STATA DATA-MANAGEMENT REFERENCE MANUAL RELEASE 14

Copyright (c) 1985-2015 StataCorp LLC
All rights reserved
Version 14

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
Typeset in $\mathrm{T}_{\mathrm{E}} X$
ISBN-10: 1-59718-148-X
ISBN-13: 978-1-59718-148-8

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means-electronic, mechanical, photocopy, recording, or otherwise-without the prior written permission of StataCorp LLC unless permitted subject to the terms and conditions of a license granted to you by StataCorp LLC to use the software and documentation. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document.
StataCorp provides this manual "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make improvements and/or changes in the product(s) and the program(s) described in this manual at any time and without notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto DVD, CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright (c) 1979 by Consumers Union of U.S., Inc., Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, STETE Stata Press, Mata, IDPTE and NetCourse are registered trademarks of StataCorp LLC.
Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.
NetCourseNow is a trademark of StataCorp LLC.
Other brand and product names are registered trademarks or trademarks of their respective companies.
For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is
StataCorp. 2015. Stata: Release 14. Statistical Software. College Station, TX: StataCorp LLC.

Contents

intro Introduction to data management reference manual 1
data management Introduction to data management commands 2
append Append datasets 7
assert Verify truth of claim 15
bcal Business calendar file manipulation 19
by Repeat Stata command on subsets of the data 25
cd Change directory 29
cf Compare two datasets 33
changeeol Convert end-of-line characters of text file 36
checksum Calculate checksum of file 38
clear Clear memory 42
clonevar Clone existing variable 45
codebook Describe data contents 48
collapse Make dataset of summary statistics 59
compare Compare two variables 69
compress Compress data in memory 71
contract Make dataset of frequencies and percentages 73
copy Copy file from disk or URL 77
corr2data Create dataset with specified correlation structure 80
count Count observations satisfying specified conditions 85
cross Form every pairwise combination of two datasets 87
data types Quick reference for data types 89
datasignature Determine whether data have changed 91
datetime Date and time values and variables 98
datetime business calendars Business calendars 110
datetime business calendars creation Business calendars creation 117
datetime display formats Display formats for dates and times 127
datetime translation String to numeric date translation functions 132
describe Describe data in memory or in file 143
destring Convert string variables to numeric variables and vice versa 151
dir Display filenames 161
drawnorm Draw sample from multivariate normal distribution 164
drop Drop variables or observations 169
ds List variables matching name patterns or other characteristics 174
duplicates Report, tag, or drop duplicate observations 180
edit Browse or edit data with Data Editor 187
egen Extensions to generate 193
encode Encode string into numeric and vice versa 214
erase Erase a disk file 221
expand Duplicate observations 223
expandcl Duplicate clustered observations 226
export Overview of exporting data from Stata 229
filefilterConvert ASCII or binary patterns in a file231
fillinRectangularize dataset235
format Set variables' output format 237
generate Create or change contents of variable 251
gsort Ascending and descending sort 257
hexdump Display hexadecimal report on file 261
icd Introduction to ICD commands 267
icd9 ICD-9-CM diagnosis and procedure codes 274
icd10 ICD-10 diagnosis codes 286
import Overview of importing data into Stata 296
import delimited Import delimited text data 304
import excel Import and export Excel files 314
import haver Import data from Haver Analytics databases 321
import sasxport Import and export datasets in SAS XPORT format 331
infile (fixed format) Read text data in fixed format with a dictionary 341
infile (free format) Read unformatted text data 360
infix (fixed format) Read text data in fixed format 370
input Enter data from keyboard 378
insobs Add or insert observations 386
inspect Display simple summary of data's attributes 388
ipolate Linearly interpolate (extrapolate) values 392
isid Check for unique identifiers 395
joinby Form all pairwise combinations within groups 398
label Manipulate labels 403
label language Labels for variables and values in multiple languages 413
labelbook Label utilities 420
list List values of variables 431
lookfor Search for string in variable names and labels 441
memory Memory management 443
merge Merge datasets 449
missing values Quick reference for missing values 473
mkdir Create directory 474
mvencode Change missing values to numeric values and vice versa 476
notes Place notes in data 480
obs Increase the number of observations in a dataset 486
odbc Load, write, or view data from ODBC sources 488
order Reorder variables in dataset 502
outfile Export dataset in text format 506
pctile Create variable containing percentiles 513
putmata Put Stata variables into Mata and vice versa 525
range Generate numerical range 537
recast Change storage type of variable 540
recode Recode categorical variables 542
rename Rename variable 551
rename group Rename groups of variables 553
reshape Convert data from wide to long form and vice versa 564
rmdir Remove directory 581
sample Draw random sample 583
save Save Stata dataset 588
separate Create separate variables 594
shell Temporarily invoke operating system 598
snapshot Save and restore data snapshots 604
sort Sort data 607
split Split string variables into parts 612
stack Stack data 617
statsby Collect statistics for a command across a by list 623
sysuse Use shipped dataset 632
type Display contents of a file 635
unicode Unicode utilities 638
unicode collator Language-specific Unicode collators 639
unicode convertfile Low-level file conversion between encodings 641
unicode encoding Unicode encoding utilities 644
unicode locale Unicode locale utilities 646
unicode translate Translate files to Unicode 649
use Load Stata dataset 664
varmanage Manage variable labels, formats, and other properties 668
webuse Use dataset from Stata website 669
xmlsave Export or import dataset in XML format 672
xpose Interchange observations and variables 677
zipfile Compress and uncompress files and directories in zip archive format 680
Subject and author index 683

Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals. For example,
[U] 26 Overview of Stata estimation commands
[R] regress
[XT] xtreg
The first example is a reference to chapter 26, Overview of Stata estimation commands, in the User's Guide; the second is a reference to the regress entry in the Base Reference Manual; and the third is a reference to the xtreg entry in the Longitudinal-Data/Panel-Data Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM]	Getting Started with Stata for Mac
[GSU]	Getting Started with Stata for Unix
[GSW]	Getting Started with Stata for Windows
[U]	Stata User's Guide
[R]	Stata Base Reference Manual
[BAYES]	Stata Bayesian Analysis Reference Manual
[D]	Stata Data Management Reference Manual
[FN]	Stata Functions Reference Manual
[G]	Stata Graphics Reference Manual
[IRT]	Stata Item Response Theory Reference Manual
[XT]	Stata Longitudinal-Data/Panel-Data Reference Manual
[ME]	Stata Multilevel Mixed-Effects Reference Manual
[MI]	Stata Multiple-Imputation Reference Manual
[MV]	Stata Multivariate Statistics Reference Manual
[PSS]	Stata Power and Sample-Size Reference Manual
[P]	Stata Programming Reference Manual
[SEM]	Stata Structural Equation Modeling Reference Manual
[SVY]	Stata Survey Data Reference Manual
[ST]	Stata Survival Analysis Reference Manual
[TS]	Stata Time-Series Reference Manual
[TE]	Stata Treatment-Effects Reference Manual:
[I]	Sotential Outcomes/Counterfactual Outcomes
Stata Glossary and Index	
[M]	Mata Reference Manual

Title

intro - Introduction to data management reference manual

Description Also see

Description

This manual documents most of Stata's data management features and is referred to as the [D] manual. Some specialized data management features are documented in such subject-specific reference manuals as [MI] Stata Multiple-Imputation Reference Manual, [SEM] Stata Structural Equation Modeling Reference Manual, [TS] Stata Time-Series Reference Manual, [ST] Stata Survival Analysis Reference Manual, and [XT] Stata Longitudinal-Data/Panel-Data Reference Manual.

Following this entry, [D] data management provides an overview of data management in Stata and of Stata's data management commands. The other parts of this manual are arranged alphabetically. If you are new to Stata's data management features, we recommend that you read the following first:
[D] data management - Introduction to data management commands
[U] 12 Data
[U] 13 Functions and expressions
[U] 11.5 by varlist: construct
[U] 21 Entering and importing data
[U] 22 Combining datasets
[U] 23 Working with strings
[U] 25 Working with categorical data and factor variables
[U] 24 Working with dates and times
[U] 16 Do-files
You can see that most of the suggested reading is in [U]. That is because [U] provides overviews of most Stata features, whereas this is a reference manual and provides details on the usage of specific commands. You will get an overview of features for combining data from [U] 22 Combining datasets, but the details of performing a match-merge (merging the records of two files by matching the records on a common variable) will be found here, in [D] merge.

Stata is continually being updated, and Stata users are always writing new commands. To ensure that you have the latest features, you should install the most recent official update; see [R] update.

Also see
 [U] 1.3 What's new
 $[\mathrm{R}]$ intro - Introduction to base reference manual

Title

data management - Introduction to data management commands
Description Reference Also see

Description

This manual, called [D], documents Stata's data management features. See Mitchell (2010) for additional information and examples on data management in Stata.

Data management for statistical applications refers not only to classical data management-sorting, merging, appending, and the like-but also to data reorganization because the statistical routines you will use assume that the data are organized in a certain way. For example, statistical commands that analyze longitudinal data, such as xtreg, generally require that the data be in long rather than wide form, meaning that repeated values are recorded not as extra variables, but as extra observations.

Here are the basics everyone should know:

[D] use	Load Stata dataset
[D] save	Save Stata dataset
[D] describe	Describe data in memory or in file
[D] codebook	Describe data contents
[D] inspect	Display simple summary of data's attributes
[D] count	Count observations satisfying specified conditions
[D] data types	Quick reference for data types
[D] missing values	Quick reference for missing values
[D] datetime	Date and time values and variables
[D] list	List values of variables
[D] edit	Browse or edit data with Data Editor
[D] varmanage	Manage variable labels, formats, and other properties
[D] rename	Rename variable
[D] format	Set variables' output format
[D] label	Manipulate labels

You will need to create and drop variables, and here is how:

[D] generate	Create or change contents of variable
[D] egen	Extensions to generate
[D] drop	Drop variables or observations
[D] clear	Clear memory

For inputting or importing data, see
[D] use Load Stata dataset
[D] sysuse
[D] webuse
[D] input
[D] import
[D] import delimited
[D] import excel
[D] import haver
[D] import sasxport
[D] infile (fixed format)
[D] infile (free format)
[D] infix (fixed format)
[D] odbe
[D] xmlsave
[D] hexdump
[D] icd9
Use shipped dataset
Use dataset from Stata website
Enter data from keyboard
Overview of importing data into Stata
Import and export delimited-text data
Import and export Excel files
Import data from Haver Analytics databases
Import and export datasets in SAS XPORT format
Read text data in fixed format with a dictionary
Read unformatted text data
Read text data in fixed format
Load, write, or view data from ODBC sources
Export or import dataset in XML format
Display hexadecimal report on file
ICD-9-CM diagnostic and procedure codes
and for exporting data, see
[D] save
[D] export
[D] outfile
[D] import delimited
[D] import excel
[D] import sasxport
[D] odbc

Save Stata dataset
Overview of exporting data from Stata
Export dataset in text format
Import and export delimited-text data
Import and export Excel files
Import and export datasets in SAS XPORT format
Load, write, or view data from ODBC sources

The ordering of variables and observations (sort order) can be important; see
[D] order
[D] sort
Reorder variables in dataset
Sort data
[D] gsort
Ascending and descending sort

To reorganize or combine data, see
[D] merge Merge datasets
[D] append
[D] reshape
[D] collapse
[D] contract
[D] fillin
[D] expand
[D] expandcl
[D] stack
[D] joinby
[D] xpose
[D] cross

Append datasets
Convert data from wide to long form and vice versa
Make dataset of summary statistics
Make dataset of frequencies and percentages
Rectangularize dataset
Duplicate observations
Duplicate clustered observations
Stack data
Form all pairwise combinations within groups
Interchange observations and variables
Form every pairwise combination of two datasets

In the above list, we particularly want to direct your attention to [D] reshape, a useful command that beginners often overlook.

For random sampling, see
[D] sample
[D] drawnorm

For file manipulation, see
[D] type
[D] erase
[D] copy
[D] cd
[D] dir
[D] mkdir
[D] rmdir
[D] $\mathbf{c f}$
[D] changeeol
[D] filefilter
[D] checksum
[D] zipfile

Draw random sample
Draw sample from multivariate normal distribution

Display contents of a file
Erase a disk file
Copy file from disk or URL
Change directory
Display filenames
Create directory
Remove directory
Compare two datasets
Convert end-of-line characters of text file
Convert text or binary patterns in a file
Calculate checksum of file
Compress and uncompress files and directories in zip archive format

For handling Unicode strings, see

[D] unicode	Unicode utilities
[D] unicode translate	Translate files to Unicode
[D] unicode encoding	Unicode encoding utilities
[D] unicode locale	Unicode locale utilities
[D] unicode collator	Language-specific Unicode collators
[D] unicode convertfile	Low-level file conversion between encoding

The entries above are important. The rest are useful when you need them:
[D] datasignature
[D] type
[D] notes
[D] label language
[D] labelbook
[D] encode
[D] recode
[D] ipolate
[D] destring
[D] mvencode
[D] pctile
[D] range
[D] by
[D] statsby
[D] compress
[D] recast
[D] datetime display formats
[D] datetime translation
[D] bcal
[D] datetime business calendars
[D] datetime business calendars creation

Determine whether data have changed
Display contents of a file
Place notes in data
Labels for variables and values in multiple languages
Label utilities
Encode string into numeric and vice versa
Recode categorical variables
Linearly interpolate (extrapolate) values
Convert string variables to numeric variables and vice versa
Change missing values to numeric values and vice versa
Create variable containing percentiles
Generate numerical range
Repeat Stata command on subsets of the data
Collect statistics for a command across a by list
Compress data in memory
Change storage type of variable
Display formats for dates and times
String to numeric date translation functions
Business calendar file manipulation
Business calendars
Business calendars creation

[D] assert	Verify truth of claim
[D] clonevar	Clone existing variable
[D] compare	Compare two variables
[D] corr2data	Create dataset with specified correlation structure
[D] ds	List variables matching name patterns or other characteristics
[D] duplicates	Report, tag, or drop duplicate observations
[D] isid	Check for unique identifiers
[D] lookfor	Search for string in variable names and labels
[D] memory	Memory management
[D] putmata	Put Stata variables into Mata and vice versa
[D] obs	Increase the number of observations in a dataset
[D] rename group	Rename groups of variables
[D] separate	Create separate variables
[D] shell	Temporarily invoke operating system
[D] snapshot	Save and restore data snapshots
[D] split	Split string variables into parts

There are some real jewels in the above, such as [D] notes, [D] compress, and [D] assert, which you will find particularly useful.

Reference

Mitchell, M. N. 2010. Data Management Using Stata: A Practical Handbook. College Station, TX: Stata Press.

Also see
 [D] intro - Introduction to data management reference manual
 $[\mathrm{R}]$ intro - Introduction to base reference manual

Title

append - Append datasets

Description	Quick start	Menu	Syntax
Options	Remarks and examples	Also see	

Description

append appends Stata-format datasets stored on disk to the end of the dataset in memory. If any filename is specified without an extension, . dta is assumed.

Stata can also join observations from two datasets into one; see [D] merge. See [U] 22 Combining datasets for a comparison of append, merge, and joinby.

Quick start

Append mydata2.dta to mydata1.dta with no data in memory append using mydata1 mydata2

As above, but with mydata1.dta in memory append using mydata2

As above, and generate newv to indicate source dataset append using mydata2, generate(newv)

As above, but do not copy value labels or notes from mydata2.dta
append using mydata2, generate(newv) nolabel nonotes
Only keep v1, v2, and v3 from mydata2.dta
append using mydata2, keep(v1 v2 v3)

Menu

Data $>$ Combine datasets $>$ Append datasets

Syntax

append using filename [filename ...] [, options]
You may enclose filename in double quotes and must do so if filename contains blanks or other special characters.
options
Description
generate (newvar)
keep (varlist)
nolabel
nonotes
force
newvar marks source of resulting observations
keep specified variables from appending dataset(s)
do not copy value-label definitions from dataset(s) on disk
do not copy notes from dataset(s) on disk
append string to numeric or numeric to string without error

Options

generate (newvar) specifies the name of a variable to be created that will mark the source of observations. Observations from the master dataset (the data in memory before the append command) will contain 0 for this variable. Observations from the first using dataset will contain 1 for this variable; observations from the second using dataset will contain 2 for this variable; and so on.
keep (varlist) specifies the variables to be kept from the using dataset. If keep() is not specified, all variables are kept.

The varlist in keep (varlist) differs from standard Stata varlists in two ways: variable names in varlist may not be abbreviated, except by the use of wildcard characters, and you may not refer to a range of variables, such as price-weight.
nolabel prevents Stata from copying the value-label definitions from the disk dataset into the dataset in memory. Even if you do not specify this option, label definitions from the disk dataset never replace definitions already in memory.
nonotes prevents notes in the using dataset from being incorporated into the result. The default is to incorporate notes from the using dataset that do not already appear in the master data.
force allows string variables to be appended to numeric variables and vice versa, resulting in missing values from the using dataset. If omitted, append issues an error message; if specified, append issues a warning message.

Remarks and examples

The disk dataset must be a Stata-format dataset; that is, it must have been created by save (see [D] save).
$>$ Example 1
We have two datasets stored on disk that we want to combine. The first dataset, called even.dta, contains the sixth through eighth positive even numbers. The second dataset, called odd.dta, contains the first five positive odd numbers. The datasets are

```
. use even
(6th through 8th even numbers)
. list
```

	number	even
1.	6	12
2.	7	14
3.	8	16

```
. use odd
(First five odd numbers)
. list
```

	number	odd
1.	1	1
2.	2	3
3.	3	5
4.	4	7
5.	5	9

We will append the even data to the end of the odd data. Because the odd data are already in memory (we just used them above), we type append using even. The result is

```
. append using even
. list
```

	number	odd	even
1.	1	1	\cdot
2.	2	3	\cdot
3.	3	5	\cdot
4.	4	7	\cdot
5.	5	9	\cdot
6.	6	.	12
7.	7	\cdot	14
8.	8	\cdot	16

Because the number variable is in both datasets, the variable was extended with the new data from the file even.dta. Because there is no variable called odd in the new data, the additional observations on odd were forward-filled with missing (.). Because there is no variable called even in the original data, the first observations on even were back-filled with missing.

> Example 2

The order of variables in the two datasets is irrelevant. Stata always appends variables by name:

```
. use http://www.stata-press.com/data/r14/odd1
(First five odd numbers)
. describe
Contains data from http://www.stata-press.com/data/r14/odd1.dta
    obs: 5 First five odd numbers
    vars: 29 Jan 2014 08:41
size: 40
```

variable name	storage type	display format	value label	variable label
odd	float	$\% 9.0 \mathrm{~g}$		Odd numbers
number	float	$\% 9.0 \mathrm{~g}$		

```
Sorted by: number
. describe using http://www.stata-press.com/data/r14/even
Contains data from http://www.stata-press.com/data/r14/even
    obs: 3 6th through 8th even numbers
    vars: 2 9 Jan 2014 08:43
    size: 27
```

variable name	storage type	display format	value label	variable label
number even	byte float	$\% 9.0 \mathrm{~g}$ $\% 9.0 \mathrm{~g}$		

Sorted by: number
. append using http://www.stata-press.com/data/r14/even
. list

	odd	number	even
1.	1	1	\cdot
2.	3	2	\cdot
3.	5	3	\cdot
4.	7	4	\cdot
5.	9	5	\cdot
6.	.	6	12
7.	.	7	14
8.	\cdot	8	16

The results are the same as those in the first example.

When Stata appends two datasets, the definitions of the dataset in memory, called the master dataset, override the definitions of the dataset on disk, called the using dataset. This extends to value labels, variable labels, characteristics, and date-time stamps. If there are conflicts in numeric storage types, the more precise storage type will be used regardless of whether this storage type was in the master dataset or the using dataset. If a variable is stored as a string in one dataset that is longer than in the other, the longer str\# storage type will prevail. If a variable is stored as a strL in one dataset and a str\# in another dataset, the strL storage type will prevail.

- Technical note

If a variable is a string in one dataset and numeric in the other, Stata issues an error message unless the force option is specified. If force is specified, Stata issues a warning message before appending the data. If the using dataset contains the string variable, the combined dataset will have numeric missing values for the appended data on this variable; the contents of the string variable in the using dataset are ignored. If the using dataset contains the numeric variable, the combined dataset will have empty strings for the appended data on this variable; the contents of the numeric variable in the using dataset are ignored.

Example 3

Because Stata has five numeric variable types-byte, int, long, float, and double-you may attempt to append datasets containing variables with the same name but of different numeric types; see [U] 12.2.2 Numeric storage types.

Let's describe the datasets in the example above:

. describe using http://www.stata-press.com/data/r14/odd	
Contains data from http://www.stata-press.com/data/r14/odd	
obs:	5
virst five odd numbers	
vize:	2

| variable name | storage
 type | display
 format | value
 label |
| :--- | :--- | :--- | :--- | variable label | float | $\% 9.0 \mathrm{~g}$ | |
| :--- | :--- | :--- |
| number
 odd | float | $\% 9.0 \mathrm{~g}$ |

Sorted by:
. describe using http://www.stata-press.com/data/r14/even
Contains data from http://www.stata-press.com/data/r14/even
obs: 3 6th through 8th even numbers
vars: $2 \quad 9$ Jan 2014 08:43
size: 27

variable name	storage type	display format	value label	variable label
number even	byte float	$\% 9.0 \mathrm{~g}$ $\% 9.0 \mathrm{~g}$		

Sorted by: number
. describe using http://www.stata-press.com/data/r14/oddeven
Contains data from http://www.stata-press.com/data/r14/oddeven
obs: 8 First five odd numbers
vars: $3 \quad 9$ Jan 2014 08:53
size: 128

	storage type	display format	value label

Sorted by:

The number variable was stored as a float in odd.dta but as a byte in even.dta. Because float is the more precise storage type, the resulting dataset, oddeven.dta, had number stored as a float. Had we instead appended odd.dta to even.dta, number would still have been stored as a float:

(note: variable number was byte, now float to accommodate . describe				
```Contains data obs: vars: size:```	$\begin{array}{r} \text { from htt } \\ 8 \\ 3 \\ 96 \end{array}$	://www.s	a-pres	data/r14/even. 6th through 8t 9 Jan 2014 08:
variable name	storage type	display   format	value   label	variable label
number	float	\%9.0g		
even	float	$\% 9.0 \mathrm{~g}$		Even numbers
odd	float	\%9.0g		Odd numbers

Sorted by:
Note: Dataset has changed since last saved.

## > Example 4

Suppose that we have a dataset in memory containing the variable educ, and we have previously given a label variable educ "Education Level" command so that the variable label associated with educ is "Education Level". We now append a dataset called newdata.dta, which also contains a variable named educ, except that its variable label is "Ed. Lev". After appending the two datasets, the educ variable is still labeled "Education Level". See [U] 12.6.2 Variable labels.

## > Example 5

Assume that the values of the educ variable are labeled with a value label named educlbl. Further assume that in newdata.dta, the values of educ are also labeled by a value label named educlbl. Thus there is one definition of educlbl in memory and another (although perhaps equivalent) definition in newdata.dta. When you append the new data, you will see the following:

```
. append using newdata
label educlbl already defined
```

If one label in memory and another on disk have the same name, append warns you of the problem and sticks with the definition currently in memory, ignoring the definition in the disk file.

## - Technical note

When you append two datasets that both contain definitions of the same value label, the codings may not be equivalent. That is why Stata warns you with a message like "label educlbl already defined". If you do not know that the two value labels are equivalent, you should convert the valuelabeled variables into string variables, append the data, and then construct a new coding. decode and encode make this easy:
. use newdata, clear
. decode educ, gen(edstr)
. drop educ
. save newdata, replace
. use basedata
. decode educ, gen(edstr)
. drop educ
. append using newdata
. encode edstr, gen(educ)
. drop edstr
See [D] encode.
You can specify the nolabel option to force append to ignore all the value-label definitions in the incoming file, whether or not there is a conflict. In practice, you will probably never want to do this.

## > Example 6

Suppose that we have several datasets containing the populations of counties in various states. We can use append to combine these datasets all at once and use the generate () option to create a variable identifying from which dataset each observation originally came.

```
. use http://www.stata-press.com/data/r14/capop
. list
```

county	pop
Los Angeles	9878554
Orange	2997033
Ventura	798364

. append using http://www.stata-press.com/data/r14/ilpop
> http://www.stata-press.com/data/r14/txpop, generate(state)
. label define statelab 0 "CA" 1 "IL" 2 "TX"
. label values state statelab

	county	pop	state
1.	Los Angeles	9878554	CA
2.	Orange	2997033	CA
3.	Ventura	798364	CA
4.	Cook	5285107	IL
5.	DeKalb	103729	IL
6.	Will	673586	IL
7.	Brazos	152415	TX
8.	Johnson	149797	TX
9.	Harris	4011475	TX

## Also see

[D] cross - Form every pairwise combination of two datasets
[D] joinby - Form all pairwise combinations within groups
[D] merge - Merge datasets
[D] save - Save Stata dataset
[D] use - Load Stata dataset
[U] 22 Combining datasets

## Title

assert - Verify truth of claim
Description Quick start Syntax Options Remarks and examples
Also see

## Description

assert verifies that exp is true. If it is true, the command produces no output. If it is not true, assert informs you that the "assertion is false" and issues a return code of 9; see [U] 8 Error messages and return codes.

## Quick start

Confirm that v1 only takes values 0 or 1
assert v1==0 | v1==1

Verify that v2 is between 100 and 200 and never missing
assert inrange (v2,100,200)
Verify that v2 is between 100 and 200 for all nonmissing values
assert inrange(v2,100,200) if !missing(v2)
Verify that v2 is between 100 and 200 and never missing when catvar equals 2 or 3
assert inrange (v2,100,200) if (catvar==2 | catvar==3)
Verify that there are 5 observations per cluster identified by cvar
by cvar: assert _N==5
As above, but stop checking after the first cluster has fewer than or more than 5 observations
by cvar: assert _N==5, fast

## Syntax

```
assert \(\exp [i f][i n][, \underline{r c} 0\) null fast \(]\)
```

by is allowed; see [D] by.

## Options

rc0 forces a return code of 0 , even if the assertion is false.
null forces a return code of 8 on null assertions.
fast forces the command to exit at the first occurrence that exp evaluates to false.

## Remarks and examples

assert is seldom used interactively because it is easier to use inspect, summarize, or tabulate to look for evidence of errors in the dataset. These commands, however, require you to review the output to spot the error. assert is useful because it tells Stata not only what to do but also what you can expect to find. Groups of assertions are often combined in a do-file to certify data. If the do-file runs all the way through without complaining, every assertion in the file is true.

```
. do myassert
. use trans, clear
(xplant data)
. assert sex=="m" | sex=="f"
. assert packs==0 if !smoker
. assert packs>0 if smoker
. sort patient date
. by patient: assert sex==sex[_n-1] if _n>1
. by patient: assert abs(bp-bp[_n-1]) < 20 if bp< . & bp[_n-1]< .
. by patient: assert died==0 if _n!=_N
. by patient: assert died==0 | died==1 if _n==_N
. by patient: assert n_xplant==0 | n_xplant==1 if _n==_N
. assert inval==int(inval)
•
end of do-file
```

> Example 1
You receive data from Bob, a coworker. He has been working on the dataset for some time, and it has now been delivered to you for analysis. Before analyzing the data, you (smartly) verify that the data are as Bob claims. In Bob's memo, he claims that 1) the dataset reflects the earnings of 522 employees, 2) the earnings are only for full-time employees, 3) the variable female is coded 1 for female and 0 otherwise, and 4) the variable exp contains the number of years, or fraction thereof, on the job. You assemble the following do-file:

```
use frombob, clear
assert _N==522
assert sal>=6000 & sal<=125000
assert female==1 | female==0
```

```
gen work=sum(female==1)
assert work[_N]>0
replace work=sum(female==0)
assert work[_N]>0
drop work
assert exp>=0 & exp<=40
```

Let's go through these assertions one by one. After using the data, you assert that $_\mathrm{N}$ equals 522 . Remember, _N reflects the total number of observations in the dataset; see [U] $\mathbf{1 3 . 4}$ System variables (_variables). Bob said it was 522, so you check it. Bob's second claim was that the data are for only full-time employees. You know that everybody in your company makes a salary between $\$ 6,000$ and $\$ 125,000$, so you check that the salary figures are within this range. Bob's third assertion was that the female variable was coded zero or one.

You add something more. You know that your company employs both males and females, so you check that there are some of each. You create a variable called work equal to the running sum of female observations and then verify that the last observation of this variable is greater than zero. You then repeat the process for males and discard the work variable. Finally, you verify that the exp variable is never negative and is never larger than 40.

You save the above file as check.do, and here is what happens when you run it:

```
. do check
. use frombob, clear
(5/21 data)
. assert _N==522
. assert sal>6000 & sal<=125000
14 contradictions in 522 observations
assertion is false
r(9);
end of do-file
r(9);
```

Everything went fine until you checked the salary variable, when Stata told you that there were 14 contradictions to your assertion and stopped the do-file. Seeing this, you now interactively summarize the sal variable and discover that 14 people have missing salaries. You dash off a memo to Bob asking him why these data are missing.

## > Example 2

Bob responds quickly. There was a mistake in reading the salaries for the consumer relations division. He says it's fixed. You believe him but check with your do-file again. This time you type run instead of do, suppressing all the output:

```
. run check
```

Even though you suppressed the output, if there had been any contradictions, the messages would have printed. check. do ran fine, so all its assertions are true.

- Technical note
assert is especially useful when you are processing large amounts of data in a do-file and wish to verify that all is going as expected. The error here may not be in the data but in the do-file itself. For instance, your do-file is rolling along, and it has just merged two datasets that it created by subsetting some other data. If everything has gone right so far, every observation should have merged. Include the line

```
assert _merge==3
```

to verify the correctness of the merge. If all the observations did not merge, the assertion will be false, and your do-file will stop.

As another example, you are combining data from many sources, and you know that after the first two datasets are combined, every individual's sex should be defined. So, you include the line

```
assert sex< .
```

in your do-file. Experienced Stata users include many assertions in their do-files when they process data.

## - Technical note

assert is smart in how it evaluates expressions. When you type something like assert _N $==522$ or assert work [ $-N]>0$, assert knows that the expression needs to be evaluated only once. When you type assert female==1|female==0, assert knows that the expression needs to be evaluated once for each observation in the dataset.

Here are some more examples demonstrating assert's intelligence.

