_{2}\right)}
$$

Domain $d f_{1}: 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$ (may be nonintegral)
Domain $d f_{2}$: 1e-323 to $8 \mathrm{e}+307$ (may be nonintegral)
Domain f : $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $f \geq 0$
Range: $\quad 0$ to $8 \mathrm{e}+307$
$\mathrm{F}\left(d f_{1}, d f_{2}, f\right)$
Description: the cumulative F distribution with $d f_{1}$ numerator and $d f_{2}$ denominator degrees of freedom: $\mathrm{F}\left(d f_{1}, d f_{2}, f\right)=\int_{0}^{f} \operatorname{Fden}\left(d f_{1}, d f_{2}, t\right) d t ; 0$ if $f<0$
Domain $d f_{1}: 2 \mathrm{e}-10$ to $2 \mathrm{e}+17$ (may be nonintegral)
Domain $d f_{2}: 2 \mathrm{e}-10$ to $2 \mathrm{e}+17$ (may be nonintegral)
Domain $f: \quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $f \geq 0$
Range: 0 to 1
Ftail ($d f_{1}, d f_{2}, f$)
Description: the reverse cumulative (upper tail or survivor) F distribution with $d f_{1}$ numerator and $d f_{2}$ denominator degrees of freedom; 1 if $f<0$

Ftail $\left(d f_{1}, d f_{2}, f\right)=1-\mathrm{F}\left(d f_{1}, d f_{2}, f\right)$.
Domain $d f_{1}: 2 \mathrm{e}-10$ to $2 \mathrm{e}+17$ (may be nonintegral)
Domain $d f_{2}: 2 \mathrm{e}-10$ to $2 \mathrm{e}+17$ (may be nonintegral)
Domain f : $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $f \geq 0$
Range: 0 to 1
$\operatorname{invF}\left(d f_{1}, d f_{2}, p\right)$
Description: the inverse cumulative F distribution: if $\mathrm{F}\left(d f_{1}, d f_{2}, f\right)=p$, then $\operatorname{invF}\left(d f_{1}, d f_{2}, p\right)=f$
Domain $d f_{1}: 2 \mathrm{e}-10$ to $2 \mathrm{e}+17$ (may be nonintegral)
Domain $d f_{2}: 2 \mathrm{e}-10$ to $2 \mathrm{e}+17$ (may be nonintegral)
Domain p : 0 to 1
Range: 0 to $8 \mathrm{e}+307$
invFtail ($d f_{1}, d f_{2}, p$)
Description: the inverse reverse cumulative (upper tail or survivor) F distribution: if Ftail $\left(d f_{1}, d f_{2}, f\right)=p$, then invFtail $\left(d f_{1}, d f_{2}, p\right)=f$
Domain $d f_{1}: 2 \mathrm{e}-10$ to $2 \mathrm{e}+17$ (may be nonintegral)
Domain $d f_{2}: 2 \mathrm{e}-10$ to $2 \mathrm{e}+17$ (may be nonintegral)
Domain p : 0 to 1
Range: $\quad 0$ to $8 \mathrm{e}+307$
$\mathrm{nFden}\left(d f_{1}, d f_{2}, n p, f\right)$
Description: the probability density function of the noncentral F distribution with $d f_{1}$ numerator and $d f_{2}$ denominator degrees of freedom and noncentrality parameter $n p ; 0$ if $f<0$ $\mathrm{nFden}\left(d f_{1}, d f_{2}, 0, f\right)=\operatorname{Fden}\left(d f_{1}, d f_{2}, f\right)$, but Fden () is the preferred function to use for the central F distribution.
Also, if F follows the noncentral F distribution with $d f_{1}$ and $d f_{2}$ degrees of freedom and noncentrality parameter $n p$, then

$$
\frac{d f_{1} F}{d f_{2}+d f_{1} F}
$$

follows a noncentral beta distribution with shape parameters $a=d f_{1} / 2, b=d f_{2} / 2$, and noncentrality parameter $n p$, as given in nbetaden(). nFden() is computed based on this relationship.
Domain $d f_{1}: 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$ (may be nonintegral)
Domain $d f_{2}: 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$ (may be nonintegral)
Domain $n p: 0$ to 1,000
Domain f : $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $f \geq 0$
Range: 0 to $8 \mathrm{e}+307$
$\mathrm{nF}\left(d f_{1}, d f_{2}, n p, f\right)$
Description: the cumulative noncentral F distribution with $d f_{1}$ numerator and $d f_{2}$ denominator degrees of freedom and noncentrality parameter $n p ; 0$ if $f<0$
$\mathrm{nF}\left(d f_{1}, d f_{2}, 0, f\right)=\mathrm{F}\left(d f_{1}, d f_{2}, f\right)$
nF () is computed using nibeta () based on the relationship between the noncentral beta and noncentral F distributions: $\mathrm{nF}\left(d f_{1}, d f_{2}, n p, f\right)=$
nibeta $\left(d f_{1} / 2, d f_{2} / 2, n p, d f_{1} \times f /\left\{\left(d f_{1} \times f\right)+d f_{2}\right\}\right)$.
Domain $d f_{1}: 2 \mathrm{e}-10$ to $1 \mathrm{e}+8$
Domain $d f_{2}: 2 \mathrm{e}-10$ to $1 \mathrm{e}+8$
Domain $n p: 0$ to 10,000
Domain f : $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: 0 to 1
nFtail ($d f_{1}, d f_{2}, n p, f$)
Description: the reverse cumulative (upper tail or survivor) noncentral F distribution with $d f_{1}$ numerator and $d f_{2}$ denominator degrees of freedom and noncentrality parameter $n p$; 1 if $f<0$
nFtail() is computed using nibeta() based on the relationship between the noncentral beta and F distributions. See Johnson, Kotz, and Balakrishnan (1995) for more details.
Domain $d f_{1}$: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$ (may be nonintegral)
Domain $d f_{2}: 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$ (may be nonintegral)
Domain $n p: 0$ to 1,000
Domain f : $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $f \geq 0$
Range: 0 to 1
$\operatorname{invnF}\left(d f_{1}, d f_{2}, n p, p\right)$
Description: the inverse cumulative noncentral F distribution: if $\mathrm{nF}\left(d f_{1}, d f_{2}, n p, f\right)=p$, then $\operatorname{invnF}\left(d f_{1}, d f_{2}, n p, p\right)=f$
Domain $d f_{1}: 1 \mathrm{e}-6$ to $1 \mathrm{e}+6$ (may be nonintegral)
Domain $d f_{2}: 1 \mathrm{e}-6$ to $1 \mathrm{e}+6$ (may be nonintegral)
Domain $n p: 0$ to 10,000
Domain p : 0 to 1
Range: $\quad 0$ to $8 \mathrm{e}+307$
invnFtail ($d f_{1}, d f_{2}, n p, p$)
Description: the inverse reverse cumulative (upper tail or survivor) noncentral F distribution: if nFtail $\left(d f_{1}, d f_{2}, n p, x\right)=p$, then invnFtail $\left(d f_{1}, d f_{2}, n p, p\right)=x$
Domain $d f_{1}$: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$ (may be nonintegral)
Domain $d f_{2}: 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$ (may be nonintegral)
Domain $n p: 0$ to 1,000
Domain p : 0 to 1
Range: $\quad 0$ to $8 \mathrm{e}+307$
$\operatorname{npnF}\left(d f_{1}, d f_{2}, f, p\right)$
Description: the noncentrality parameter, $n p$, for the noncentral F : if $\mathrm{nF}\left(d f_{1}, d f_{2}, n p, f\right)=p$, then $\mathrm{npnF}\left(d f_{1}, d f_{2}, f, p\right)=n p$
Domain $d f_{1}: 2 \mathrm{e}-10$ to $1 \mathrm{e}+6$ (may be nonintegral)
Domain $d f_{2}: 2 \mathrm{e}-10$ to $1 \mathrm{e}+6$ (may be nonintegral)
Domain f: 0 to $8 \mathrm{e}+307$
Domain p : 0 to 1
Range: 0 to 1,000

Gamma and inverse gamma distributions

gammaden (a, b, g, x)
Description: the probability density function of the gamma distribution; 0 if $x<g$
The probability density function of the gamma distribution is defined by

$$
\frac{1}{\Gamma(a) b^{a}}(x-g)^{a-1} e^{-(x-g) / b}
$$

where a is the shape parameter, b is the scale parameter, and g is the location parameter.
Domain a: 1e-323 to $8 \mathrm{e}+307$
Domain b : $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain $g: \quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $x \geq g$
Range: 0 to $8 \mathrm{e}+307$
$\operatorname{gammap}(a, x)$
Description: the cumulative gamma distribution with shape parameter a; 0 if $x<0$
The cumulative gamma distribution with shape parameter a is defined by

$$
\frac{1}{\Gamma(a)} \int_{0}^{x} e^{-t} t^{a-1} d t
$$

The cumulative Poisson (the probability of observing k or fewer events if the expected is x) can be evaluated as $1-\operatorname{gammap}(k+1, x)$. The reverse cumulative (the probability of observing k or more events) can be evaluated as $\operatorname{gammap}(k, x)$. See Press et al. (2007, 259-266) for a more complete description and for suggested uses for this function.
gammap() is also known as the incomplete gamma function (ratio).
Probabilities for the three-parameter gamma distribution (see gammaden()) can be calculated by shifting and scaling x; that is, gammap $(a,(x-g) / b)$.
Domain a : $\quad 1 \mathrm{e}-10$ to $1 \mathrm{e}+17$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $x \geq 0$
Range: 0 to 1

gammaptail (a, x)

Description: the reverse cumulative (upper tail or survivor) gamma distribution with shape parameter $a ; 1$ if $x<0$
The reverse cumulative (upper tail or survivor) gamma distribution with shape parameter a is defined by

$$
\operatorname{gammaptail}(a, x)=1-\operatorname{gammap}(a, x)=\int_{x}^{\infty} \operatorname{gammaden}(a, t) d t
$$

gammaptail() is also known as the complement to the incomplete gamma function (ratio).
Domain a : $\quad 1 \mathrm{e}-10$ to $1 \mathrm{e}+17$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $x \geq 0$
Range: 0 to 1
invgammap (a, p)
Description: the inverse cumulative gamma distribution: if $\operatorname{gammap}(a, x)=p$, then $\operatorname{invgammap}(a, p)=x$
Domain a : $\quad 1 \mathrm{e}-10$ to $1 \mathrm{e}+17$
Domain p : 0 to 1
Range: $\quad 0$ to $8 \mathrm{e}+307$
invgammaptail (a, p)
Description: the inverse reverse cumulative (upper tail or survivor) gamma distribution: if gammaptail $(a, x)=p$, then invgammaptail $(a, p)=x$
Domain a : $1 \mathrm{e}-10$ to $1 \mathrm{e}+17$
Domain p : 0 to 1
Range: 0 to $8 \mathrm{e}+307$
dgammapda (a, x)
Description: $\frac{\partial P(a, x)}{\partial a}$, where $P(a, x)=\operatorname{gammap}(a, x) ; 0$ if $x<0$
Domain a : $1 \mathrm{e}-7$ to $1 \mathrm{e}+17$
Domain $x: \quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $x \geq 0$
Range: $\quad-16$ to 0
dgammapdada (a, x)
Description: $\frac{\partial^{2} P(a, x)}{\partial a^{2}}$, where $P(a, x)=\operatorname{gammap}(a, x) ; 0$ if $x<0$
Domain a : $\quad 1 \mathrm{e}-7$ to $1 \mathrm{e}+17$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $x \geq 0$
Range: $\quad-0.02$ to $4.77 \mathrm{e}+5$
dgammapdadx (a, x)
Description: $\frac{\partial^{2} P(a, x)}{\partial a \partial x}$, where $P(a, x)=\operatorname{gammap}(a, x) ; 0$ if $x<0$
Domain a : $1 \mathrm{e}-7$ to $1 \mathrm{e}+17$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $x \geq 0$
Range: $\quad-0.04$ to $8 \mathrm{e}+307$
dgammapdx (a, x)
Description: $\frac{\partial P(a, x)}{\partial x}$, where $P(a, x)=\operatorname{gammap}(a, x) ; 0$ if $x<0$
Domain a : $1 \mathrm{e}-10$ to $1 \mathrm{e}+17$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $x \geq 0$
Range: 0 to $8 \mathrm{e}+307$
dgammapdxdx (a, x)
Description: $\frac{\partial^{2} P(a, x)}{\partial x^{2}}$, where $P(a, x)=\operatorname{gammap}(a, x) ; 0$ if $x<0$
Domain a : $1 \mathrm{e}-10$ to $1 \mathrm{e}+17$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $x \geq 0$
Range: 0 to $1 \mathrm{e}+40$

Inigammaden (a, b, x)
Description: the natural logarithm of the inverse gamma density, where a is the shape parameter and b is the scale parameter
Domain a : $1 \mathrm{e}-300$ to $1 \mathrm{e}+300$
Domain b : $1 \mathrm{e}-300$ to $1 \mathrm{e}+300$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: $\quad 1 \mathrm{e}-300$ to $8 \mathrm{e}+307$

Hypergeometric distributions

hypergeometricp(N, K, n, k)
Description: the hypergeometric probability of k successes out of a sample of size n, from a population of size N containing K elements that have the attribute of interest