```
by female: assert _N==100
```

asserts that there should be 100 observations for every unique value of female. The expression is evaluated once per by-group.

```
by female: assert work[_N]>0
```

asserts that the last observation on work in every by-group should be greater than zero. It is evaluated once per by-group.

```
by female: assert work>0
```

is evaluated once for each observation in the dataset and, in that sense, is formally equivalent to assert work>0.

## Also see

[P] capture - Capture return code
[P] confirm - Argument verification
[U] 16 Do-files

## Title

bcal - Business calendar file manipulation

Description	Quick start	Menu
Syntax	Option for bcal check	Options for bcal create
Remarks and examples	Stored results	Also see

## Description

See [D] datetime business calendars for an introduction to business calendars and dates.
bcal check lists the business calendars used by the data in memory, if any.
bcal dir pattern lists filenames and directories of all available business calendars matching pattern, or all business calendars if pattern is not specified.
bcal describe calname presents a description of the specified business calendar.
bcal load calname loads the specified business calendar. Business calendars load automatically when needed, and thus use of bcal load is never required. bcal load is used by programmers writing their own business calendars. bcal load calname forces immediate loading of a business calendar and displays output, including any error messages due to improper calendar construction.
bcal create filename, from (varname) creates a business calendar file based on dates in varname. Business holidays are inferred from gaps in varname. The qualifiers if and in, as well as the option excludemissing(), can also be used to exclude dates from the new business calendar.

## Quick start

Create business calendar file mycal.stbcal from date variable tvar in the dataset in memory bcal create mycal, from(tvar)

As above, and generate business date variable newt formatted as \%tbmycal
bcal create mycal, from(tvar) generate(newt)
List directories and filenames of available business calendars
bcal dir
Describe range, center date, and number of omitted days in business calendar mycal.stbcal bcal describe mycal

Report any \%tb formats applied to the variables in memory bcal check

## Menu

Data $>$ Other utilities $>$ Create a business calendar
Data $>$ Other utilities $>$ Manage business calendars
Data $>$ Variables Manager

## Syntax

List business calendars used by the data in memory
bcal check [varlist] [, rco ]

List filenames and directories of available business calendars

```
bcal dir [pattern]
```

Describe the specified business calendar
bcal describe calname

Load the specified business calendar
bcal load calname

Create a business calendar from the current dataset
bcal create filename [if] [in], from(varname) [bcal_create_options]
where
varlist is a list of variable names to be checked for whether they use business calendars. If not specified, all variables are checked.
pattern is the name of a business calendar possibly containing wildcards $*$ and ?. If pattern is not specified, all available business calendar names are listed.
calname is the name of a business calendar either as a name or as a datetime format; for example, calname could be simple or \%tbsimple.
filename is the name of the business calendar file created by bcal create.
bcal_create_options
Description

Main

* from (varname)
generate (newvar)
excludemissing(varlist [, any])
personal
replace
Advanced
purpose (text)
dateformat (ymd $\mid$ ydm $\mid$ myd $\mid$ mdy $\mid$ dym $\mid$ dmy)
range (fromdate todate)
centerdate (date)
maxgap (\#)
specify date variable for calendar generate newvar containing business dates exclude observations with missing values in varlist save calendar file in your PERSONAL directory replace file if it already exists
describe purpose of calendar
specify date format in calendar file
specify range of calendar specify center date of calendar specify maximum gap allowed; default is 10 days

[^0]
## Option for bcal check


#### Abstract

Main rc0 specifies that bcal check is to exit without error (return 0 ) even if some calendars do not exist or have errors. Programmers can then access the results bcal check stores in $r()$ to get even more details about the problems. If you wish to suppress bcal dir, precede the bcal check command with capture and specify the rc0 option if you wish to access the r() results.


## Options for bcal create

$\qquad$ Main
from (varname) specifies the date variable used to create the business calendar. Gaps between dates in varname define business holidays. The longest gap allowed can be set with the maxgap() option. from () is required.
generate (newvar) specifies that newvar be created. newvar is a date variable in $\%$ tbcalname format, where calname is the name of the business calendar derived from filename.
excludemissing (varlist [, any]) specifies that the dates of observations with missing values in varlist are business holidays. By default, the dates of observations with missing values in all variables in varlist are holidays. The any suboption specifies that the dates of observations with missing values in any variable in varlist are holidays.
personal specifies that the calendar file be saved in the PERSONAL directory. This option cannot be used if filename contains the pathname of the directory where the file is to be saved.
replace specifies that the business calendar file be replaced if it already exists.

Advanced
purpose (text) specifies the purpose of the business calendar being created. text cannot exceed 63 characters.
dateformat (ymd $\mid$ ydm $\mid$ myd $\mid$ mdy $\mid$ dym $\mid$ dmy) specifies the date format in the new business calendar. The default is dateformat(ymd). dateformat() has nothing to do with how dates will look when variables are formatted with \%tbcalname; it specifies how dates are typed in the calendar file.
range (fromdate todate) defines the date range of the calendar being created. fromdate and todate should be in the format specified by the dateformat() option; if not specified, the default ymd format is assumed.
centerdate (date) defines the center date of the new business calendar. If not specified, the earliest date in the calendar is assumed. date should be in the format specified by the dateformat() option; if not specified, the default ymd format is assumed.
maxgap(\#) specifies the maximum number of consecutive business holidays allowed by bcal create. The default is maxgap (10).

## Remarks and examples

bcal check reports on any \%tb formats used by the data in memory:
\%tbsimple: defined, used by variable mydate
bcal dir reports on business calendars available:

```
. bcal dir
1 \text { calendar file found:}
 simple: C:\Program Files\Stata14\ado\base\s\simple.stbcal
```

bcal describe reports on an individual calendar.

```
bcal describe simple
Business calendar simple (format %tbsimple):
 purpose: Example for manual
 range: 01nov2014 30nov2014
 18932 18961 in %td units
 0 19 in %tbsimple units
 center: 01nov2012
 18932 in %td units
 0 in %tbsimple units
 omitted: 10 days
 121.8 approx. days/year
 20 days
 243.5 approx. days/year
```

bcal load is used by programmers writing new stbcal-files. See [D] datetime business calendars creation.
bcal create creates a business calendar file from the current dataset and describes the new calendar. For example, sp500.dta is a dataset installed with Stata that has daily records on the S\&P 500 stock market index in 2001. The dataset has observations only for days when trading took place. A business calendar for stock trading in 2001 can be automatically created from this dataset as follows:

```
. sysuse sp500
(S&P 500)
bcal create sp500, from(date) purpose(S&P 500 for 2001) generate(bizdate)
 Business calendar sp500 (format %tbsp500):
 purpose: S&P 500 for 2001
 range: 02jan2001 31dec2001
 14977 15340 in %td units
 0 247 in %tbsp500 units
 center: 02jan2001
 14977 in %td units
 0 in %tbsp500 units
 omitted: 116 days
 116.4 approx. days/year
 included: 248 days
 248.9 approx. days/year
 Notes:
 business calendar file sp500.stbcal saved
 variable bizdate created; it contains business dates in %tbsp500 format
```

The business calendar file created:

```
* Business calendar "sp500" created by -bcal create-
* Created/replaced on 15 Jan 2015
version 14
purpose "S&P 500 for 2001"
dateformat ymd
range 2001jan02 2001dec31
centerdate 2001jan02
omit dayofweek (Sa Su)
omit date 2001jan15
omit date 2001feb19
omit date 2001apr13
omit date 2001may28
omit date 2001jul04
omit date 2001sep03
omit date 2001sep11
omit date 2001sep12
omit date 2001sep13
omit date 2001sep14
omit date 2001nov22
omit date 2001dec25
```

bcal create filename, from() can save the calendar file anywhere in your directory system by specifying a path in filename. It is assumed that the directory where the file is to be saved already exists. The pattern of filename should be [path] calname [.stbcal]. Here calname should be without the \%tb prefix; calname has to be a valid Stata name but limited to 10 characters. If path is not specified, the file is saved in the current working directory. If the .stbcal extension is not specified, it is added.

Save the file in a directory where Stata can find it. Stata automatically searches for stbcal-files in the same way it searches for ado-files. Stata looks for ado-files and stbcal-files in the official Stata directories, your site's directory (SITE), your current working directory, your personal directory (PERSONAL), and your directory for materials written by other users (PLUS). The option personal specifies that the calendar file be saved in your PERSONAL directory, which ensures that the created calendar can be easily found in future work.

## Stored results

bcal check stores the following in $r()$ :
Macros
$r$ (defined) business calendars used, stbcal-file exists, and file contains no errors
$r$ (undefined) business calendars used, but no stbcal-files exist for them
Warning to programmers: Specify the rc0 option to access these returned results. By default, bcal check returns code 459 if a business calendar does not exist or if a business calendar exists but has errors; in such cases, the results are not stored.
bcal describe and bcal create store the following in $r()$ :
Scalars
$r$ (min_date_td) calendar's minimum date in \%td units
$r$ (max_date_td) calendar's maximum date in \%td units
r(ctr_date_td) calendar's zero date in \%td units
$r$ (min_date_tb) calendar's minimum date in \%tb units
$r$ (max_date_tb) calendar's maximum date in \%tb units
$r$ (omitted) total number of days omitted from calendar
$r$ (included) total number of days included in calendar
Macros
$r$ (name) pure calendar name (for example, nyse)
$r$ (purpose) short description of calendar's purpose
bcal load stores the same results in $r()$ as bcal describe, except it does not store $r$ (omitted) and $r$ (included).

## Also see

[D] datetime - Date and time values and variables
[D] datetime business calendars - Business calendars
[D] datetime business calendars creation - Business calendars creation

## Title

by - Repeat Stata command on subsets of the data

Description	Quick start	Syntax	Options
Remarks and examples	References	Also see	

## Description

Most Stata commands allow the by prefix, which repeats the command for each group of observations for which the values of the variables in varlist are the same. by without the sort option requires that the data be sorted by varlist; see [D] sort.

Stata commands that work with the by prefix indicate this immediately following their syntax diagram by reporting, for example, "by is allowed; see [D] by" or "bootstrap, by, etc., are allowed; see [U] 11.1.10 Prefix commands".
by and bysort are really the same command; bysort is just by with the sort option.
The varlist $_{1}$ ( varlist $_{2}$ ) syntax is of special use to programmers. It verifies that the data are sorted by varlist $_{1}$ varlist $_{2}$ and then performs a by as if only varlist $t_{1}$ were specified. For instance,

```
by pid (time): generate growth = (bp - bp[_n-1])/bp
```

performs the generate by values of pid but first verifies that the data are sorted by pid and time within pid.

## Quick start

Generate newv as an observation number within each level of catvar
by catvar: generate newv = _n
As above, but sort data by catvar first
by catvar, sort: generate newv = _n
Same as above
bysort catvar: generate newv = _n
As above, but sort by v within values of catvar
bysort catvar (v): generate newv = _n
Generate newv as an observation number for each observation in levels of catvar and v bysort catvar v: generate newv = _n

Note: Any command that accepts the by prefix may be substituted for generate above.

## Syntax

by varlist: stata_cmd
bysort varlist: stata_cmd

The above diagrams show by and bysort as they are typically used.
The full syntax of the commands is
by varlist ${ }_{1}\left[\left(\right.\right.$ varlist $\left.\left._{2}\right)\right][$, sort rc0]: stata_cmd


## Options

sort specifies that if the data are not already sorted by varlist, by should sort them.
rc0 specifies that even if the stata_cmd produces an error in one of the by-groups, then by is still to run the stata_cmd on the remaining by-groups. The default action is to stop when an error occurs. rc0 is especially useful when stata_cmd is an estimation command and some by-groups have insufficient observations.

## Remarks and examples

## Example 1

```
. use http://www.stata-press.com/data/r14/autornd
(1978 Automobile Data)
. keep in 1/20
(54 observations deleted)
. by mpg: egen mean_w = mean(weight)
not sorted
r(5);
. sort mpg
. by mpg: egen mean_w = mean(weight)
```

. list

	make	weight	mpg	mean_w
1.	Cad. Eldorado	4000	15	3916.667
2.	Chev. Impala	3500	15	3916.667
3.	Cad. Deville	4500	15	3916.667
4.	Buick Riviera	4000	15	3916.667
5.	Buick Electra	4000	15	3916.667
6.	AMC Pacer	3500	15	3916.667
7.	AMC Concord	3000	20	3350
8.	Buick Century	3500	20	3350
9.	Chev. Malibu	3000	20	3350
10.	Buick Skylark	3500	20	3350
11.	Buick Regal	3500	20	3350
12.	AMC Spirit	2500	20	3350
13.	Chev. Nova	3500	20	3350
14.	Buick LeSabre	3500	20	3350
15.	Chev. Monte Carlo	3000	20	3350
16.	Cad. Seville	4500	20	3350
17.	Chev. Monza	3000	25	2500
18.	Buick Opel	2000	25	2500
19.	Chev. Chevette	2000	30	2000
20.	Dodge Colt	2000	30	2000

by requires that the data be sorted. In the above example, we could have typed by mpg, sort: egen mean_w = mean(weight) or bysort mpg: egen mean_w = mean(weight) rather than the separate sort; all would yield the same results.

For more examples, see [U] 11.1.2 by varlist:, [U] 11.5 by varlist: construct, and [U] 27.2 The by construct. For extended introductions with detailed examples, see Cox (2002) and Mitchell (2010, chap. 7).

## Technical note

by repeats the stata_cmd for each group defined by varlist. If stata_cmd stores results, only the results from the last group on which stata_cmd executes will be stored.

## References

Cox, N. J. 2002. Speaking Stata: How to move step by: step. Stata Journal 2: 86-102.
Mitchell, M. N. 2010. Data Management Using Stata: A Practical Handbook. College Station, TX: Stata Press.

## Also see

[D] sort - Sort data
[D] statsby - Collect statistics for a command across a by list
[P] byable - Make programs byable
[P] foreach - Loop over items
[P] forvalues - Loop over consecutive values
[P] while - Looping
[U] 11.1.2 by varlist:
[U] 11.1.10 Prefix commands
[U] 11.4 varlists
[U] 11.5 by varlist: construct
[U] 27.2 The by construct

## Title

cd - Change directory

Description Quick start Syntax Remarks and examples Also see

## Description

Stata for Windows: cd changes the current working directory to the specified drive and directory. pwd is equivalent to typing cd without arguments; both display the name of the current working directory. Note: You can shell out to a DOS window; see [D] shell. However, typing ! cd directory_name does not change Stata's current directory; use the cd command to change directories.

Stata for Mac and Stata for Unix: cd (synonym chdir) changes the current working directory to directory_name or, if directory_name is not specified, the home directory. pwd displays the path of the current working directory.

## Quick start

Change working directory in Stata for Windows to C: \mydir $\backslash$ myfolder cd c:\mydir $\backslash m y f o l d e r$

Change working directory in Stata for Windows to C: \my dir $\backslash m y$ folder cd "c:\my dir $\backslash m y$ folder"

Change working directory in Stata for Mac or Unix to mydir/myfolder cd mydir/myfolder

Move up one level in the directory structure cd . .

Move to myfolder from mydir cd myfolder

View current working directory pwd

Go to home directory in Stata for Mac or Unix cd

## Syntax

Stata for Windows

$$
\mathrm{cd}
$$

cd ["] directory_name["]
cd ["]drive: ["]
cd ["] drive: directory_name["]
pwd

Stata for Mac and Stata for Unix
cd
cd ["] directory_name["]
pwd

If your directory_name contains embedded spaces, remember to enclose it in double quotes.

## Remarks and examples

Remarks are presented under the following headings:

Stata for Windows<br>Stata for Mac<br>Stata for Unix

## Stata for Windows

When you start Stata for Windows, your current working directory is set to the Start in directory specified in Properties. If you want to change this, see [GSW] B. 1 The Windows Properties Sheet. You can always see what your working directory is by looking at the status bar at the bottom of the Stata window.

Once you are in Stata, you can change your directory with the cd command.

```
. cd
c:\data
. cd city
c:\data\city
. cd d:
D:\
. cd kande
D:\kande
. cd "additional detail"
D:\kande\additional detail
. cd c:
C:\
. cd data\city
C:\data\city
```

```
. cd \a\b\c\d\e\f\g
C:\a\b\c\d\e\f\g
. cd ..
C:\a\b\c\d\e\f
. cd ...
C:\a\b\c\d
.cd
C:\a
```

When we typed cd d:, we changed to the current directory of the D drive. We navigated our
 cd "additional detail". The double quotes around "additional detail" are necessary because of the space in the directory name. We could have changed to this directory in one command: cd "d:\kande\additional detail".

Notice the last three cd commands in the example above. You are probably familiar with the cd . . syntax to move up one directory from where you are. The last two cd commands above let you move up more than one directory: cd . . . is shorthand for 'cd . ... ' and $\mathrm{cd} . .$. is shorthand for 'cd . . $\backslash . . \backslash .$. '. These shorthand cd commands are not limited to Stata; they will work in your DOS windows under Windows as well.

## Stata for Mac

Read [U] 11.6 Filenaming conventions for a description of how filenames are written in a command language before reading this entry.

Invoking an application and then changing folders is an action foreign to most Mac users. If it is foreign to you, you can ignore cd and pwd. However, they can be useful. You can see the current folder (where Stata saves files and looks for files) by typing pwd. You can change the current folder by using cd or by selecting File > Change working directory.... Stata's cd understands ' $\sim$ ' as an abbreviation for the home directory, so you can type things like cd $\sim /$ data.

```
. pwd
/Users/bill/proj
. cd "~/data/city"
/Users/bill/data/city
```

If you now wanted to change to "/Users/bill/data/city/ny", you could type cd ny. If you wanted instead to change to "/Users/bill/data", you could type 'cd ..'.

## Stata for Unix

cd and pwd are equivalent to Unix's cd and pwd commands. Like csh, Stata's cd understands ' $\sim$ ' as an abbreviation for the home directory $\$ \mathrm{HOME}$, so you can type things like cd $\sim /$ data; see
[U] 11.6 Filenaming conventions.

```
. pwd
/usr/bill/proj
. cd ~/data/city
/usr/bill/data/city
```

If you now wanted to change to /usr/bill/data/city/ny, you could type cd ny. If you wanted instead to change to /usr/bill/data, you could type 'cd ..'.

## Also see

[D] copy - Copy file from disk or URL
[D] dir - Display filenames
[D] erase - Erase a disk file
[D] mkdir - Create directory
[D] rmdir - Remove directory
[D] shell - Temporarily invoke operating system
[D] type - Display contents of a file
[U] 11.6 Filenaming conventions

## Title

cf - Compare two datasets

Description	Quick start	Menu	Syntax
Options	Remarks and examples	Stored results	Methods and formulas
Acknowledgment	Reference	Also see	

## Description

cf compares varlist of the dataset in memory (the master dataset) with the corresponding variables in filename (the using dataset). cf returns nothing (that is, a return code of 0 ) if the specified variables are identical and a return code of 9 if there are any differences. Only the variable values are compared. Variable labels, value labels, notes, characteristics, etc., are not compared.

## Quick start

Compare values of v1 and v2 from mydata1.dta in memory to mydata2.dta cf v1 v2 using mydata2

As above, but give a detailed listing of the differences
cf v1 v2 using mydata2, verbose
As above, but for all variables in memory
cf _all using mydata2, verbose

## Menu

Data $>$ Data utilities $>$ Compare two datasets

## Syntax

cf varlist using filename [, all verbose]

## Options

all displays the result of the comparison for each variable in varlist. Unless all is specified, only the results of the variables that differ are displayed.
verbose gives a detailed listing, by variable, of each observation that differs.

## Remarks and examples

cf produces messages having the following form:

```
varname: does not exist in using
varname: __ in master but ___ in using
varname: __ mismatches
varname: match
```

An example of the second message is "str4 in master but float in using". Unless all is specified, the fourth message does not appear-silence indicates matches.

## > Example 1

We think the dataset in memory is identical to mydata.dta, but we are unsure. We want to understand any differences before continuing:

```
. cf _all using mydata
```

All the variables in the master dataset are in mydata.dta, and these variables are the same in both datasets. We might see instead

```
. cf _all using mydata
 mpg: 2 mismatches
 headroom: does not exist in using
 displacement: does not exist in using
 gear_ratio: does not exist in using
r(9);
```

Two changes were made to the mpg variable, and the headroom, displacement, and gear_ratio variables do not exist in mydata.dta.

To see the result of each comparison, we could append the all option to our command:

```
. cf _all using mydata, all
 make: match
 price: match
 mpg: 2 mismatches
 rep78: match
 headroom: does not exist in using
 trunk: match
 weight: match
 length: match
 turn: match
 displacement: does not exist in using
 gear_ratio: does not exist in using
 foreign: match
r(9);
```

For more details on the mismatches, we can use the verbose option:

```
. cf _all using mydata, verbose
 mpg: 2 mismatches
 obs 1. 22 in master; 33 in using
 obs 2. 17 in master; 33 in using
 headroom: does not exist in using
 displacement: does not exist in using
 gear_ratio: does not exist in using
r(9);
```

This example shows us exactly which two observations for mpg differ, as well as the value stored in each dataset.

## > Example 2

We want to compare a group of variables in the dataset in memory against the same group of variables in mydata.dta.

```
. cf mpg headroom using mydata
 mpg: 2 mismatches
 headroom: does not exist in using
r(9);
```


## Stored results

cf stores the following in $r()$ :
Macros
$r$ (Nsum) number of differences

## Methods and formulas

If you are using Small Stata, you may get the error "too many variables" when you stipulate _all and have many variables in your dataset. (This will not happen if you are using Stata/MP, Stata/SE, or Stata/IC.) If this happens, you will have to perform the comparison with groups of variables. See example 2 for details about how to do this.

## Acknowledgment

Speed improvements in cf were based on code written by David Kantor.

## Reference

Gleason, J. R. 1995. dm36: Comparing two Stata data sets. Stata Technical Bulletin 28: 10-13. Reprinted in Stata Technical Bulletin Reprints, vol. 5, pp. 39-43. College Station, TX: Stata Press.

## Also see <br> [D] compare - Compare two variables

## Title

changeeol - Convert end-of-line characters of text file
Description Quick start Syntax Options Remarks and examples
Also see

## Description

changeeol converts text file filename1 to text file filename2 with the specified Windows/Unix/Mac/classic Mac-style end-of-line characters. changeeol changes the end-of-line characters from one type of file to another.

## Quick start

Create mytext2.txt with Windows end-of-line characters from mytext1.txt
changeeol mytext1.txt mytext2.txt, eol(windows)
As above, but convert to Mac-style end-of-line characters
changeeol mytext1.txt mytext2.txt, eol(mac)
As above, but convert to Unix-style end-of-line characters
changeeol mytext1.txt mytext2.txt, eol(unix)

## Syntax

```
changeeol filename1 filename2, eol(platform) [options]
```

filename 1 and filename 2 must be filenames.
Note: Double quotes may be used to enclose the filenames, and the quotes must be used if the filename contains embedded blanks.
options Description

* eol (windows) convert to Windows-style end-of-line characters ( $\backslash \mathrm{r} \backslash \mathrm{n}$ )
*eol(dos) synonym for eol(windows)
* eol (unix) convert to Unix-style end-of-line characters ( $\backslash n$ )
* eol(mac) convert to Mac-style end-of-line characters ( $\backslash n$ )
*eol(classicmac) convert to classic Mac-style end-of-line characters ( $\backslash r$ )
replace overwrite filename2
force force to convert filename1 to filename 2 if filenamel is a binary file

[^1]
## Options

eol(windows $\mid$ dos $\mid$ unix $\mid$ mac $\mid$ classicmac) specifies to which platform style filename 2 is to be converted. eol() is required.
replace specifies that filename 2 be replaced if it already exists.
force specifies that filenamel be converted if it is a binary file.

## Remarks and examples

changeeol uses hexdump to determine whether filenamel is text or binary. If it is binary, changeeol will refuse to convert it unless the force option is specified.

## Examples

Windows:
. changeeol orig.txt newcopy.txt, eol(windows)
Unix:
. changeeol orig.txt newcopy.txt, eol(unix)
Mac:
. changeeol orig.txt newcopy.txt, eol(mac)
Classic Mac:
. changeeol orig.txt newcopy.txt, eol(classicmac)

## Also see

[D] filefilter - Convert ASCII or binary patterns in a file
[D] hexdump - Display hexadecimal report on file

## Title

checksum - Calculate checksum of file

Description	Quick start	Syntax	Options
Remarks and examples	Stored results	Also see	

## Description

checksum creates filename.sum files for later use by Stata when it reads files over a network. These optional files are used to reduce the chances of corrupted files going undetected. Whenever Stata reads file filename.suffix over a network, whether by use, net, update, etc., it also looks for filename.sum. If Stata finds that file, Stata reads it and uses its contents to verify that the first file was received without error. If there are errors, Stata informs the user that the file could not be read.
set checksum on tells Stata to verify that files downloaded over a network have been received without error.
set checksum off, which is the default, tells Stata to bypass the file verification.

## Quick start

Calculate checksum of mydata.dta
checksum mydata.dta
As above, and save results to mydata.sum
checksum mydata.dta, save
As above, but save results to mycheck.sum
checksum mydata.dta, saving(mycheck.sum)
As above, but replace mycheck.sum if it exists
checksum mydata.dta, saving(mycheck.sum, replace)

## Syntax

```
 checksum filename [, options]
 set checksum \(\{\) on \(\mid\) off \(\}[\), permanently \(]\)
```

options Description
save
replace
saving(filename 2 [, replace])
save output to filename.sum; default is to display a report may overwrite filename.sum; use with save save output to filename2; alternative to save

## - Technical note

checksum calculates a CRC checksum following the POSIX 1003.2 specification and displays the file size in bytes. checksum produces the same results as the Unix cksum command. Comparing the checksum of the original file with the received file guarantees the integrity of the received file.

When comparing Stata's checksum results with those of Unix, do not confuse Unix's sum and cksum commands. Unix's cksum and Stata's checksum use a more robust algorithm than that used by Unix's sum. In some Unix operating systems, there is no cksum command, and the more robust algorithm is obtained by specifying an option with sum.

## Options

save saves the output of the checksum command to the text file filename.sum. The default is to display a report but not create a file.
replace is for use with save; it permits Stata to overwrite an existing filename.sum file.
saving (filename 2 [, replace]) is an alternative to save. It saves the output in the specified filename. You must supply a file extension if you want one, because none is assumed.
permanently specifies that, in addition to making the change right now, the checksum setting be remembered and become the default setting when you invoke Stata.

## Remarks and examples

> Example 1
Say that you wish to put a dataset on your homepage so that colleagues can use it over the Internet by typing

```
. use http://www.myuni.edu/department/~joe/mydata
```

mydata.dta is important, and even though the chances of the file mydata.dta being corrupted by the Internet are small, you wish to guard against that. The solution is to create the checksum file named mydata. sum and place that on your homepage. Your colleagues need type nothing different, but now Stata will verify that all goes well. When they use the file, they will see either

[^2]or

```
. use http://www.myuni.edu/department/~joe/mydata
file transmission error (checksums do not match)
http://www.myuni.edu/department/~joe/mydata.dta not downloaded
r(639);
```

To make the checksum file, change to the directory where the file is located and type

```
. checksum mydata.dta, save
Checksum for mydata.dta = 263508742, size = 4052
file mydata.sum saved
```


## > Example 2

Let's use checksum on the auto dataset that is shipped with Stata. We will load the dataset and save it to our current directory.