Success is obtaining an element with the attribute of interest.
Domain N : 2 to $1 \mathrm{e}+5$
Domain K : 1 to $N-1$
Domain n : 1 to $N-1$
Domain k : $\quad \max (0, n-N+K)$ to $\min (K, n)$
Range: $\quad 0$ to 1 (right exclusive)
hypergeometric (N, K, n, k)
Description: the cumulative probability of the hypergeometric distribution
N is the population size, K is the number of elements in the population that have the attribute of interest, and n is the sample size. Returned is the probability of observing k or fewer elements from a sample of size n that have the attribute of interest.
Domain N : 2 to $1 \mathrm{e}+5$
Domain K : 1 to $N-1$
Domain n : 1 to $N-1$
Domain k : $\max (0, n-N+K)$ to $\min (K, n)$
Range: 0 to 1

Inverse Gaussian distributions

igaussianden (m, a, x)
Description: the probability density of the inverse Gaussian distribution with mean m and shape parameter a; 0 if $x \leq 0$
Domain m : 1e-323 to $8 \mathrm{e}+307$
Domain a : $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: $\quad 0$ to $8 \mathrm{e}+307$
igaussian (m, a, x)
Description: the cumulative inverse Gaussian distribution with mean m and shape parameter $a ; 0$ if $x \leq 0$
Domain m: 1e-323 to $8 \mathrm{e}+307$
Domain a : $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: $\quad 0$ to 1
igaussiantail (m, a, x)
Description: the reverse cumulative (upper tail or survivor) inverse Gaussian distribution with mean m and shape parameter $a ; 1$ if $x \leq 0$
igaussiantail (m, a, x) $=1-\operatorname{igaussian}(m, a, x)$
Domain m : $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain a : $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: 0 to 1
invigaussian (m, a, p)
Description: the inverse of igaussian(): if
igaussian $(m, a, x)=p$, then invigaussian $(m, a, p)=x$

Domain m : $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain a : $1 \mathrm{e}-323$ to $1 \mathrm{e}+8$
Domain p : 0 to 1 (exclusive)
Range: 0 to $8 \mathrm{e}+307$
invigaussiantail (m, a, p)
Description: the inverse of igaussiantail(): if
igaussiantail $(m, a, x)=p$, then invigaussiantail $(m, a, p)=x$
Domain m: 1e-323 to $8 \mathrm{e}+307$
Domain a : $\quad 1 \mathrm{e}-323$ to $1 \mathrm{e}+8$
Domain p : 0 to 1 (exclusive)
Range: $\quad 0$ to 1
lnigaussianden(m, a, x)
Description: the natural logarithm of the inverse Gaussian density with mean m and shape parameter
Domain $m: \quad \stackrel{a}{1 \mathrm{e}-323}$ to $8 \mathrm{e}+307$
Domain a : $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain x : $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$

Logistic distributions

logisticden (x)
Description: the density of the logistic distribution with mean 0 and standard deviation $\pi / \sqrt{3}$
$\operatorname{logisticden}(x)=\operatorname{logisticden}(1, x)=\operatorname{logisticden}(0,1, x)$, where x is the value of a logistic random variable.

Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: $\quad 0$ to 0.25
logisticden (s, x)
Description: the density of the logistic distribution with mean 0 , scale s, and standard deviation $s \pi / \sqrt{3}$
$\operatorname{logisticden}(s, x)=\operatorname{logisticden}(0, s, x)$, where s is the scale and x is the value of a logistic random variable.
Domain s: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: 0 to $8 \mathrm{e}+307$
logisticden (m, s, x)
Description: the density of the logistic distribution with mean m, scale s, and standard deviation $s \pi / \sqrt{3}$

The density of the logistic distribution is defined as

$$
\frac{\exp \{-(x-m) / s\}}{s[1+\exp \{-(x-m) / s\}]^{2}}
$$

where m is the mean, s is the scale, and x is the value of a logistic random variable.
Domain m : $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain s : $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: 0 to $8 \mathrm{e}+307$
logistic (x)
Description: the cumulative logistic distribution with mean 0 and standard deviation $\pi / \sqrt{3}$
$\operatorname{logistic}(x)=\operatorname{logistic}(1, x)=\operatorname{logistic}(0,1, x)$, where x is the value of a logistic random variable.
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: 0 to 1
logistic (s, x)
Description: the cumulative logistic distribution with mean 0 , scale s, and standard deviation $s \pi / \sqrt{3}$
$\operatorname{logistic}(s, x)=\operatorname{logistic}(0, s, x)$, where s is the scale and x is the value of a logistic random variable.
Domain s: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: 0 to 1
logistic (m, s, x)
Description: the cumulative logistic distribution with mean m, scale s, and standard deviation $s \pi / \sqrt{3}$
The cumulative logistic distribution is defined as

$$
[1+\exp \{-(x-m) / s\}]^{-1}
$$

where m is the mean, s is the scale, and x is the value of a logistic random variable.
Domain m : $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain s : $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: 0 to 1
logistictail(x)
Description: the reverse cumulative logistic distribution with mean 0 and standard deviation $\pi / \sqrt{3}$ $\operatorname{logistictail}(x)=\operatorname{logistictail}(1, x)=\operatorname{logistictail}(0,1, x)$, where x is the value of a logistic random variable.

Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: 0 to 1
logistictail (s, x)
Description: the reverse cumulative logistic distribution with mean 0 , scale s, and standard deviation $s \pi / \sqrt{3}$
$\operatorname{logistictail}(s, x)=\operatorname{logistictail}(0, s, x)$, where s is the scale and x is the value of a logistic random variable.
Domain s : $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: 0 to 1
logistictail(m, s, x)
Description: the reverse cumulative logistic distribution with mean m, scale s, and standard deviation $s \pi / \sqrt{3}$

The reverse cumulative logistic distribution is defined as

$$
[1+\exp \{(x-m) / s\}]^{-1}
$$

where m is the mean, s is the scale, and x is the value of a logistic random variable.
Domain m : $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain s: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: 0 to 1
invlogistic (p)
Description: the inverse cumulative logistic distribution: if $\operatorname{logistic}(x)=p$, then invlogistic $(p)=x$

Domain p : 0 to 1
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
invlogistic (s, p)
Description: the inverse cumulative logistic distribution: if $\operatorname{logistic}(s, x)=p$, then invlogistic $(s, p)=x$
Domain s: 1e-323 to $8 \mathrm{e}+307$
Domain p : 0 to 1
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
invlogistic (m, s, p)
Description: the inverse cumulative logistic distribution: if logistic $(m, s, x)=p$, then invlogistic $(m, s, p)=x$

Domain m : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain s : $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain p : 0 to 1
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
invlogistictail(p)
Description: the inverse reverse cumulative logistic distribution: if $\operatorname{logistictail}(x)=p$, then invlogistictail $(p)=x$
Domain p : 0 to 1
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
invlogistictail (s, p)
Description: the inverse reverse cumulative logistic distribution: if $\operatorname{logistictail}(s, x)=p$, then invlogistictail $(s, p)=x$
Domain s : $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain p : 0 to 1
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
invlogistictail (m, s, p)
Description: the inverse reverse cumulative logistic distribution: if
$\operatorname{logistictail}(m, s, x)=p$, then invlogistictail $(m, s, p)=x$

Domain m : $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain s : $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain p : 0 to 1
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$

Negative binomial distributions

nbinomialp (n, k, p)
Description: the negative binomial probability
When n is an integer, nbinomialp() returns the probability of observing exactly floor (k) failures before the nth success when the probability of a success on one trial is p.
Domain n : $1 \mathrm{e}-10$ to $1 \mathrm{e}+6$ (can be nonintegral)
Domain k : 0 to $1 \mathrm{e}+10$
Domain p : 0 to 1 (left exclusive)
Range: $\quad 0$ to 1
nbinomial (n, k, p)
Description: the cumulative probability of the negative binomial distribution
n can be nonintegral. When n is an integer, nbinomial() returns the probability of observing k or fewer failures before the nth success, when the probability of a success on one trial is p.

The negative binomial distribution function is evaluated using ibeta().
Domain n : $\quad 1 \mathrm{e}-10$ to $1 \mathrm{e}+17$ (can be nonintegral)
Domain k : 0 to $2^{53}-1$
Domain p : 0 to 1 (left exclusive)
Range: 0 to 1
nbinomialtail (n, k, p)
Description: the reverse cumulative probability of the negative binomial distribution
When n is an integer, nbinomialtail() returns the probability of observing k or more failures before the nth success, when the probability of a success on one trial is p.

The reverse negative binomial distribution function is evaluated using ibetatail().
Domain n : $\quad 1 \mathrm{e}-10$ to $1 \mathrm{e}+17$ (can be nonintegral)
Domain k : 0 to $2^{53}-1$
Domain p : 0 to 1 (left exclusive)
Range: $\quad 0$ to 1
invnbinomial (n, k, q)
Description: the value of the negative binomial parameter, p, such that $q=\operatorname{nbinomial}(n, k, p)$ invnbinomial() is evaluated using invibeta().
Domain n: $1 \mathrm{e}-10$ to $1 \mathrm{e}+17$ (can be nonintegral)
Domain k: 0 to $2^{53}-1$
Domain q: 0 to 1 (exclusive)
Range: 0 to 1
invnbinomialtail (n, k, q)
Description: the value of the negative binomial parameter, p, such that $q=$ nbinomialtail (n, k, p) invnbinomialtail() is evaluated using invibetatail().
Domain n : $\quad 1 \mathrm{e}-10$ to $1 \mathrm{e}+17$ (can be nonintegral)
Domain k : 1 to $2^{53}-1$
Domain q : 0 to 1 (exclusive)
Range: 0 to 1 (exclusive)

Normal (Gaussian), log of the normal, binormal, and multivariate normal distributions

normalden (z)
Description: the standard normal density, $N(0,1)$
Domain: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: $\quad 0$ to $0.39894 \ldots$
normalden (x, σ)
Description: the normal density with mean 0 and standard deviation σ

```
normalden(x,1) = normalden(x) and
normalden (x,\sigma) = normalden (x/\sigma)/\sigma.
```

Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain σ : $1 \mathrm{e}-308$ to $8 \mathrm{e}+307$
Range: $\quad 0$ to $8 \mathrm{e}+307$
normalden (x, μ, σ)
Description: the normal density with mean μ and standard deviation $\sigma, N\left(\mu, \sigma^{2}\right)$

```
normalden (x,0,s) = normalden(x,s) and
normalden(x,\mu,\sigma) = normalden ((x-\mu)/\sigma)/\sigma. In general,
```

$$
\operatorname{normalden}(z, \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left\{\frac{(z-\mu)}{\sigma}\right\}^{2}}
$$

Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain μ : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain σ : 1e-308 to $8 \mathrm{e}+307$
Range: 0 to $8 \mathrm{e}+307$
normal (z)
Description: the cumulative standard normal distribution

$$
\operatorname{normal}(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x
$$

Domain: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: 0 to 1
invnormal(p)
Description: the inverse cumulative standard normal distribution: if normal $(z)=p$, then invnormal $(p)=z$
Domain: $\quad 1 \mathrm{e}-323$ to $1-2^{-53}$
Range: $\quad-38.449394$ to 8.2095362
Innormalden (z)
Description: the natural logarithm of the standard normal density, $N(0,1)$
Domain: $\quad-1 \mathrm{e}+154$ to $1 \mathrm{e}+154$
Range: $\quad-5 \mathrm{e}+307$ to $-0.91893853=$ Innormalden (0)
Innormalden (x, σ)
Description: the natural logarithm of the normal density with mean 0 and standard deviation σ
$\operatorname{lnnormalden}(x, 1)=\operatorname{lnnormalden}(x)$ and lnnormalden $(x, \sigma)=$ lnnormalden $(x / \sigma)-\ln (\sigma)$.
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain σ : 1e-323 to $8 \mathrm{e}+307$
Range: $\quad-5 \mathrm{e}+307$ to 742.82799
lnnormalden (x, μ, σ)
Description: the natural logarithm of the normal density with mean μ and standard deviation σ,

$$
N\left(\mu, \sigma^{2}\right)
$$

$\operatorname{lnnormalden}(x, 0, s)=\operatorname{lnnormalden}(x, s)$ and Innormalden $(x, \mu, \sigma)=$ lnnormalden $((x-\mu) / \sigma)-\ln (\sigma)$. In general,

$$
\operatorname{lnnormalden}(z, \mu, \sigma)=\ln \left[\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left\{\frac{(z-\mu)}{\sigma}\right\}^{2}}\right]
$$

Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain μ : $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain σ : 1e-323 to $8 \mathrm{e}+307$
Range: $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
lnnormal (z)
Description: the natural logarithm of the cumulative standard normal distribution

$$
\operatorname{lnnormal}(z)=\ln \left(\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x\right)
$$

Domain: $\quad-1 e+99$ to $8 \mathrm{e}+307$
Range: $\quad-5 \mathrm{e}+197$ to 0
binormal (h, k, ρ)
Description: the joint cumulative distribution $\Phi(h, k, \rho)$ of bivariate normal with correlation ρ Cumulative over $(-\infty, h] \times(-\infty, k]$:

$$
\Phi(h, k, \rho)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \int_{-\infty}^{h} \int_{-\infty}^{k} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left(x_{1}^{2}-2 \rho x_{1} x_{2}+x_{2}^{2}\right)\right\} d x_{1} d x_{2}
$$

Domain h : $-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain k : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain ρ : -1 to 1
Range: $\quad 0$ to 1
lnmvnormalden (M, V, X)
Description: the natural logarithm of the multivariate normal density
M is the mean vector, V is the covariance matrix, and X is the random vector.
Domain $M: 1 \times n$ and $n \times 1$ vectors
Domain $V: \quad n \times n$, positive-definite, symmetric matrices
Domain $X: 1 \times n$ and $n \times 1$ vectors
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$