```
. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)
. save auto
file auto.dta saved
. checksum auto.dta
Checksum for auto.dta = 3073327115, size = 12207
```

We see the report produced by checksum, but we decide to save this information to a file.
. checksum auto.dta, save
. type auto.sum
1122073073327115
The first number is the version number (possibly used for future releases). The second number is the file's size in bytes, which can be used with the checksum value to ensure that the file transferred without corruption. The third number is the checksum value. Although two different files can have the same checksum value, two files with the same checksum value almost certainly could not have the same file size.

This example is admittedly artificial. Typically, you would use checksum to verify that no file transmission error occurred during a web download. If you want to verify that your own data are unchanged, using datasignature is better; see [D] datasignature.

## Stored results

checksum stores the following in r() :
Scalars
$r$ (version) checksum version number
$r$ (filelen) length of file in bytes
$r$ (checksum) checksum value

## Also see

[D] use - Load Stata dataset
$[\mathrm{R}]$ net - Install and manage user-written additions from the Internet
[D] datasignature - Determine whether data have changed

## Title

clear - Clear memory

Description Quick start Syntax Remarks and examples Also see

## Description

clear, by itself, removes data and value labels from memory and is equivalent to typing
. version 14.2
. drop _all (see [D] drop)
. label drop _all

```
(see [D] label)
```

clear mata removes Mata functions and objects from memory and is equivalent to typing
. version 14.2
. mata: mata clear (see [M-3] mata clear)
clear results eliminates stored results from memory and is equivalent to typing
. version 14.2
. return clear (see $[\mathrm{P}]$ return)
. ereturn clear (see [P] return)
. sreturn clear (see [P] return)
. _return drop _all (see [P] _return)
clear matrix eliminates from memory all matrices created by Stata's matrix command; it does not eliminate Mata matrices from memory. clear matrix is equivalent to typing
. version 14.2
. return clear

- ereturn clear

```
(see [P] return)
(see [P] return)
(see [P] _return)
(see [P] matrix utility)
```

. sreturn clear (see [P] return)
. _return drop _all
. matrix drop _all
. estimates drop _all (see [R] estimates)
clear programs eliminates all programs from memory and is equivalent to typing
. version 14.2
. program drop _all (see [P] program)
clear ado eliminates all automatically loaded ado-file programs from memory (but not programs defined interactively or by do-files). It is equivalent to typing
. version 14.2
. program drop _allado (see [P] program)
clear all and clear * are synonyms. They remove all data, value labels, matrices, scalars, constraints, clusters, stored results, sersets, and Mata functions and objects from memory. They also close all open files and postfiles, clear the class system, close any open Graph windows and dialog boxes, drop all programs from memory, and reset all timers to zero. They are equivalent to typing
. version 14.2
. drop _all
. label drop _all
. matrix drop _all
(see [D] drop)
(see [D] label)
(see $[\mathrm{P}]$ matrix utility)
(see [P] scalar)
(see [R] constraint)
. cluster drop _all (see [MV] cluster utility)
. file close _all
(see [P] file)
. postutil clear
(see [P] postfile)
. _return drop _all
(see [P] _return)
. discard
(see [P] discard)
. program drop _all
(see [P] program)
. timer clear
(see [P] timer)
. mata: mata clear

## Quick start

Remove data and value labels from memory clear

Remove Stata matrices from memory clear matrix

Remove Mata matrices, Mata objects, and Mata functions from memory clear mata

Remove all programs from memory clear programs

As above, but only programs automatically loaded by ado-files

```
clear ado
```

Remove results stored in $\mathrm{r}(\mathrm{)}, \mathrm{e}()$, and s() from memory

```
clear results
```

Remove all the above and constraints, clusters, and sersets; reset timers to 0; clear the class system; and close all open files, graph windows, and dialog boxes
clear all
Same as above
clear *

## Syntax

```
 clear
 clear [mata|results|matrix|programs|ado]
 clear [all|*]
```


## Remarks and examples

You can clear the entire dataset without affecting macros and programs by typing clear. You can also type clear all. This command has the same result as clear by itself but also clears matrices, scalars, constraints, clusters, stored results, sersets, Mata, the class system, business calendars, and programs; closes all open files and postfiles; closes all open Graph windows and dialog boxes; and resets all timers to zero.

## $>$ Example 1

We load the bpwide dataset to correct a mistake in the data.

```
. use http://www.stata-press.com/data/r14/bpwide
(fictional blood pressure data)
. list in \(1 / 5\)
```

patient	sex	agegrp	bp_bef~e	bp_after
1	Male	$30-45$	143	153
2	Male	$30-45$	163	170
3	Male	$30-45$	153	168
4	Male	$30-45$	153	142
5	Male	$30-45$	146	141

. replace bp_after = 145 in 3
(1 real change made)

We made another mistake. We meant to change the value of bp_after in observation 4. It is easiest to begin again.
. list in $1 / 5$

	patient	sex	agegrp	bp_bef~e	bp_after
	1.	Male	$30-45$	143	153
2.	2	Male	$30-45$	163	170
3.	3	Male	$30-45$	153	168
4.	4	Male	$30-45$	153	142
5.	5	Male	$30-45$	146	141

. replace bp_after $=145$ in 3
(1 real change made)

## Also see

[D] drop - Drop variables or observations
[P] discard - Drop automatically loaded programs
[U] 11 Language syntax
[U] 13 Functions and expressions

## Title

clonevar - Clone existing variable

Description	Quick start	Menu	Syntax
Remarks and examples	Acknowledgments	Also see	

## Description

clonevar generates newvar as an exact copy of an existing variable, varname, with the same storage type, values, and display format as varname. varname's variable label, value labels, notes, and characteristics will also be copied.

## Quick start

Copy contents, label, and value label of v1 to newv1
clonevar newv1 = v1
Copy observations from v2 to newv2 where v2 is less than 30
clonevar newv2 = v2 if v2 < 30
Copy the first 20 observations of v3 to newv3
clonevar newv3 $=\mathrm{v} 3$ in $\mathrm{f} / 20$
Same as above
clonevar newv3 $=$ v3 in $1 / 20$

## Menu

Data $>$ Create or change data $>$ Other variable-creation commands $>$ Clone existing variable

## Syntax

clonevar newvar $=$ varname $[$ if $][$ in $]$

## Remarks and examples

clonevar has various possible uses. Programmers may desire that a temporary variable appear to the user exactly like an existing variable. Interactively, you might want a slightly modified copy of an original variable, so the natural starting point is a clone of the original.

## $>$ Example 1

We have a dataset containing information on modes of travel. These data contain a variable named mode that identifies each observation as a specific mode of travel: air, train, bus, or car.

```
. use http://www.stata-press.com/data/r14/travel
. describe mode
\begin{tabular}{lclll}
variable name & \begin{tabular}{c}
storage \\
type
\end{tabular} & \begin{tabular}{l}
display \\
format
\end{tabular} & \begin{tabular}{l}
value \\
label
\end{tabular} & variable label \\
\hline mode & byte & \(\% 8.0 \mathrm{~g}\) & travel & travel mode alternatives
\end{tabular}
. label list travel
travel:
 1 air
 2 train
 3 bus
 4 car
```

To create an identical variable identifying only observations that contain air or train, we could use clonevar with an if qualifier.


mode	airtrain
air   train   bus   car   air	air   train

The new airtrain variable has the same storage type, display format, value label, and variable label as mode. If mode had any characteristics or notes attached to it, they would have been applied to the new airtrain variable, too. The only differences in the two variables are their names and values for bus and car.

- Technical note

The if qualifier used with the clonevar command in example 1 referred to the values of mode as 1 and 2 . Had we wanted to refer to the values by their associated value labels, we could have typed

```
. clonevar airtrain = mode if mode == "air":travel | mode == "train":travel
```

For more details, see [U] 13.11 Label values.

## Acknowledgments

clonevar was written by Nicholas J. Cox of the Department of Geography at Durham University, UK, and coeditor of the Stata Journal and author of Speaking Stata Graphics. He in turn thanks Michael Blasnik of M. Blasnik \& Associates and Ken Higbee of StataCorp for very helpful comments on a precursor of this command.

## Also see

[D] generate - Create or change contents of variable
[D] separate - Create separate variables

## Title

codebook - Describe data contents

Description	Quick start	Menu	Syntax
Options	Remarks and examples	Stored results	References
Also see			

## Description

codebook examines the variable names, labels, and data to produce a codebook describing the dataset.

## Quick start

Codebook of all variables in the dataset
codebook
Codebook of variables v1, v2, and v3
codebook v1 v2 v3
Codebook of all variables starting with code
codebook code*
Include dataset name, last saved date, and variable notes in the codebook
codebook, header notes
Report problems with labels, constant-valued variables, embedded spaces and binary 0 in string variables, and noninteger date variables
codebook, problems
Codebook for dataset with English and Spanish variable and value labels using label languages en and es
codebook, languages(en es)

## Menu

Data $>$ Describe data $>$ Describe data contents (codebook)

## Syntax

$$
\text { codebook }[\text { varlist }][\text { if }][\text { in }][\text {, options }]
$$

options
Options
all
header
notes
mv
tabulate(\#)
problems
detail
compact
dots
Languages
languages[(namelist)]
print complete report without missing values
print dataset name and last saved date
print any notes attached to variables
report pattern of missing values
set tables/summary statistics threshold; default is tabulate (9)
report potential problems in dataset
display detailed report on the variables; only with problems display compact report on the variables
display a dot for each variable processed; only with compact
use with multilingual datasets; see [D] label language for details

## Options

$\qquad$ Options
all is equivalent to specifying the header and notes options. It provides a complete report, which excludes only performing mv.
header adds to the top of the output a header that lists the dataset name, the date that the dataset was last saved, etc.
notes lists any notes attached to the variables; see [D] notes.
mv specifies that codebook search the data to determine the pattern of missing values. This is a CPU-intensive task.
tabulate(\#) specifies the number of unique values of the variables to use to determine whether a variable is categorical or continuous. Missing values are not included in this count. The default is 9 ; when there are more than nine unique values, the variable is classified as continuous. Extended missing values will be included in the tabulation.
problems specifies that a summary report is produced describing potential problems that have been diagnosed:

- Variables that are labeled with an undefined value label
- Incompletely value-labeled variables
- Variables that are constant, including always missing
- Leading, trailing, and embedded spaces in string variables
- Embedded binary 0 ( $\backslash 0$ ) in string variables
- Noninteger-valued date variables

See the discussion of these problems and advice on overcoming them following example 5 .
detail may be specified only with the problems option. It specifies that the detailed report on the variables not be suppressed.
compact specifies that a compact report on the variables be displayed. compact may not be specified with any options other than dots.
dots specifies that a dot be displayed for every variable processed. dots may be specified only with compact.

Languages
languages [(namelist)] is for use with multilingual datasets; see [D] label language. It indicates that the codebook pertains to the languages in namelist or to all defined languages if no such list is specified as an argument to languages (). The output of codebook lists the data label and variable labels in these languages and which value labels are attached to variables in these languages.

Problems are diagnosed in all of these languages, as well. The problem report does not provide details in which language problems occur. We advise you to rerun codebook for problematic variables; specify detail to produce the problem report again.
If you have a multilingual dataset but do not specify languages(), all output, including the problem report, is shown in the "active" language.

## Remarks and examples

codebook, without arguments, is most usefully combined with log to produce a printed listing for enclosure in a notebook documenting the data; see [U] 15 Saving and printing output-log files. codebook is, however, also useful interactively, because you can specify one or a few variables.

## > Example 1

codebook examines the data in producing its results. For variables that codebook thinks are continuous, it presents the mean; the standard deviation; and the 10th, 25th, 50th, 75th, and 90th percentiles. For variables that it thinks are categorical, it presents a tabulation. In part, codebook makes this determination by counting the number of unique values of the variable. If the number is nine or fewer, codebook reports a tabulation; otherwise, it reports summary statistics.
codebook distinguishes the standard missing values (.) and the extended missing values (.a through .z, denoted by .*). If extended missing values are found, codebook reports the number of distinct missing value codes that occurred in that variable. Missing values are ignored with the tabulate option when determining whether a variable is treated as continuous or categorical.

```
. use http://www.stata-press.com/data/r14/educ3
(ccdb46, 52-54)
. codebook fips division, all
 Dataset: http://www.stata-press.com/data/r14/educ3.dta
 Last saved: 6 Mar 2014 22:20
 Label: ccdb46, 52-54
 Number of variables: 42
Number of observations: 956
 Size: 145,312 bytes ignoring labels, etc.
_dta:
 1. confirmed data with steve on 7/22
fips state/place code
```



Because division has nine unique nonmissing values, codebook reported a tabulation. If division had contained one more unique nonmissing value, codebook would have switched to reporting summary statistics, unless we had included the tabulate(\#) option.

## > Example 2

The mv option is useful. It instructs codebook to search the data to determine patterns of missing values. Different kinds of missing values are not distinguished in the patterns.

```
. use http://www.stata-press.com/data/r14/citytemp
(City Temperature Data)
. codebook cooldd heatdd tempjan tempjuly, mv
```


heatdd
Heating degree days

range:	[0,10816]		units:	1	
unique values:	471			3/956	
mean:	4425.53				
std. dev:	2199.6				
percentiles:	10\%	25\%	50\%	75\%	90\%
	1510	2460	4950	6232	6919
missing values:	cooldd==mv <-> heatdd==mv				
tempjan==mv --> heatdd==mv					
tempjuly==mv --> heatdd==mv					



tempjuly		Average July temperature		
type:	numeric (float)			
range:	[58.1,93.6]		: 1	
unique values:	196	missi	2/9	
mean:	75.0538			
std. dev:	5.49504			
percentiles:	10\% $25 \%$	50\%	75\%	90\%
	68.871 .8	74.25	78.7	82.3
missing values:	tempjan==mv <->	mpjuly=		

codebook reports that if tempjan is missing, tempjuly is also missing, and vice versa. In the output for the cooldd variable, codebook also reports that the pattern of missing values is the same for cooldd and heatdd. In both cases, the correspondence is indicated with "<->".

For cooldd, codebook also states that "tempjan==mv --> cooldd==mv". The one-way arrow means that a missing tempjan value implies a missing cooldd value but that a missing cooldd value does not necessarily imply a missing tempjan value.

Another feature of codebook-this one for numeric variables-is that it can determine the units of the variable. For instance, in the example above, tempjan and tempjuly both have units of 0.1 , meaning that temperature is recorded to tenths of a degree. codebook handles precision considerations in making this determination (tempjan and tempjuly are floats; see [U] $\mathbf{1 3 . 1 2}$ Precision and problems therein). If we had a variable in our dataset recorded in 100s (for example, 21,500 or 36,800 ), codebook would have reported the units as 100 . If we had a variable that took on only values divisible by 5 ( $5,10,15$, etc.), codebook would have reported the units as 5 .

## > Example 3

We can use the label language command (see [D] label language) and the label command (see [D] label) to create German value labels for our auto dataset. These labels are reported by codebook:

```
. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)
. label language en, rename
(language default renamed en)
. label language de, new
(language de now current language)
. label data "1978 Automobile Daten"
. label variable foreign "Art Auto"
. label values foreign origin_de
. label define origin_de 0 "Innen" 1 "Ausländish"
```

. codebook foreign


With the languages() option, the value labels are shown in the specified active and available languages.

## Example 4

codebook, compact summarizes the variables in your dataset, including variable labels. It is an alternative to the summarize command.

Variable	Obs	Unique	Mean	Min	Max	Label
make	74	74	.	.	.	Make and Model
price	74	74	6165.257	3291	15906	Price
mpg	74	21	21.2973	12	41	Mileage (mpg)
rep78	69	5	3.405797	1	5	Repair Record 1978
headroom	74	8	2.993243	1.5	5	Headroom (in.)
trunk	74	18	13.75676	5	23	Trunk space (cu. ft.)
weight	74	64	3019.459	1760	4840	Weight (lbs.)
length	74	47	187.9324	142	233	Length (in.)
turn	74	18	39.64865	31	51	Turn Circle (ft.)
displacement	74	31	197.2973	79	425	Displacement (cu. in.)
gear_ratio	74	36	3.014865	2.19	3.89	Gear Ratio
foreign	74	2	. 2972973	0	1	Car type


. summarize					
Variable	Obs	Mean	Std. Dev.	Min	Max
make	0				
price	74	6165.257	2949.496	3291	15906
mpg	74	21.2973	5.785503	12	41
rep78	69	3.405797	.9899323	1	5
headroom	74	2.993243	.8459948	1.5	5
trunk	74	13.75676	4.277404	5	23
weight	74	3019.459	777.1936	1760	4840
length	74	187.9324	22.26634	142	233
turn	74	39.64865	4.399354	31	51
displacement	74	197.2973	91.83722	79	425
gear_ratio	74	3.014865	.4562871	2.19	3.89
foreign	74	.2972973	.4601885	0	1

## > Example 5

When codebook determines that neither a tabulation nor a listing of summary statistics is appropriate, for instance, for a string variable or for a numeric variable taking on many labeled values, it reports a few examples instead.

```
. use http://www.stata-press.com/data/r14/funnyvar
```

. codebook name
name (unlabeled)

codebook is also on the lookout for common problems that might cause you to make errors when dealing with the data. For string variables, this includes leading, embedded, and trailing blanks and embedded binary 0 ( $\backslash 0$ ). In the output above, codebook informed us that name includes embedded blanks. If name had leading or trailing blanks, it would have mentioned that, too.

When variables are value labeled, codebook performs two checks. First, if a value label labname is associated with a variable, codebook checks whether labname is actually defined. Second, it checks whether all values are value labeled. Partial labeling of a variable may mean that the label was defined incorrectly (for instance, the variable has values 0 and 1, but the value label maps 1 to "male" and 2 to "female") or that the variable was defined incorrectly (for example, a variable gender with three values). codebook checks whether date variables are integer valued.

If the problems option is specified, codebook does not provide detailed descriptions of each variable but reports only the potential problems in the data.

```
. codebook, problems
 Potential problems in dataset http://www.stata-press.com/data/r14/
> funnyvar.dta
 potential problem variables
 constant (or all missing) vars human planet
```

In the example above, codebook, problems reported various potential problems with the dataset. These problems include

- Constant variables, including variables that are always missing

Variables that are constant, taking the same value in all observations, or that are always missing, are often superfluous. Such variables, however, may also indicate problems. For instance, variables that are always missing may occur when importing data with an incorrect input specification. Such variables may also occur if you generate a new variable for a subset of the data, selected with an expression that is false for all observations.

Advice: Carefully check the origin of constant variables. If you are saving a constant variable, be sure to compress the variable to use minimal storage.

- Variables with nonexisting value labels

Stata treats value labels as separate objects that can be attached to one or more variables. A problem may arise if variables are linked to value labels that are not yet defined or if an incorrect value label name was used.

Advice: Attach the correct value label, or label define the value label. See [D] label.

- Incompletely labeled variables

A variable is called "incompletely value labeled" if the variable is value labeled but no mapping is provided for some values of the variable. An example is a variable with values 0,1 , and 2 and value labels for 1,2 , and 3 . This situation usually indicates an error, either in the data or in the value label.
Advice: Change either the data or the value label.

- String variables that may be compressed

The storage space used by a string variable is determined by its data type; see [D] data types. For instance, the storage type str20 indicates that 20 bytes are used per observation. If the declared storage type exceeds your requirements, memory and disk space is wasted.
Advice: Use compress to store the data as compactly as possible.

- String variables with leading or trailing blanks

In most applications, leading and trailing spaces do not affect the meaning of variables but are probably side effects from importing the data or from data manipulation. Spurious
leading and trailing spaces force Stata to use more memory than required. In addition, manipulating strings with leading and trailing spaces is harder.
Advice: Remove leading and trailing blanks from a string variable $s$ by typing

```
replace s = strtrim(s)
```

See [FN] String functions.

- String variables with embedded blanks

String variables with embedded blanks are often appropriate; however, sometimes they indicate problems importing the data.
Advice: Verify that blanks are meaningful in the variables.

- String variables with embedded binary 0 ( $\backslash 0$ )

String variables with embedded binary $0(\backslash 0)$ are allowed; however, caution should be used when working with them as some commands and functions may only work with the plain-text portion of a binary string, ignoring anything after the first binary 0 .

Advice: Be aware of binary strings in your data and whether you are manipulating them in a way that is only appropriate with plain-text values.

- Noninteger-valued date variables

Stata's date and time formats were designed for use with integer values but will work with noninteger values.
Advice: Carefully inspect the nature of the noninteger values. If noninteger values in a variable are the consequence of roundoff error, you may want to round the variable to the nearest integer.

```
replace time = round(time)
```

Of course, more problems not reported by codebook are possible. These might include

- Numerical data stored as strings

After importing data into Stata, you may discover that some string variables can actually be interpreted as numbers. Stata can do much more with numerical data than with string data. Moreover, string representation usually makes less efficient use of computer resources. destring will convert string variables to numeric.
A string variable may contain a "field" with numeric information. An example is an address variable that contains the street name followed by the house number. The Stata string functions can extract the relevant substring.

- Categorical variables stored as strings

Most statistical commands do not allow string variables. Moreover, string variables that take only a limited number of distinct values are an inefficient storage method. Use value-labeled numeric values instead. These are easily created with encode.

- Duplicate observations

See [D] duplicates.

- Observations that are always missing

Drop observations that are missing for all variables in varlist using the rownonmiss () egen function:

```
egen nobs = rownonmiss(varlist)
drop if nobs==0
```

Specify _all for varlist if only observations that are always missing should be dropped.

## Stored results

codebook stores the following lists of variables with potential problems in $r()$ :
Macros

```
r(cons) constant (or missing)
 r(labelnotfound) undefined value labeled
 r(notlabeled) value labeled but with unlabeled categories
 r(str_type) compressible
 r(str_leading) leading blanks
 r(str_trailing) trailing blanks
 r(str_embedded) embedded blanks
 r(str_embedded0) embedded binary 0 (\0)
 r(realdate) noninteger dates
```


## References

Cox, N. J. 2008. Speaking Stata: Distinct observations. Stata Journal 8: 557-568.
_-. 2012. Software Updates: Speaking Stata: Distinct observations. Stata Journal 12: 352.
Long, J. S. 2009. The Workflow of Data Analysis Using Stata. College Station, TX: Stata Press.

[^3]
## Title

collapse - Make dataset of summary statistics

Description	Quick start	Menu	Syntax
Options	Remarks and examples	Acknowledgment	Also see

## Description

collapse converts the dataset in memory into a dataset of means, sums, medians, etc. clist must refer to numeric variables exclusively.

Note: See [D] contract if you want to collapse to a dataset of frequencies.

## Quick start

Replace dataset in memory with means of v1 and v2
collapse v1 v2
As above, but calculate statistics separately by each level of catvar collapse v1 v2, by (catvar)

Dataset of mean, standard deviation, and standard error of the mean of v1
collapse (mean) mean1=v1 (sd) sd1=v1 (semean) sem1=v1
Mean and standard error of the mean for binomial v2
collapse (mean) mean2=v2 (sebinomial) sem2=v2
Frequency, median, and interquartile range of v 1
collapse (count) freq=v1 (p50) p50=v1 (iqr) iqr=v1
Weighted and unweighted sum of v2 using frequency weight wvar
collapse (sum) weighted=v2 (rawsum) unweighted=v2 [fweight=wvar]

## Menu

Data $>$ Create or change data $>$ Other variable-transformation commands $>$ Make dataset of means, medians, etc.

## Syntax

$$
\text { collapse clist }[\text { if }][\text { in }][\text { weight }][\text {, options }]
$$

where clist is either

$$
\begin{aligned}
& {[(\text { stat })] \text { varlist }[[(\text { stat })] \ldots]} \\
& {[(\text { stat })] \text { target_var=varname }[\text { target_var=varname } \ldots][[(\text { stat })] \ldots]}
\end{aligned}
$$

or any combination of the varlist and target_var forms, and stat is one of

mean	means (default)	sum	sums
median	medians	rawsum	sums, ignoring optionally specified weight
p1	1st percentile		except observations with a weight of
p2	2nd percentile		zero are excluded
	3rd-49th percentiles	count	number of nonmissing observations
p50	50th percentile (same as median)	percent	percentage of nonmissing observations
	51st-97th percentiles	max	maximums
p98	98th percentile	min	minimums
p99	99th percentile	iqr	interquartile range
sd	standard deviations	first	first value
semean	standard error of the mean (sd/sqrt(n))	$\begin{aligned} & \text { last } \\ & \text { firstnm } \end{aligned}$	last value   first nonmissing value
sebinomial	standard error of the mean, binomial $(\operatorname{sqrt}(p(1-p) / n))$	lastnm	last nonmissing value
sepoisson	standard error of the mean, Poisson (sqrt(mean))		

If stat is not specified, mean is assumed.

## options

## Description

Options

by (varlist)	groups over which stat is to be calculated   cw
fasewise deletion instead of all possible observations	

varlist and varname in clist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight, and see Weights below. pweights may not be used with sd, semean, sebinomial, or sepoisson. iweights may not be used with semean, sebinomial, or sepoisson. aweights may not be used with sebinomial or sepoisson.
fast does not appear in the dialog box.
Examples:
. collapse age educ income, by(state)
. collapse (mean) age educ (median) income, by (state)
. collapse (mean) age educ income (median) medinc=income, by (state)
. collapse (p25) gpa [fw=number], by(year)

## Options

Options
by (varlist) specifies the groups over which the means, etc., are to be calculated. If this option is not specified, the resulting dataset will contain 1 observation. If it is specified, varlist may refer to either string or numeric variables.
cw specifies casewise deletion. If cw is not specified, all possible observations are used for each calculated statistic.

The following option is available with collapse but is not shown in the dialog box:
fast specifies that collapse not restore the original dataset should the user press Break. fast is intended for use by programmers.

## Remarks and examples

collapse takes the dataset in memory and creates a new dataset containing summary statistics of the original data. collapse adds meaningful variable labels to the variables in this new dataset. Because the syntax diagram for collapse makes using it appear more complicated than it is, collapse is best explained with examples.

Remarks are presented under the following headings:

Introductory examples<br>Variablewise or casewise deletion<br>Weights<br>A final example

## Introductory examples

## Example 1

Consider the following artificial data on the grade-point average (gpa) of college students:

```
. use http://www.stata-press.com/data/r14/college
. describe
Contains data from http://www.stata-press.com/data/r14/college.dta
 obs: }1
 vars: 4 3 Jan 2014 12:05
 size: 120
```

variable name	storage   type	display   format	value   label

```
Sorted by: year
```

. list, $\operatorname{sep}(4)$

	gpa	hour	year	number
1.	3.2	30	1	3
2.	3.5	34	1	2
3.	2.8	28	1	9
4.	2.1	30	1	4
5.	3.8	29	2	3
6.	2.5	30	2	4
7.	2.9	35	2	5
8.	3.7	30	3	4
9.	2.2	35	3	2
10.	3.3	33	3	3
11.	3.4	32	4	5
12.	2.9	31	4	2

To obtain a dataset containing the 25th percentile of gpa's for each year, we type

```
. collapse (p25) gpa [fw=number], by(year)
```

We used frequency weights.
Next we want to create a dataset containing the mean of gpa and hour for each year. We do not have to type (mean) to specify that we want the mean because the mean is reported by default.

```
. use http://www.stata-press.com/data/r14/college, clear
. collapse gpa hour [fw=number], by(year)
. list
```

	year	gpa	hour
1.	1	2.788889	29.44444
2.	2	2.991667	31.83333
3.	3	3.233333	32.11111
4.	4	3.257143	31.71428

Now we want to create a dataset containing the mean and median of gpa and hour, and we want the median of gpa and hour to be stored as variables medgpa and medhour, respectively.

```
. use http://www.stata-press.com/data/r14/college, clear
. collapse (mean) gpa hour (median) medgpa=gpa medhour=hour [fw=num], by(year)
. list
```

year	gpa	hour	medgpa	medhour
1	2.788889	29.44444	2.8	29
2	2.991667	31.83333	2.9	30
3	3.233333	32.11111	3.3	33
4	3.257143	31.71428	3.4	32

Here we want to create a dataset containing a count of gpa and hour and the minimums of gpa and hour. The minimums of gpa and hour will be stored as variables mingpa and minhour, respectively.
. use http://www.stata-press.com/data/r14/college, clear
. collapse (count) gpa hour (min) mingpa=gpa minhour=hour [fw=num], by (year)
. list

	year	gpa	hour	mingpa	minhour
1.	1	18	18	2.1	28
2.	2	12	12	2.5	29
3.	3	9	9	2.2	30
4.	4	7	7	2.9	31

Now we replace the values of gpa in 3 of the observations with missing values.

```
. use http://www.stata-press.com/data/r14/college, clear
. replace gpa = . in 2/4
(3 real changes made, 3 to missing)
. list, sep(4)
```

	gpa	hour	year	number
1.	3.2	30	1	3
2.	.	34	1	2
3.	.	28	1	9
4.	.	30	1	4
5.	3.8	29	2	3
6.	2.5	30	2	4
7.	2.9	35	2	5
8.	3.7	30	3	4
		2.2	35	3

If we now want to list the data containing the mean of gpa and hour for each year, collapse uses all observations on hour for year $=1$, even though gpa is missing for observations $1-3$.

```
. collapse gpa hour [fw=num], by(year)
```

. list

	year	gpa	hour
1.	1	3.2	29.44444
2.	2	2.991667	31.83333
3.	3	3.233333	32.11111
4.	4	3.257143	31.71428

If we repeat this process but specify the cw option, collapse ignores all observations that have missing values.

```
. use http://www.stata-press.com/data/r14/college, clear
. replace gpa = . in 2/4
(3 real changes made, 3 to missing)
. collapse (mean) gpa hour [fw=num], by(year) cw
. list
```

year	gpa	hour
1	3.2	30
2	2.991667	31.83333
3	3.233333	32.11111
4	3.257143	31.71428

## > Example 2

We have individual-level data from a census in which each observation is a person. Among other variables, the dataset contains the numeric variables age, educ, and income and the string variable state. We want to create a 50 -observation dataset containing the means of age, education, and income for each state.