Poisson distributions

poissonp (m, k)
Description: the probability of observing floor (k) outcomes that are distributed as Poisson with mean m

The Poisson probability function is evaluated using gammaden().
Domain m : $1 \mathrm{e}-10$ to $1 \mathrm{e}+8$
Domain k : 0 to $1 \mathrm{e}+9$
Range: 0 to 1
poisson (m, k)
Description: the probability of observing floor (k) or fewer outcomes that are distributed as Poisson with mean m

The Poisson distribution function is evaluated using gammaptail().
Domain m : $1 \mathrm{e}-10$ to $2^{53}-1$
Domain k : 0 to $2^{53}-1$
Range: 0 to 1
poissontail (m, k)
Description: the probability of observing floor (k) or more outcomes that are distributed as Poisson with mean m
The reverse cumulative Poisson distribution function is evaluated using gammap().
Domain m : $1 \mathrm{e}-10$ to $2^{53}-1$
Domain k : 0 to $2^{53}-1$
Range: 0 to 1
invpoisson (k, p)
Description: the Poisson mean such that the cumulative Poisson distribution evaluated at k is p : if poisson $(m, k)=p$, then invpoisson $(k, p)=m$

The inverse Poisson distribution function is evaluated using invgammaptail().
Domain k : 0 to $2^{53}-1$
Domain p : 0 to 1 (exclusive)
Range: $\quad 1.110 \mathrm{e}-16$ to 2^{53}
invpoissontail (k, q)
Description: the Poisson mean such that the reverse cumulative Poisson distribution evaluated at k is q : if poissontail $(m, k)=q$, then invpoissontail $(k, q)=m$
The inverse of the reverse cumulative Poisson distribution function is evaluated using invgammap().
Domain k : 0 to $2^{53}-1$
Domain q : 0 to 1 (exclusive)
Range: $\quad 0$ to 2^{53} (left exclusive)

Student's \mathbf{t} and noncentral Student's \mathbf{t} distributions

$\operatorname{tden}(d f, t)$
Description: the probability density function of Student's t distribution

$$
\operatorname{tden}(d f, t)=\frac{\Gamma\{(d f+1) / 2\}}{\sqrt{\pi d f} \Gamma(d f / 2)} \cdot\left(1+t^{2} / d f\right)^{-(d f+1) / 2}
$$

Domain $d f$: 1e-323 to $8 \mathrm{e}+307$ (may be nonintegral)
Domain t : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: 0 to $0.39894 \ldots$

$t(d f, t)$

Description: the cumulative Student's t distribution with $d f$ degrees of freedom
Domain $d f$: $2 \mathrm{e}+10$ to $2 \mathrm{e}+17$ (may be nonintegral)
Domain $t ; \quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: 0 to 1
ttail ($d f, t$)
Description: the reverse cumulative (upper tail or survivor) Student's t distribution; the probability $T>t$

$$
\operatorname{ttail}(d f, t)=\int_{t}^{\infty} \frac{\Gamma\{(d f+1) / 2\}}{\sqrt{\pi d f} \Gamma(d f / 2)} \cdot\left(1+x^{2} / d f\right)^{-(d f+1) / 2} d x
$$

Domain $d f$: $2 \mathrm{e}-10$ to $2 \mathrm{e}+17$ (may be nonintegral)
Domain t : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: 0 to 1
invt ($d f, p$)
Description: the inverse cumulative Student's t distribution: if $\mathrm{t}(d f, t)=p$, then invt $(d f, p)=t$
Domain $d f$: $2 \mathrm{e}-10$ to $2 \mathrm{e}+17$ (may be nonintegral)
Domain p : 0 to 1
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
invttail ($d f, p$)
Description: the inverse reverse cumulative (upper tail or survivor) Student's t distribution: if $\operatorname{ttail}(d f, t)=p$, then invttail $(d f, p)=t$
Domain $d f$: $2 \mathrm{e}-10$ to $2 \mathrm{e}+17$ (may be nonintegral)
Domain p : 0 to 1
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
invnt ($d f, n p, p$)
Description: the inverse cumulative noncentral Student's t distribution: if $n t(d f, n p, t)=p$, then invnt $(d f, n p, p)=t$
Domain $d f$: 1 to $1 \mathrm{e}+6$ (may be nonintegral)
Domain $n p:-1,000$ to 1,000
Domain p : 0 to 1
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
invnttail ($d f, n p, p$)
Description: the inverse reverse cumulative (upper tail or survivor) noncentral Student's t distribution: if nttail $(d f, n p, t)=p$, then invnttail $(d f, n p, p)=t$
Domain $d f$: 1 to $1 \mathrm{e}+6$ (may be nonintegral)
Domain $n p:-1,000$ to 1,000
Domain p : 0 to 1
Range: $\quad-8 \mathrm{e}+10$ to $8 \mathrm{e}+10$
ntden ($d f, n p, t$)
Description: the probability density function of the noncentral Student's
t distribution with $d f$ degrees of freedom and noncentrality parameter $n p$
Domain $d f$: 1e-100 to $1 \mathrm{e}+10$ (may be nonintegral)
Domain np: $-1,000$ to 1,000
Domain t : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: 0 to $0.39894 \ldots$
nt ($d f, n p, t$)
Description: the cumulative noncentral Student's t distribution with $d f$ degrees of freedom and noncentrality parameter $n p$
$\mathrm{nt}(d f, 0, t)=\mathrm{t}(d f, t)$.
Domain $d f$: 1e-100 to $1 \mathrm{e}+10$ (may be nonintegral)
Domain $n p:-1,000$ to 1,000
Domain $t: \quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: 0 to 1
nttail ($d f, n p, t$)
Description: the reverse cumulative (upper tail or survivor) noncentral Student's t distribution with $d f$ degrees of freedom and noncentrality parameter $n p$
Domain $d f$: 1e-100 to $1 \mathrm{e}+10$ (may be nonintegral)
Domain $n p:-1,000$ to 1,000
Domain $t: \quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: 0 to 1
npnt ($d f, t, p$)
Description: the noncentrality parameter, $n p$, for the noncentral Student's
t distribution: if nt $(d f, n p, t)=p$, then npnt $(d f, t, p)=n p$
Domain $d f$: $1 \mathrm{e}-100$ to $1 \mathrm{e}+8$ (may be nonintegral)
Domain $t: \quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain p : 0 to 1
Range: $\quad-1,000$ to 1,000

Tukey's Studentized range distributions

tukeyprob ($k, d f, x$)
Description: the cumulative Tukey's Studentized range distribution with k ranges and $d f$ degrees of freedom; 0 if $x<0$
If $d f$ is a missing value, then the normal distribution is used instead of Student's t. tukeyprob() is computed using an algorithm described in Miller (1981).
Domain k : 2 to $1 \mathrm{e}+6$
Domain $d f$: 2 to $1 \mathrm{e}+6$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: 0 to 1
invtukeyprob ($k, d f, p$)
Description: the inverse cumulative Tukey's Studentized range distribution with k ranges and $d f$ degrees of freedom
If $d f$ is a missing value, then the normal distribution is used instead of Student's t. If tukeyprob $(k, d f, x)=p$, then invtukeyprob $(k, d f, p)=x$.
invtukeyprob() is computed using an algorithm described in Miller (1981).
Domain k : 2 to $1 \mathrm{e}+6$
Domain $d f$: 2 to $1 \mathrm{e}+6$
Domain p : 0 to 1
Range: $\quad 0$ to $8 \mathrm{e}+307$

Weibull distributions

weibullden (a, b, x)
Description: the probability density function of the Weibull distribution with shape a and scale b weibullden $(a, b, x)=$ weibullden $(a, b, 0, x)$, where a is the shape, b is the scale, and x is the value of Weibull random variable.
Domain a : $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain b : $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain x : $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Range: 0 to 1
weibullden (a, b, g, x)
Description: the probability density function of the Weibull distribution with shape a, scale b, and location g
The probability density function of the generalized Weibull distribution is defined as

$$
\frac{a}{b}\left(\frac{x-g}{b}\right)^{a-1} \exp \left\{-\left(\frac{x-g}{b}\right)^{a}\right\}
$$

for $x \geq g$ and 0 for $x<g$, where a is the shape, b is the scale, g is the location parameter, and x is the value of a generalized Weibull random variable.

Domain a : $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain b: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain g : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $x \geq g$
Range: 0 to 1
weibull (a, b, x)
Description: the cumulative Weibull distribution with shape a and scale b
weibull $(a, b, x)=$ weibull ($a, b, 0, x$), where a is the shape, b is the scale, and x is the value of Weibull random variable.
Domain a : $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain b: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain x : $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Range: 0 to 1
weibull (a, b, g, x)
Description: the cumulative Weibull distribution with shape a, scale b, and location g
The cumulative Weibull distribution is defined as

$$
1-\exp \left[-\left(\frac{x-g}{b}\right)^{a}\right]
$$

for $x \geq g$ and 0 for $x<g$, where a is the shape, b is the scale, g is the location parameter, and x is the value of a Weibull random variable.
The mean of the Weibull distribution is $g+b \Gamma\{(a+1) / a)\}$ and its variance is $b^{2}\left(\Gamma\{(a+2) / a\}-[\Gamma\{(a+1) / a\}]^{2}\right)$ where $\Gamma()$ is the gamma function described in Ingamma().
Domain a : $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain b: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain $g: \quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $x \geq g$
Range: 0 to 1
weibulltail (a, b, x)
Description: the reverse cumulative Weibull distribution with shape a and scale b weibulltail $(a, b, x)=$ weibulltail $(a, b, 0, x)$, where a is the shape, b is the scale, and x is the value of a Weibull random variable.
Domain a : $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain b: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain x : $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Range: 0 to 1
weibulltail (a, b, g, x)
Description: the reverse cumulative Weibull distribution with shape a, scale b, and location g The reverse cumulative Weibull distribution is defined as

$$
\exp \left\{-\left(\frac{x-g}{b}\right)^{a}\right\}
$$

for $x \geq g$ and 0 if $x<g$, where a is the shape, b is the scale, g is the location parameter, and x is the value of a generalized Weibull random variable.
Domain a : $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain b: $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain $g: \quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $x \geq g$
Range: $\quad 0$ to 1
invweibull (a, b, p)
Description: the inverse cumulative Weibull distribution with shape a and scale b : if weibull $(a, b, x)=p$, then invweibull $(a, b, p)=x$
Domain a : $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain b: $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain p : 0 to 1
Range: $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
invweibull (a, b, g, p)
Description: the inverse cumulative Weibull distribution with shape a, scale b, and location g : if weibull $(a, b, g, x)=p$, then
invweibull $(a, b, g, p)=x$
Domain a : $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain b: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain g : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain p : 0 to 1
Range: $\quad g+\mathrm{c}$ (epsdouble) to $8 \mathrm{e}+307$
invweibulltail (a, b, p)
Description: the inverse reverse cumulative Weibull distribution with shape a and scale b : if weibulltail $(a, b, x)=p$, then
invweibulltail $(a, b, p)=x$
Domain a : $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain b: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain p : 0 to 1
Range: $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
invweibulltail (a, b, g, p)
Description: the inverse reverse cumulative Weibull distribution with shape a, scale b, and location g : if weibulltail $(a, b, g, x)=p$, then invweibulltail $(a, b, g, p)=x$
Domain a : $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain b: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain g : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain p : 0 to 1
Range: $\quad g+c(e p s d o u b l e)$ to $8 \mathrm{e}+307$

Weibull (proportional hazards) distributions

weibullphden (a, b, x)
Description: the probability density function of the Weibull (proportional hazards) distribution with shape a and scale b
weibullphden $(a, b, x)=$ weibullphden $(a, b, 0, x)$, where a is the shape, b is the scale, and x is the value of Weibull (proportional hazards) random variable.

Domain a : $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain b: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain x : $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Range: 0 to 1
weibullphden (a, b, g, x)
Description: the probability density function of the Weibull (proportional hazards) distribution with shape a, scale b, and location g
The probability density function of the Weibull (proportional hazards) distribution is defined as

$$
b a(x-g)^{a-1} \exp \left\{-b(x-g)^{a}\right\}
$$

for $x \geq g$ and 0 for $x<g$, where a is the shape, b is the scale, g is the location parameter, and x is the value of a Weibull (proportional hazards) random variable.
Domain a: $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain b: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain g : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $x \geq g$
Range: 0 to 1
weibullph (a, b, x)
Description: the cumulative Weibull (proportional hazards) distribution with shape a and scale b weibullph $(a, b, x)=$ weibullph $(a, b, 0, x)$, where a is the shape, b is the scale, and x is the value of Weibull random variable.

Domain a : $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain b: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain x : $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Range: 0 to 1
weibullph (a, b, g, x)
Description: the cumulative Weibull (proportional hazards) distribution with shape a, scale b, and location g
The cumulative Weibull (proportional hazards) distribution is defined as

$$
1-\exp \left\{-b(x-g)^{a}\right\}
$$

for $x \geq g$ and 0 if $x<g$, where a is the shape, b is the scale, g is the location parameter, and x is the value of a Weibull (proportional hazards) random variable. The mean of the Weibull (proportional hazards) distribution is

$$
\left.g+b^{-\frac{1}{a}} \Gamma\{(a+1) / a)\right\}
$$

and its variance is

$$
b^{-\frac{2}{a}}\left(\Gamma\{(a+2) / a\}-[\Gamma\{(a+1) / a\}]^{2}\right)
$$

where $\Gamma()$ is the gamma function described in Ingamma (x).
Domain a: 1e-323 to $8 \mathrm{e}+307$
Domain b: $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain g : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $x \geq g$
Range: 0 to 1
weibullphtail (a, b, x)
Description: the reverse cumulative Weibull (proportional hazards) distribution with shape a and scale b
weibullphtail $(a, b, x)=$ weibullphtail $(a, b, 0, x)$, where a is the shape, b is the scale, and x is the value of a Weibull (proportional hazards) random variable.
Domain a: 1e-323 to $8 \mathrm{e}+307$
Domain b : $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain x : $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Range: 0 to 1
weibullphtail (a, b, g, x)
Description: the reverse cumulative Weibull (proportional hazards) distribution with shape a, scale b, and location g
The reverse cumulative Weibull (proportional hazards) distribution is defined as

$$
\exp \left\{-b(x-g)^{a}\right\}
$$

for $x \geq g$ and 0 of $x<g$, where a is the shape, b is the scale, g is the location parameter, and x is the value of a Weibull (proportional hazards) random variable.
Domain a : $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain b: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain $g: \quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$; interesting domain is $x \geq g$
Range: 0 to 1
invweibullph (a, b, p)
Description: the inverse cumulative Weibull (proportional hazards) distribution with shape a and scale b : if weibullph $(a, b, x)=p$, then invweibullph $(a, b, p)=x$
Domain a : $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain b: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain p : 0 to 1
Range: $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
invweibullph (a, b, g, p)
Description: the inverse cumulative Weibull (proportional hazards) distribution with shape a, scale b, and location g : if weibullph $(a, b, g, x)=p$, then invweibullph $(a, b, g, p)=x$
Domain a : $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain b: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain $g: \quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain p : 0 to 1
Range: $\quad g+\mathrm{c}$ (epsdouble) to $8 \mathrm{e}+307$
invweibullphtail (a, b, p)
Description: the inverse reverse cumulative Weibull (proportional hazards) distribution with shape a and scale b : if weibullphtail $(a, b, x)=p$, then invweibullphtail $(a, b, p)=x$
Domain a : $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain b : $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain p : 0 to 1
Range: $\quad 1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
invweibullphtail (a, b, g, p)
Description: the inverse reverse cumulative Weibull (proportional hazards) distribution with shape a, scale b, and location g : if weibullphtail $(a, b, g, x)=p$, then invweibullphtail $(a, b, g, p)=x$
Domain a : $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain b: $1 \mathrm{e}-323$ to $8 \mathrm{e}+307$
Domain g : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain p : 0 to 1
Range: $\quad g+\mathrm{c}(\mathrm{epsdouble})$ to $8 \mathrm{e}+307$

Wishart and inverse Wishart distributions

lnwishartden ($d f, V, X$)
Description: the natural logarithm of the density of the Wishart distribution; missing if $d f \leq n-1$
$d f$ denotes the degrees of freedom, V is the scale matrix, and X is the Wishart random matrix.
Domain $d f: 1$ to $1 \mathrm{e}+100$ (may be nonintegral)
Domain $V: n \times n$, positive-definite, symmetric matrices
Domain X : $n \times n$, positive-definite, symmetric matrices
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$

Iniwishartden ($d f, V, X$)
Description: the natural logarithm of the density of the inverse Wishart distribution; missing if $d f \leq n-1$
$d f$ denotes the degrees of freedom, V is the scale matrix, and X is the inverse Wishart random matrix.
Domain $d f$: 1 to $1 \mathrm{e}+100$ (may be nonintegral)
Domain $V: n \times n$, positive-definite, symmetric matrices
Domain X : $n \times n$, positive-definite, symmetric matrices
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$

References

Dunnett, C. W. 1955. A multiple comparison for comparing several treatments with a control. Journal of the American Statistical Association 50: 1096-1121.

Johnson, N. L., S. Kotz, and N. Balakrishnan. 1995. Continuous Univariate Distributions, Vol. 2. 2nd ed. New York: Wiley.
Miller, R. G., Jr. 1981. Simultaneous Statistical Inference. 2nd ed. New York: Springer.
Moore, R. J. 1982. Algorithm AS 187: Derivatives of the incomplete gamma integral. Applied Statistics 31: 330-335.
Posten, H. O. 1993. An effective algorithm for the noncentral beta distribution function. American Statistician 47: 129-131.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 2007. Numerical Recipes: The Art of Scientific Computing. 3rd ed. New York: Cambridge University Press.
Tamhane, A. C. 2008. Eulogy to Charles Dunnett. Biometrical Journal 50: 636-637.

Also see

[D] egen - Extensions to generate
[M-4] statistical - Statistical functions
[M-5] intro - Alphabetical index to functions
[U] 13.3 Functions

Title

String functions

Contents Functions References Also see

Contents

```
abbrev(s,n)
char(n)
collatorlocale(loc,type)
collatorversion(loc)
indexnot ( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}
plural( }n,s
plural( }n,\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}
real(s)
regexm(s,re)
regexr ( s , re, s2)
regexs(n)
soundex(s)
soundex_nara(s)
strcat ( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}
strdup ( }\mp@subsup{s}{1}{},n
string(n)
string(n,s)
stritrim(s)
strlen(s)
strlower(s)
strltrim(s)
strmatch( s},\mp@code{s}2
strofreal(n)
strofreal( }n,s
strpos( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}
strproper(s)
```

name s, abbreviated to a length of n
the character corresponding to ASCII or extended ASCII code n; " " if n is not in the domain
the most closely related locale supported by ICU from loc if type is 1 ; the actual locale where the collation data comes from if type is 2
the version string of a collator based on locale loc
the position in ASCII string s_{1} of the first character of s_{1} not found
in ASCII string s_{2}, or 0 if all characters of s_{1} are found in s_{2} the plural of s if $n \neq \pm 1$
the plural of s_{1}, as modified by or replaced with s_{2}, if $n \neq \pm 1$ s converted to numeric or missing
performs a match of a regular expression and evaluates to 1 if regular expression $r e$ is satisfied by the ASCII string s; otherwise, 0 replaces the first substring within ASCII string s_{1} that matches re with ASCII string s_{2} and returns the resulting string
subexpression n from a previous regexm() match, where $0 \leq n<$ 10
the soundex code for a string, s
the U.S. Census soundex code for a string, s
there is no strcat () function; instead the addition operator is used to concatenate strings
there is no strdup() function; instead the multiplication operator is used to create multiple copies of strings
a synonym for strofreal (n)
a synonym for strofreal (n, s)
s with multiple, consecutive internal blanks (ASCII space character char (32)) collapsed to one blank
the number of characters in ASCII s or length in bytes
lowercase ASCII characters in string s
s without leading blanks (ASCII space character char(32))
1 if s_{1} matches the pattern s_{2}; otherwise, 0
n converted to a string
n converted to a string using the specified display format
the position in s_{1} at which s_{2} is first found; otherwise, 0
a string with the first ASCII letter and any other letters immediately following characters that are not letters; all other ASCII letters converted to lowercase

```
strreverse(s)
strrpos( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}
strrtrim(s)
strtoname(s[,p])
strtrim(s)
strupper(s)
subinstr( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{},\mp@subsup{s}{3}{},n
subinword( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{},\mp@subsup{s}{3}{},n
substr(s, n
tobytes(s[,n])
uchar(n)
udstrlen(s)
udsubstr( }s,\mp@subsup{n}{1}{},\mp@subsup{n}{2}{}
uisdigit(s)
uisletter(s)
ustrcompare( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{[,loc])
ustrcompareex ( }s1,\mp@subsup{s}{2}{},loc,st,case,cslv,norm,num,alt,fr
compares two Unicode strings
ustrpos( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}[,n]
ustrrpos( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{},[,n]
ustrfix(s[,rep])
ustrfrom(s,enc,mode)
ustrinvalident(s)
ustrleft( }s,n
ustrlen(s)
ustrlower(s[,loc])
ustrltrim(s)
ustrnormalize(s,norm)
ustrregexm(s,re[,noc])
reverses the ASCII string \(s\)
the position in \(s_{1}\) at which \(s_{2}\) is last found; otherwise, 0
\(s\) without trailing blanks (ASCII space character char (32))
\(s\) translated into a Stata 13 compatible name
\(s\) without leading and trailing blanks (ASCII space character char(32)); equivalent to strltrim(strrtrim(s))
uppercase ASCII characters in string \(s\)
\(s_{1}\), where the first \(n\) occurrences in \(s_{1}\) of \(s_{2}\) have been replaced with \(s_{3}\)
\(s_{1}\), where the first \(n\) occurrences in \(s_{1}\) of \(s_{2}\) as a word have been replaced with \(s_{3}\)
the substring of \(s\), starting at \(n_{1}\), for a length of \(n_{2}\)
escaped decimal or hex digit strings of up to 200 bytes of \(s\)
the Unicode character corresponding to Unicode code point \(n\) or an empty string if \(n\) is beyond the Unicode code-point range
the number of display columns needed to display the Unicode string \(s\) in the Stata Results window
the Unicode substring of \(s\), starting at character \(n_{1}\), for \(n_{2}\) display columns
1 if the first Unicode character in \(s\) is a Unicode decimal digit; otherwise, 0
1 if the first Unicode character in \(s\) is a Unicode letter; otherwise, 0
compares two Unicode strings
compares two Unicode strings
the position in \(s_{1}\) at which \(s_{2}\) is first found; otherwise, 0
the position in \(s_{1}\) at which \(s_{2}\) is last found; otherwise, 0
replaces each invalid UTF-8 sequence with a Unicode character
converts the string \(s\) in encoding enc to a UTF-8 encoded Unicode string
the number of invalid UTF-8 sequences in \(s\)
the first \(n\) Unicode characters of the Unicode string \(s\)
the number of characters in the Unicode string \(s\)
lowercase all characters of Unicode string \(s\) under the given locale loc
removes the leading Unicode whitespace characters and blanks from the Unicode string \(s\)
normalizes Unicode string \(s\) to one of the five normalization forms specified by norm
ustrregexm (s,re[,noc])
performs a match of a regular expression and evaluates to 1 if regular expression \(r e\) is satisfied by the Unicode string \(s\); otherwise, 0
ustrregexra \(\left(s_{1}, r e, s_{2}[, n o c]\right)\) replaces all substrings within the Unicode string \(s_{1}\) that match re with \(s_{2}\) and returns the resulting string
ustrregexrf \(\left(s_{1}, r e, s_{2}[, n o c]\right)\) replaces the first substring within the Unicode string \(s_{1}\) that matches \(r e\) with \(s_{2}\) and returns the resulting string
```

```
ustrregexs(n)
ustrreverse(s)
ustrright(s,n)
ustrrtrim(s)
ustrsortkey(s[,loc])
ustrtitle(s[,loc])
ustrto(s,enc,mode)
ustrtohex (s[,n])
ustrtoname(s[,p])
ustrtrim(s)
ustrunescape(s)
ustrupper(s[,loc])
ustrword(s,n[,noc])
ustrwordcount (s[,loc])
usubinstr ( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{},\mp@subsup{s}{3}{},n
usubstr ( }s,\mp@subsup{n}{1}{},\mp@subsup{n}{2}{}
word(s,n)
wordbreaklocale(loc,type)
```

ustrsortkeyex ($s, l o c, s t$, case, cslv, norm, num, alt, fr)
generates a null-terminated byte array that can be used by the sort
command to produce the same order as ustrcompare ()
wordcount (s)

Functions

In the display below, s indicates a string subexpression (a string literal, a string variable, or another string expression) and n indicates a numeric subexpression (a number, a numeric variable, or another numeric expression).