```
. collapse age educ income, by(state)
```

The resulting dataset contains means because collapse assumes that we want means if we do not specify otherwise. To make this explicit, we could have typed

```
. collapse (mean) age educ income, by(state)
```

Had we wanted the mean for age and educ and the median for income, we could have typed

```
. collapse (mean) age educ (median) income, by(state)
```

or if we had wanted the mean for age and educ and both the mean and the median for income, we could have typed

```
. collapse (mean) age educ income (median) medinc=income, by(state)
```

This last dataset will contain three variables containing means-age, educ, and income-and one variable containing the median of income-medinc. Because we typed (median) medinc=income, Stata knew to find the median for income and to store those in a variable named medinc. This renaming convention is necessary in this example because a variable named income containing the mean is also being created.

## Variablewise or casewise deletion

> Example 3
Let's assume that in our census data, we have 25,000 persons for whom age is recorded but only 15,000 for whom income is recorded; that is, income is missing for 10,000 observations. If we want summary statistics for age and income, collapse will, by default, use all 25,000 observations when calculating the summary statistics for age. If we prefer that collapse use only the 15,000 observations for which income is not missing, we can specify the cw (casewise) option:

```
. collapse (mean) age income (median) medinc=income, by(state) cw
```


## Weights

collapse allows all four weight types; the default is aweights. Weight normalization affects only the sum, count, sd, semean, and sebinomial statistics.

Let $j$ index observations and $i$ index by-groups. Here are the definitions for count and sum with weights:

## count:

unweighted: $\quad N_{i}$, the number of observations in group $i$
aweight: $\quad N_{i}$, the number of observations in group $i$
fweight, iweight, pweight: $\sum_{\text {group } i} w_{j}$, the sum of the weights over observations in sum:
unweighted:
aweight:
fweight, iweight, pweight: $\sum w_{j} x_{j}$ over observations in group $i$

When the by () option is not specified, the entire dataset is treated as one group.
The sd statistic with weights returns the square root of the bias-corrected variance, which is based on the factor $\sqrt{N_{i} /\left(N_{i}-1\right)}$, where $N_{i}$ is the number of observations. Statistics sd, semean, sebinomial, and sepoisson are not allowed with pweighted data. Otherwise, the statistic is changed by the weights through the computation of the weighted count, as outlined above.

For instance, consider a case in which there are 25 observations in the dataset and a weighting variable that sums to 57 . In the unweighted case, the weight is not specified, and the count is 25 . In the analytically weighted case, the count is still 25 ; the scale of the weight is irrelevant. In the frequency-weighted case, however, the count is 57 , the sum of the weights.

The rawsum statistic with aweights ignores the weight, with one exception: observations with zero weight will not be included in the sum.

## > Example 4

Using our same census data, suppose that instead of starting with individual-level data and aggregating to the state level, we started with state-level data and wanted to aggregate to the region level. Also assume that our dataset contains pop, the population of each state.

To obtain unweighted means and medians of age and income, by region, along with the total population, we could type

```
. collapse (mean) age income (median) medage=age medinc=income (sum) pop,
> by(region)
```

To obtain weighted means and medians of age and income, by region, along with the total population and using frequency weights, we could type

```
. collapse (mean) age income (median) medage=age medinc=income (count) pop
> [fweight=pop], by(region)
```

Note: Specifying (sum) pop would not have worked because that would have yielded the popweighted sum of pop. Specifying (count) age would have worked as well as (count) pop because count merely counts the number of nonmissing observations. The counts here, however, are frequency-weighted and equal the sum of pop.

To obtain the same mean and medians as above, but using analytic weights, we could type

```
. collapse (mean) age income (median) medage=age medinc=income (rawsum) pop
> [aweight=pop], by(region)
```

Note: Specifying (count) pop would not have worked because, with analytic weights, count would count numbers of physical observations. Specifying (sum) pop would not have worked because sum would calculate weighted sums (with a normalized weight). The rawsum function, however, ignores the weights and sums only the specified variable, with one exception: observations with zero weight will not be included in the sum. rawsum would have worked as the solution to all three cases.

## A final example

## $>$ Example 5

We have census data containing information on each state's median age, marriage rate, and divorce rate. We want to form a new dataset containing various summary statistics, by region, of the variables:

```
. use http://www.stata-press.com/data/r14/census5, clear
(1980 Census data by state)
. describe
Contains data from http://www.stata-press.com/data/r14/census5.dta
 obs: 50 1980 Census data by state
 vars: 7 6 Apr 2014 15:43
 size: 1,700
```

variable name	storage   type	display   format	value   label	variable label
state	str14	$\% 14 \mathrm{~s}$		State
state2	str2	$\%-2 \mathrm{~s}$		Two-letter state abbreviation
region	int	$\% 8.0 \mathrm{~g}$	cenreg	Census region
pop	long	$\% 10.0 \mathrm{~g}$		Population
median_age	float	$\% 9.2 \mathrm{f}$		Median age
marriage_rate	float	$\% 9.0 \mathrm{~g}$		
divorce_rate	float	$\% 9.0 \mathrm{~g}$		

Sorted by: region
. collapse (median) median_age marriage divorce (mean) avgmrate=marriage
> avgdrate=divorce [aw=pop], by(region)
. list

region	median~e	marria~e	divorc~e	avgmrate	avgdrate
NE	31.90	.0080657	.0035295	.0081472	.0035359
N Cntrl	29.90	.0093821	.0048636	.0096701	.004961
South	29.60	.0112609	.0065792	.0117082	.0059439
West	29.90	.0089093	.0056423	.0125199	.0063464

. describe
Contains data
obs: $4 \quad 1980$ Census data by state
vars: 6
size: 88

	storage   type	display   format	value   label	variable label
variable name	cenreg	Census region   region	int	$\% 8.0 \mathrm{~g}$
median_age	float	$\% 9.2 \mathrm{f}$		(p 50) median_age
marriage_rate	float	$\% 9.0 \mathrm{~g}$		(p 50) divorce_rate
divorce_rate	float	$\% 9.0 \mathrm{~g}$		(mean) marriage_rate
avgmrate	float	$\% 9.0 \mathrm{~g}$		(mean) divorce_rate
avgdrate	float	$\% 9.0 \mathrm{~g}$		

Sorted by: region
Note: Dataset has changed since last saved.

## Acknowledgment

We thank David Roodman for writing collapse2, which inspired several features in collapse.

## Also see

[D] contract - Make dataset of frequencies and percentages
[D] egen - Extensions to generate
[D] statsby - Collect statistics for a command across a by list
[R] summarize - Summary statistics

## Title

compare - Compare two variables
Description Quick start Menu Syntax Remarks and examples

## Description

compare reports the differences and similarities between varname ${ }_{1}$ and varname ${ }_{2}$.

## Quick start

Describe differences in missing and defined values of v 1 and v 2 compare v1 v2

As above, but only for observations where catvar is equal to 3
compare v1 v2 if catvar==3
As above, but for each level of catvar
by catvar: compare v1 v2

## Menu

Data $>$ Data utilities $>$ Compare two variables

## Syntax

compare varname ${ }_{1}$ varname $_{2}[$ if $][$ in $]$
by is allowed; see [D] by.

## Remarks and examples

## Example 1

One of the more useful accountings made by compare is the pattern of missing values:

```
. use http://www.stata-press.com/data/r14/fullauto
(Automobile Models)
```

. compare rep77 rep78

	count	minimum	difference   average	maximum
rep77<rep78	16	-3	-1.3125	-1
rep77=rep78	43		1	1
rep77>rep78	7	1		
	66	-3	-.2121212	1
jointly defined	3			
rep77 missing only	5			
jointly missing	74			
total				

We see that both rep77 and rep78 are missing in 5 observations and that rep77 is also missing in 3 more observations.

## Technical note

compare may be used with numeric variables, string variables, or both. When used with string variables, the summary of the differences (minimum, average, maximum) is not reported. When used with string and numeric variables, the breakdown by <, =, and > is also suppressed.

## Also see

[D] cf - Compare two datasets
[D] codebook - Describe data contents
[D] inspect - Display simple summary of data's attributes

## Title

compress - Compress data in memory

Description Quick start Menu Syntax Option Remarks and examples
Also see

## Description

compress attempts to reduce the amount of memory used by your data.

## Quick start

Reduce the amount of memory used by the current dataset
compress
As above, but only reduce memory used by v1 and v2
compress v1 v2
Speed up compress for large datasets with strL-type variables but possibly reduce the amount of memory saved
compress, nocoalesce

## Menu

Data $>$ Data utilities $>$ Optimize variable storage

## Syntax

compress [varlist] [, nocoalesce]

## Option

nocoalesce specifies that compress not try to find duplicate values within stall variables in an attempt to save memory. If nocoalesce is not specified, compress must sort the data by each strL variable, which can be time consuming in large datasets.

## Remarks and examples

compress reduces the size of your dataset by considering two things. First, it considers demoting

doubles	to longs, ints, or bytes
floats	to
longs or bytes	
ints	to ints or bytes
str\#s	to bytes
strLs	to
	to str\#er str\#s

See [D] data types for an explanation of these storage types.
Second, it considers coalescing strLs within each strL variable. That is to say, if a strL variable takes on the same value in multiple observations, compress can link those values to a single memory location to save memory. To check for this, compress must sort the data on each strL variable. You can use the nocoalesce option to tell compress not to take the time to perform this check. If compress does check whether it can coalesce strl values, it will do whichever saves more memory-coalescing strL values or demoting a strL to a str\#-or it will do nothing if it cannot save memory by changing a strL.
compress leaves your data logically unchanged but (probably) appreciably smaller. compress never makes a mistake, results in loss of precision, or hacks off strings.
$>$ Example 1
If you do not specify a varlist, compress considers demoting all the variables in your dataset, so typing compress by itself is usually enough:

```
. use http://www.stata-press.com/data/r14/compxmp2
(1978 Automobile Data)
. compress
 variable mpg was float now byte
 variable price was long now int
 variable yenprice was double now long
 variable weight was double now int
 variable make was str26 now str17
 (1,776 bytes saved)
```

If there are no compression possibilities, compress does nothing. For instance, typing compress again results in

```
. compress
 (0 bytes saved)
```


## Also see

[D] data types - Quick reference for data types
[D] recast - Change storage type of variable

## Title

contract - Make dataset of frequencies and percentages

Description	Quick start	Menu	Syntax
Options	Remarks and examples	Acknowledgments	Reference
Also see			

## Description

contract replaces the dataset in memory with a new dataset consisting of all combinations of varlist that exist in the data and a new variable that contains the frequency of each combination.

## Quick start

Frequency of each combination of v 1 and v 2 saved in _freq
contract v1 v2
As above, but name new frequency variable newf
contract v1 v2, freq(newf)
Add percentage of total in newp
contract v1 v2, freq(newf) percent(newp)
Add cumulative frequency newcf and cumulative percentage newcp
contract v1 v2, freq(newf) percent(newp) cfreq(newcf) ///
cpercent (newcp)
Frequency of combinations excluding missing values
contract v1 v2, nomiss
Add combinations with zero observations
contract v1 v2, nomiss zero

## Menu

Data $>$ Create or change data $>$ Other variable-transformation commands $>$ Make dataset of frequencies

## Syntax

```
contract varlist \([\) if \(][\) in \(][\) weight \(][\), options \(]\)
```

options
Options
freq(newvar)
cfreq(newvar)
percent (newvar)
cpercent (newvar)
float
format (format)
zero
nomiss

Description
name of frequency variable; default is _freq
create cumulative frequency variable
create percentage variable
create cumulative percentage variable
generate percentage variables as type float
display format for new percentage variables; default is format (\%8.2f)
include combinations with frequency zero
drop observations with missing values
fweights are allowed; see [U] 11.1.6 weight.

## Options

$\xlongequal{\text { Options }}$
freq(newvar) specifies a name for the frequency variable. If not specified, _freq is used.
cfreq(newvar) specifies a name for the cumulative frequency variable. If not specified, no cumulative frequency variable is created.
percent (newvar) specifies a name for the percentage variable. If not specified, no percentage variable is created.
cpercent (newvar) specifies a name for the cumulative percentage variable. If not specified, no cumulative percentage variable is created.
float specifies that the percentage variables specified by percent() and cpercent() will be generated as variables of type float. If float is not specified, these variables will be generated as variables of type double. All generated variables are compressed to the smallest storage type possible without loss of precision; see [D] compress.
format (format) specifies a display format for the generated percentage variables specified by percent () and cpercent (). If format () is not specified, these variables will have the display format \%8.2f.
zero specifies that combinations with frequency zero be included.
nomiss specifies that observations with missing values on any variable in varlist be dropped. If nomiss is not specified, all observations possible are used.

## Remarks and examples

contract takes the dataset in memory and creates a new dataset containing all combinations of varlist that exist in the data and a new variable that contains the frequency of each combination.

Sometimes you may want to collapse a dataset into frequency form. Several observations that have identical values on one or more variables will be replaced by one such observation, together with the frequency of the corresponding set of values. For example, in certain generalized linear models, the frequency of some combination of values is the response variable, so you would need to produce that response variable. The set of covariate values associated with each frequency is sometimes called a covariate class or covariate pattern. Such collapsing is reversible for the variables concerned, because the original dataset can be reconstituted by using expand (see [D] expand) with the variable containing the frequencies of each covariate class.

## $>$ Example 1

Suppose that we wish to collapse auto2.dta to a set of frequencies of the variables rep78, which takes values labeled "Poor", "Fair", "Average", "Good", and "Excellent", and foreign, which takes values labeled "Domestic" and "Foreign".

```
. use http://www.stata-press.com/data/r14/auto2
(1978 Automobile Data)
. contract rep78 foreign
. list
```

	rep78	foreign	_freq
1.	Poor	Domestic	2
2.	Fair	Domestic	8
3.	Average	Domestic	27
4.	Average	Foreign	3
5.	Good	Domestic	9
6.	Good	Foreign	9
7.	Excellent	Domestic	2
8.	Excellent	Foreign	9
9.	$\cdot$	Domestic	4
10.	$\cdot$	Foreign	1

By default, contract uses the variable name _freq for the new variable that contains the frequencies. If _freq is in use, you will be reminded to specify a new variable name via the freq() option.

Specifying the zero option requests that combinations with frequency zero also be listed.

```
. use http://www.stata-press.com/data/r14/auto2, clear
(1978 Automobile Data)
. contract rep78 foreign, zero
. list
```

	rep78	foreign	_freq
1.	Poor	Domestic	2
2.	Poor	Foreign	0
3.	Fair	Domestic	8
4.	Fair	Foreign	0
5.	Average	Domestic	27
6.	Average	Foreign	3
7.	Good	Domestic	9
8.	Good	Foreign	9
9.	Excellent	Domestic	2
10.	Excellent	Foreign	9
11.	-	Domestic	4
12.		Foreign	1

## Acknowledgments

contract was written by Nicholas J. Cox (1998) of the Department of Geography at Durham University, UK, and coeditor of the Stata Journal and author of Speaking Stata Graphics. The cfreq(), percent(), cpercent(), float, and format() options were written by Roger Newson of the Imperial College London.

## Reference

Cox, N. J. 1998. dm59: Collapsing datasets to frequencies. Stata Technical Bulletin 44: 2-3. Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 20-21. College Station, TX: Stata Press.

## Also see

[D] expand - Duplicate observations
[D] collapse - Make dataset of summary statistics
[D] duplicates - Report, tag, or drop duplicate observations

## Title

copy - Copy file from disk or URL

Description Quick start Syntax Options Remarks and examples
Also see

## Description

copy copies an existing file to a file with a new name.

## Quick start

Copy mydata.dta from C: \myfolder to C: \otherfolder copy c:\myfolder\mydata.dta c:\otherfolder $\backslash$

As above, but change dataset name to newdata.dta copy c:\myfolder\mydata.dta c:\otherfolder\newdata.dta

As above, but replace newdata.dta if it exists
copy c:\myfolder\mydata.dta c:\otherfolder\newdata.dta, replace
Copy web-based Stata example dataset fullauto.dta to the current working directory copy http://www.stata-press.com/data/r14/fullauto.dta myauto.dta

## Syntax

copy filename ${ }_{1}$ filename $_{2}$ [, options $]$
filename $_{1}$ may be a filename or a URL. filename $e_{2}$ may be the name of a file or a directory. If filename ${ }_{2}$ is a directory name, filename ${ }_{1}$ will be copied to that directory. filename $2_{2}$ may not be a URL.
Note: Double quotes may be used to enclose the filenames, and the quotes must be used if the filename contains embedded blanks.

options	Description
public	make filename $_{2}$ readable by all
$\underline{\text { text }}$	interpret filename $_{1}$ as text file and translate to native text format
replace	may overwrite filename ${ }_{2}$

[^4]
## Options

public specifies that filename ${ }_{2}$ be readable by everyone; otherwise, the file will be created according to the default permissions of your operating system.
text specifies that filename ${ }_{1}$ be interpreted as a text file and be translated to the native form of text files on your computer. Computers differ on how end-of-line is recorded: Unix systems record one line-feed character, Windows computers record a carriage-return/line-feed combination, and Mac computers record just a carriage return. text specifies that filename ${ }_{1}$ be examined to determine how it has end-of-line recorded and that the line-end characters be switched to whatever is appropriate for your computer when the copy is made.
There is no reason to specify text when copying a file already on your computer to a different location because the file would already be in your computer's format.

Do not specify text unless you know that the file is a text file; if the file is binary and you specify text, the copy will be useless. Most word processors produce binary files, not text files. The term text, as it is used here, specifies a particular way of recording textual information.
When other parts of Stata read text files, they do not care how lines are terminated, so there is no reason to translate end-of-line characters on that score. You specify text because you may want to look at the file with other software.

The following option is available with copy but is not shown in the dialog box: replace specifies that filename 2 be replaced if it already exists.

## Remarks and examples

Examples:
Windows:

```
. copy orig.dta newcopy.dta
. copy mydir\orig.dta .
. copy orig.dta ../../
. copy "my document" "copy of document"
. copy ..\mydir\doc.txt document\doc.tex
. copy http://www.stata.com/examples/simple.dta simple.dta
. copy http://www.stata.com/examples/simple.txt simple.txt, text
```

Mac and Unix:
. copy orig.dta newcopy.dta
. copy mydir/orig.dta .
. copy orig.dta ../../
. copy "my document" "copy of document"
. copy ../mydir/doc.txt document/doc.tex
. copy http://www.stata.com/examples/simple.dta simple.dta
. copy http://www.stata.com/examples/simple.txt simple.txt, text

## Also see

[D] cd — Change directory
[D] dir - Display filenames
[D] erase - Erase a disk file
[D] mkdir - Create directory
[D] rmdir - Remove directory
[D] shell - Temporarily invoke operating system
[D] type - Display contents of a file
[U] 11.6 Filenaming conventions

## Title

corr2data - Create dataset with specified correlation structure

Description	Quick start	Menu	Syntax
Options	Remarks and examples	Methods and formulas	Reference

## Description

corr2data adds new variables with specified covariance (correlation) structure to the existing dataset or creates a new dataset with a specified covariance (correlation) structure. Singular covariance (correlation) structures are permitted. The purpose of this is to allow you to perform analyses from summary statistics (correlations/covariances and maybe the means) when these summary statistics are all you know and summary statistics are sufficient to obtain results. For example, these summary statistics are sufficient for performing analysis of $t$ tests, variance, principal components, regression, and factor analysis. The recommended process is

```
. clear (clear memory)
. corr2data ..., n(#) cov(...) ... (create artificial data)
. regress ... (use artificial data appropriately)
```

However, for factor analyses and principal components, the commands factormat and pcamat allow you to skip the step of using corr2data; see [MV] factor and [MV] pca.

The data created by corr2data are artificial; they are not the original data, and it is not a sample from an underlying population with the summary statistics specified. See [D] drawnorm if you want to generate a random sample. In a sample, the summary statistics will differ from the population values and will differ from one sample to the next.

The dataset corr2data creates is suitable for one purpose only: performing analyses when all that is known are summary statistics and those summary statistics are sufficient for the analysis at hand. The artificial data tricks the analysis command into producing the desired result. The analysis command, being by assumption only a function of the summary statistics, extracts from the artificial data the summary statistics, which are the same summary statistics you specified, and then makes its calculation based on those statistics.

If you doubt whether the analysis depends only on the specified summary statistics, you can generate different artificial datasets by using different seeds of the random-number generator (see the seed() option below) and compare the results, which should be the same within rounding error.

## Quick start

Create dataset with 1,000 observations, v1 with mean of 3.4 and std. dev. of 1 , v2 with mean of 3 and std. dev. of 0.5 , and no correlation between v1 and v2

```
corr2data v1 v2, n(1000) means(3.4 3) sds(1 .5)
```

As above, but with correlation between v 1 and v 2 specified in matrix mymat

```
corr2data v1 v2, n(1000) means(3.4 3) sds(1 .5) corr(mymat)
```


## Menu

Data $>$ Create or change data $>$ Other variable-creation commands $>$ Create dataset with specified correlation

## Syntax

corr2data newvarlist [, options]
options Description

```
Main
 clear
 double
 n(#)
 sds(vector)
 corr(matrix | vector)
 cov(matrix | vector)
 cstorage(full)
 cstorage(lower)
 cstorage(upper)
 forcepsd
 means(vector)
```

Options
seed (\#)
replace the current dataset
generate variable type as double; default is float
\# of observations to be generated; default is current number
standard deviations of generated variables
correlation matrix
covariance matrix
correlation/covariance structure is stored as a symmetric $k \times k$ matrix correlation/covariance structure is stored as a lower triangular matrix correlation/covariance structure is stored as an upper triangular matrix force the covariance/correlation matrix to be positive semidefinite means of generated variables; default is means (0)
seed for random-number generator

## Options

## Main

clear specifies that it is okay to replace the dataset in memory, even though the current dataset has not been saved on disk.
double specifies that the new variables be stored as Stata doubles, meaning 8-byte reals. If double is not specified, variables are stored as floats, meaning 4-byte reals. See [D] data types.
n (\#) specifies the number of observations to be generated; the default is the current number of observations. If $n(\#)$ is not specified or is the same as the current number of observations, corr2data adds the new variables to the existing dataset; otherwise, corr2data replaces the dataset in memory.
sds(vector) specifies the standard deviations of the generated variables. sds() may not be specified with $\operatorname{cov}()$.
corr (matrix $\mid$ vector) specifies the correlation matrix. If neither $\operatorname{corr}()$ nor $\operatorname{cov}()$ is specified, the default is orthogonal data.
$\operatorname{cov}($ matrix $\mid$ vector $)$ specifies the covariance matrix. If neither $\operatorname{corr}()$ nor $\operatorname{cov}()$ is specified, the default is orthogonal data.
cstorage (full|lower |upper) specifies the storage mode for the correlation or covariance structure in corr () or $\operatorname{cov}()$. The following storage modes are supported:
full specifies that the correlation or covariance structure is stored (recorded) as a symmetric $k \times k$ matrix.
lower specifies that the correlation or covariance structure is recorded as a lower triangular matrix. With $k$ variables, the matrix should have $k(k+1) / 2$ elements in the following order:

$$
\mathrm{C}_{11} \mathrm{C}_{21} \mathrm{C}_{22} \mathrm{C}_{31} \mathrm{C}_{32} \mathrm{C}_{33} \ldots \mathrm{C}_{k 1} \mathrm{C}_{k 2} \ldots \mathrm{C}_{k k}
$$

upper specifies that the correlation or covariance structure is recorded as an upper triangular matrix. With $k$ variables, the matrix should have $k(k+1) / 2$ elements in the following order:

$$
\mathrm{C}_{11} \mathrm{C}_{12} \mathrm{C}_{13} \ldots \mathrm{C}_{1 k} \mathrm{C}_{22} \mathrm{C}_{23} \ldots \mathrm{C}_{2 k} \ldots \mathrm{C}_{(k-1 k-1)} \mathrm{C}_{(k-1 k)} \mathrm{C}_{k k}
$$

Specifying cstorage (full) is optional if the matrix is square. cstorage(lower) or cstorage (upper) is required for the vectorized storage methods. See Storage modes for correlation and covariance matrices in [D] drawnorm for examples.
forcepsd modifies the matrix $C$ to be positive semidefinite ( psd ) and to thus be a proper covariance matrix. If $C$ is not positive semidefinite, it will have negative eigenvalues. By setting the negative eigenvalues to 0 and reconstructing, we obtain the least-squares positive-semidefinite approximation to $C$. This approximation is a singular covariance matrix.
means (vector) specifies the means of the generated variables. The default is means ( 0 ) .

## Options

seed (\#) specifies the seed of the random-number generator used to generate data. \# defaults to 0 . The random numbers generated inside corr2data do not affect the seed of the standard random-number generator.

## Remarks and examples

corr2data is designed to enable analyses of correlation (covariance) matrices by commands that expect variables rather than a correlation (covariance) matrix. corr2data creates variables with exactly the correlation (covariance) that you want to analyze. Apart from means and covariances, all aspects of the data are meaningless. Only analyses that depend on the correlations (covariances) and means produce meaningful results. Thus you may perform a paired $t$ test ([R] ttest) or an ordinary regression analysis ([R] regress), etc.

If you are not sure that a statistical result depends only on the specified summary statistics and not on other aspects of the data, you can generate different datasets, each having the same summary statistics but other different aspects, by specifying the seed() option. If the statistical results differ beyond what is attributable to roundoff error, then using corr2data is inappropriate.

## - Example 1

We first run a regression using the auto dataset.

```
. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)
. regress weight length trunk
```

Source	SS	df	MS
Model	39482774.4	2	19741387.2
Residual	4611403.95	71	64949.3513
Total	44094178.4	73	604029.841


Number of obs	$=$	74
$\mathrm{~F}(2,71)$	$=$	303.95
Prob > F	$=$	0.0000
R-squared	$=$	0.8954
Adj R-squared	$=$	0.8925
Root MSE	$=$	254.85


weight	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
length	33.83435	1.949751	17.35	0.000	29.94666	37.72204
trunk	-5.83515	10.14957	-0.57	0.567	-26.07282	14.40252
_cons	-3258.84	283.3547	-11.50	0.000	-3823.833	-2693.846

Suppose that, for some reason, we no longer have the auto dataset. Instead, we know the means and covariance matrices of weight, length, and trunk, and we want to do the same regression again. The matrix of means is

```
. mat list M
M[1,3]
```


and the covariance matrix is

```
. mat list V
symmetric V[3,3]
 weight length trunk
weight 604029.84
length 16370.922 495.78989
```



To do the regression analysis in Stata, we need to create a dataset that has the specified correlation structure.


The results from the regression based on the generated data are the same as those based on the real data.

## Methods and formulas

Two steps are involved in generating the desired dataset. The first step is to generate a zero-mean, zero-correlated dataset. The second step is to apply the desired correlation structure and the means to the zero-mean, zero-correlated dataset. In both steps, we take into account that, given any matrix $\mathbf{A}$ and any vector of variables $\mathbf{X}, \operatorname{Var}\left(\mathbf{A}^{\prime} \mathbf{X}\right)=\mathbf{A}^{\prime} \operatorname{Var}(\mathbf{X}) \mathbf{A}$.

## Reference

Cappellari, L., and S. P. Jenkins. 2006. Calculation of multivariate normal probabilities by simulation, with applications to maximum simulated likelihood estimation. Stata Journal 6: 156-189.

## Also see

[D] data types - Quick reference for data types
[D] drawnorm - Draw sample from multivariate normal distribution

## Title

count - Count observations satisfying specified conditions

Description	Quick start	Menu	Syntax
Remarks and examples	Stored results	References	Also see

## Description

count counts the number of observations that satisfy the specified conditions. If no conditions are specified, count displays the number of observations in the data.

## Quick start

Count the number of observations
count
As above, but where catvar equals 3
count if catvar==3
Count observations for each value of catvar
by catvar: count

## Menu

Data $>$ Data utilities $>$ Count observations satisfying condition

## Syntax

count $[$ if $][$ in $]$
by is allowed; see [D] by.

## Remarks and examples

count may strike you as an almost useless command, but it can be one of Stata's handiest.
> Example 1
How many times have you obtained a statistical result and then asked yourself how it was possible? You think a moment and then mutter aloud, "Wait a minute. Is income ever negative in these data?" or "Is sex ever equal to 3 ?" count can quickly answer those questions:

```
. use http://www.stata-press.com/data/r14/countxmpl
(1980 Census data by state)
. count
 641
```

```
count if income<0
O
count if sex==3
 1
. by division: count if sex==3
-> division = New England
 0
-> division = Mountain
 0
-> division = Pacific
 1
```

We have 641 observations. income is never negative. sex, however, takes on the value 3 once. When we decompose the count by division, we see that it takes on that odd value in the Pacific division.

## Stored results

count stores the following in $r()$ :
Scalars
$r(N) \quad$ number of observations

## References

Cox, N. J. 2007a. Speaking Stata: Counting groups, especially panels. Stata Journal 7: 571-581.
-_. 2007b. Speaking Stata: Making it count. Stata Journal 7: 117-130.
-_. 2007c. Stata tip 51: Events in intervals. Stata Journal 7: 440-443.

## Also see

[R] tabulate oneway - One-way table of frequencies

## Title

cross - Form every pairwise combination of two datasets

Description	Quick start	Menu	Syntax
Remarks and examples	References	Also see	

## Description

cross forms every pairwise combination of the data in memory with the data in filename. If filename is specified without a suffix, .dta is assumed.

## Quick start

Form every pairwise combination of observations from mydata1.dta in memory with observations from mydata2.dta

```
 cross using mydata2
```


## Menu

Data $>$ Combine datasets $>$ Form every pairwise combination of two datasets

## Syntax

cross using filename

## Remarks and examples

This command is rarely used; also see [D] joinby, [D] merge, and [D] append.
Crossing refers to merging two datasets in every way possible. That is, the first observation of the data in memory is merged with every observation of filename, followed by the second, and so on. Thus the result will have $N_{1} N_{2}$ observations, where $N_{1}$ and $N_{2}$ are the number of observations in memory and in filename, respectively.

Typically, the datasets will have no common variables. If they do, such variables will take on only the values of the data in memory.
> Example 1
We wish to form a dataset containing all combinations of three age categories and two sexes to serve as a stub. The three age categories are 20, 30, and 40. The two sexes are male and female:

```
. input str6 sex
 sex
 1. male
 2. female
 3. end
s save sex
file sex.dta saved
. drop _all
. input agecat
 agecat
 1. 20
 2. }3
 3. }4
 4. end
. cross using sex
. list
```


## References

Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press.
Franklin, C. H. 2006. Stata tip 29: For all times and all places. Stata Journal 6: 147-148.

## Also see

[D] append - Append datasets
[D] fillin - Rectangularize dataset
[D] joinby - Form all pairwise combinations within groups
[D] merge - Merge datasets
[D] save - Save Stata dataset

## Title

data types - Quick reference for data types

> Description Remarks and examples Also see

## Description

This entry provides a quick reference for data types allowed by Stata. See [U] 12 Data for details.

## Remarks and examples

		Closest to 0   Storage type		
Minimum	Maximum	without being 0	Bytes	
byte	-127	100	$\pm 1$	1
int	$-32,767$	32,740	$\pm 1$	2
long	$-2,147,483,647$	$2,147,483,620$	$\pm 1$	4
float	$-1.70141173319 \times 10^{38}$	$1.70141173319 \times 10^{38}$	$\pm 10^{-38}$	4
double	$-8.9884656743 \times 10^{307}$	$8.9884656743 \times 10^{307}$	$\pm 10^{-323}$	8

Precision for float is $3.795 \times 10^{-8}$.
Precision for double is $1.414 \times 10^{-16}$.

String   storage type	Maximum   length	Bytes
str1	1	1
str2	2	2
$\ldots$	$\cdot$	-
$\ldots$	$\cdot$	-
$\ldots$	2045	-
$\operatorname{str} 2045$	2000000000	2000000000
$\operatorname{strL}$		

Each element of data is said to be either type numeric or type string. The word "real" is sometimes used in place of numeric. Associated with each data type is a storage type.

Numbers are stored as byte, int, long, float, or double, with the default being float. byte, int, and long are said to be of integer type in that they can hold only integers.

Strings are stored as str\#, for instance, str1, str2, str3, ..., str2045, or as strL. The number after the str indicates the maximum length of the string. A str5 could hold the word "male", but not the word "female" because "female" has six characters. A strL can hold strings of arbitrary lengths, up to 2000000000 characters, and can even hold binary data containing embedded $\backslash 0$ characters.

Stata keeps data in memory, and you should record your data as parsimoniously as possible. If you have a string variable that has maximum length 6, it would waste memory to store it as a str20. Similarly, if you have an integer variable, it would be a waste to store it as a double.

## Precision of numeric storage types

floats have about 7 digits of accuracy; the magnitude of the number does not matter. Thus, 1234567 can be stored perfectly as a float, as can $1234567 \mathrm{e}+20$. The number 123456789 , however, would be rounded to 123456792 . In general, this rounding does not matter.

If you are storing identification numbers, the rounding could matter. If the identification numbers are integers and take 9 digits or less, store them as longs; otherwise, store them as doubles. doubles have 16 digits of accuracy.

Stata stores numbers in binary, and this has a second effect on numbers less than 1. 1/10 has no perfect binary representation just as $1 / 11$ has no perfect decimal representation. In float, .1 is stored as .10000000149011612 . Note that there are 7 digits of accuracy, just as with numbers larger than 1. Stata, however, performs all calculations in double precision. If you were to store 0.1 in a float called $x$ and then ask, say, list if $x==.1$, there would be nothing in the list. The .1 that you just typed was converted to double, with 16 digits of accuracy (.1000000000000000014...), and that number is never equal to 0.1 stored with float accuracy.

One solution is to type list if $\mathrm{x}==\mathrm{float}(.1)$. The float () function rounds its argument to float accuracy; see [FN] Programming functions. The other alternative would be store your data as double, but this is probably a waste of memory. Few people have data that is accurate to 1 part in 10 to the 7th. Among the exceptions are banks, who keep records accurate to the penny on amounts of billions of dollars. If you are dealing with such financial data, store your dollar amounts as doubles.

## Also see

[D] compress - Compress data in memory
[D] destring - Convert string variables to numeric variables and vice versa
[D] encode - Encode string into numeric and vice versa
[D] format - Set variables' output format
[D] recast - Change storage type of variable
[U] 12.2.2 Numeric storage types
[U] 12.4 Strings
[U] 12.5 Formats: Controlling how data are displayed
[U] 13.12 Precision and problems therein

## Title

datasignature - Determine whether data have changed

Description	Quick start	Menu
Syntax	Options	Remarks and examples
Stored results	Methods and formulas	Reference
Also see		

## Description

These commands calculate, display, save, and verify checksums of the data, which taken together form what is called a signature. An example signature is 162:11(12321):2725060400:4007406597. That signature is a function of the values of the variables and their names, and thus the signature can be used later to determine whether a dataset has changed.
datasignature without arguments calculates and displays the signature of the data in memory.
datasignature set does the same, and it stores the signature as a characteristic in the dataset. You should save the dataset afterward so that the signature becomes a permanent part of the dataset.
datasignature confirm verifies that, were the signature recalculated this instant, it would match the one previously set. datasignature confirm displays an error message and returns a nonzero return code if the signatures do not match.
datasignature report displays a full report comparing the previously set signature to the current one.

In the above, the signature is stored in the dataset and accessed from it. The signature can also be stored in a separate, small file.
datasignature set, saving(filename) calculates and displays the signature and, in addition to storing it as a characteristic in the dataset, also saves the signature in filename.
datasignature confirm using filename verifies that the current signature matches the one stored in filename.
datasignature report using filename displays a full report comparing the current signature with the one stored in filename.

In all the above, if filename is specified without an extension, .dtasig is assumed.
datasignature clear clears the signature, if any, stored in the characteristics of the dataset in memory.

## Quick start

Calculate and display the signature of the dataset in memory datasignature

As above, and store the signature as a characteristic of the data

```
datasignature set
```

As above, but also save the signature in datasig.txt

```
datasignature set, saving(datasig.txt)
```

Confirm that the data are currently exactly the same as they were when signed datasignature confirm

Confirm that the data in memory have the same signature saved in datasig.txt datasignature confirm using datasig.txt

## Menu

Data $>$ Other utilities $>$ Manage data signature

## Syntax

```
datasignature
datasignature set [, reset]
datasignature confirm [, strict]
datasignature report
datasignature set, saving(filename[, replace]) [reset]
datasignature confirm using filename [, strict]
 datasignature report using filename
 datasignature clear
```


## Options

reset is used with datasignature set. It specifies that even though you have previously set a signature, you want to erase the old signature and replace it with the current one.
strict is for use with datasignature confirm. It specifies that, in addition to requiring that the signatures match, you also wish to require that the variables be in the same order and that no new variables have been added to the dataset. (If any variables were dropped, the signatures would not match.)
saving(filename[, replace]) is used with datasignature set. It specifies that, in addition to storing the signature in the dataset, you want a copy of the signature saved in a separate file. If filename is specified without a suffix, .dtasig is assumed. The replace suboption allows filename to be replaced if it already exists.

## Remarks and examples

Remarks are presented under the following headings:
Using datasignature interactively
Example 1: Verification at a distance
Example 2: Protecting yourself from yourself
Example 3: Working with assistants
Example 4: Working with shared data
Using datasignature in do-files
Interpreting data signatures
The logic of data signatures

## Using datasignature interactively

datasignature is useful in the following cases:

1. You and a coworker, separated by distance, have both received what is claimed to be the same dataset. You wish to verify that it is.
2. You work interactively and realize that you could mistakenly modify your data. You wish to guard against that.
3. You want to give your dataset to an assistant to improve the labels and the like. You wish to verify that the data returned to you are the same data.
4. You work with an important dataset served on a network drive. You wish to verify that others have not changed it.

## Example 1: Verification at a distance

You load the data and type
. datasignature
$74: 12(71728): 3831085005: 1395876116$
Your coworker does the same with his or her copy. You compare the two signatures.

## Example 2: Protecting yourself from yourself

You load the data and type

```
. datasignature set
 74:12(71728):3831085005:1395876116 (data signature set)
. save, replace
```

From then on, you periodically type

```
. datasignature confirm
 (data unchanged since 19feb2014 14:24)
```

One day, however, you check and see the message:

```
. datasignature confirm
 (data unchanged since 19feb2014 14:24, except 2 variables have been added)
```

You can find out more by typing

```
. datasignature report
 (data signature set on Monday 19feb2014 14:24)
```

Data signature summary
1. Previous data signature $74: 12(71728): 3831085005: 1395876116$
2. Same data signature today (same as 1)
3. Full data signature today 74:14(113906):1142538197:2410350265
Comparison of current data with previously set data signature

variables	number	notes
original \# of variables	12	(values unchanged)
added variables	2	(1)
dropped variables	0	
resulting \# of variables	14	

(1) Added variables are agesquared logincome.

You could now either drop the added variables or decide to incorporate them:

```
. datasignature set
 data signature already set -- specify option reset
r(110)
. datasignature set, reset
 74:14(113906):1142538197:2410350265 (data signature reset)
```

Concerning the detailed report, three data signatures are reported: 1) the stored signature, 2) the signature that would be calculated today on the basis of the same variables in their original order, and 3) the signature that would be calculated today on the basis of all the variables and in their current order.
datasignature confirm knew that new variables had been added because signature 1 was equal to signature 2 . If some variables had been dropped, however, datasignature confirm would not be able to determine whether the remaining variables had changed.

## Example 3: Working with assistants

You give your dataset to an assistant to have variable labels and the like added. You wish to verify that the returned data are the same data.

Saving the signature with the dataset is inadequate here. Your assistant, having your dataset, could change both your data and the signature and might even do that in a desire to be helpful. The solution is to save the signature in a separate file that you do not give to your assistant:

```
. datasignature set, saving(mycopy)
74:12(71728):3831085005:1395876116 (data signature set)
(file mycopy.dtasig saved)
```

You keep file mycopy.dtasig. When your assistant returns the dataset to you, you use it and compare the current signature to what you have stored in mycopy.dtasig:

```
. datasignature confirm using mycopy
(data unchanged since 19feb2014 15:05)
```

By the way, the signature is a function of the following:

- The number of observations and number of variables in the data
- The values of the variables
- The names of the variables
- The order in which the variables occur in the dataset
- The storage types of the individual variables

The signature is not a function of variable labels, value labels, notes, and the like.

## Example 4: Working with shared data

You work on a dataset served on a network drive, which means that others could change the data. You wish to know whether this occurs.

The solution here is the same as working with an assistant: you save the signature in a separate, private file on your computer,

```
. datasignature set, saving(private)
74:12(71728):3831085005:1395876116
(file private.dtasig saved)
```

and then you periodically check the signature by typing

```
. datasignature confirm using private
(data unchanged since 15mar2014 11:22)
```


## Using datasignature in do-files

datasignature confirm aborts with error if the signatures do not match:

```
. datasignature confirm
 data have changed since 19feb2014 15:05
r(9);
```

This means that, if you use datasignature confirm in a do-file, execution of the do-file will be stopped if the data have changed.

You may want to specify the strict option. strict adds two more requirements: that the variables be in the same order and that no new variables have been added. Without strict, these are not considered errors:

```
. datasignature confirm
 (data unchanged since 19feb2014 15:22)
. datasignature confirm, strict
 (data unchanged since 19feb2014 15:05, but order of variables has changed)
r(9);
```

and

```
. datasignature confirm
 (data unchanged since 19feb2014 15:22, except 1 variable has been added)
datasignature confirm, strict
 (data unchanged since 19feb2014 15:22, except 1 variable has been added)
r(9);
```

If you keep logs of your analyses, issuing datasignature or datasignature confirm immediately after loading each dataset is a good idea. This way, you have a permanent record that you can use for comparison.

## Interpreting data signatures

An example signature is $74: 12(71728): 3831085005: 1395876116$. The components are

1. 74 , the number of observations;
2. 12 , the number of variables;
3. 71728 , a checksum function of the variable names and the order in which they occur; and
4. 3831085005 and 1395876116 , checksum functions of the values of the variables, calculated two different ways.

Two signatures are equal only if all their components are equal.
Two different datasets will probably not have the same signature, and it is even more unlikely that datasets containing similar values will have equal signatures. There are two data checksums, but do not read too much into that. If either data checksum changes, even just a little, the data have changed. Whether the change in the checksum is large or small-or in one, the other, or both-signifies nothing.

## The logic of data signatures

The components of a data signature are known as checksums. The checksums are many-to-one mappings of the data onto the integers. Let's consider the checksums of auto.dta carefully.

The data portion of auto.dta contains 38,184 bytes. There are $256^{38184}$ such datasets or, equivalently, $2^{305472}$. The first checksum has $2^{48}$ possible values, and it can be proven that those values are equally distributed over the $2^{305472}$ datasets. Thus there are $2^{305472} / 2^{48}-1=2^{305424}-1$ datasets that have the same first checksum value as auto.dta. The same can be said for the second checksum. It would be difficult to prove, but we believe that the two checksums are conditionally independent, being based on different bit shifts and bit shuffles of the same data. Of the $2^{305424}-1$ datasets that have the same first checksum as auto.dta, the second checksum should be equally distributed over them. Thus there are about $2^{305376}-1$ datasets with the same first and second checksums as auto.dta.

Now let's consider those $2^{305376}-1$ other datasets. Most of them look nothing like auto.dta. The checksum formulas guarantee that a change of one variable in 1 observation will lead to a change in the calculated result if the value changed is stored in 4 or fewer bytes, and they nearly guarantee it in other cases. When it is not guaranteed, the change cannot be subtle-"Chevrolet" will have to change to binary junk, or a double-precision 1 to $-6.476678983751 \mathrm{e}+301$, and so on. The change will be easily detected if you summarize your data and just glance at the minimums and maximums. If the data look at all like auto.dta, which is unlikely, they will look like a corrupted version.

More interesting are offsetting changes across observations. For instance, can you change one variable in 1 observation and make an offsetting change in another observation so that, taken together, they will go undetected? You can fool one of the checksums, but fooling both of them simultaneously will prove difficult. The basic rule is that the more changes you make, the easier it is to create a dataset with the same checksums as auto.dta, but by the time you have done that, the data will look nothing like auto.dta.

## Stored results

datasignature without arguments and datasignature set store the following in $r()$ :
Macros
$r$ (datasignature) the signature
datasignature confirm stores the following in $r()$ :
Scalars
$r$ ( k _added) number of variables added
Macros
$r$ (datasignature) the signature
datasignature confirm aborts execution if the signatures do not match and so then returns nothing except a return code of 9 .
datasignature report stores the following in $r()$ :
Scalars
$r$ (datetime) $\quad$ \%tc date-time when set
$r$ (changed) . if $r\left(k _d r o p p e d\right) \neq 0$, otherwise
0 if data have not changed, 1 if data have changed
$r$ (reordered) $\quad 1$ if variables reordered, 0 if not reordered,
r(k_original)
. if $r\left(k _\right.$added $) \neq 0 \mid r\left(k _d r o p p e d\right) \neq 0$
$r$ (k_added)
number of original variables
r(k_dropped)
number of added variables
number of dropped variables

Macros

```
r(origdatasignature) original signature
r(curdatasignature)
r(fulldatasignature)
current signature on same variables, if it can be calculated
current full-data signature
r(varsadded)
r(varsdropped)
variable names added
variable names dropped
```

datasignature clear stores nothing in $r()$ but does clear it.
datasignature set stores the signature in the following characteristics:
Characteristic
_dta[datasignature_si]
_dta[datasignature_dt]
_dta[datasignature_vl1]
_dta[datasignature_vl2] etc.

## signature

\%tc date-time when set in $\% 21 \mathrm{x}$ format
part 1, original variables
part 2, original variables, if necessary

To access the original variables stored in _dta[datasignature_vl1], etc., from an ado-file, code

```
mata: ado_fromlchar("vars", "_dta", "datasignature_vl")
```

Thereafter, the original variable list would be found in 'vars'.

## Methods and formulas

datasignature is implemented using _datasignature; see [P] _datasignature.

## Reference

Gould, W. W. 2006. Stata tip 35: Detecting whether data have changed. Stata Journal 6: 428-429.

## Also see

[P] _datasignature - Determine whether data have changed
[P] signestimationsample - Determine whether the estimation sample has changed

## Title

datetime - Date and time values and variables

Description Syntax Remarks and examples References Also see

## Description

Syntax below provides a complete overview of Stata's date and time values. Also see [D] datetime translation and [D] datetime display formats for additional information.

## Syntax

Syntax is presented under the following headings:

```
Types of dates and their human readable forms (HRFs)
Stata internal form (SIF)
HRF-to-SIF conversion functions
Displaying SIFs in HRF
Building SIFs from components
SIF-to-SIF conversion
Extracting time-of-day components from SIFs
Extracting date components from SIFs
Conveniently typing SIF values
Obtaining and working with durations
Using dates and times from other software
```

Also see
[D] datetime translation String to numeric date translation functions
[D] datetime display formats
Display formats for dates and times

## Types of dates and their human readable forms (HRFs)

Date type	Examples of HRFs
datetime	20 jan 2010 09:15:22.120
date	$20 \mathrm{jan} 2010,20 / 01 / 2010, \ldots$
weekly date	2010 w 3
monthly date	2010 m 1
quarterly date	2010 q 1
half-yearly date	2010 h 1
yearly date	2010

The styles of the HRFs in the table above are merely examples. Perhaps you prefer 2010.01.20; Jan. 20, 2010; 2010-1; etc.

With the exception of yearly dates, HRFs are usually stored in string variables. If you are reading raw data, read the HRFs into strings.

HRFs are not especially useful except for reading by humans, and thus Stata provides another way of recording dates called Stata internal form (SIF). You can convert HRF dates to SIF.

## Stata internal form (SIF)

The numeric values in the table below are equivalent to the string values in the table in the previous section.

SIF type	Examples in SIF	Units
datetime/c	$1,579,598,122,120$	milliseconds since 01jan1960 00:00:00.000,   assuming 86,400 s/day
datetime/C	$1,579,598,146,120$	milliseconds since 01jan1960 00:00:00.000,   adjusted for leap seconds*   days since 01jan1960 (01jan1960 $=0)$   weeks since 1960w1
date	18,282	months since 1960m1   weekly date
monthly date	600	quarters since 1960q1   quarterly date
half-years since 1960h1		
half-yearly date	100	years since 0000
yearly date	2010	

* SIF datetime/C is equivalent to coordinated universal time (UTC). In UTC, leap seconds are periodically inserted because the length of the mean solar day is slowly increasing. See Why there are two SIF datetime encodings in [D] datetime translation.

SIF values are stored as regular Stata numeric variables.
You can convert HRFs into SIFs by using HRF-to-SIF conversion functions; see the next section, called HRF-to-SIF conversion functions.

You can make the numeric SIF readable by placing the appropriate $\%$ fmt on the numeric variable; see Displaying SIFs in HRF, below.

You can convert from one SIF type to another by using SIF-to-SIF conversion functions; see SIF-to-SIF conversion, below.

SIF dates are convenient because you can subtract them to obtain time between dates, for example,

$$
\begin{aligned}
\text { datetime } 2-\text { datetime } 1= & \text { milliseconds between datetime1 and datetime2 } \\
& \text { (divide by 1,000 to obtain seconds) }
\end{aligned}
$$

In the remaining text, we will use the following notation:
$t c$ : a Stata double variable containing SIF datetime/c values
$t C$ : a Stata double variable containing SIF datetime/ C values
$t d$ : a Stata variable containing SIF date values
$t w$ : a Stata variable containing SIF weekly date values
tm : a Stata variable containing SIF monthly date values
$t q$ : a Stata variable containing SIF quarterly date values
$t h$ : a Stata variable containing SIF half-yearly date values
ty: a Stata variable containing SIF yearly date values

## HRF-to-SIF conversion functions

Function to convert

SIF type	HRF to SIF	Note	
datetime/c	$t c=$	clock(HRFstr, mask)	$t c$ must be double
datetime/C	$t C=$	Clock(HRFstr, mask)	$t C$ must be double
date	$t d=$	date(HRFstr, mask)	$t d$ may be float or long
weekly date	$t w=$	weekly(HRFstr, mask)	$t w$ may be float or int
monthly date	$t m=$	monthly(HRFstr, mask)	tm may be float or int
quarterly date	$t q=$	quarterly(HRFstr, mask)	$t q$ may be float or int
half-yearly date	$t h=$ halfyearly(HRFstr, mask)	th may be float or int	
yearly date	$t y=$	yearly(HRFstr, mask)	$t y$ may be float or int

Warning: To prevent loss of precision, datetime SIFs must be stored as doubles.

Examples:

1. You have datetimes stored in the string variable mystr, an example being "2010.07.12 14:32". To convert to SIF datetime/c, you type
```
. generate double eventtime = clock(mystr, "YMDhm")
```

The mask "YMDhm" specifies the order of the datetime components. In this case, they are year, month, day, hour, and minute.
2. You have datetimes stored in mystr, an example being "2010.07.12 14:32:12". You type

```
. generate double eventtime = clock(mystr, "YMDhms")
```

Mask element s specifies seconds. In example 1, there were no seconds; in this example, there are.
3. You have datetimes stored in mystr, an example being "2010 Jul 12 14:32". You type

```
. generate double eventtime = clock(mystr, "YMDhm")
```

This is the same command that you typed in example 1. In the mask, you specify the order of the components; Stata figures out the style for itself. In example 1, months were numeric. In this example, they are spelled out (and happen to be abbreviated).
4. You have datetimes stored in mystr, an example being "July 12, 2010 2:32 PM". You type

```
. generate double eventtime = clock(mystr, "MDYhm")
```

Stata automatically looks for AM and PM, in uppercase and lowercase, with and without periods.
5. You have datetimes stored in mystr, an example being "7-12-10 14.32". The 2-digit year is to be interpreted as being prefixed with 20 . You type

```
. generate double eventtime = clock(mystr, "MD2OYhm")
```

6. You have datetimes stored in mystr, an example being "14:32 on 7/12/2010". You type
```
. generate double eventtime = clock(mystr, "hm#MDY")
```

The \# sign between $m$ and $M$ means, "ignore one thing between minute and month", which in this case is the word "on". Had you omitted the \# from the mask, the new variable eventtime would have contained missing values.
7. You have a date stored in mystr, an example being " $22 / 7 / 2010$ ". In this case, you want to create an SIF date instead of a datetime. You type

```
. generate eventdate = date(mystr, "DMY")
```

Typing

```
. generate double eventtime = clock(mystr, "DMY")
```

would have worked, too. Variable eventtime would contain a different coding from that contained by eventdate; namely, it would contain milliseconds from 1jan1960 rather than days $(1,595,376,000,000$ rather than 18,465 ). Datetime value $1,595,376,000,000$ corresponds to 22jul2010 00:00:00.000.

See [D] datetime translation for more information about the HRF-to-SIF conversion functions.

## Displaying SIFs in HRF

SIF type	Display format to   present SIF in HRF
datetime/c	\%tc
datetime/C	$\% \mathrm{tC}$
date	$\% \mathrm{td}$
weekly date	$\% \mathrm{tw}$
monthly date	$\% \mathrm{tm}$
quarterly date	$\% \mathrm{tq}$
half-yearly date	$\%$ th
yearly date	$\%$ ty

The display formats above are the simplest forms of each of the SIFs. You can control how each type of SIF date is displayed; see [D] datetime display formats.

Examples:

1. You have datetimes stored in string variable mystr, an example being "2010.07.12 14:32". To convert to SIF datetime/c and make the new variable readable when displayed, you type
```
. generate double eventtime = clock(mystr, "YMDhm")
. format eventtime %tc
```

2. You have a date stored in mystr, an example being " $22 / 7 / 2010$ ". To convert to an SIF date and make the new variable readable when displayed, you type
```
. generate eventdate = date(mystr, "DMY")
. format eventdate %td
```


## Building SIFs from components

SIF type	Function to build   from components
datetime/c	$t c=\operatorname{mdyhms}(M, D, Y, h, m, s)$
	$t c=\operatorname{dhms}(t d, h, m, s)$
$t c=\operatorname{hms}(h, m, s)$	
datetime/C	$t C=\operatorname{Cmdyhms}(M, D, Y, h, m, s)$
	$t C=\operatorname{Cdhms}(t d, h, m, s)$
	$t C=\operatorname{Chms}(h, m, s)$
date	$t d=\operatorname{mdy}(M, D, Y)$
weekly date	$t w=\operatorname{yw}(Y, W)$
monthly date	$t m=\operatorname{ym}(Y, M)$
quarterly date	$t q=\operatorname{yq}(Y, Q)$
half-yearly date	$t h=\operatorname{yh}(Y, H)$
yearly date	$t y=\mathrm{y}(Y)$

Warning: SIFs for datetimes must be stored as doubles.
Examples:

1. Your dataset has three variables, mo, da, and yr, with each variable containing a date component in numeric form. To convert to SIF date, you type
```
. generate eventdate = mdy(mo, da, yr)
. format eventdate %td
```

2. Your dataset has two numeric variables, mo and yr. To convert to SIF date corresponding to the first day of the month, you type
```
. generate eventdate = mdy(mo, 1, yr)
. format eventdate %td
```

3. Your dataset has two numeric variables, da and yr , and one string variable, month, containing the spelled-out month. In this case, do not use the building-from-component functions. Instead, construct a new string variable containing the HRF and then convert the string using the HRF-to-SIF conversion functions:
```
. generate str work = month + " " + string(da) + " " + string(yr)
. generate eventdate = date(work, "MDY")
. format eventdate %td
```


## SIF-to-SIF conversion

	To:		
From:		datetime $/ \mathrm{c}$	datetime $/ \mathrm{C}$
datetime/c		$t C=\operatorname{Cofc}(t c)$	$t d=\operatorname{dof} c(t c)$
datetime/C		$t c=\operatorname{cofC}(t C)$	
date	$t c=\operatorname{cofd}(t d)$	$t C=\operatorname{Cofd}(t d)$	$t d=\operatorname{dofC}(t C)$
weekly			$t d=\operatorname{dofw}(t w)$
monthly			$t d=\operatorname{dofm}(t m)$
quarterly			$t d=\operatorname{dofq}(t q)$
half-yearly			$t d=\operatorname{dofh}(t h)$
yearly			$t d=\operatorname{dofy}(t y)$


	To:   From:	weekly	monthly


From:	To:   half-yearly	yearly
date	$t h=\operatorname{hofd}(t d)$	$t y=\operatorname{yofd}(t d)$

To convert between missing entries, use two functions, going through date or datetime as appropriate. For example, quarterly of monthly is $\mathrm{tq}=\mathrm{qofd}(\operatorname{dofm}(\mathrm{tm}))$.

Examples:

1. You have the SIF datetime/c variable eventtime and wish to create the new variable eventdate containing just the date from the datetime variable. You type
```
. generate eventdate = dofc(eventtime)
. format eventdate %td
```

2. You have the SIF date variable eventdate and wish to create the new SIF datetime/c variable eventtime from it. You type
```
. generate double eventtime = cofd(eventdate)
. format eventtime %tc
```

The time components of the new variable will be set to the default 00:00:00.000.
3. You have the SIF quarterly variable eventqtr and wish to create the new SIF date variable eventdate from it. You type

```
. generate eventdate = dofq(eventqtr)
```

. format eventdate \%tq
The new variable, eventdate, will contain 01jan dates for quarter 1, 01apr dates for quarter $2,01 \mathrm{jul}$ dates for quarter 3 , and 01 oct dates for quarter 4 .
4. You have the SIF datetime/c variable admittime and wish to create the new SIF quarterly variable admitqtr from it. You type

```
. generate admitqtr = qofd(dofc(admittime))
```

. format admitqtr \%tq
Because there is no qofc() function, you use qofd(dofc()).

## Extracting time-of-day components from SIFs

Desired component	Function	Example
hour of day	$\mathrm{hh}(t c)$ or $\mathrm{hhC}(t C)$	14
minutes of day	$\mathrm{mm}(t c)$ or $\mathrm{mmC}(t C)$	42
seconds of day	$\mathrm{ss}(t c)$ or $\operatorname{ssC}(t C)$	57.123

Notes:
$0 \leq \mathrm{hh}(t c) \leq 23, \quad 0 \leq \mathrm{hhC}(t C) \leq 23$
$0 \leq \mathrm{mm}(t c) \leq 59, \quad 0 \leq \mathrm{mmC}(t C) \leq 59$
$0 \leq \operatorname{ss}(t c)<60, \quad 0 \leq \operatorname{ssC}(t C)<61 \quad$ (sic)
Example:

1. You have the SIF datetime/c variable admittime. You wish to create the new variable admithour equal to the hour and fraction of hour within the day of admission. You type
```
. generate admithour = hh(admittime) + mm(admittime)/60
> + ss(admittime)/3600
```


## Extracting date components from SIFs

Desired component	Function	Example*
calendar year	year $(t d)$	2013
calendar month   calendar day	month $(t d)$   day $(t d)$	7
day of week   $(0=$ Sunday $)$	dow $(t d)$	2
Julian day of year   $(1=$ first day $)$	doy $(t d)$	27
week within year   $(1=$ first week $)$	week $(t d)$	3
quarter within year   $(1=$ first quarter $)$	quarter $(t d)$	2

* All examples are with $\operatorname{td}=\operatorname{mdy}(7,5,2013)$.

All functions require an SIF date as an argument. To extract components from other SIFs, use the appropriate SIF-to-SIF conversion function to convert to an SIF date, for example, quarter (dofq(tq)).

## Examples:

1. You wish to obtain the day of week Sunday, Monday, ..., corresponding to the SIF date variable eventdate. You type
```
. generate day_of_week = dow(eventdate)
```

The new variable, day_of_week, contains 0 for Sunday, 1 for Monday, ..., 6 for Saturday.
2. You wish to obtain the day of week Sunday, Monday, ..., corresponding to the SIF datetime/c variable eventtime. You type

```
. generate day_of_week = dow(dofc(eventtime))
```

3. You have the SIF date variable evdate and wish to create the new SIF date variable evdate_r from it. evdate_r will contain the same date as evdate but rounded back to the first of the month. You type
```
. generate evdate_r = mdy(month(evdate), 1, year(evdate))
```

In the above solution, we used the date-component extraction functions month() and year() and used the build-from-components function mdy ().

## Conveniently typing SIF values

You can type SIF values by just typing the number, such as 16,237 or $1,402,920,000,000$, as in
. generate before $=$ cond(hiredon < 16237, 1, 0) if !missing(hiredon)
. drop if admittedon < 1402920000000
Easier to type is
. generate before $=$ cond(hiredon $<t d(15 j u n 2004), 1,0)$ if !missing(hiredon)
. drop if admittedon < tc(15jun2004 12:00:00)
You can type SIF date values by typing the date inside $\operatorname{td}$ (), as in $\operatorname{td}(15$ jun2004).
You can type SIF datetime/c values by typing the datetime inside tc(), as in tc(15jun2004 12:00:00).
td() and tc() are called pseudofunctions because they translate what you type into their numerical equivalents. Pseudofunctions require only that you specify the datetime components in the expected order, so rather than 15 jun2004 above, we could have specified 15 June 2004, 15-6-2004, or 15/6/2004.

The SIF pseudofunctions and their expected component order are

Desired SIF type	Pseudofunction
datetime/c	$\mathrm{tc}([$ day-month-year $] h h: m m[: s s[. s s s]])$
datetime/C	$\mathrm{tC}([$ day-month-year $] h h: m m[: s s[. s s s]])$
date	$\mathrm{td}($ day-month-year $)$
weekly date	$\mathrm{tw}($ year-week $)$
monthly date	$\mathrm{tm}($ year-month $)$
quarterly date	$\mathrm{tq}($ year-quarter $)$
half-yearly date	$\mathrm{th}($ year-half $)$
yearly date	none necessary; just type year

The day-month-year in tc() and tC() are optional. If you omit them, 01 jan 1960 is assumed. Doing so produces time as an offset, which can be useful in, for example,

## Obtaining and working with durations

SIF values are simply durations from 1960. SIF datetime/c values record the number of milliseconds from 1jan1960 00:00:00; SIF date values record the number of days from 1 jan 1960 , and so on.

To obtain the time between two SIF variables-the duration-subtract them:

```
. generate days_employed = curdate - hiredate
. generate double ms_inside = discharge_time - admit_time
```

To obtain a new SIF that is equal to an old SIF before or after some amount of time, just add or subtract the desired durations:
. generate lastdate = hiredate + days_employed
. format lastdate \%td
. generate double admit_time = discharge_time - ms_inside
. format admit_time \%tc
Remember to use the units of the SIF variables. SIF dates are in terms of days, SIF weekly dates are in terms of weeks, etc., and SIF datetimes are in terms of milliseconds. Concerning milliseconds, it is often easier to use different units and conversion functions to convert to milliseconds:

```
. generate hours_inside = hours(discharge_time - admit_time)
. generate admit_time = discharge_time - msofhours(hours_inside)
. format admit_time %tc
```

Function hours() converts milliseconds to hours. Function msofhours() converts hours to milliseconds. The millisecond conversion functions are

Function	Purpose
hours $(m s)$	convert milliseconds to hours; returns $m s /(60 \times 60 \times 1000)$
minutes $(m s)$	convert milliseconds to minutes; returns $m s /(60 \times 1000)$
seconds $(m s)$	convert milliseconds to seconds; returns $m s / 1000$
msofhours $(h)$	convert hours to milliseconds; returns $h \times 60 \times 60 \times 1000$
msofminutes $(m)$	convert minutes to milliseconds; returns $m \times 60 \times 1000$   msofseconds $(s)$

If you plan on using returned values to add to or subtract from a datetime SIF, be sure they are stored as doubles.

## Using dates and times from other software

Most software stores dates and times numerically as durations from some sentinel date in specified units, but they differ on the sentinel date and the units. If you have imported data, it is usually possible to adjust the numeric date and datetime values to SIF.

Converting SAS dates:
SAS provides dates measured as the number of days since 01 jan 1960 . This is the same coding as used by Stata:

```
. generate statadate = sasdate
```

. format statadate \%td
SAS provides datetimes measured as the number of seconds since 01 jan1960 00:00:00, assuming 86,400 seconds/day. To convert to SIF datetime/c, type

```
. generate double statatime = (sastime*1000)
. format statatime %tc
```

It is important that variables containing SAS datetimes, such as sastime above, be imported into Stata as doubles.

Converting SPSS dates:
SPSS provides dates and datetimes measured as the number of seconds since 14oct1582 00:00:00, assuming 86,400 seconds/day. To convert to SIF datetime/c, type
. generate double statatime $=($ spsstime*1000 ) + tc(14oct1582 00:00)
. format statatime \%tc
To convert to SIF date, type

```
. generate statadate = dofc((spsstime*1000) + tc(14oct1582 00:00))
. format statadate %td
```

Converting R dates:
R stores dates as days since 01 jan 1970 . To convert to SIF date, type

```
. generate statadate = rdate - td(01jan1970)
. format statadate %td
```

R stores datetimes as the number of UTC-adjusted seconds since 01jan1970 00:00:00. To convert to SIF datetime/C, type

```
. generate double statatime = rtime - tC(01jan1970 00:00)
```

. format statatime \%tC

To convert to SIF datetime/c, type
. generate double statatime $=$ cofC(rtime $-\mathrm{tC}(01 j a n 1970$ 00:00))
. format statatime \%tc
There are issues of which you need to be aware when working with datetime/C values; see Why there are two SIF datetime encodings and Advice on using datetime/c and datetime/C, both in [D] datetime translation.

Converting Excel dates:
If you have data in an Excel format file, you may want to use the import excel command. If the Excel file contains numerically encoded dates, import excel will read those dates and properly code them in SIF. You do not need to perform any conversion after importing your data with import excel.

On the other hand, if you copy and paste a spreadsheet into Stata's editor, dates and datetimes are pasted as strings in HRF. The discussion below concerns converting such HRF datetime strings to SIF numeric values.

Excel has used different date systems across operating systems. Excel for Windows used the "1900 Date System". Excel for Mac used the "1904 Date System". More recently, Excel has been standardizing on the 1900 Date System on all operating systems.
Regardless of operating system, Excel can use either encoding. See
http://support.microsoft.com/kb/214330 for instructions on converting workbooks between date systems.
Converted dates will be off by four years if you choose the wrong date system.
Converting Excel 1900-Date-System dates:
For dates on or after 01mar1900, Excel stores dates as days since 30dec 1899. To convert to a Stata date,

```
. generate statadate = exceldate + td(30dec1899)
```

. format statadate \%td
Excel can store dates between 01jan1900 and 28 feb1900, but the formula above will not handle those two months. See http://www.cpearson.com/excel/datetime.htm for more information.
For datetimes on or after 01mar1900 00:00:00, Excel stores datetimes as days plus fraction of day since 30dec 1899 00:00:00. To convert with a one-second resolution to a Stata datetime,

```
. generate statatime = round((exceltime+td(30dec1899))*86400)*1000
```

. format statatime \%tc

Converting Excel 1904-Date-System dates:
For dates on or after 01jan1904, Excel stores dates as days since 01jan1904. To convert to a Stata date,

```
. generate statadate = exceldate + td(01jan1904)
```

. format statadate \%td
For datetimes on or after 01jan1904 00:00:00, Excel stores datetimes as days plus fraction of day since 01 jan 1904 00:00:00. To convert with a one-second resolution to a Stata datetime,
. generate statatime $=$ round $(($ exceltime+td $(01 j a n 1904)) * 86400) * 1000$
. format statatime \%tc

Converting OpenOffice dates:
OpenOffice uses the Excel 1900 Date System described above.
Converting Unix time:
Unix time is stored as the number of seconds since midnight, 01jan1970. To convert to a Stata datetime,

```
. generate double statatime = unixtime * 1000 + mdyhms(1,1,1970,0,0,0)
```

To convert to a Stata date,

```
. generate statadate = dofc(unixtime * 1000 + mdyhms(1,1,1970,0,0,0))
```


## Remarks and examples

The best way to learn about Stata's date and time functions is to experiment with them using the display command; see [P] display.

```
. display date("5-12-1998", "MDY")
14011
. display %td date("5-12-1998", "MDY")
12may1998
. display clock("5-12-1998 11:15", "MDY hm")
1.211e+12
. display %20.0gc clock("5-12-1998 11:15", "MDY hm")
1,210,590,900,000
. display %tc clock("5-12-1998 11:15", "MDY hm")
12may1998 11:15:00
```

With display, you can specify a format in front of the expression to specify how the result is to be formatted.

## References

Cox, N. J. 2010. Stata tip 68: Week assumptions. Stata Journal 10: 682-685.
-_. 2012. Stata tip 111: More on working with weeks. Stata Journal 12: 565-569.
Dyck, A. 2011. Working with Unix timestamps in Stata. Statabytes. http://statabytes.andrewdyck.com/blog/working-with-unix-timestamps-in-stata/.

Gould, W. W. 2011. Using dates and times from other software. The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2011/01/05/using-dates-and-times-from-other-software/.

## Also see

[D] datetime business calendars - Business calendars
[D] datetime display formats - Display formats for dates and times
[D] datetime translation - String to numeric date translation functions

## Title

datetime business calendars - Business calendars

Description Syntax Remarks and examples Also see

## Description

Stata provides user-definable business calendars.

## Syntax

Apply business calendar format
format varlist \%tbcalname

Apply detailed date format with business calendar format
format varlist \%tbcalname [:datetime-specifiers]

Convert between business dates and regular dates
\{generate|replace\} bdate $=$ bofd("calname", regulardate)
$\{$ generate $\mid$ replace $\}$ regulardate $=$ dofb (bdate, "calname")

File calname.stbcal contains the business calendar definition.

Details of the syntax follow:

1. Definition.

Business calendars are regular calendars with some dates crossed out:
November 2011

Su	Mo	Tu	We	Th	Fr	Sa
		1	2	3	4	X
X	7	8	9	10	11	X
X	14	15	16	17	18	X
X	21	22	23	X	X	X
X	28	29	30			

A date that appears on the business calendar is called a business date. 11 nov2011 is a business date. 12 nov2011 is not a business date with respect to this calendar.
Crossed-out dates are literally omitted. That is,

$$
\begin{aligned}
& 18 \text { nov2011 }+1=21 \text { nov2011 } \\
& 28 \text { nov2011-1 }=23 \text { nov } 2011
\end{aligned}
$$

Stata's lead and lag operators work the same way.
2. Business calendars are named.

Assume that the above business calendar is named simple.
3. Business calendars are defined in files named calname.stbcal, such as simple.stbcal. Calendars may be supplied by StataCorp and already installed, obtained from other users directly or via the SSC, or written yourself. Calendars can also be created automatically from the current dataset with the bcal create command; see [D] bcal. Stbcal-files are treated in the same way as ado-files.
You can obtain a list of all business calendars installed on your computer by typing bcal dir; see [D] bcal.
4. Datetime format.

The date format associated with the business calendar named simple is \%tbsimple, which is to say $\%+\mathrm{t}+\mathrm{b}+$ calname.

$\%$	it is a format
t	it is a datetime
b	it is based on a business calendar
calname	the calendar's name

5. Format variables the usual way.

You format variables to have business calendar formats just as you format any variable, using the format command.

```
. format mydate %tbsimple
```

specifies that existing variable mydate contains values according to the business calendar named simple. See [D] format.

You may format variables \%tbcalname regardless of whether the corresponding stbcal-file exists. If it does not exist, the underlying numeric values will be displayed in a $\%$ g format.
6. Detailed date formats.

You may include detailed datetime format specifiers by placing a colon and the detail specifiers after the calendar's name.
. format mydate \%tbsimple:CCYY.NN.DD
would display 21 nov2011 as 2011.11.21. See [D] datetime display formats for detailed datetime format specifiers.
7. Reading business dates.

To read files containing business dates, ignore the business date aspect and read the files as if they contained regular dates. Convert and format those dates as \%td; see HRF-to-SIF conversion functions in [D] datetime. Then convert the regular dates to \%tb business dates:

```
. generate mydate = bofd("simple", regulardate)
```

. format mydate \%tbsimple
. assert mydate!=. if regulardate!=.
The first statement performs the conversion.
The second statement attaches the \%tbsimple date format to the new variable mydate so that it will display correctly.

The third statement verifies that all dates recorded in regulardate fit onto the business calendar. For instance, 12nov2011 does not appear on the simple calendar but, of course, it does appear on the regular calendar. If the data contained 12 nov2011, that would be an error. Function bofd() returns missing when the date does not appear on the specified calendar.
8. More on conversion.

There are only two functions specific to business dates, bofd() and dofb(). Their definitions are

$$
\begin{aligned}
\text { bdate } & =\text { bofd }(\text { "calname", regulardate }) \\
\text { regulardate } & =\operatorname{dofb}(\text { bdate }, \text { "calname" })
\end{aligned}
$$

bofd() returns missing if regulardate is missing or does not appear on the specified business calendar. $\operatorname{dofb}()$ returns missing if bdate contains missing.
9. Obtaining day of week, etc.

You obtain day of week, etc., by converting business dates to regular dates and then using the standard functions. To obtain the day of week of bdate on business calendar calname, type

```
. generate dow = dow(dofb(bdate, "calname"))
```

See Extracting date components from SIFs in [D] datetime for the other extraction functions.
10. Stbcal-files.

The stbcal-file for simple, the calendar shown below,
November 2011

Su	Mo	Tu	We	Th	Fr	Sa
		1	2	3	4	X
X	7	8	9	10	11	X
X	14	15	16	17	18	X
X	21	22	23	X	X	X
X	28	29	30			

is

```
*! version 1.0.0
* simple.stbcal
version 14.2
purpose "Example for manual"
dateformat dmy
range 01nov2011 30nov2011
centerdate 01nov2011
omit dayofweek (Sa Su)
omit date 24nov2011
omit date 25nov2011
```

This calendar was so simple that we crossed out the Thanksgiving holidays by specifying the dates to be omitted. In a real calendar, we would change the last two lines,
omit date 24 nov2011
omit date 25 nov2011
to read

```
omit dowinmonth +4 Th of Nov and +1
```

which says to omit the fourth $(+4)$ Thursday of November in every year, and omit the day after that $(+1)$, too. See [D] datetime business calendars creation.

## Remarks and examples

See [D] datetime for an introduction to Stata's date and time features.
Below we work through an example from start to finish.
Remarks are presented under the following headings:

```
Step 1: Read the data, date as string
Step 2: Convert date variable to %td date
Step 3: Convert %td date to %tb date
Key feature: Each business calendar has its own encoding
Key feature: Omitted dates really are omitted
Key feature: Extracting components from %tb dates
Key feature: Merging on dates
```


## Step 1: Read the data, date as string

File bcal_simple.raw on our website provides data, including a date variable, that is to be interpreted according to the business calendar simple shown under Syntax above.

```
. type http://www.stata-press.com/data/r14/bcal_simple.raw
11/4/11 51
11/7/11 9
11/18/11 }1
11/21/11 4
11/23/11 17
11/28/11 22
```

We begin by reading the data and then listing the result. Note that we read the date as a string variable:

```
. infile str10 sdate float x using http://www.stata-press.com/data/r14/bcal_simple
(6 observations read)
```

. list

	sdate	x
1.	$11 / 4 / 11$	51
2.	$11 / 7 / 11$	9
3.	$11 / 18 / 11$	12
4.	$11 / 21 / 11$	4
5.	$11 / 23 / 11$	17
6.	$11 / 28 / 11$	22

## Step 2: Convert date variable to \%td date

Now we create a Stata internal form (SIF) \%td format date from the string date:
. generate rdate = date(sdate, "MD20Y")
. format rdate \%td
See HRF-to-SIF conversion functions in [D] datetime. We verify that the conversion went well and drop the string variable of the date:

	sdate	x	rdate
1.	$11 / 4 / 11$	51	04 nov2011
2.	$11 / 7 / 11$	9	07nov2011
3.	$11 / 18 / 11$	12	18 nov2011
4.	$11 / 21 / 11$	4	21 nov2011
5.	$11 / 23 / 11$	17	23 nov2011
6.	$11 / 28 / 11$	22	28 nov2011

. drop sdate

## Step 3: Convert \%td date to \%tb date

We convert the \%td date to a \%tbsimple date following the instructions of item 7 of Syntax above.

```
. generate mydate = bofd("simple", rdate)
. format mydate %tbsimple
. assert mydate!=. if rdate!=.
```

Had there been any dates that could not be converted from regular dates to simple business dates, assert would have responded, "assertion is false". Nonetheless, we will list the data to show you that the conversion went well. We would usually drop the \%td encoding of the date, but we want it to demonstrate a feature below.
. list

	x	rdate	mydate
1.	51	04nov2011	04nov2011
2.	9	07nov2011	07 nov2011
3.	12	18nov2011	18nov2011
4.	4	21nov2011	21nov2011
5.	17	23 nov2011	23 nov2011
6.	22	28 nov2011	28nov2011

## Key feature: Each business calendar has its own encoding

In the listing above, rdate and mydate appear to be equal. They are not:

```
. format rdate mydate %9.0g // remove date formats
. list
```

	x	rdate	mydate
1.	51	18935	3
2.	9	18938	4
3.	12	18949	13
4.	4	18952	14
5.	17	18954	16
6.	22	18959	17

$\%$ tb dates each have their own encoding, and those encodings differ from the encoding used by \%td dates. It does not matter. Neither encoding is better than the other. Neither do you need to concern yourself with the encoding. If you were curious, you could learn more about the encoding used by \%tbsimple by typing bcal describe simple; see [D] bcal.

We will drop variable rdate and put the \%tbsimple format back on variable mydate:
. drop rdate
. format mydate \%tbsimple

## Key feature: Omitted dates really are omitted

In Syntax, we mentioned that for the simple business calendar

$$
\begin{aligned}
& 18 \text { nov } 2011+1=21 \text { nov } 2011 \\
& 28 \text { nov } 2011-1=23 \text { nov } 2011
\end{aligned}
$$

That is true:

```
. generate tomorrow = mydate + 1
. generate yesterday = mydate - 1
. format tomorrow yesterday %tbsimple
. list
```

x	mydate	tomorrow	yesterday
51	04nov2011	07nov2011	03nov2011
9	07nov2011	08nov2011	04nov2011
12	18nov2011	21nov2011	17nov2011
4	21nov2011	22nov2011	18 nov 2011
17	23nov2011	28nov2011	22nov2011
22	28nov2011	29nov2011	$23 n o v 2011$

. drop tomorrow yesterday
Stata's lag and lead operators L.varname and F.varname work similarly.

## Key feature: Extracting components from \%tb dates

You extract components such as day of week, month, day, and year from business dates using the same extraction functions you use with Stata's regular \%td dates, namely, dow(), month(), day (), and year(), and you use function dofb() to convert business dates to regular dates. Below we add day of week to our data, list the data, and then drop the new variable:
. generate dow $=$ dow(dofb(mydate, "simple"))
. list

$x$	mydate	dow
51	04 nov2011	5
9	07 nov2011	1
12	18 nov2011	5
4	21nov2011	1
17	23 nov2011	3
22	28 nov2011	1

drop dow
See Extracting date components from SIFs in [D] datetime.

## Key feature: Merging on dates

It may happen that you have one dataset containing business dates and a second dataset containing regular dates, say, on economic conditions, and you want to merge them. To do that, you create a regular date variable in your first dataset and merge on that:
. generate rdate = dofb(mydate, "simple")
. merge 1:1 rdate using econditions, keep(match)
. drop rdate

## Also see

[D] bcal - Business calendar file manipulation
[D] datetime business calendars creation - Business calendars creation
[D] datetime - Date and time values and variables

## Title

datetime business calendars creation - Business calendars creation

Description Syntax Remarks and examples Also see

## Description

Stata provides user-definable business calendars. Business calendars are provided by StataCorp and by other users, and you can write your own. You can also create a business calendar automatically from the current dataset with the bcal create command; see [D] bcal. This entry concerns writing your own business calendars.

See [D] datetime business calendars for an introduction to business calendars.

## Syntax

Business calendar calname and corresponding display format \%tbcalname are defined by the text file calname.stbcal, which contains the following:

* comments
version version_of_stata
purpose "text"
dateformat $\{y m d|y d m|$ myd $\mid$ mdy $\mid$ dym $\mid$ dmy $\}$
range date date
centerdate date

```
[from {date|.} to {date|.}] omit ... [if]
```

where
omit ... may be

```
 omit date pdate [and pmlist]
 omit dayofweek dowlist
 omit dowinmonth pm# dow [of monthlist] [and pmlist]
```

[if] may be

> if restriction [\& restriction ...]
restriction is one of
dow (dowlist)
month (monthlist)
year (yearlist)
date is a date written with the year, month, and day in the order specified by dateformat. For instance, if dateformat is dmy, a date can be 12apr2013, 12-4-2013, or 12.4.2013.
pdate is a date or it is a date with character * substituted where the year would usually appear. If dateformat is dmy, a pdate can be 12apr2013, 12-4-2013, or 12.4.2013; or it can be 12apr*, 12-4-*, or 12.4.*. 12apr* means the 12th of April across all years.
dow is a day of week, in English. It may be abbreviated to as few as 2 characters, and capitalization is irrelevant. Examples: Sunday, Mo, tu, Wed, th, Friday, saturday.
dowlist is a dow, or it is a space-separated list of one or more dows enclosed in parentheses. Examples: $\mathrm{Sa},(\mathrm{Sa})$, ( $\mathrm{Sa} \mathrm{Su} \mathrm{)}$.
month is a month of the year, in English, or it is a month number. It may be abbreviated to the minimum possible, and capitalization is irrelevant. Examples: January, 2, Mar, ap, may, 6, Jul, aug, 9, Octob, nov, 12.
monthlist is a month, or it is a space-separated list of one or more months enclosed in parentheses. Examples: Nov, (Nov), 11, (11), (Nov Dec), (11 12).
year is a 4-digit calendar year. Examples: 1872, 1992, 2013, 2050.
yearlist is a year, or it is a space-separated list of one or more years enclosed in parentheses. Examples: 2013, (2013), (2013 2014).
pm\# is a nonzero integer preceded by a plus or minus sign. Examples: -2, $-1,+1$. pm\# appears in omit dowinmonth pm\# dow of monthlist, where pm\# specifies which dow in the month. omit dowinmonth +1 Th means the first Thursday of the month. omit dowinmonth -1 Th means the last Thursday of the month.
pmlist is a pm\#, or it is a space-separated list of one or more pm\#s enclosed in parentheses. Examples: $+1,(+1),(+1+2),(-1+1+2)$. pmlist appears in the optional and pmlist allowed at the end of omit date and omit dowinmonth, and it specifies additional dates to be omitted. and +1 means and the day after. and -1 means and the day before.

## Remarks and examples

Remarks are presented under the following headings:

```
Introduction
Concepts
The preliminary commands
The omit commands: from/to and if
The omit commands: and
The omit commands: omit date
The omit commands: omit dayofweek
The omit commands: omit dowinmonth
Creating stbcal-files with bcal create
Where to place stbcal-files
How to debug stbcal-files
Ideas for calendars that may not occur to you
```


## Introduction

A business calendar is a regular calendar with some dates crossed out, such as

November 2011

Su	Mo	Tu	We	Th	Fr	Sa
		1	2	3	4	X
X	7	8	9	10	11	X
X	14	15	16	17	18	X
X	21	22	23	X	X	X
X	28	29	30			

The purpose of the stbcal-file is to

1. Specify the range of dates covered by the calendar.
2. Specify the particular date that will be encoded as date 0 .
3. Specify the dates from the regular calendar that are to be crossed out.

The stbcal-file for the above calendar could be as simple as

```
version 14.2
range 01nov2011 30nov2011
centerdate 01nov2011
omit date 5nov2011
omit date 6nov2011
omit date 12nov2011
omit date 13nov2011
omit date 19nov2011
omit date 20nov2011
omit date 24nov2011
omit date 25nov2011
omit date 26nov2011
omit date 27nov2011
```

In fact, this calendar can be written more compactly because we can specify to omit all Saturdays and Sundays:

```
version 14.2
range 01nov2011 30nov2011
centerdate 01nov2011
omit dayofweek (Sa Su)
omit date 24nov2011
omit date 25nov2011

In this particular calendar, we are omitting 24 nov2011 and 25 nov2011 because of the American Thanksgiving holiday. Thanksgiving is celebrated on the fourth Thursday of November, and many businesses close on the following Friday as well. It is possible to specify rules like that in stbcal-files:
```

version 14.2
range 01nov2011 30nov2011
centerdate 01nov2011
omit dayofweek (Sa Su)
omit dowinmonth +4 Th of Nov and +1

```

Understand that this calendar is an artificial example, and it is made all the more artificial because it covers so brief a period. Real stbcal-files cover at least decades, and some cover centuries.

\section*{Concepts}

You are required to specify four things in an stbcal-file:
1. the version of Stata being used,
2. the range of the calendar,
3. the center date of the calendar, and
4. the dates to be omitted.

Version.
You specify the version of Stata to ensure forward compatibility with future versions of Stata. If your calendar starts with the line version stataversion, future versions of Stata will know how to interpret the file even if the definition of the stbcal-file language has greatly changed.

Range.
A calendar is defined over a specific range of dates, and you must explicitly state what that range is. When you or others use your calendar, dates outside the range will be considered invalid, which usually means that they will be treated as missing values.

Center date.
Stata stores dates as integers. In a calendar, 57 might stand for a particular date. If it did, then \(57-1=56\) stands for the day before, and \(57+1=58\) stands for the day after. The previous statement works just as well if we substitute \(-12,739\) for 57 , and thus the particular values do not matter except that we must agree upon what values we wish to standardize because we will be storing these values in our datasets.

The standard is called the center date, and here center does not mean the date that corresponds to the middle of your calendar. It means the date that corresponds to the center of integers, which is to say, 0 . You must choose a date within the range as the standard. The particular date you choose does not matter, but most authors choose easily remembered ones. Stata's built-in \%td calendar uses 01jan1960, but that date will probably not be available to you because the center date must be a date on the business calendars, and most businesses were closed on 01jan1960.
It will sometimes happen that you will want to expand the range of your calendar in the future. Today, you make a calendar that covers, say 1990 to 2020, which is good enough for your purposes. Later, you need to expand the range, say back to 1970 or forward to 2030, or both. When you update your calendar, do not change the center date. This way, your new calendar will be backward compatible with your previous one.
Omitted dates.
Obviously you will need to specify the dates to be omitted. You can specify the exact dates to be omitted when need be, but whenever possible, specify the rules instead of the outcome of the rules. Rules change, so learn about the from/to prefix that can be used in front of omit commands. You can code things like
```

from 01jan1960 to 31dec1968: omit ...
from 01jan1979 to .: omit ...

```

When specifying from/to, . for the first date is synonymous with the opening date of the range. . for the second date is synonymous with the closing date.

\section*{The preliminary commands}

Stbcal-files should begin with these commands:
```

version version_of_stata
purpose "text"
dateformat {ymd|ydm|myd|mdy|dym|dmy }
range date date
centerdate date

```
version version_of_stata
At the time of this writing, you would specify version 14.2. Better still, type command version in Stata to discover the version of Stata you are currently using. Specify that version, and be sure to look at the documentation so that you use the modern syntax correctly.
purpose "text"
This command is optional. The purpose of purpose is not to make comments in your file. If you want comments, include those with a \(*\) in front. The purpose sets the text that bcal describe calname will display.
dateformat \(\{\) ymd \(\mid\) ydm \(\mid\) myd \(\mid\) mdy \(\mid\) dym \(\mid\) dmy \(\}\)
This command is optional. dateformat ymd is assumed if not specified. This command has nothing to do with how dates will look when variables are formatted with \(\%\) tbcalname. This command specifies how you are typing dates in this stbcal-file on the subsequent commands. Specify the format that you find convenient.

\section*{range date date}

The date range was discussed in Concepts. You must specify it.
centerdate date
The centering date was discussed in Concepts. You must specify it.

\section*{The omit commands: from/to and if}

An stbcal-file usually contains multiple omit commands. The omit commands have the syntax
\[
[\text { from }\{\text { date } \mid .\} \text { to }\{\text { date } \mid .\}:] \text { omit } \ldots[\text { if }]
\]

That is, an omit command may optionally be preceded by from/to and may optionally contain an if at the end.

When you do not specify from/to, results are the same as if you specified
```

from . to .: omit ...

```

That is, the omit command applies to all dates from the beginning to the end of the range. In Introduction, we showed the command
```

omit dowinmonth +4 Th of Nov and +1

```

Our sample calendar covered only the month of November, but imagine that it covered a longer period and that the business was open on Fridays following Thanksgiving up until 1998. The Thanksgiving holidays could be coded
```

from . to 31dec1997: omit dowinmonth +4 Th of Nov
from 01jan1998 to .: omit dowinmonth +4 Th of Nov and +1

```

The same holidays could also be coded
```

omit dowinmonth +4 Th of Nov
from 01jan1998 to .: omit dowinmonth +4 Th of Nov and +1

```

We like the first style better, but understand that the same dates can be omitted from the calendars multiple times and for multiple reasons, and the result is still the same as if the dates were omitted only once.

The optional if also determines when the omit statement is operational. Let's think about the Christmas holidays. Let's say a business is closed on the 24th and 25th of December. That could be coded
```

omit date 24dec*
omit date 25dec*

```
although perhaps that would be more understandable if we coded
```

from . to .: omit date 24dec*
from . to .: omit date 25dec*

```

Remember, from . to . is implied when not specified. In any case, we are omitting 24 dec and 25 dec across all years.

Now consider a more complicated rule. The business is closed on the 24th and 25th of December if the 25th is on Tuesday, Wednesday, Thursday, or Friday. If the 25th is on Saturday or Sunday, the holidays are the preceding Friday and the following Monday. If the 25th is on Monday, the holidays are Monday and Tuesday. The rule could be coded
```

omit date 25dec* and -1 if dow(Tu We Th Fr)
omit date 25dec* and (-2 -1) if dow(Sa)
omit date 25dec* and (-3 -2) if dow(Su)
omit date 25dec* and +1 if dow(Mo)

```

The if clause specifies that the omit command is only to be executed when 25 dec * is one of the specified days of the week. If \(25 \mathrm{dec} *\) is not one of those days, the omit statement is ignored for that year. Our focus here is on the if clause. We will explain about the and clause in the next section.

Sometimes, you have a choice between using from/to or if. In such cases, use whichever is convenient. For instance, imagine that the Christmas holiday rule for Monday changed in 2011 and 2012. You could code
```

from . to 31dec2010: omit date 25dec* and +1 if dow(Mo)
from 01jan2011 to .: omit date ... if dow(Mo)

```
or
```

omit date 25dec* and +1 if dow(Mo) \& year(2007 2008 2009 2010)
omit date ... if dow(Mo) \& year(2011 2012)

```

Generally, we find from/to more convenient to code than if year().