If your strings contain Unicode characters or you are writing programs that will be used by others who might use Unicode strings, read [U] 12.4.2 Handling Unicode strings.
$\operatorname{abbrev}(s, n)$
Description: name s, abbreviated to a length of n
Length is measured in the number of display columns, not in the number of characters. For most users, the number of display columns equals the number of characters. For a detailed discussion of display columns, see [U] 12.4.2.2 Displaying Unicode characters.
If any of the characters of s are a period, ".", and $n<8$, then the value of n defaults to a value of 8 . Otherwise, if $n<5$, then n defaults to a value of 5 . If n is missing, abbrev() will return the entire string s. abbrev() is typically used with variable names and variable names with factor-variable or time-series operators (the period case).
abbrev("displacement",8) is displa~t.
Domain s : strings
Domain n : \quad integers 5 to 32
Range: strings
char (n)
Description: the character corresponding to ASCII or extended ASCII code n; " " if n is not in the domain
Note: ASCII codes are from 0 to 127 ; extended ASCII codes are from 128 to 255. Prior to Stata 14, the display of extended ASCII characters was encoding dependent. For example, char (128) on Microsoft Windows using Windows-1252 encoding displayed the Euro symbol, but on Linux using ISO-Latin-1 encoding, char (128) displayed an invalid character symbol. Beginning with Stata 14, Stata's display encoding is UTF-8 on all platforms. The char (128) function is an invalid UTF-8 sequence and thus will display a question mark. There are two Unicode functions corresponding to char(): uchar() and ustrunescape(). You can use uchar (8364) or ustrunescape("\u20AC") to display a Euro sign on all platforms.
Domain n : integers 0 to 255
Range: ASCII characters
$\operatorname{uchar}(n)$
Description: the Unicode character corresponding to Unicode code point n or an empty string if n is beyond the Unicode code-point range

Note that uchar() takes the decimal value of the Unicode code point. ustrunescape() takes an escaped hex digit string of the Unicode code point. For example, both uchar(8364) and ustrunescape("\u20ac") produce the Euro sign.
Domain $n: \quad$ integers ≥ 0
Range: Unicode characters

```
collatorlocale(loc,type)
    Description: the most closely related locale supported by ICU from loc if type is 1; the actual
    locale where the collation data comes from if type is 2
    For any other type, loc is returned in a canonicalized form.
collatorlocale("en_us_texas", 0) = en_US_TEXAS
collatorlocale("en_us_texas", 1) = en_US
collatorlocale("en_us_texas", 2) = root
    Domain loc: strings of locale name
    Domain type: integers
    Range: strings
```

collatorversion(loc)
Description: the version string of a collator based on locale loc
The Unicode standard is constantly adding more characters and the sort key format
may change as well. This can cause ustrsortkey() and ustrsortkeyex()
to produce incompatible sort keys between different versions of International
Components for Unicode. The version string can be used for versioning the sort
keys to indicate when saved sort keys must be regenerated.
Range: strings
indexnot $\left(s_{1}, s_{2}\right)$

Description: the position in ASCII string s_{1} of the first character of s_{1} not found in ASCII string s_{2}, or 0 if all characters of s_{1} are found in s_{2}
indexnot() is intended for use with only plain ASCII strings. For Unicode characters beyond the plain ASCII range, the position and character are given in bytes, not characters.
Domain s_{1} : ASCII strings (to be searched)
Domain s_{2} : ASCII strings (to search for)
Range: \quad integers ≥ 0
plural (n, s)
Description: \quad the plural of s if $n \neq \pm 1$
The plural is formed by adding " s " to s.
plural(1, "horse") = "horse" plural(2, "horse") = "horses"
Domain n : real numbers
Domain s : strings
Range: strings
plural $\left(n, s_{1}, s_{2}\right)$
Description: the plural of s_{1}, as modified by or replaced with s_{2}, if $n \neq \pm 1$
If s_{2} begins with the character " + ", the plural is formed by adding the remainder of s_{2} to s_{1}. If s_{2} begins with the character "-", the plural is formed by subtracting the remainder of s_{2} from s_{1}. If s_{2} begins with neither " + " nor "-", then the plural is formed by returning s_{2}.

```
plural(2, "glass", "+es") = "glasses"
plural(1, "mouse", "mice") = "mouse"
plural(2, "mouse", "mice") = "mice"
plural(2, "abcdefg", "-efg") = "abcd"
```

Domain n : real numbers
Domain s_{1} : strings
Domain s_{2} : strings
Range: strings
real (s)
Description: $\quad s$ converted to numeric or missing
Also see strofreal().
real("5.2")+1 = 6.2
real("hello") =.
Domain s : strings
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
regexm ($s, r e$)
Description: performs a match of a regular expression and evaluates to 1 if regular expression $r e$ is satisfied by the ASCII string s; otherwise, 0

Regular expression syntax is based on Henry Spencer's NFA algorithm, and this is nearly identical to the POSIX. 2 standard. s and re may not contain binary $0(\backslash 0)$. regexm () is intended for use with only plain ASCII characters. For Unicode characters beyond the plain ASCII range, the match is based on bytes. For a character-based match, see ustrregexm().
Domain s : \quad ASCII strings
Domain re: regular expressions
Range: ASCII strings

$\operatorname{regexr}\left(s_{1}, r e, s_{2}\right)$

Description: replaces the first substring within ASCII string s_{1} that matches re with ASCII string s_{2} and returns the resulting string
If s_{1} contains no substring that matches $r e$, the unaltered s_{1} is returned. s_{1} and the result of regexr () may be at most $1,100,000$ characters long. s_{1}, re, and s_{2} may not contain binary 0 ($\backslash 0$).
regexr () is intended for use with only plain ASCII characters. For Unicode characters beyond the plain ASCII range, the match is based on bytes and the result is restricted to $1,100,000$ bytes. For a character-based match, see ustrregexrf () or ustrregexra().
Domain s_{1} : ASCII strings
Domain re: regular expressions
Domain s_{2} : ASCII strings
Range: ASCII strings
regexs (n)
Description: subexpression n from a previous regexm() match, where $0 \leq n<10$
Subexpression 0 is reserved for the entire string that satisfied the regular expression. The returned subexpression may be at most $1,100,000$ characters (bytes) long.
Domain n : $\quad 0$ to 9
Range: ASCII strings
ustrregexm (s,re[,noc])
Description: performs a match of a regular expression and evaluates to 1 if regular expression $r e$ is satisfied by the Unicode string s; otherwise, 0

If $n o c$ is specified and not 0 , a case-insensitive match is performed. The function may return a negative integer if an error occurs.
ustrregexm("12345", "([0-9])\{5\}") =1
ustrregexm("de TRÈS près", "rès") $=1$
ustrregexm("de TRĖS près", "Rès") $=0$
ustrregexm("de TRÈS près", "Rès", 1) = 1
Domain s : Unicode strings
Domain re: Unicode regular expressions
Domain noc: integers
Range: integers
ustrregexrf $\left(s_{1}, r e, s_{2}[, n o c]\right)$
Description: replaces the first substring within the Unicode string s_{1} that matches $r e$ with s_{2} and returns the resulting string

If noc is specified and not 0 , a case-insensitive match is performed. The function may return an empty string if an error occurs.
ustrregexrf("très près", "rès", "X") = "tX près"
ustrregexrf("TRĖS près", "Rès", "X") = "TRĖS près"
ustrregexrf("TRĖS près", "Rès", "X", 1) = "TX près"
Domain s_{1} : Unicode strings
Domain re: Unicode regular expressions
Domain s_{2} : Unicode strings
Domain noc: integers
Range: Unicode strings

```
ustrregexra( }\mp@subsup{s}{1}{},re,\mp@subsup{s}{2}{[, noc])
Description: replaces all substrings within the Unicode string \(s_{1}\) that match re with \(s_{2}\) and returns the resulting string
If noc is specified and not 0 , a case-insensitive match is performed. The function may return an empty string if an error occurs.
```

Domain re: Unicode regular expressions

```
```

ustrregexra("très près", "rès", "X") = "tX pX"

```
ustrregexra("très près", "rès", "X") = "tX pX"
ustrregexra("TRĖS près", "Rès", "X") = "TRĖS près"
ustrregexra("TRĖS près", "Rès", "X") = "TRĖS près"
ustrregexra("TRĖS près", "Rès", "X", 1) = "TX pX"
ustrregexra("TRĖS près", "Rès", "X", 1) = "TX pX"
Domain \(s_{1}\) : Unicode strings
Domain \(s_{2}\) : Unicode strings
Domain noc: integers
Range: Unicode strings
```

ustrregexs (n)
Description: subexpression n from a previous ustrregexm() match
Subexpression 0 is reserved for the entire string that satisfied the regular expression. The function may return an empty string if n is larger than the maximum count of subexpressions from the previous match or if an error occurs.
Domain $n: \quad$ integers ≥ 0
Range: strings

soundex (s)

Description: the soundex code for a string, s
The soundex code consists of a letter followed by three numbers: the letter is the first ASCII letter of the name and the numbers encode the remaining consonants. Similar sounding consonants are encoded by the same number. Unicode characters beyond the plain ASCII range are ignored.

```
soundex("Ashcraft") = "A226"
soundex("Robert") = "R163"
soundex("Rupert") = "R163"
```

Domain s : strings
Range: strings
soundex_nara (s)
Description: the U.S. Census soundex code for a string, s
The soundex code consists of a letter followed by three numbers: the letter is the first ASCII letter of the name and the numbers encode the remaining consonants. Similar sounding consonants are encoded by the same number. Unicode characters beyond the plain ASCII range are ignored.
soundex_nara("Ashcraft") = "A261"
Domain s : strings
Range: strings

```
\(\operatorname{strcat}\left(s_{1}, s_{2}\right)\)
    Description: there is no strcat () function; instead the addition operator is used to concatenate
                strings
                    "hello " + "world" = "hello world"
                "a" + "b" = "ab"
                "Café " + "de Flore" = "Café de Flore"
    Domain \(s_{1}\) : strings
    Domain \(s_{2}\) : strings
    Range: strings
\(\operatorname{strdup}\left(s_{1}, n\right)\)
    Description: there is no strdup () function; instead the multiplication operator is used to create
        multiple copies of strings
            "hello" * 3 = "hellohellohello"
\(3 *\) "hello" \(=\) "hellohellohello"
\(0 *\) "hello" \(=\) ""
"hello" * \(=\) "hello"
"Здравствуйте " * 2 = "Здравствуйте Здравствуйте "
    Domain \(s_{1}\) : strings
    Domain \(n\) : nonnegative integers \(0,1,2, \ldots\)
    Range: strings
```

string (n)
Description: a synonym for strofreal (n)
string (n, s)
Description: a synonym for $\operatorname{strofreal}(n, s)$
stritrim(s)
Description: $\quad s$ with multiple, consecutive internal blanks (ASCII space character char (32)) collapsed to one blank

```
stritrim("hello there") = "hello there"
```

Domain s : strings
Range: strings with no multiple, consecutive internal blanks
strlen (s)
Description: the number of characters in ASCII s or length in bytes
strlen() is intended for use with only plain ASCII characters and for use by programmers who want to obtain the byte-length of a string. Note that any Unicode character beyond ASCII range (code point greater than 127) takes more than 1 byte in the UTF-8 encoding; for example, é takes 2 bytes.

For the number of characters in a Unicode string, see ustrlen().
strlen("ab") = 2
strlen("é") = 2
Domain $s: \quad$ strings
Range: \quad integers ≥ 0

ustrlen (s)

Description: the number of characters in the Unicode string s
An invalid UTF-8 sequence is counted as one Unicode character. An invalid UTF-8 sequence may contain one byte or multiple bytes. Note that any Unicode character beyond the plain ASCII range (code point greater than 127) takes more than 1 byte in the UTF-8 encoding; for example, é takes 2 bytes.

```
ustrlen("médiane") = 7
strlen("médiane") = 8
```

Domain s : Unicode strings
Range:
integers ≥ 0

udstrlen（s）

Description：the number of display columns needed to display the Unicode string s in the Stata Results window
A Unicode character in the CJK（Chinese，Japanese，and Korean）encoding usually requires two display columns；a Latin character usually requires one column．Any invalid UTF－8 sequence requires one column．
udstrlen（＂中值＂）＝ 4
ustrlen（＂中值＂）＝ 2
strlen（＂中值＂）＝ 6
Domain s ：Unicode strings
Range：\quad integers ≥ 0

strlower（s）

Description：lowercase ASCII characters in string s
Unicode characters beyond the plain ASCII range are ignored．

```
strlower("THIS") = "this"
strlower("CAFÉ") = "cafÉ"
```

Domain s ：strings
Range：strings with lowercased characters
ustrlower（ $s[, l o c]$ ）
Description：lowercase all characters of Unicode string s under the given locale loc
If $l o c$ is not specified，the default locale is used．The same s but different loc may produce different results；for example，the lowercase letter of＂ I ＂is＂i＂in English but a dotless＂i＂in Turkish．The same Unicode character can be mapped to different Unicode characters based on its surrounding characters；for example， Greek capital letter sigma Σ has two lowercases：ς ，if it is the final character of a word，or σ ．The result can be longer or shorter than the input Unicode string in bytes．

```
ustrlower("MÉDIANE","fr") = "médiane"
ustrlower("ISTANBUL","tr") = "1stanbul"
ustrlower("O\triangleY\Sigma\SigmaEY\Sigma") = "ò\deltav\sigma\sigma\varepsilonט́S"
```

Domain s ：Unicode strings
Domain loc：locale name
Range：Unicode strings
strltrim（s）
Description：$\quad s$ without leading blanks（ASCII space character char（32））

```
strltrim(" this") = "this"
```

Domain s ：strings
Range：strings without leading blanks

```
ustrltrim(x)
    Description: removes the leading Unicode whitespace characters and blanks from the Unicode
        string s
                dard.
                ustrltrim(" this") = "this"
                ustrltrim(char(9)+"this") = "this"
                ustrltrim(ustrunescape("\u1680")+" this") = "this"
    Domain s: Unicode strings
    Range: Unicode strings
strmatch( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{}
    Description: 1 if }\mp@subsup{s}{1}{}\mathrm{ matches the pattern }\mp@subsup{s}{2}{}\mathrm{ ; otherwise, 0
        can infrequently result in matches that do not occur at a character boundary.
        Also see regexm(), regexr(), and regexs().
        strmatch("café", "caf?") = 1
    Domain s}\mp@subsup{s}{1}{}\mathrm{ : strings
    Domain s2: strings
    Range: integers 0 or 1
```

```
strofreal(n)
```

strofreal(n)
Description: n converted to a string
Description: n converted to a string
Also see real().
Also see real().
strofreal(4)+"F" = "4F"
strofreal(4)+"F" = "4F"
strofreal(1234567) = "1234567"
strofreal(1234567) = "1234567"
strofreal(12345678) = "1.23e+07"
strofreal(12345678) = "1.23e+07"
strofreal(.) = "."
strofreal(.) = "."
Domain n: }\quad-8\textrm{e}+307\mathrm{ to }8\textrm{e}+307\mathrm{ or missing
Domain n: }\quad-8\textrm{e}+307\mathrm{ to }8\textrm{e}+307\mathrm{ or missing
Range: strings

```
    Range: strings
```

 Note that, in addition to char(32), ASCII characters char(9), char(10),
 char (11), char (12), and char (13) are whitespace characters in Unicode stan-
 strmatch("17.4", "1??4") returns 1. In \(s_{2}\), "?" means that one character goes
 here, and "*" means that zero or more bytes go here. Note that a Unicode
 character may contain multiple bytes; thus, using "*" with Unicode characters
 strofreal (n, s)
Description: n converted to a string using the specified display format
Also see real().
strofreal(4,"\%9.2f") = "4.00"
strofreal (123456789, "\%11.0g") = "123456789"
strofreal(123456789,"\%13.0gc") = "123,456,789"
strofreal(0,"\%td") = "01jan1960"
strofreal(225,"\%tq") = "2016q2"
strofreal (225,"not a format") = ""
Domain $n: \quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$ or missing
Domain s : strings containing \%fmt numeric display format
Range:
strings

$\operatorname{strpos}\left(s_{1}, s_{2}\right)$

Description: the position in s_{1} at which s_{2} is first found; otherwise, 0
strpos() is intended for use with only plain ASCII characters and for use by programmers who want to obtain the byte-position of s_{2}. Note that any Unicode character beyond ASCII range (code point greater than 127) takes more than 1 byte in the UTF-8 encoding; for example, é takes 2 bytes.
To find the character position of s_{2} in a Unicode string, see ustrpos ().

```
strpos("this","is") = 3
strpos("this","it") = 0
```

 Domain \(s_{1}\) : strings (to be searched)
 Domain \(s_{2}\) : strings (to search for)
 Range: \(\quad\) integers \(\geq 0\)
 $\operatorname{ustrpos}\left(s_{1}, s_{2}[, n]\right)$

Description: the position in s_{1} at which s_{2} is first found; otherwise, 0
If n is specified and is greater than 0 , the search starts at the nth Unicode character of s_{1}. An invalid UTF-8 sequence in either s_{1} or s_{2} is replaced with a Unicode replacement character $\backslash u f f f d$ before the search is performed.

```
ustrpos("médiane", "édi") = 2
ustrpos("médiane", "édi", 3) = 0
ustrpos("médiane", "éci") = 0
```

Domain s_{1} : Unicode strings (to be searched)
Domain s_{2} : Unicode strings (to search for)
Domain n : integers
Range: integers
strproper (s)
Description: a string with the first ASCII letter and any other letters immediately following characters that are not letters; all other ASCII letters converted to lowercase
strproper () implements a form of titlecasing and is intended for use with only plain ASCII strings. Unicode characters beyond ASCII are treated as characters that are not letters. To titlecase strings with Unicode characters beyond the plain ASCII range or to implement language-sensitive rules for titlecasing, see ustrtitle().
strproper ("mR. joHn a. sMitH") = "Mr. John A. Smith"
strproper("jack o'reilly") = "Jack O'Reilly"
strproper("2-cent's worth") = "2-Cent'S Worth"
strproper("vous êtes") = "Vous êTes"
Domain s : strings
Range: strings

strreverse (s)
Description: reverses the ASCII string s
strreverse() is intended for use with only plain ASCII characters. For Unicode characters beyond ASCII range (code point greater than 127), the encoded bytes are reversed.
To reverse the characters of Unicode string, see ustrreverse().
strreverse("hello") = "olleh"
Domain s : ASCII strings
Range: ASCII reversed strings

ustrreverse (s)

Description: reverses the Unicode string s
The function does not take Unicode character equivalence into consideration. Hence, a Unicode character in a decomposed form will not be reversed as one unit. An invalid UTF-8 sequence is replaced with a Unicode replacement character \ufffd.
ustrreverse("médiane") = "enaidém"
Domain s : Unicode strings
Range: reversed Unicode strings

$\operatorname{strrpos}\left(s_{1}, s_{2}\right)$

Description: the position in s_{1} at which s_{2} is last found; otherwise, 0
strrpos() is intended for use with only plain ASCII characters and for use by programmers who want to obtain the last byte-position of s_{2}. Note that any Unicode character beyond ASCII range (code point greater than 127) takes more than 1 byte in the UTF-8 encoding; for example, é takes 2 bytes.

To find the last character position of s_{2} in a Unicode string, see ustrrpos().
strrpos("this","is") $=3$
strrpos("this is","is") =6
strrpos("this is","it") $=0$
Domain s_{1} : strings (to be searched)
Domain s_{2} : strings (to search for)
Range:
integers ≥ 0
$\operatorname{ustrrpos}\left(s_{1}, s_{2}[, n]\right)$
Description: the position in s_{1} at which s_{2} is last found; otherwise, 0
If n is specified and is greater than 0 , only the part between the first Unicode character and the nth Unicode character of s_{1} is searched. An invalid UTF-8 sequence in either s_{1} or s_{2} is replaced with a Unicode replacement character \ufffd before the search is performed.
ustrrpos("enchanté", "n") =6
ustrrpos("enchanté", "n", 5) $=2$
ustrrpos("enchanté", "n", 6) $=6$
ustrrpos("enchanté", "ne") $=0$
Domain s_{1} : Unicode strings (to be searched)
Domain s_{2} : Unicode strings (to search for)
Domain n : integers
Range: integers
strrtrim (s)
Description: s without trailing blanks (ASCII space character char (32))

```
strrtrim("this ") = "this"
```

Domain s : strings
Range: strings without trailing blanks

ustrrtrim (s)

Description: remove trailing Unicode whitespace characters and blanks from the Unicode string s

Note that, in addition to char(32), ASCII characters char(9), char(10), char(11), char(12), and char(13) are considered whitespace characters in the Unicode standard.

```
ustrrtrim("this ") = "this"
ustrltrim("this"+char(10)) = "this"
ustrrtrim("this "+ustrunescape("\u2000")) = "this"
```

Domain s : Unicode strings
Range: Unicode strings

```
strtoname(s[,p])
    Description: s translated into a Stata 13 compatible name
            conventions.
            strtoname("name") = "name"
            strtoname("a name") = "a_name"
            strtoname("5",1) = "_5"
            strtoname("5:30",1) = "_5_30"
            strtoname("5",0) = "5"
            strtoname("5:30",0) = "5_30"
    Domain s: strings
    Domain p: integers 0 or 1
    Range: strings
```

 strtoname() results in a name that is truncated to 32 bytes. Each character in \(s\)
 that is not allowed in a Stata name is converted to an underscore character, _. If the
 first character in \(s\) is a numeric character and \(p\) is not 0 , then the result is prefixed
 with an underscore. Stata 14 names may be 32 characters; see [U] 11.3 Naming
 ustrtoname ($s[, p]$)
Description: string s translated into a Stata name
ustrtoname () results in a name that is truncated to 32 characters. Each character
in s that is not allowed in a Stata name is converted to an underscore character,
_. If the first character in s is a numeric character and p is not 0 , then the result
is prefixed with an underscore.

```
ustrtoname("name", 1) = "name"
ustrtoname("the médiane") = "the_médiane"
ustrtoname("Omédiane") = "_Omédiane"
ustrtoname("Omédiane", 1) = "_Omédiane"
ustrtoname("Omédiane", 0) = "Omédiane"
```

 Domain \(s\) : Unicode strings
 Domain \(p\) : integers 0 or 1
 Range: Unicode strings

strtrim(s)

Description: $\quad s$ without leading and trailing blanks (ASCII space character char (32)); equivalent to strltrim (strrtrim (s))

```
strtrim(" this ") = "this"
```

Domain s : strings
Range:
strings without leading or trailing blanks

```
ustrtrim(s)
```

Description: removes leading and trailing Unicode whitespace characters and blanks from the Unicode string s
Note that, in addition to char(32), ASCII characters char(9), char(10), char(11), char(12), and char(13) are considered whitespace characters in the Unicode standard.

```
ustrtrim(" this ") = "this"
ustrtrim(char(11)+" this ")+char(13) = "this"
ustrtrim(" this "+ustrunescape("\u2000")) = "this"
```

Domain s : Unicode strings
Range: Unicode strings
strupper (s)
Description: uppercase ASCII characters in string s
Unicode characters beyond the plain ASCII range are ignored.

```
strupper("this") = "THIS"
strupper("café") = "CAFé"
    Range: strings with uppercased characters
```

 Domain \(s\) : strings
 ustrupper ($s[, l o c]$)
Description: uppercase all characters in string s under the given locale loc

If $l o c$ is not specified, the default locale is used. The same s but a different $l o c$ may produce different results; for example, the uppercase letter of " i " is " I " in English, but "I" with a dot in Turkish. The result can be longer or shorter than the input string in bytes; for example, the uppercase form of the German letter β (code point $\backslash u 00 \mathrm{df}$) is two capital letters "SS".
ustrupper ("médiane", "fr") = "MÉDIANE"
ustrupper("Rußland", "de") = "RUSSLAND"
ustrupper("istanbul", "tr") = "İSTANBUL"
Domain s : Unicode strings
Domain loc: locale name
Range: Unicode strings
subinstr $\left(s_{1}, s_{2}, s_{3}, n\right)$
Description: $\quad s_{1}$, where the first n occurrences in s_{1} of s_{2} have been replaced with s_{3} subinstr() is intended for use with only plain ASCII characters and for use by programmers who want to perform byte-based substitution. Note that any Unicode character beyond ASCII range (code point greater than 127) takes more than 1 byte in the UTF-8 encoding; for example, é takes 2 bytes.

To perform character-based replacement in Unicode strings, see usubinstr().
If n is missing, all occurrences are replaced.
Also see regexm(), regexr(), and regexs ().
subinstr("this is the day", "is", "X", 1) = "thX is the day"
subinstr ("this is the hour", "is", "X", 2) = "thX X the hour" subinstr ("this is this", "is", "X", .) = "thX X thX"
Domain s_{1} : strings (to be substituted into)
Domain s_{2} : strings (to be substituted from)
Domain s_{3} : strings (to be substituted with)
Domain n : integers ≥ 0 or missing
Range: strings
usubinstr (s_{1}, s_{2}, s_{3}, n)
Description: replaces the first n occurrences of the Unicode string s_{2} with the Unicode string s_{3} in s_{1}
If n is missing, all occurrences are replaced. An invalid UTF-8 sequence in s_{1}, s_{2}, or s_{3} is replaced with a Unicode replacement character $\backslash u f f f d$ before replacement is performed.

```
usubinstr("de très près","ès","es",1) = "de tres près"
usubinstr("de très pr'es","ès","X",2) = "de trX prX"
```

Domain s_{1} : Unicode strings (to be substituted into)
Domain s_{2} : Unicode strings (to be substituted from)
Domain s_{3} : Unicode strings (to be substituted with)
Domain n : integers ≤ 0 or missing
Range: Unicode strings

subinword $\left(s_{1}, s_{2}, s_{3}, n\right)$

Description: $\quad s_{1}$, where the first n occurrences in s_{1} of s_{2} as a word have been replaced with s_{3}

A word is defined as a space-separated token. A token at the beginning or end of s_{1} is considered space-separated. This is different from a Unicode word, which is a language unit based on either a set of word-boundary rules or dictionaries for several languages (Chinese, Japanese, and Thai). If n is missing, all occurrences are replaced.
Also see regexm (), regexr (), and regexs ().

```
subinword("this is the day","is","X",1) = "this X the day"
subinword("this is the hour","is","X",.) = "this X the hour"
subinword("this is this","th","X",.) = "this is this"
Domain \(s_{1}\) : strings (to be substituted for)
Domain \(s_{2}\) : strings (to be substituted from)
Domain \(s_{3}\) : strings (to be substituted with)
```

Domain n : \quad integers ≥ 0 or missing
Range: strings
$\operatorname{substr}\left(s, n_{1}, n_{2}\right)$
Description: the substring of s, starting at n_{1}, for a length of n_{2}
substr() is intended for use with only plain ASCII characters and for use by programmers who want to extract a subset of bytes from a string. For those with plain ASCII text, n_{1} is the starting character, and n_{2} is the length of the string in characters. For programmers, substr() is technically a byte-based function. For plain ASCII characters, the two are equivalent but you can operate on byte values beyond that range. Note that any Unicode character beyond ASCII range (code point greater than 127) takes more than 1 byte in the UTF-8 encoding; for example, é takes 2 bytes.

To obtain substrings of Unicode strings, see usubstr().
If $n_{1}<0, n_{1}$ is interpreted as the distance from the end of the string; if $n_{2}=$. (missing), the remaining portion of the string is returned.

```
substr("abcdef",2,3) = "bcd"
substr("abcdef",-3,2) = "de"
substr("abcdef",2,.) = "bcdef"
substr("abcdef",-3,.) = "def"
substr("abcdef",2,0) = ""
substr("abcdef",15,2)= ""
```

Domain s : strings
Domain n_{1} : \quad integers ≥ 1 and ≤-1
Domain $n_{2}: \quad$ integers ≥ 1
Range: strings
usubstr（ s, n_{1}, n_{2} ）
Description：the Unicode substring of s ，starting at n_{1} ，for a length of n_{2}
If $n_{1}<0, n_{1}$ is interpreted as the distance from the last character of the s ；if $n_{2}=$. （missing），the remaining portion of the Unicode string is returned．
usubstr（＂médiane＂，2，3）＝＂édi＂
usubstr（＂médiane＂，$-3,2$ ）＝＂an＂
usubstr（＂médiane＂，2，．）＝＂édiane＂
Domain s ：Unicode strings
Domain n_{1} ：integers ≥ 1 and ≤-1
Domain n_{2} ：integers ≥ 1
Range：Unicode strings
udsubstr $\left(s, n_{1}, n_{2}\right)$
Description：the Unicode substring of s ，starting at character n_{1} ，for n_{2} display columns
If $n_{2}=$ ．（missing），the remaining portion of the Unicode string is returned．If n_{2} display columns from n_{1} is in the middle of a Unicode character，the substring stops at the previous Unicode character．
udsubstr（＂médiane＂，2，3）＝＂édi＂
udsubstr（＂中值＂，1，1）＝＂＂
udsubstr（＂中值＂，1，2）＝＂中＂
Domain s ：Unicode strings
Domain $n_{1}: \quad$ integers ≥ 1
Domain $n_{2}: \quad$ integers ≥ 1
Range：Unicode strings
tobytes $(s[, n])$
Description：escaped decimal or hex digit strings of up to 200 bytes of s
The escaped decimal digit string is in the form of \dDDD．The escaped hex digit string is in the form of $\backslash x h h$ ．If n is not specified or is 0 ，the decimal form is produced．Otherwise，the hex form is produced．
tobytes（＂abc＂）＝＂\d097\d098\d099＂
tobytes（＂abc＂，1）＝＂\x61\x62\x63＂
tobytes（＂café＂）＝＂\d099\d097\d102\d195\d169＂
Domain s ：Unicode strings
Domain n ：integers
Range：strings
uisdigit（s）
Description：$\quad 1$ if the first Unicode character in s is a Unicode decimal digit；otherwise， 0
A Unicode decimal digit is a Unicode character with the character property Nd according to the Unicode standard．The function returns -1 if the string starts with an invalid UTF－8 sequence．
Domain s ：Unicode strings
Range：integers

uisletter (s)

Description: 1 if the first Unicode character in s is a Unicode letter; otherwise, 0
A Unicode letter is a Unicode character with the character property L according to the Unicode standard. The function returns -1 if the string starts with an invalid UTF-8 sequence.
Domain $s: \quad$ Unicode strings
Range: integers

```
ustrcompare( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{[,loc])
Description: compares two Unicode strings
```

The function returns $-1,1$, or 0 if s_{1} is less than, greater than, or equal to s_{2}. The function may return a negative number other than -1 if an error happens. The comparison is locale dependent. For example, $\mathrm{z}<0 \ddot{ }$ in Swedish but $0 \quad<\mathrm{z}$ in German. If $l o c$ is not specified, the default locale is used. The comparison is diacritic and case sensitive. If you need different behavior, for example, case-insensitive comparison, you should use the extended comparison function ustrcompareex(). Unicode string comparison compares Unicode strings in a language-sensitive manner. On the other hand, the sort command compares strings in code-point (binary) order. For example, uppercase " Z " (code-point value 90) comes before lowercase "a" (code-point value 97) in code-point order but comes after "a" in any English dictionary.
ustrcompare("z", "ö", "sv") $=-1$
ustrcompare("z", "ö", "de") = 1
Domain s_{1} : Unicode strings
Domain s_{2} : Unicode strings
Domain loc: Unicode strings
Range: integers
ustrcompareex (s_{1}, s_{2},loc, st, case, cslv,norm,num,alt, fr)
Description: compares two Unicode strings
The function returns $-1,1$, or 0 if s_{1} is less than, greater than, or equal to s_{2}. The function may return a negative number other than -1 if an error occurs. The comparison is locale dependent. For example, z $<$ ö in Swedish but ö $<\mathrm{z}$ in German. If $l o c$ is not specified, the default locale is used.
st controls the strength of the comparison. Possible values are 1 (primary), 2 (secondary), 3 (tertiary), 4 (quaternary), or 5 (identical). -1 means to use the default value for the locale. Any other numbers are treated as tertiary. The primary difference represents base letter differences; for example, letter "a" and letter "b" have primary differences. The secondary difference represents diacritical differences on the same base letter; for example, letters "a" and "ä" have secondary differences. The tertiary difference represents case differences of the same base letter; for example, letters "a" and "A" have tertiary differences. Quaternary strength is useful to distinguish between Katakana and Hiragana for the JIS 4061 collation standard. Identical strength is essentially the code-point order of the string, hence, is rarely useful.

```
ustrcompareex("café","cafe","fr", 1, -1, -1, -1, -1, -1, -1) = 0
ustrcompareex("café","cafe","fr", 2, -1, -1, -1, -1, -1, -1) = 1
ustrcompareex("Café","café","fr", 3, -1, -1, -1, -1, -1, -1) = 1
```

case controls the uppercase and lowercase letter order. Possible values are 0 (use order specified in tertiary strength), 1 (uppercase first), or 2 (lowercase first). -1 means to use the default value for the locale. Any other values are treated as 0 .
ustrcompareex ("Café", "café", "fr", $-1,1,-1,-1,-1,-1,-1$) $=-1$ ustrcompareex("Café","café","fr", -1, 2, -1, -1, -1, -1, -1) = 1
cslv controls whether an extra case level between the secondary level and the tertiary level is generated. Possible values are 0 (off) or 1 (on). -1 means to use the default value for the locale. Any other values are treated as 0 . Combining this setting to be "on" and the strength setting to be primary can achieve the effect of ignoring the diacritical differences but preserving the case differences. If the setting is "on", the result is also affected by the case setting.
ustrcompareex ("café", "Cafe", "fr", 1, $-1,1,-1,-1,-1,-1$) = 1 ustrcompareex("café","Cafe","fr", 1, 1, 1, -1, -1, -1, -1) = 1
norm controls whether the normalization check and normalizations are performed. Possible values are 0 (off) or 1 (on). -1 means to use the default value for the locale. Any other values are treated as 0 . Most languages do not require normalization for comparison. Normalization is needed in languages that use multiple combining characters such as Arabic, ancient Greek, or Hebrew.
num controls how contiguous digit substrings are sorted. Possible values are 0 (off) or 1 (on). -1 means to use the default value for the locale. Any other values are treated as 0 . If the setting is "on", substrings consisting of digits are sorted based on the numeric value. For example, " 100 " is after value " 20 " instead of before it. Note that the digit substring is limited to 254 digits, and plus/minus signs, decimals, or exponents are not supported.

```
ustrcompareex("100", "20","en", -1, -1, -1, -1, 0, -1, -1) = -1
ustrcompareex("100", "20","en", -1, -1, -1, -1, 1, -1, -1) = 1
```

alt controls how spaces and punctuation characters are handled. Possible values are 0 (use primary strength) or 1 (alternative handling). Any other values are treated as 0 . If the setting is 1 (alternative handling), "onsite", "on-site", and "on site" are considered equals.

```
ustrcompareex("onsite", "on-site","en",
    -1, -1, -1, -1, -1, 1, -1) = 0
ustrcompareex("onsite", "on site","en",
    -1, -1, -1, -1, -1, 1, -1) = 0
ustrcompareex("onsite", "on-site","en",
    -1, -1, -1, -1, -1, 0, -1) = 1
```

$f r$ controls the direction of the secondary strength. Possible values are 0 (off) or 1 (on). -1 means to use the default value for the locale. All other values are treated as "off". If the setting is "on", the diacritical letters are sorted backward. Note that the setting is "on" by default only for Canadian French (locale fr_CA).

```
ustrcompareex("coté", "côte","fr_CA", -1, -1, -1, -1, -1, -1,0) = -1
ustrcompareex("coté", "côte","fr_CA",-1, -1, -1, -1,-1,-1,1) = 1
ustrcompareex("coté", "côte","fr_CA",-1,-1,-1,-1,-1,-1,-1) = 1
ustrcompareex("coté", "côte","fr",-1,-1,,-1,-1,-1,-1,-1) = 1
```

Domain s_{1} : Unicode strings
Domain s_{2} : Unicode strings
Domain loc: Unicode strings
Domain st: integers
Domain case: integers
Domain cslv: integers
Domain norm: integers
Domain num: integers
Domain alt: integers
Domain fr: integers
Range: integers
ustrfix (s[,rep])
Description: replaces each invalid UTF-8 sequence with a Unicode character
In the one-argument case, the Unicode replacement character \ufffd is used. In the two-argument case, the first Unicode character of rep is used. If rep starts with an invalid UTF-8 sequence, then Unicode replacement character \ufffd is used. Note that an invalid UTF-8 sequence can contain one byte or multiple bytes.

```
ustrfix(char(200)) = ustrunescape("\ufffd")
ustrfix("ab"+char(200)+"cdé", "") = "abcdé"
ustrfix("ab"+char(229)+char(174)+"cdé", "é") = "abécdé"
```

Domain s : Unicode strings
Domain rep: Unicode character
Range: Unicode strings
ustrfrom ($s, e n c$, mode)
Description: converts the string s in encoding enc to a UTF-8 encoded Unicode string mode controls how invalid byte sequences in s are handled. The possible values are 1 , which substitutes an invalid byte sequence with a Unicode replacement character \ufffd; 2, which skips any invalid byte sequences; 3, which stops at the first invalid byte sequence and returns an empty string; or 4 , which replaces any byte in an invalid sequence with an escaped hex digit sequence \%Xhh. Any other values are treated as 1 . A good use of value 4 is to check what invalid bytes a Unicode string ust contains by examining the result of ustrfrom(ust, "utf-8", 4).
Also see ustrto().

```
ustrfrom("caf"+char(233), "latin1", 1) = "café"
ustrfrom("caf"+char(233), "utf-8", 1) =
    "caf"+ustrunescape("\ufffd")
ustrfrom("caf"+char(233), "utf-8", 2) = "caf"
ustrfrom("caf"+char(233), "utf-8", 3) = ""
ustrfrom("caf"+char(233), "utf-8", 4) = "caf%XE9"
```

Domain s : strings in encoding enc
Domain enc: Unicode strings
Domain mode: integers
Range: Unicode strings

ustrinvalidcnt (s)

Description: the number of invalid UTF- 8 sequences in s
An invalid UTF-8 sequence may contain one byte or multiple bytes.

```
ustrinvalidcnt("médiane") = 0
ustrinvalidcnt("médiane"+char(229)) = 1
ustrinvalidcnt("médiane"+char(229)+char(174)) = 1
ustrinvalidcnt("médiane"+char(174)+char(158)) = 2
```

 Domain \(s\) : Unicode strings
 Range: integers
 ustrleft (s, n)
Description: the first n Unicode characters of the Unicode string s
An invalid UTF-8 sequence is replaced with a Unicode replacement character
\ufffd.
ustrleft("Экспериментальные",3) = "Экс"
ustrleft("Экспериментальные",5) = "Экспе"
Domain s : Unicode strings
Domain n : integers
Range: Unicode strings
ustrnormalize(s,norm)

Description: normalizes Unicode string s to one of the five normalization forms specified by norm
The normalization forms are $\mathrm{nfc}, \mathrm{nfd}, \mathrm{nfkc}, \mathrm{nfkd}$, or nfkcc . The function returns an empty string for any other value of norm. Unicode normalization removes the Unicode string differences caused by Unicode character equivalence. nfc specifies Normalization Form C, which normalizes decomposed Unicode code points to a composited form. nfd specifies Normalization Form D, which normalizes composited Unicode code points to a decomposed form. nfc and nfd produce canonical equivalent form. nfkc and nfkd are similar to nfc and nfd but produce compatibility equivalent forms. nfkcc specifies nfkc with casefolding. This normalization and casefolding implement the Unicode Character Database.
In the Unicode standard, both "i" (\u0069 followed by a diaeresis \u0308) and the composite character \u00ef represent " i " with 2 dots as in "naïve". Hence, the code-point sequence \u0069\u0308 and the code point \u00ef are considered Unicode equivalent. According to the Unicode standard, they should be treated as the same single character in Unicode string operations, such as in display, comparison, and selection. However, Stata does not support multiple code-point characters; each code point is considered a separate Unicode character. Hence, \u0069\u0308 is displayed as two characters in the Results window. ustrnormalize() can be used with "nfc" to normalize \u0069\u0308 to the canonical equivalent composited code point \u00ef.
ustrnormalize(ustrunescape("\u0069\u0308"), "nfc") = "i"

The decomposed form nfd can be used to removed diacritical marks from base letters. First, normalize the Unicode string to canonical decomposed form, and then call ustrto() with mode skip to skip all non-ASCII characters.
Also see ustrfrom().
ustrto(ustrnormalize("café", "nfd"), "ascii", 2) = "cafe"
Domain s : Unicode strings
Domain norm: Unicode strings
Range: Unicode strings
ustrright (s, n)
Description: the last n Unicode characters of the Unicode string s
An invalid UTF-8 sequence is replaced with a Unicode replacement character \ufffd.
ustrright("Экспериментальные",3) = "ные"
ustrright("Экспериментальные",5) = "льные"
Domain s : Unicode strings
Domain n : integers
Range: Unicode strings
ustrsortkey (s[,loc])
Description: generates a null-terminated byte array that can be used by the sort command to produce the same order as ustrcompare()
The function may return an empty array if an error occurs. The result is locale dependent. If loc is not specified, the default locale is used. The result is also diacritic and case sensitive. If you need different behavior, for example, caseinsensitive results, you should use the extended function ustrsortkeyex(). See [U] 12.4.2.5 Sorting strings containing Unicode characters for details and examples.
Domain s : Unicode strings
Domain loc: Unicode strings
Range: null-terminated byte array
ustrsortkeyex ($s, l o c$, case, cslv, norm,num, alt, $f r$)
Description: generates a null-terminated byte array that can be used by the sort command to produce the same order as ustrcompare()

The function may return an empty array if an error occurs. The result is locale dependent. If $l o c$ is not specified, the default locale is used. See [U] 12.4.2.5 Sorting strings containing Unicode characters for details and examples.
st controls the strength of the comparison. Possible values are 1 (primary), 2 (secondary), 3 (tertiary), 4 (quaternary), or 5 (identical). -1 means to use the default value for the locale. Any other numbers are treated as tertiary. The primary difference represents base letter differences; for example, letter "a" and letter "b" have primary differences. The secondary difference represents diacritical differences on the same base letter; for example, letters "a" and " "̈"" have secondary differences. The tertiary difference represents case differences of the same base letters; for example, letters "a" and "A" have tertiary differences. Quaternary strength is useful to distinguish between Katakana and Hiragana for the JIS 4061 collation standard. Identical strength is essentially the code-point order of the string and, hence, is rarely useful.
case controls the uppercase and lowercase letter order. Possible values are 0 (use order specified in tertiary strength), 1 (uppercase first), or 2 (lowercase first). -1 means to use the default value for the locale. Any other values are treated as 0.
cslv controls if an extra case level between the secondary level and the tertiary level is generated. Possible values are 0 (off) or 1 (on). -1 means to use the default value for the locale. Any other values are treated as 0 . Combining this setting to be "on" and the strength setting to be primary can achieve the effect of ignoring the diacritical differences but preserving the case differences. If the setting is "on", the result is also affected by the case setting.
norm controls whether the normalization check and normalizations are performed. Possible values are 0 (off) or 1 (on). -1 means to use the default value for the locale. Any other values are treated as 0 . Most languages do not require normalization for comparison. Normalization is needed in languages that use multiple combining characters such as Arabic, ancient Greek, or Hebrew.
num controls how contiguous digit substrings are sorted. Possible values are 0 (off) or 1 (on). -1 means to use the default value for the locale. Any other values are treated as 0 . If the setting is "on", substrings consisting of digits are sorted based on the numeric value. For example, " 100 " is after " 20 " instead of before it. Note that the digit substring is limited to 254 digits, and plus/minus signs, decimals, or exponents are not supported.
alt controls how spaces and punctuation characters are handled. Possible values are 0 (use primary strength) or 1 (alternative handling). Any other values are treated as 0. If the setting is 1 (alternative handling), "onsite", "on-site", and "on site" are considered equals.
$f r$ controls the direction of the secondary strength. Possible values are 0 (off) or 1 (on). -1 means to use the default value for the locale. All other values are treated as "off". If the setting is "on", the diacritical letters are sorted backward. Note that the setting is "on" by default only for Canadian French (locale fr_CA).
Domain s : Unicode strings
Domain loc: Unicode strings
Domain st: integers
Domain case: integers
Domain cslv: integers
Domain norm: integers
Domain num: integers
Domain alt: integers
Domain $f r$: integers
Range: null-terminated byte array

ustrto ($s, e n c$, mode)

Description: converts the Unicode string s in UTF-8 encoding to a string in encoding enc
See [D] unicode encoding for details on available encodings. Any invalid sequence in s is replaced with a Unicode replacement character \ufffd. mode controls how unsupported Unicode characters in the encoding enc are handled. The possible values are 1 , which substitutes any unsupported characters with the enc's substitution strings (the substitution character for both ascii and latin1 is char(26)); 2, which skips any unsupported characters; 3, which stops at the first unsupported character and returns an empty string; or 4, which replaces any unsupported character with an escaped hex digit sequence \uhhhh or \Uhhhhhhhh. The hex digit sequence contains either 4 or 8 hex digits, depending if the Unicode character's code-point value is less than or greater than \uffff. Any other values are treated as 1.
ustrto("café", "ascii", 1) = "caf"+char(26)
ustrto("café", "ascii", 2) = "caf"
ustrto("café", "ascii", 3) = ""
ustrto("café", "ascii", 4) = "caf \u00E9"
ustrto() can be used to removed diacritical marks from base letters. First, normalize the Unicode string to NFD form using ustrnormalize(), and then call ustrto() with value 2 to skip all non-ASCII characters.

```
ustrto(ustrnormalize("café", "nfd"), "ascii", 2) = "cafe"
```

Domain s : Unicode strings
Domain enc: Unicode strings
Domain mode: integers
Range: strings in encoding enc
ustrtohex ($s[, n]$)
Description: escaped hex digit string of s up to 200 Unicode characters
The escaped hex digit string is in the form of \uhhhh for code points less than \uffff or \Uhhhhhhhh for code points greater than \uffff. The function starts at the nth Unicode character of s if n is specified and larger than 0 . Any invalid UTF- 8 sequence is replaced with a Unicode replacement character \ufffd. Note that the null terminator char (0) is a valid Unicode character. Function ustrunescape() can be applied on the result to get back the original Unicode string s if s does not contain any invalid UTF-8 sequences.

Also see ustrunescape().
ustrtohex("нулю") = "\u043d\u0443\u043blu044e"
ustrtohex("нулю", 2) = "\u0443\u043blu044e"
ustrtohex("i"+char(200)+char(0)+"s") =
"\u0069\ufffd\u0000\u0073"
Domain $s: \quad$ Unicode strings
Domain n : \quad integers ≥ 1
Range: strings
ustrunescape (s)
Description: the Unicode string corresponding to the escaped sequences of s
The following escape sequences are recognized: 4 hex digit form \uhhhh; 8 hex digit form \Uhhhhhhhh; 1-2 hex digit form \xhh; and 1-3 octal digit form \ooo, where h is [0-9A-Fa-f] and o is [0-7]. The standard ANSI C escapes $\backslash a, \backslash b$,
 returns an empty string if an escape sequence is badly formed. Note that the 8 hex digit form \Uhhhhhhhh begins with a capital letter "U".
Also see ustrtohex ().
ustrunescape("\u043d\u0443\u043blu044e") = "нулю"
Domain s : \quad strings of escaped hex values
Range: Unicode strings

```
word \((s, n)\)
```

Description: the nth word in s; missing (" ") if n is missing
Positive numbers count words from the beginning of s, and negative numbers count words from the end of s. (1 is the first word in s, and -1 is the last word in s.) A word is a set of characters that start and terminate with spaces. This is different from a Unicode word, which is a language unit based on either a set of word-boundary rules or dictionaries for several languages (Chinese, Japanese, and Thai).
Domain s : strings
Domain n : integers
Range: strings

ustrword ($s, n[, l o c]$)

Description: the nth Unicode word in the Unicode string s
Positive n counts Unicode words from the beginning of s, and negative n counts Unicode words from the end of s. For examples, n equal to 1 returns the first word in s, and n equal to -1 returns the last word in s. If $l o c$ is not specified, the default locale is used. A Unicode word is different from a Stata word produced by the word() function. A Stata word is a space-separated token. A Unicode word is a language unit based on either a set of word-boundary rules or dictionaries for some languages (Chinese, Japanese, and Thai). The function returns missing (" ") if n is greater than $c n t$ or less than -cnt, where $c n t$ is the number of words s contains. cnt can be obtained from ustrwordcount (). The function also returns missing ("") if an error occurs.

```
ustrword("Parlez-vous français", 1, "fr") = "Parlez"
ustrword("Parlez-vous français", 2, "fr") = "-"
ustrword("Parlez-vous français",-1, "fr") = "français"
ustrword("Parlez-vous français",-2, "fr") = "vous"
```

 Domain \(s\) : Unicode strings
 Domain loc: Unicode strings
 Domain \(n\) : integers
 Range: Unicode strings
 wordbreaklocale(loc,type)
Description: the most closely related locale supported by ICU from loc if type is 1 , the actual
locale where the word-boundary analysis data come from if type is 2 ; or an empty
string is returned for any other type
wordbreaklocale("en_us_texas", 1) = en_US
wordbreaklocale("en_us_texas", 2) = root
Domain loc: strings of locale name
Domain type: integers
Range: strings
wordcount (s)
Description: the number of words in s

A word is a set of characters that starts and terminates with spaces, starts with the beginning of the string, or terminates with the end of the string. This is different from a Unicode word, which is a language unit based on either a set of word-boundary rules or dictionaries for several languages (Chinese, Japanese, and Thai).
Domain s : strings
Range: nonnegative integers $0,1,2, \ldots$
ustrwordcount ($s[, l o c]$)
Description: the number of nonempty Unicode words in the Unicode string s
An empty Unicode word is a Unicode word consisting of only Unicode whitespace characters. If loc is not specified, the default locale is used. A Unicode word is different from a Stata word produced by the word() function. A Stata word is a space-separated token. A Unicode word is a language unit based on either a set of word-boundary rules or dictionaries for some languages (Chinese, Japanese, and Thai). The function may return a negative number if an error occurs.

```
ustrwordcount("Parlez-vous français", "fr") = 4
```

Domain s : Unicode strings
Domain loc: Unicode strings
Range: Unicode strings

References

Cox, N. J. 2004. Stata tip 6: Inserting awkward characters in the plot. Stata Journal 4: 95-96.
-_. 2011. Stata tip 98: Counting substrings within strings. Stata Journal 11: 318-320.
Jeanty, P. W. 2013. Dealing with identifier variables in data management and analysis. Stata Journal 13: 699-718.

Also see

[D] egen - Extensions to generate
[M-4] string - String manipulation functions
[M-5] intro - Alphabetical index to functions
[U] 12.4.2 Handling Unicode strings
[U] 13.3 Functions

Title

Trigonometric functions
Contents Functions Reference Also see

Contents

```
acos(x)
acosh(x)
asin(x)
asinh(x)
atan(x)
atan2(y,x)
```

$\operatorname{atanh}(x)$
$\cos (x)$
$\cosh (x)$
$\sin (x)$
$\sinh (x)$
$\tan (x)$
$\tanh (x)$

Functions

$\operatorname{acos}(x)$

Description: the radian value of the arccosine of x
Domain: $\quad-1$ to 1
Range: $\quad 0$ to π

$\operatorname{acosh}(x)$

Description: the inverse hyperbolic cosine of x

$$
\operatorname{acosh}(x)=\ln \left(x+\sqrt{x^{2}-1}\right)
$$

Domain: 1 to $8.9 \mathrm{e}+307$
Range: 0 to 709.77

$\operatorname{asin}(x)$

Description: the radian value of the arcsine of x
Domain: $\quad-1$ to 1
Range: $\quad-\pi / 2$ to $\pi / 2$

$\operatorname{asinh}(x)$

Description: the inverse hyperbolic sine of x

$$
\operatorname{asinh}(x)=\ln \left(x+\sqrt{x^{2}+1}\right)
$$

Domain: $\quad-8.9 \mathrm{e}+307$ to $8.9 \mathrm{e}+307$
Range: $\quad-709.77$ to 709.77
$\operatorname{atan}(x)$
Description: the radian value of the arctangent of x
Domain: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: $\quad-\pi / 2$ to $\pi / 2$
$\operatorname{atan} 2(y, x)$
Description: the radian value of the arctangent of y / x, where the signs of the parameters y and x are used to determine the quadrant of the answer
Domain y : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Domain x : $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: $\quad-\pi$ to π
$\operatorname{atanh}(x)$
Description: the inverse hyperbolic tangent of x

$$
\operatorname{atanh}(x)=\frac{1}{2}\{\ln (1+x)-\ln (1-x)\}
$$

Domain: $\quad-1$ to 1
Range: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
$\cos (x)$
Description: the cosine of x, where x is in radians
Domain: $\quad-1 \mathrm{e}+18$ to $1 \mathrm{e}+18$
Range: $\quad-1$ to 1
$\cosh (x)$
Description: the hyperbolic cosine of x

$$
\cosh (x)=\{\exp (x)+\exp (-x)\} / 2
$$

Domain: $\quad-709$ to 709
Range: $\quad 1$ to $4.11 \mathrm{e}+307$
$\sin (x)$
Description: the sine of x, where x is in radians
Domain: $\quad-1 \mathrm{e}+18$ to $1 \mathrm{e}+18$
Range: $\quad-1$ to 1

$\sinh (x)$

Description: the hyperbolic sine of x

$$
\sinh (x)=\{\exp (x)-\exp (-x)\} / 2
$$

Domain: $\quad-709$ to 709
Range: $\quad-4.11 \mathrm{e}+307$ to $4.11 \mathrm{e}+307$
$\tan (x)$
Description: the tangent of x, where x is in radians
Domain: $\quad-1 \mathrm{e}+18$ to $1 \mathrm{e}+18$
Range: $\quad-1 \mathrm{e}+17$ to $1 \mathrm{e}+17$ or missing

$\tanh (x)$

Description: the hyperbolic tangent of x

$$
\tanh (x)=\{\exp (x)-\exp (-x)\} /\{\exp (x)+\exp (-x)\}
$$

Domain: $\quad-8 \mathrm{e}+307$ to $8 \mathrm{e}+307$
Range: $\quad-1$ to 1 or missing

- Technical note

The trigonometric functions are defined in terms of radians. There are 2π radians in a circle. If you prefer to think in terms of degrees, because there are also 360 degrees in a circle, you may convert degrees into radians by using the formula $r=d \pi / 180$, where d represents degrees and r represents radians. Stata includes the built-in constant _pi, equal to π to machine precision. Thus, to calculate the sine of theta, where theta is measured in degrees, you could type sin(theta*_pi/180)
atan() similarly returns radians, not degrees. The arccotangent can be obtained as $\operatorname{acot}(x)=_$pi $/ 2-\operatorname{atan}(x)$

Reference

Oldham, K. B., J. C. Myland, and J. Spanier. 2009. An Atlas of Functions. 2nd ed. New York: Springer.

Also see

[D] egen - Extensions to generate
[M-5] intro - Alphabetical index to functions
[M-5] $\sin ()$ - Trigonometric and hyperbolic functions
[U] 13.3 Functions

Subject and author index

See the combined subject index and the combined author index in the Glossary and Index.