\section*{The omit commands: and}

The other common piece of syntax that shows up on omit commands is and pmlist. We used it above in coding the Christmas holidays,
```

omit date 25dec* and -1 if dow(Tu We Th Fr)
omit date 25dec* and (-2 -1) if dow(Sa)
omit date 25dec* and (-3 -2) if dow(Su)
omit date 25dec* and +1 if dow(Mo)

```
and pmlist specifies a list of days also to be omitted if the date being referred to is omitted. The extra days are specified as how many days they are from the date being referred to. Please excuse the inelegant "date being referred to", but sometimes the date being referred to is implied rather than stated explicitly. For this problem, however, the date being referred to is 25 dec across a number of years. The line
```

omit date 25dec* and -1 if dow(Tu We Th Fr)

```
says to omit 25 dec and the day before if 25 dec is on a Tuesday, Wednesday, etc. The line omit date 25dec* and (-2 -1) if dow (Sa)
says to omit 25 dec and two days before and one day before if 25 dec is Saturday. The line omit date 25dec* and (-3 -2) if dow(Su)
says to omit 25 dec and three days before and two days before if 25 dec is Sunday. The line
```

omit date 25dec* and +1 if dow(Mo)

```
says to omit 25 dec and the day after if 25 dec is Monday.
Another omit command for solving a different problem reads
```

omit dowinmonth -1 We of (Nov Dec) and +1 if year(2009)

```

Please focus on the and +1 . We are going to omit the date being referred to and the date after if the year is 2009. The date being referred to here is -1 We of (Nov Dec), which is to say, the last Wednesday of November and December.

\section*{The omit commands: omit date}

The full syntax of omit date is
\([\) from \(\{\) date \(\mid\).\(\} to \{\) date \(\mid\}:\).\(] omit date pdate [and pmlist] [if]\)
You may omit specific dates,
omit date 25dec2010
or you may omit the same date across years:
```

omit date 25dec*

```

\section*{The omit commands: omit dayofweek}

The full syntax of omit dayofweek is
```

[from {date|.} to {date|.}:] omit dayofweek dowlist [if]

```

The specified days of week (Monday, Tuesday, ...) are omitted.

\section*{The omit commands: omit dowinmonth}

The full syntax of omit dowinmonth is
\([\) from \(\{\) date \(\mid\).\(\} to \{\) date \(\mid\}:\).] omit pm\# dow [of monthlist] [and pmlist] [if]
dowinmonth stands for day of week in month and refers to days such as the first Monday, second Monday, ..., next-to-last Monday, and last Monday of a month. This is written as \(+1 \mathrm{Mo},+2 \mathrm{Mo}\), \(\ldots,-2 \mathrm{Mo}\), and -1 Mo .

\section*{Creating stbcal-files with bcal create}

Business calendars can be obtained from your Stata installation or from other Stata users. You can also write your own business calendar files or use the bcal create command to automatically create a business calendar from the current dataset. With bcal create, business holidays are automatically inferred from gaps in the dataset, or they can be explicitly defined by specifying the if and in qualifiers, as well as the excludemissing() option. You can also edit business calendars created with bcal create or obtained from other sources. It is advisable to use bcal load or bcal describe to verify that a business calendar is well constructed and remains so after editing.

See [D] bcal for more information on bcal create.

\section*{Where to place stbcal-files}

Stata automatically searches for stbcal-files in the same way it searches for ado-files. Stata looks for ado-files and stbcal-files in the official Stata directories, your site's directory (SITE), your current working directory (.), your personal directory (PERSONAL), and your directory for materials written by other users (PLUS). On this writer's computer, these directories happen to be
```

. sysdir
STATA: C:\Program Files\Stata14\
BASE: C:\Program Files\Stata12\ado\base\
SITE: C:\Program Files\Stata14\ado\site\
PLUS: C:\ado\plus\
PERSONAL: C:\ado\personal\
OLDPLACE: C:\ado\

```

Place calendars that you write into ., PERSONAL, or SITE. Calendars you obtain from others using net or ssc will be placed by those commands into PLUS. See [P] sysdir, \([R]\) net, and \([R]\) ssc.

\section*{How to debug stbcal-files}

Stbcal-files are loaded automatically as they are needed, and because this can happen anytime, even at inopportune moments, no output is produced. If there are errors in the file, no mention is made of the problem, and thereafter Stata simply acts as if it had never found the file, which is to say, variables with \(\%\) tbcalname formats are displayed in \(\%\) g format.

You can tell Stata to load a calendar file right now and to show you the output, including error messages. Type
```

. bcal load calname

```

It does not matter where calname.stbcal is stored, Stata will find it. It does not matter whether Stata has already loaded calname.stbcal, either secretly or because you previously instructed the file be loaded. It will be reloaded, you will see what you wrote, and you will see any error messages.

\section*{Ideas for calendars that may not occur to you}

Business calendars obviously are not restricted to businesses, and neither do they have to be restricted to days.

Say you have weekly data and want to create a calendar that contains only Mondays. You could code
```

version 14.2
purpose "Mondays only"
range 04jan1960 06jan2020
centerdate 04jan1960
omitdow (Tu We Th Fr Sa Su)

```
 begin mondays.stbcal

Say you have semimonthly data and want to include the 1st and 15 th of every month. You could code
```

                                    begin smnth.stbcal
    version 14.2
purpose "Semimonthly"
range 01jan1960 15dec2020
centerdate 01jan1960
omit date 2jan*
omit date 3jan*
.
•
omit date 14jan*
omit date 16jan*
.
omit date 31jan*
omit date 2feb*
•
•

Forgive the ellipses, but this file will be long. Even so, you have to create it only once.
As a final example, say that you just want Stata's \%td dates, but you wish they were centered on 01jan1970 rather than on 01jan1960. You could code

```
version 14.2
Purpose "%td centered on 01jan1970"
range 01jan1800 31dec2999
centerdate 01jan1970
```


## Also see

[D] bcal - Business calendar file manipulation
[D] datetime business calendars - Business calendars
[D] datetime - Date and time values and variables

## Title

datetime display formats - Display formats for dates and times

Description Syntax Remarks and examples Also see

## Description

Stata stores dates and times numerically in one of the eight SIFs. An SIF might be 18,282 or even $1,579,619,730,000$. Place the appropriate format on it, and the 18,282 is displayed as 20 jan 2010 (\%td). The $1,579,619,730,000$ is displayed as 20 jan 2010 15:15:30 (\%tc).

If you specify additional format characters, you can change how the result is displayed. Rather than 20jan2010, you could change it to 2010.01.20; January 20, 2010; or 1/20/10. Rather than 20jan2010 15:15:30, you could change it to 2010.01 .20 15:15; January 20, $20103: 15 \mathrm{pm}$; or Wed Jan 20 15:15:30 2010.

See [D] datetime for an introduction to Stata's dates and times.

## Syntax

The formats for displaying Stata internal form (SIF) dates and times in human readable form (HRF) are

SIF type	Display format to   present SIF in HRF
datetime/c	\%tc $[$ details $]$
datetime/C	\%tC $[$ details $]$
date	\%td $[$ details $]$
weekly date	\%tw $[$ details $]$
monthly date	\%tm $[$ details $]$
quarterly date	\%tq $[$ details $]$
half-yearly date	\%th $[$ details $]$
yearly date	$\%$ ty $[$ details $]$

The optional details allows you to control how results appear and is composed of a sequence of the following codes:

Code	Meaning	Output
CC	century-1	01-99
cc	century-1	1-99
YY	2-digit year	00-99
yy	2-digit year	0-99
JJJ	day within year	001-366
jjj	day within year	1-366
Mon	month	Jan, Feb, ..., Dec
Month	month	January, February, ..., December
mon	month	jan, feb, ..., dec
month	month	january, february, ..., december
NN	month	01-12
nn	month	1-12
DD	day within month	01-31
dd	day within month	1-31
DAYNAME	day of week	Sunday, Monday, ... (aligned)
Dayname	day of week	Sunday, Monday, ... (unaligned)
Day	day of week	Sun, Mon, ...
Da	day of week	Su, Mo, ...
day	day of week	sun, mon, ...
da	day of week	su, mo, ..
h	half	1-2
q	quarter	1-4
WW	week	01-52
ww	week	1-52
HH	hour	00-23
Hh	hour	00-12
hH	hour	0-23
hh	hour	0-12
MM	minute	00-59
mm	minute	0-59


SS	second	00-60 (sic, due to leap seconds)
ss	second	0-60 (sic, due to leap seconds)
.s	tenths	.0-.9
.ss	hundredths	.00-. 99
.sss	thousandths	.000-. 999
am	show am or pm	am or pm
a.m.	show a.m. or p.m.	a.m. or p.m.
AM	show AM or PM	AM or PM
A.M.	show A.M. or P.M.	A.M. or P.M.
-	display period	.
,	display comma	,
:	display colon	:
-	display hyphen	-
-	display space	
/	display slash	/
1	display backslash	1
! $c$	display character	c
+	separator (see note)	

Note: + displays nothing; it may be used to separate one code from the next to make the format more readable. + is never necessary. For instance, \%tchh:MM+am and \%tchh:MMam have the same meaning, as does \%tc+hh+:+MM+am.

When details is not specified, it is equivalent to specifying

Format	Implied (fully specified) format
$\% \mathrm{tC}$	\%tCDDmonCCYY_HH:MM:SS
\%tc	\%tcDDmonCCYY_HH:MM:SS
\%td	\%tdDDmonCCYY
\%tw	\%twCCYY!www
\%tm	\%tmCCYY!mnn
\%tq	\%tqCCYY!qq
$\%$ \%th	\%thCCYY! hh
\%ty	\%tyCCYY

That is, typing
. format mytimevar \%tc
has the same effect as typing
. format mytimevar \%tcDDmonCCYY_HH:MM:SS

Format \%tcDDmonCCYY_HH:MM:SS is interpreted as

$\%$	t	c	DDmonCCYY_HH:MM:SS
\|	$\mid$		
all formats	it is a	variable	formatting codes
start with \%	datetime format	coded in   milliseconds	specify how to   display value

## Remarks and examples

Remarks are presented under the following headings:
Specifying display formats
Times are truncated, not rounded, when displayed

## Specifying display formats

Rather than using the default format 20jan2010, you could display the SIF date variable in one of these formats:
2010.01.20

January 20, 2010
1/20/10
Likewise, rather than displaying the SIF datetime/c variable in the default format 20jan2010 15:15:30, you could display it in one of these formats:
2010.01.20 15:15

January 20, 2010 3:15 pm
Wed Jan 20 15:15:30 2010
Here is how to do it:

1. 2010.01 .20
format mytdvar \%tdCCYY.NN.DD
2. January 20, 2010
format mytdvar \%tdMonth_dd,_CCYY
3. $1 / 20 / 10$
format mytdvar \%tdnn/dd/YY
4. 2010.01.20 15:15
format mytcvar \%tcCCYY.NN.DD_HH:MM
5. January 20, 2010 3:15 pm
format mytcvar \%tcMonth_dd,_CCYY_hh:MM_am
Code am at the end indicates that am or pm should be displayed, as appropriate.
6. Wed Jan 20 15:15:30 2010
format mytcvar \%tcDay_Mon_DD_HH:MM:SS_CCYY

In examples 1 to 3 , the formats each begin with $\% \mathrm{td}$, and in examples 4 to 6 , the formats begin with \%tc. It is important that you specify the opening correctly—namely, as $\%+\mathrm{t}+$ third_character. The third character indicates the particular SIF encoding type, which is to say, how the numeric value is to be interpreted. You specify $\%$ tc. . . for datetime $/ \mathrm{c}$ variables, $\% \mathrm{tc} .$. . for datetime $/ \mathrm{C}, \% \mathrm{td} .$. for date, and so on.

The default format for datetime/c and datetime/C variables omits the fraction of seconds; 15:15:30.000 is displayed as $15: 15: 30$. If you wish to see the fractional seconds, specify the format
\%tcDDmonCCYY_HH:MM:SS.sss
or
\%tCDDmonCCYY_HH:MM:SS.sss as appropriate.

## Times are truncated, not rounded, when displayed

Consider the time 11:32:59.999. Other, less precise, ways of writing that time are
11:32:59.99
11:32:59.9
11:32:59
11:32

That is, when you suppress the display of more-detailed components of the time, the parts that are displayed are not rounded. Stata displays time just as a digital clock would; the time is $11: 32$ right up until the instant that it becomes 11:33.

## Also see <br> [D] datetime - Date and time values and variables <br> [D] datetime business calendars - Business calendars <br> [D] datetime translation - String to numeric date translation functions

## Title

datetime translation - String to numeric date translation functions

Description Syntax Remarks and examples Also see

## Description

These functions translate dates and times recorded as strings containing human readable form (HRF) to the desired Stata internal form (SIF). See [D] datetime for an introduction to Stata's date and time features.

Also see Using dates and times from other software in [D] datetime.

## Syntax

The string-to-numeric date and time translation functions are

Desired SIF type	String-to-numeric translation function
datetime/c	clock (HRFstr, mask [, topyear])
datetime/C	Clock(HRFstr, mask [, topyear])
date	date (HRFstr, mask [, topyear])
weekly date	weekly (HRFstr, mask [, topyear ])
monthly date	monthly (HRFstr, mask [, topyear])
quarterly date	quarterly (HRFstr, mask [, topyear])
half-yearly date	halfyearly (HRFstr, mask [, topyear])
yearly date	yearly (HRFstr, mask [, topyear])

where
HRFstr is the string value (HRF) to be translated,
topyear is described in Working with two-digit years, below,
and mask specifies the order of the date and time components and is a string composed of a sequence of these elements:

Code	Meaning
M	month
D	day within month
Y	4-digit year
19Y	2-digit year to be interpreted as 19xx
20Y	2-digit year to be interpreted as 20xx
h	hour of day
m minutes within hour	
S	seconds within minute
\#	ignore one element

Blanks are also allowed in mask, which can make the mask easier to read, but they otherwise have no significance.

Examples of masks include
"MDY" HRFstr contains month, day, and year, in that order.
"MD19Y" means the same as "MDY" except that HRFstr may contain two-digit years, and when it does, they are to be treated as if they are 4-digit years beginning with 19.
"MDYhms" HRFstr contains month, day, year, hour, minute, and second, in that order.
"MDY hms" means the same as "MDYhms"; the blank has no meaning.
"MDY\#hms" means that one element between the year and the hour is to be ignored. For example, HRFstr contains values like "1-1-2010 at 15:23:17" or values like "1-1-2010 at 3:23:17 PM".

## Remarks and examples

Remarks are presented under the following headings:

```
Introduction
Specifying the mask
How the HRF-to-SIF functions interpret the mask
Working with two-digit years
Working with incomplete dates and times
Translating run-together dates, such as 20060125
Valid times
The clock() and Clock() functions
Why there are two SIF datetime encodings
Advice on using datetime/c and datetime/C
Determining when leap seconds occurred
The date() function
The other translation functions
```


## Introduction

The HRF-to-SIF translation functions are used to translate string HRF dates, such as "08/12/06", " $12-8-2006 "$ ", 12 Aug 06 ", "12aug2006 14:23", and " 12 aug06 $2: 23 \mathrm{pm}$ ", to SIF. The HRF-to-SIF translation functions are typically used after importing or reading data. You read the date information into string variables and then the HRF-to-SIF functions translate the string into something Stata can use, namely, an SIF numeric variable.

You use generate to create the SIF variables. The translation functions are used in the expressions, such as

```
. generate double time_admitted = clock(time_admitted_str, "DMYhms")
. format time_admitted %tc
. generate date_hired = date(date_hired_str, "MDY")
. format date_hired %td
```

Every translation function-such as clock() and date() above—requires these two arguments:

1. the HRFstr specifying the string to be translated
2. the mask specifying the order in which the date and time components appear in HRFstr Notes:
3. You choose the translation function $\operatorname{clock}(), \operatorname{Clock}()$, date (), ... according to the type of SIF value you want returned.
4. You specify the mask according to the contents of HRFstr.

Usually, you will want to translate an HRFstr containing "2006.08.13 14:23" to an SIF datetime/c or datetime/C value and translate an HRFstr containing " 2006.08 .13 " to an SIF date value. If you wish, however, it can be the other way around. In that case, the detailed string would translate to an SIF date value corresponding to just the date part, 13aug2006, and the less detailed string would translate to an SIF datetime value corresponding to 13aug2006 00:00:00.000.

## Specifying the mask

An argument mask is a string specifying the order of the date and time components in HRFstr. Examples of HRF date strings and the mask required to translate them include the following:

HRFstr Corresponding mask

01dec2006 14:22
01-12-2006 14.22
1dec2006 14:22
1-12-2006 14:22
01dec06 14:22
01-12-06 14.22
December 1, 2006 14:22
2006 Dec 01 14:22
2006-12-01 14:22
2006-12-01 14:22:43
2006-12-01 14:22:43.2
2006-12-01 14:22:43.21
2006-12-01 14:22:43.213
2006-12-01 2:22:43.213 pm
2006-12-01 2:22:43.213 pm.
2006-12-01 2:22:43.213 p.m.
2006-12-01 2:22:43.213 P.M.
200612011422
14:22
2006-12-01
Fri Dec 01 14:22:43 CST 2006

## "DMYhm"

"DMYhm"
"DMYhm"
"DMYhm"
"DM20Yhm"
"DM20Yhm"
"MDYhm"
"YMDhm"
"YMDhm"
"YMDhms"
"YMDhms"
"YMDhms"
"YMDhms"
"YMDhms" (see note 1)
"YMDhms"
"YMDhms"
"YMDhms"
"YMDhm"
"hm" (see note 2)
"YMD"
"\#MDhms\#Y"

## Notes:

1. Nothing special needs to be included in mask to process a.m. and p.m. markers. When you include code $h$, the HRF-to-SIF functions automatically watch for meridian markers.
2. You specify the mask according to what is contained in HRFstr. If that is a subset of what the selected SIF type could record, the remaining elements are set to their defaults. clock("14:22", "hm") produces 01jan1960 14:22:00 and clock("2006-12-01", "YMD") produces 01dec2006 00:00:00. date("jan 2006", "MY") produces 01jan2006.
mask may include spaces so that it is more readable; the spaces have no meaning. Thus you can type
```
. generate double admit = clock(admitstr, "#MDhms#Y")
```

or type

```
. generate double admit = clock(admitstr, "# MD hms # Y")
```

and which one you use makes no difference.

## How the HRF-to-SIF functions interpret the mask

The HRF-to-SIF functions apply the following rules when interpreting HRFstr:

1. For each HRF string to be translated, remove all punctuation except for the period separating seconds from tenths, hundredths, and thousandths of seconds. Replace removed punctuation with a space.
2. Insert a space in the string everywhere that a letter is next to a number, or vice versa.
3. Interpret the resulting elements according to mask.

For instance, consider the string
01dec2006 14:22
Under rule 1, the string becomes
01dec2006 1422
Under rule 2, the string becomes
01 dec 20061422
Finally, the HRF-to-SIF functions apply rule 3. If the mask is "DMYhm", then the functions interpret " 01 " as the day, "dec" as the month, and so on.

Or consider the string
Wed Dec 01 14:22:43 CST 2006
Under rule 1 , the string becomes
Wed Dec 01142243 CST 2006
Applying rule 2 does not change the string. Now rule 3 is applied. If the mask is "\#MDhms\#Y", the translation function skips "Wed", interprets "Dec" as the month, and so on.

The \# code serves a second purpose. If it appears at the end of the mask, it specifies that the rest of string is to be ignored. Consider translating the string

Wed Dec 01142243 CST 2006 patient 42
The mask code that previously worked when "patient 42 " was not part of the string, "\#MDhms\#Y", will result in a missing value in this case. The functions are careful in the translation, and if the whole string is not used, they return missing. If you end the mask in \#, however, the functions ignore the rest of the string. Changing the mask from "\#MDhms\#Y" to "\#MDhms\#Y\#" will produce the desired result.

## Working with two-digit years

Consider translating the string 01-12-06 14:22, which is to be interpreted as 01dec2006 14:22:00. The translation functions provide two ways of doing this.

The first is to specify the assumed prefix in the mask. The string 01-12-06 14:22 can be read by specifying the mask "DM20Yhm". If we instead wanted to interpret the year as 1906, we would specify the mask "DM19Yhm". We could even interpret the year as 1806 by specifying "DM18Yhm".

What if our data include 01-12-06 14:22 and include 15-06-98 11:01? We want to interpret the first year as being in 2006 and the second year as being in 1998. That is the purpose of the optional argument topyear:

$$
\text { clock (string, mask }[, \text { topyear }])
$$

When you specify topyear, you are stating that when years in string are two digits, the full year is to be obtained by finding the largest year that does not exceed topyear. Thus you could code
. generate double timestamp = clock(timestr, "DMYhm", 2020)
The two-digit year 06 would be interpreted as 2006 because 2006 does not exceed 2020. The two-digit year 98 would be interpreted as 1998 because 2098 does exceed 2020.

## Working with incomplete dates and times

The translation functions do not require that every component of the date and time be specified.
Translating 2006-12-01 with mask "YMD" results in 01dec2006 00:00:00.
Translating 14:22 with mask " hm " results in 01jan 1960 14:22:00.
Translating 11-2006 with mask "MY" results in 01nov2006 00:00:00.
The default for a component, if not specified in the mask, is

Code	Default (if not specified)
M	01
D	01
Y	1960
h	00
m	00
s	00

Thus if you have data recording " $14: 22$ ", meaning a duration of 14 hours and 22 minutes or the time 14:22 each day, you can translate it with clock(HRFstr, "hm"). See Obtaining and working with durations in [D] datetime.

## Translating run-together dates, such as 20060125

The translation functions will translate dates and times that are run together, such as 20060125, 060125 , and 20060125110215 (which is 25 jan 2006 11:02:15). You do not have to do anything special to translate them:

```
. display %d date("20060125", "YMD")
25jan2006
. display %td date("060125", "20YMD")
25jan2006
. display %tc clock("20060125110215", "YMDhms")
25jan2006 11:02:15
```

In a data context, you could type
. generate startdate = date(startdatestr, "YMD")
. generate double starttime = clock(starttimestr, "YMDhms")

Remember to read the original date into a string. If you mistakenly read the date as numeric, the best advice is to read the date again. Numbers such as 20060125 and 20060125110215 will be rounded unless they are stored as doubles.

If you mistakenly read the variables as numeric and have verified that rounding did not occur, you can convert the variable from numeric to string by using the string() function, which comes in one- and two-argument forms. You will need the two-argument form:
. generate str startdatestr = string(startdatedouble, "\%10.0g")
. generate str starttimestr = string(starttimedouble, "\%16.0g")
If you omitted the format, string() would produce $2.01 \mathrm{e}+07$ for 20060125 and $2.01 \mathrm{e}+13$ for 20060125110215. The format we used had a width that was 2 characters larger than the length of the integer number, although using a too-wide format does no harm.

## Valid times

27:62:90 is an invalid time. If you try to convert $27: 62: 90$ to a datetime value, you will obtain a missing value.

24:00:00 is also invalid. A correct time would be 00:00:00 of the next day.
In hh:mm:ss, the requirements are $0 \leq h h<24,0 \leq m m<60$, and $0 \leq s s<60$, although sometimes 60 is allowed. 31dec2005 23:59:60 is an invalid datetime/c but a valid datetime/C. 31dec 2005 23:59:60 includes an inserted leap second.

30dec2005 23:59:60 is invalid in both datetime encodings. 30dec2005 23:59:60 did not include an inserted leap second. A correct datetime would be 31dec2005 00:00:00.

## The clock() and Clock() functions

Stata provides two separate datetime encodings that we call SIF datetime/c and SIF datetime/C and that others would call "times assuming 86,400 seconds per day" and "times adjusted for leap seconds" or, equivalently, UTC times.

The syntax of the two functions is the same:

```
clock(HRFstr, mask [, topyear])
Clock(HRFstr, mask [, topyear])
```

Function Clock () is nearly identical to function clock(), except that Clock () returns a datetime/C value rather than a datetime/c value. For instance,

$$
\begin{aligned}
\text { Noon of } 23 \operatorname{nov} 2010 & =1,606,132,800,000 \text { in datetime/c } \\
& =1,606,132,824,000 \text { in datetime/C }
\end{aligned}
$$

They differ because 24 seconds have been inserted into datetime/C between 01jan1960 and 23nov2010. Correspondingly, Clock () understands times in which there are leap seconds, such as 30 jun 1997 23:59:60. clock() would consider 30jun1997 23:59:60 an invalid time and so return a missing value.

## Why there are two SIF datetime encodings

Stata provides two different datetime encodings, SIF datetime/c and SIF datetime/C.
SIF datetime/c assumes that there are $24 \times 60 \times 60 \times 1000 \mathrm{~ms}$ per day, just as an atomic clock does. Atomic clocks count oscillations between the nucleus and the electrons of an atom and thus provide a measurement of the real passage of time.

Time of day measurements have historically been based on astronomical observation, which is a fancy way of saying that the measurements are based on looking at the sun. The sun should be at its highest point at noon, right? So however you might have kept track of time-by falling grains of sand or a wound-up spring-you would have periodically reset your clock and then gone about your business. In olden times, it was understood that the 60 seconds per minute, 60 minutes per hour, and 24 hours per day were theoretical goals that no mechanical device could reproduce accurately. These days, we have more formal definitions for measurements of time. One second is $9,192,631,770$ periods of the radiation corresponding to the transition between two levels of the ground state of cesium 133. Obviously, we have better equipment than the ancients, so problem solved, right? Wrong. There are two problems: the formal definition of a second is just a little too short to use for accurately calculating the length of a day, and the Earth's rotation is slowing down.

As a result, since 1972, leap seconds have been added to atomic clocks once or twice a year to keep time measurements in synchronization with Earth's rotation. Unlike leap years, however, there is no formula for predicting when leap seconds will occur. Earth may be on average slowing down, but there is a large random component to that. As a result, leap seconds are determined by committee and announced 6 months before they are inserted. Leap seconds are added, if necessary, on the end of the day on June 30 and December 31 of the year. The exact times are designated as 23:59:60.

Unadjusted atomic clocks may accurately mark the passage of real time, but you need to understand that leap seconds are every bit as real as every other second of the year. Once a leap second is inserted, it ticks just like any other second and real things can happen during that tick.

You may have heard of terms such as GMT and UTC.
GMT is the old Greenwich Mean Time that is based on astronomical observation. GMT has been replaced by UTC.

UTC stands for coordinated universal time. It is measured by atomic clocks and is occasionally corrected for leap seconds. UTC is derived from two other times, UT1 and TAI. UT1 is the mean solar time, with which UTC is kept in sync by the occasional addition of a leap second. TAI is the atomic time on which UTC is based. TAI is a statistical combination of various atomic chronometers and even it has not ticked uniformly over its history; see http://www.ucolick.org/~sla/leapsecs/timescales.html and especially http://www.ucolick.org/~sla/leapsecs/dutc.html\#TAI.

UNK is our term for the time standard most people use. UNK stands for unknown or unknowing. UNK is based on a recent time observation, probably UTC, and it just assumes that there are 86,400 seconds per day after that.

The UNK standard is adequate for many purposes, and when using it you will want to use SIF datetime/c rather than the leap second-adjusted datetime/C encoding. If you are using computertimestamped data, however, you need to find out whether the timestamping system accounted for leap-second adjustment. Problems can arise even if you do not care about losing or gaining a second here and there.

For instance, you may import from other systems timestamp values recorded in the number of milliseconds that have passed since some agreed upon date. You may do this, but if you choose the wrong encoding scheme (choose datetime/c when you should choose datetime/C, or vice versa), more recent times will be off by 24 seconds.

To avoid such problems, you may decide to import and export data by using HRF such as "Fri Aug 18 14:05:36 CDT 2010". This method has advantages, but for datetime/C (UTC) encoding, times such as 23:59:60 are possible. Some systems will refuse to decode such times.

Stata refuses to decode 23:59:60 in the datetime/c encoding (function clock()) and accepts it with datetime/C (function Clock()). When datetime/C function Clock() sees a time with a 60th second, Clock () verifies that the time is one of the official leap seconds. Thus when translating from printable forms, try assuming datetime/c and check the result for missing values. If there are none, then you can assume your use of datetime/c was valid. If there are missing values and they are due to leap seconds and not some other error, however, you must use datetime/C Clock() to translate the HRF. After that, if you still want to work in datetime/c units, use function cofC() to translate datetime/C values into datetime/c.

If precision matters, the best way to process datetime/C data is simply to treat them that way. The inconvenience is that you cannot assume that there are 86,400 seconds per day. To obtain the duration between dates, you must subtract the two time values involved. The other difficulty has to do with dealing with dates in the future. Under the datetime/C (UTC) encoding, there is no set value for any date more than six months in the future. Below is a summary of advice.

## Advice on using datetime/c and datetime/C

Stata provides two datetime encodings:

1. datetime/C, also known as UTC, which accounts for leap seconds
2. datetime/c, which ignores leap seconds (it assumes 86,400 seconds/day)

Systems vary in how they treat time variables. SAS ignores leap seconds. Oracle includes them. Stata handles either situation. Here is our advice:

- If you obtain data from a system that accounts for leap seconds, import using Stata's datetime/C encoding.
a. If you later need to export data to a system that does not account for leap seconds, use Stata's $\operatorname{cofC}()$ function to translate time values before exporting.
b. If you intend to tsset the time variable and the analysis will be at the second level or finer, just tsset the datetime/C variable, specifying the appropriate delta() if necessary-for example, delta (1000) for seconds.
c. If you intend to tsset the time variable and the analysis will be coarser than the second level (minute, hour, etc.), create a datetime/c variable from the datetime/C variable (generate double tctime $=\operatorname{cofC}($ tCtime $)$ ) and tsset that, specifying the appropriate delta() if necessary. You must do that because in a datetime/C variable, there are not necessarily 60 seconds in a minute; some minutes have 61 seconds.
- If you obtain data from a system that ignores leap seconds, use Stata's datetime/c encoding.
a. If you later need to export data to a system that does account for leap seconds, use Stata's Cofc() function to translate time values before exporting.
b. If you intend to tsset the time variable, just tsset it, specifying the appropriate delta().
Some users prefer always to use Stata's datetime/c because \%tc values are a little easier to work with. You can always use datetime/c if
- you do not mind having up to 1 second of error and
- you do not import or export numerical values (clock ticks) from other systems that are using leap seconds, because doing so could introduce nearly 30 seconds of error.
Remember these two things if you use datetime/C variables:

1. The number of seconds between two dates is a function of when the dates occurred. Five days from one date is not simply a matter of adding $5 \times 24 \times 60 \times 60 \times 1000 \mathrm{~ms}$. You might need to add another $1,000 \mathrm{~ms}$. Three hundred sixty-five days from now might require adding 1,000 or $2,000 \mathrm{~ms}$. The longer the span, the more you might have to add. The best way to add durations to datetime/C variables is to extract the components, add to them, and then reconstruct from the numerical components.
2. You cannot accurately predict datetimes more than six months into the future. We do not know what the datetime/C value of 25 dec 2026 00:00:00 will be because every year along the way, the International Earth Rotation Reference Systems Service (IERS) will twice announce whether a leap second will be inserted.
You can help alleviate these inconveniences. Face west and throw rocks. The benefit will be transitory only if the rocks land back on Earth, so you need to throw them really hard. We know what you are thinking, but this does not need to be a coordinated effort.

## Determining when leap seconds occurred

Stata system file leapseconds.maint lists the dates on which leap seconds occurred. The file is updated periodically (see [R] update; the file is updated when you update all), and Stata's datetime/C functions access the file to know when leap seconds occurred.

You can access it, too. To view the file, type
. viewsource leapseconds.maint

## The date() function

The syntax of the date() function is
date (string, mask [, topyear])
The date() function is identical to clock() except that date() returns an SIF date value rather than a datetime value. The date() function is the same as dofc(clock()).
daily() is a synonym for date().

## The other translation functions

The other translation functions are

SIF type	HRF-to-SIF translation function
weekly date	weekly (HRFstr, mask $[$, topyear $])$
monthly date	monthly $($ HRFstr, mask $[$, topyear $])$
quarterly date   half-yearly date	quarterly $($ HRFstr, mask $[$, topyear $])$
halfyearly $(H R F s t r$, mask $[$, topyear $])$	

HRFstr is the value to be translated.
mask specifies the order of the components.
topyear is described in Working with two-digit years, above.

These functions are rarely used because data seldom arrive in these formats.
Each of the functions translates a pair of numbers: weekly () translates a year and a week number (1-52), monthly() translates a year and a month number (1-12), quarterly() translates a year and a quarter number (1-4), and halfyearly () translates a year and a half number (1-2).

The masks allowed are far more limited than the masks for clock(), Clock(), and date():

Code	Meaning
Y	4-digit year
19Y	2-digit year to be interpreted as $19 x x$
20Y	2-digit year to be interpreted as $20 x x$
W	week number (weekly () only)
M	month number (monthly () only)
Q	quarter number (quarterly () only)
H	half-year number (halfyearly () only)

The pair of numbers to be translated must be separated by a space or punctuation.
No extra characters are allowed.

## Also see

[D] datetime - Date and time values and variables
[D] datetime business calendars - Business calendars
[D] datetime display formats - Display formats for dates and times

## Title

describe - Describe data in memory or in file
Description
Menu
Options to describe data in memory
Remarks and examples
References

Quick start
Syntax
Options to describe data in file
Stored results
Also see

## Description

describe produces a summary of the dataset in memory or of the data stored in a Stata-format dataset.

For a compact listing of variable names, use describe, simple.

## Quick start

Describe all variables in the dataset
describe
Describe all variables starting with code
describe code*
Describe properties of the dataset
describe, short
Describe without abbreviating variable names
describe, fullnames
Create a dataset containing variable descriptions
describe, replace
Describe contents of mydata.dta without opening the dataset
describe using mydata

## Menu

Data $>$ Describe data $>$ Describe data in memory or in a file

## Syntax

Describe data in memory
describe [varlist] [, memory_options]
Describe data in file
describe [varlist] using filename [, file_options]
memory_options Description

simple	display only variable names   display only general information
$\underline{\text { short }}$	do not abbreviate variable names
fullnames	display variable number along with name   numbers   replace
make dataset, not written report, of description	
clear	for use with replace
varlist	store $r($ varlist) and $r$ (sortlist) in addition to usual stored results;   programmer's option

varlist does not appear in the dialog box.
file_options Description
short display only general information
simple display only variable names
varlist store $r$ (varlist) and $r$ (sortlist) in addition to usual stored results; programmer's option
varlist does not appear in the dialog box.

## Options to describe data in memory

simple displays only the variable names in a compact format. simple may not be combined with other options.
short suppresses the specific information for each variable. Only the general information (number of observations, number of variables, size, and sort order) is displayed.
fullnames specifies that describe display the full names of the variables. The default is to present an abbreviation when the variable name is longer than 15 characters. describe using always shows the full names of the variables, so fullnames may not be specified with describe using.
numbers specifies that describe present the variable number with the variable name. If numbers is specified, variable names are abbreviated when the name is longer than eight characters. The numbers and fullnames options may not be specified together. numbers may not be specified with describe using.
replace and clear are alternatives to the options above. describe usually produces a written report, and the options above specify what the report is to contain. If you specify replace, however, no report is produced; the data in memory are instead replaced with data containing the information that the report would have presented. Each observation of the new data describes a variable in the original data; see describe, replace below.
clear may be specified only when replace is specified. clear specifies that the data in memory be cleared and replaced with the description information, even if the original data have not been saved to disk.

The following option is available with describe but is not shown in the dialog box:
varlist, an option for programmers, specifies that, in addition to the usual stored results, r(varlist) and $r$ (sortlist) be stored, too. $r$ (varlist) will contain the names of the variables in the dataset. $r$ (sortlist) will contain the names of the variables by which the data are sorted.

## Options to describe data in file

short suppresses the specific information for each variable. Only the general information (number of observations, number of variables, size, and sort order) is displayed.
simple displays only the variable names in a compact format. simple may not be combined with other options.

The following option is available with describe but is not shown in the dialog box:
varlist, an option for programmers, specifies that, in addition to the usual stored results, $r$ (varlist) and $r$ (sortlist) be stored, too. $r$ (varlist) will contain the names of the variables in the dataset. $r$ (sortlist) will contain the names of the variables by which the data are sorted.
Because Stata/MP and Stata/SE can create truly large datasets, there might be too many variables in a dataset for their names to be stored in $r$ (varlist), given the current maximum length of macros, as determined by set maxvar. Should that occur, describe using will issue the error message "too many variables", r(103).

## Remarks and examples

Remarks are presented under the following headings:
describe describe, replace

## describe

If describe is typed with no operands, the contents of the dataset currently in memory are described.

The varlist in the describe using syntax differs from standard Stata varlists in two ways. First, you cannot abbreviate variable names; that is, you have to type displacement rather than displ. However, you can use the abbreviation character ( $\sim$ ) to indicate abbreviations, for example, displ $\sim$. Second, you may not refer to a range of variables; specifying price-trunk is considered an error.
> Example 1
The basic description includes some general information on the number of variables and observations, along with a description of every variable in the dataset:

Contains data from http://www.stata-press.com/data/r14/states.dta     obs: 50 State data   vars: 5 3 Jan 2014 15:17   size: 1,100 (_dta has notes)				
$\begin{aligned} & \text { variable } \mathrm{s} \\ & \text { name } \end{aligned}$	storage type	display   format	value   label	variable label
1. state	str8	\%9s		
2. region	int	\%8.0g	reg	Census Region
3. median~e	float	$\% 9.0 \mathrm{~g}$		Median Age
4. marria~e	e long	$\% 12.0 \mathrm{~g}$		Marriages per 100,000
5. divorc~e	e long	$\% 12.0 \mathrm{~g}$		Divorces per 100,000

Sorted by: region
In this example, the dataset in memory comes from the file states.dta and contains 50 observations on 5 variables. The dataset is labeled "State data" and was last modified on January 3, 2014, at 15:17 (3:17 p.m.). The "_dta has notes" message indicates that a note is attached to the dataset; see [U] 12.7 Notes attached to data.

The first variable, state, is stored as a str8 and has a display format of $\% 9 \mathrm{~s}$.
The next variable, region, is stored as an int and has a display format of $\% 8.0 \mathrm{~g}$. This variable has associated with it a value label called reg, and the variable is labeled Census Region.

The third variable, which is abbreviated median ee, is stored as a float, has a display format of $\% 9.0 \mathrm{~g}$, has no value label, and has a variable label of Median Age. The variables that are abbreviated marria~e and divorc~e are both stored as longs and have display formats of $\% 12.0 \mathrm{~g}$. These last two variables are labeled Marriages per 100,000 and Divorces per 100,000, respectively.

The data are sorted by region.
Because we specified the numbers option, the variables are numbered; for example, region is variable 2 in this dataset.

## > Example 2

To view the full variable names, we could omit the numbers option and specify the fullnames option.

```Contains data obs: vars: size:```	$\begin{array}{r} \text { from htt } \\ 50 \\ 5 \\ 1,100 \end{array}$	://www.st	a-press	/data/r14/states.dta   State data   3 Jan 2014 15:17   (_dta has notes)
variable name	storage type	display format	value label	variable label
state	str8	\%9s		
region	int	\% 8.0 g	reg	Census Region
median_age	float	\%9.0g		Median Age
marriage_rate	long	\%12.0g		Marriages per 100,000
divorce_rate	long	\%12.0g		Divorces per 100,000

Sorted by: region

Here we did not need to specify the fullnames option to see the unabbreviated variable names because the longest variable name is 13 characters. Omitting the numbers option results in 15 -character variable names being displayed.

- Technical note

The describe listing above also shows that the size of the dataset is 1,100 . If you are curious,

$$
(8+2+4+4+4) \times 50=1100
$$

The numbers $8,2,4,4$, and 4 are the storage requirements for a str8, int, float, long, and long, respectively; see [U] 12.2.2 Numeric storage types. Fifty is the number of observations in the dataset.

> Example 3

If we specify the short option, only general information about the data is presented:

. describe, fullnames
Contains data from http://www.stata-press.com/data/r14/states.dta
obs: vars: size:

Sorted by: region

If we specify a varlist, only the variables in that varlist are described.

Example 4

Let's change datasets. The describe varlist command is particularly useful when combined with the ' $*$ ' wildcard character. For instance, we can describe all the variables whose names start with pop by typing describe pop*:

```
. use http://www.stata-press.com/data/r14/census
(1980 Census data by state)
```

. describe pop*

variable name	storage type	display format	value label	variable label
pop	long	$\% 12.0 \mathrm{gc}$		Population
poplt5	long	$\% 12.0 \mathrm{gc}$		Pop, < 5 year
pop5_17	long	$\% 12.0 \mathrm{gc}$		Pop, 5 to 17 years
pop18p	long	$\% 12.0 \mathrm{gc}$		Pop, 18 and older
pop65p	long	$\% 12.0 \mathrm{gc}$		Pop, 65 and older
popurban	long	$\% 12.0 \mathrm{gc}$		Urban population

We can describe the variables state, region, and pop18p by specifying them:

describe state region pop18p				
storage				
type			\quad	display
:---				
format	\quad	value		
---	---	---	---	---
label	\quad variable label	variable name	str14	$\%-14 \mathrm{~s}$
:---	:---	:---		
state	int	$\%-8.0 \mathrm{~g}$		
region	long	$\% 12.0 \mathrm{gc}$		

Typing describe using filename describes the data stored in filename. If an extension is not specified, .dta is assumed.

Example 5

We can describe the contents of states.dta without disturbing the data that we currently have in memory by typing

```Contains data obs: vars: size:```	$\begin{array}{r} 50 \\ 5 \\ 1,300 \end{array}$			State data   3 Jan 2014 15:17
variable name	storage type	display   format	value   label	variable label
state	str8	\%9s		
region	int	\%8.0g	reg	Census Region
median_age	float	\%9.0g		Median Age
marriage_rate	long	\%12.0g		Marriages per 100,000
divorce_rate	long	$\% 12.0 \mathrm{~g}$		Divorces per 100,000

Sorted by: region

## describe, replace

describe with the replace option is rarely used, although you may sometimes find it convenient.
Think of describe, replace as separate from but related to describe without the replace option. Rather than producing a written report, describe, replace produces a new dataset that contains the same information a written report would. For instance, try the following:

```
. sysuse auto, clear
. describe
(report appears; data in memory unchanged)
. list
(visual proof that data are unchanged)
. describe, replace
(no report appears, but the data in memory are changed!)
. list
(visual proof that data are changed)
```

describe, replace changes the original data in memory into a dataset containing an observation for each variable in the original data. Each observation in the new data describes a variable in the original data. The new variables are

1. position, a variable containing the numeric position of the original variable ( $1,2,3, \ldots$ ).
2. name, a variable containing the name of the original variable, such as "make", "price", "mpg", ....
3. type, a variable containing the storage type of the original variable, such as "str18", "int", "float", ....
4. isnumeric, a variable equal to 1 if the original variable was numeric and equal to 0 if it was string.
5. format, a variable containing the display format of the original variable, such as "\%-18s", "\%8.0gc", ...
6. vallab, a variable containing the name of the value label associated with the original variable, if any.
7. varlab, a variable containing the variable label of the original variable, such as "Make and Model", "Price", "Mileage (mpg)", ....
In addition, the data contain the following characteristics:
_dta[d_filename], the name of the file containing the original data.
_dta[d_filedate], the date and time the file was written.
_dta[d_N], the number of observations in the original data.
_dta[d_sortedby], the variables on which the original data were sorted, if any.

## Stored results

describe stores the following in $r()$ :
Scalars
$r(N) \quad$ number of observations
$r(k) \quad$ number of variables
$r$ (width) width of dataset
$r$ (changed) flag indicating data have changed since last saved
Macros
$r$ (varlist) variables in dataset (if varlist specified)
$r$ (sortlist) variables by which data are sorted (if varlist specified)
describe, replace stores nothing in $r()$.

## References

Cox, N. J. 1999. dm67: Numbers of missing and present values. Stata Technical Bulletin 49: 7-8. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 26-27. College Station, TX: Stata Press.
——. 2001. dm67.1: Enhancements to numbers of missing and present values. Stata Technical Bulletin 60: 2-3. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 7-9. College Station, TX: Stata Press.
_-. 2003. Software Updates: Numbers of present and missing values. Stata Journal 3: 449.
——. 2005. Software Updates: Numbers of present and missing values. Stata Journal 5: 607.
——. 2015. Speaking Stata: A set of utilities for managing missing values. Stata Journal 15: 1174-1185.
Gleason, J. R. 1998. dm61: A tool for exploring Stata datasets (Windows and Macintosh only). Stata Technical Bulletin 45: 2-5. Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 22-27. College Station, TX: Stata Press.
_- 1999. dm61.1: Update to varxplor. Stata Technical Bulletin 51: 2. Reprinted in Stata Technical Bulletin Reprints, vol. 9, p. 15. College Station, TX: Stata Press.

## Also see

[D] ds - List variables matching name patterns or other characteristics
[D] varmanage - Manage variable labels, formats, and other properties
[D] cf - Compare two datasets
[D] codebook - Describe data contents
[D] compare - Compare two variables
[D] compress - Compress data in memory
[D] format - Set variables' output format
[D] label - Manipulate labels
[D] lookfor - Search for string in variable names and labels
[D] notes - Place notes in data
[D] order - Reorder variables in dataset
[D] rename - Rename variable
[SVY] svydescribe - Describe survey data
[U] 6 Managing memory

## Title

destring - Convert string variables to numeric variables and vice versa

Description<br>Syntax<br>Remarks and examples<br>Also see

Quick start
Options for destring
Acknowledgment

Menu<br>Options for tostring<br>References

## Description

destring converts variables in varlist from string to numeric. If varlist is not specified, destring will attempt to convert all variables in the dataset from string to numeric. Characters listed in ignore () are removed. Variables in varlist that are already numeric will not be changed. destring treats both empty strings "" and "." as indicating sysmiss (.) and interprets the strings ".a",".b", ..., ".z" as the extended missing values .a, .b, ..., . z; see [U] 12.2.1 Missing values. destring also ignores any leading or trailing spaces so that, for example, "" is equivalent to "" and " . " is equivalent to ".".
tostring converts variables in varlist from numeric to string. The most compact string format possible is used. Variables in varlist that are already string will not be converted.

## Quick start

Convert strg1 from string to numeric and place result in num1 destring strg1, generate(num1)

As above, but ignore the \% character in strg1
destring strg1, generate(num1) ignore(\%)
As above, but return . for observations with nonnumeric characters
destring strg1, generate(num1) force
Convert num2 from numeric to string and place result in strg2
tostring num2, generate (strg2)
As above, but format with a comma and 2 digits after the decimal assuming no more than 5 digits before the decimal
tostring num2, generate(strg2) format (\%9.2fc)
As above, but format with a leading zero, no comma, and 3 digits after the decimal
tostring num2, generate(strg2) format (\%09.3f)

## Menu

## destring

Data $>$ Create or change data $>$ Other variable-transformation commands $>$ Convert variables from string to numeric

## tostring

Data $>$ Create or change data $>$ Other variable-transformation commands $>$ Convert variables from numeric to string

## Syntax

Convert string variables to numeric variables


Convert numeric variables to string variables

```
tostring varlist, {generate(newvarlist)|replace } [tostring_options]
```

destring_options

* generate (newvarlist)
*replace
ignore("chars" [, ignoreopts])
force
float
percent
dpcomma

Description
generate newvar ${ }_{1}, \ldots$, newvar $_{k}$ for each variable in varlist replace string variables in varlist with numeric variables remove specified nonnumeric characters, as characters or as bytes, and illegal Unicode characters
convert nonnumeric strings to missing values
generate numeric variables as type float
convert percent variables to fractional form
convert variables with commas as decimals to period-decimal format

* Either generate(newvarlist) or replace is required.
tostring_options Description
* generate (newvarlist)
* replace force format (format) usedisplayformat
generate newvar ${ }_{1}, \ldots$, newvar $_{k}$ for each variable in varlist replace numeric variables in varlist with string variables force conversion ignoring information loss
convert using specified format
convert using display format

[^5]
## Options for destring

Either generate() or replace must be specified. With either option, if any string variable contains nonnumeric characters not specified with ignore(), then no corresponding variable will be generated, nor will that variable be replaced (unless force is specified).
generate (newvarlist) specifies that a new variable be created for each variable in varlist. newvarlist must contain the same number of new variable names as there are variables in varlist. If varlist is not specified, destring attempts to generate a numeric variable for each variable in the dataset; newvarlist must then contain the same number of new variable names as there are variables in the dataset. Any variable labels or characteristics will be copied to the new variables created.
replace specifies that the variables in varlist be converted to numeric variables. If varlist is not specified, destring attempts to convert all variables from string to numeric. Any variable labels or characteristics will be retained.
ignore("chars" [, ignoreopts]) specifies nonnumeric characters be removed. ignoreopts may be aschars, asbytes, or illegal. The default behavior is to remove characters as characters, which is the same as specifying aschars. asbytes specifies removal of all bytes included in all characters in the ignore string, regardless of whether these bytes form complete Unicode characters. illegal specifies removal of all illegal Unicode characters, which is useful for removing highASCII characters. illegal may not be specified with asbytes. If any string variable still contains any nonnumeric or illegal Unicode characters after the ignore string has been removed, no action will take place for that variable unless force is also specified. Note that to Stata the comma is a nonnumeric character; see also the dpcomma option below.
force specifies that any string values containing nonnumeric characters, in addition to any specified with ignore(), be treated as indicating missing numeric values.
float specifies that any new numeric variables be created initially as type float. The default is type double; see [D] data types. destring attempts automatically to compress each new numeric variable after creation.
percent removes any percent signs found in the values of a variable, and all values of that variable are divided by 100 to convert the values to fractional form. percent by itself implies that the percent sign, "\%", is an argument to ignore(), but the converse is not true.
dpcomma specifies that variables with commas as decimal values should be converted to have periods as decimal values.

## Options for tostring

Either generate() or replace must be specified. If converting any numeric variable to string would result in loss of information, no variable will be produced unless force is specified. For more details, see force below.
generate (newvarlist) specifies that a new variable be created for each variable in varlist. newvarlist must contain the same number of new variable names as there are variables in varlist. Any variable labels or characteristics will be copied to the new variables created.
replace specifies that the variables in varlist be converted to string variables. Any variable labels or characteristics will be retained.
force specifies that conversions be forced even if they entail loss of information. Loss of information means one of two circumstances: 1) The result of real (string(varname, "format")) is not equal to varname; that is, the conversion is not reversible without loss of information; 2) replace was specified, but a variable has associated value labels. In circumstance 1, it is usually best to specify usedisplayformat or format(). In circumstance 2, value labels will be ignored in a forced conversion. decode (see [D] encode) is the standard way to generate a string variable based on value labels.
format (format) specifies that a numeric format be used as an argument to the string() function, which controls the conversion of the numeric variable to string. For example, a format of $\% 7.2 \mathrm{f}$ specifies that numbers are to be rounded to two decimal places before conversion to string. See Remarks and examples below and [FN] String functions and [D] format. format () cannot be specified with usedisplayformat.
usedisplayformat specifies that the current display format be used for each variable. For example, this option could be useful when using U.S. Social Security numbers or daily or other dates with some $\% \mathrm{~d}$ or $\% \mathrm{t}$ format assigned. usedisplayformat cannot be specified with format ().

## Remarks and examples

Remarks are presented under the following headings:

destring<br>tostring

## destring

## Example 1

We read in a dataset, but somehow all the variables were created as strings. The variables contain no nonnumeric characters, and we want to convert them all from string to numeric data types.

```
. use http://www.stata-press.com/data/r14/destring1
. describe
Contains data from http://www.stata-press.com/data/r14/destring1.dta
 obs: 10
 vars: 5 3 Mar 2014 10:15
 size: 200
```

	storage   variable name   type	display   format	value   label	variable label
id	str3	$\% 9 s$		
num	$\operatorname{str} 3$	$\% 9 s$		
code	$\operatorname{str} 4$	$\% 9 s$		
total	str5	$\% 9 s$		
income	str5	$\% 9 s$		

Sorted by:
. list

	id	num	code	total	income
1.	111	243	1234	543	23423
2.	111	123	2345	67854	12654
3.	111	234	3456	345	43658
4.	222	345	4567	57	23546
5.	333	456	5678	23	21432
6.	333	567	6789	23465	12987
7.	333	678	7890	65	9823
8.	444	789	8976	23	32980
9.	444	901	7654	23	18565
10.	555	890	6543	423	19234

```
. destring, replace
id: all characters numeric; replaced as int
num: all characters numeric; replaced as int
code: all characters numeric; replaced as int
total: all characters numeric; replaced as long
income: all characters numeric; replaced as long
```

```
. describe
Contains data from http://www.stata-press.com/data/r14/destring1.dta
 obs: 10
 vars: 5 3 Mar 2014 10:15
 size: }14
```

	storage   type	display   format	value   label	variable label
id	int	$\% 10.0 \mathrm{~g}$		
num	int	$\% 10.0 \mathrm{~g}$		
code	int	$\% 10.0 \mathrm{~g}$		
total	long	$\% 10.0 \mathrm{~g}$		
income	long	$\% 10.0 \mathrm{~g}$		

Sorted by:
Note: Dataset has changed since last saved.
. list

	id	num	code	total	income
1.	111	243	1234	543	23423
2.	111	123	2345	67854	12654
3.	111	234	3456	345	43658
4.	222	345	4567	57	23546
5.	333	456	5678	23	21432
6.	333	567	6789	23465	12987
7.	333	678	7890	65	9823
8.	444	789	8976	23	32980
9.	444	901	7654	23	18565
10.	555	890	6543	423	19234

## Example 2

Our dataset contains the variable date, which was accidentally recorded as a string because of spaces after the year and month. We want to remove the spaces. destring will convert it to numeric and remove the spaces.
. use http://www.stata-press.com/data/r14/destring2, clear
. describe date

variable name	storage   type	display   format	value   label	variable label
date	str14	$\% 10 s$		

. list date

	date
1.	19991210
2.	20000708
3.	19970302
4.	19990900
5.	19981004
6.	20000328
7.	20000808
8.	19971020
9.	19980116
10.	19991112

. destring date, replace ignore(" ")
date: character space removed; replaced as long
. describe date
storage display value
variable name type format label variable label
date long $\% 10.0 \mathrm{~g}$
. list date

	date   1.
2.	19991210
3.	19000708
4.	19990900
5.	19981004
6.	20000328
7.	20000808
8.	19971020
9.	19980116
10.	19991112

## > Example 3

Our dataset contains the variables date, price, and percent. These variables were accidentally read into Stata as string variables because they contain spaces, dollar signs, commas, and percent signs. We want to remove all of these characters and create new variables for date, price, and percent containing numeric values. After removing the percent sign, we want to convert the percent variable to decimal form.

```Contains data obs: vars: size:```	$\begin{gathered} \text { from htt } \\ 10 \\ 3 \\ 280 \end{gathered}$	://www.s	a-pres:	$\begin{aligned} & \text { /data/r14/destrin } \\ & 3 \text { Mar } 201422: 50 \end{aligned}$
variable name	storage type	display format	value label	variable label
date price percent	str14 str11 str3	$\begin{aligned} & \% 10 \mathrm{~s} \\ & \% 11 \mathrm{~s} \\ & \% 9 \mathrm{~s} \end{aligned}$		

Sorted by:
. list

			date	price	percent
	1999	12	10	$\$ 2,343.68$	34%
2.	2000	07	08	$\$ 7,233.44$	86%
3.	1997	03	02	$\$ 12,442.89$	12%
4.	1999	09	00	$\$ 233,325.31$	6%
5.	1998	10	04	$\$ 1,549.23$	76%
6.	2000	03	28	$\$ 23,517.03$	35%
7.	2000	08	08	$\$ 2.43$	69%
8.	1997	10	20	$\$ 9,382.47$	32%
9.	1998	01	16	$\$ 289,209.32$	45%
10.	1999	11	12	$\$ 8,282.49$	1%

. destring date price percent, generate(date2 price2 percent2) ignore("\$,\%")
> percent
date: character space removed; date2 generated as long
price: characters \$, removed; price2 generated as double
percent: character \% removed; percent2 generated as double
. describe
Contains data from http://www.stata-press.com/data/r14/destring2.dta
obs: 10
vars: $6 \quad 3$ Mar 2014 22:50
size: 480

variable name	storage type	display format	value label	variable label
date	str14	$\% 10 \mathrm{~s}$		
date2	long	$\% 10.0 \mathrm{~g}$		
price	str11	$\% 11 \mathrm{~s}$		
price2	double	$\% 10.0 \mathrm{~g}$		
percent	str3	$\% 9 \mathrm{~s}$		
percent2	double	$\% 10.0 \mathrm{~g}$		

Sorted by:
Note: Dataset has changed since last saved.

	date	date2	price	price2	percent	percent2
1.	19991210	19991210	\$2,343.68	2343.68	34\%	. 34
2.	20000708	20000708	\$7,233.44	7233.44	86\%	. 86
3.	19970302	19970302	\$12,442.89	12442.89	12\%	. 12
4.	19990900	19990900	\$233,325.31	233325.31	6\%	. 06
5.	19981004	19981004	\$1,549.23	1549.23	76\%	. 76
6.	20000328	20000328	\$23,517.03	23517.03	35\%	. 35
7.	20000808	20000808	\$2.43	2.43	69\%	. 69
8.	19971020	19971020	\$9,382.47	9382.47	32\%	. 32
9.	19980116	19980116	\$289,209.32	289209.32	45\%	. 45
10.	19991112	19991112	\$8,282.49	8282.49	1\%	. 01

tostring

Conversion of numeric data to string equivalents can be problematic. Stata, like most software, holds numeric data to finite precision and in binary form. See the discussion in [U] 13.12 Precision and problems therein. If no format () is specified, tostring uses the format $\% 12.0 \mathrm{~g}$. This format is, in particular, sufficient to convert integers held as bytes, ints, or longs to string equivalent without loss of precision.

However, users will often need to specify a format themselves, especially when the numeric data have fractional parts and for some reason a conversion to string is required.

$>$ Example 4

Our dataset contains a string month variable and numeric year and day variables. We want to convert the three variables to a $\% \mathrm{td}$ date.

```
. use http://www.stata-press.com/data/r14/tostring, clear
```

. list

	id	month	day	year
1.	123456789	jan	10	2001
2.	123456710	mar	20	2001
3.	123456711	may	30	2001
4.	123456712	jun	9	2001
5.	123456713	oct	17	2001
6.	123456714	nov	15	2001
7.	123456715	dec	28	2001
8.	123456716	apr	29	2001
9.	123456717	mar	11	2001
10.	123456718	jul	3	2001

. tostring year day, replace
year was float now str4
day was float now str2
. generate date $=$ month + "/" + day + "/" + year
. generate edate = date(date, "MDY")
. format edate \%td

id	month	day	year	date	edate
123456789	jan	10	2001	jan/10/2001	10jan2001
123456710	mar	20	2001	mar/20/2001	20mar2001
123456711	may	30	2001	may/30/2001	30may2001
123456712	jun	9	2001	jun/9/2001	09jun2001
123456713	oct	17	2001	oct/17/2001	17oct2001
123456714	nov	15	2001	nov/15/2001	15nov2001
123456715	dec	28	2001	dec/28/2001	28dec2001
123456716	apr	29	2001	apr/29/2001	29apr2001
123456717	mar	11	2001	mar/11/2001	11mar2001
123456718	jul	3	2001	jul/3/2001	03jul2001

Saved characteristics

Each time the destring or tostring commands are issued, an entry is made in the characteristics list of each converted variable. You can type char list to view these characteristics.

After example 3, we could use char list to find out what characters were removed by the destring command.

```
. char list
    percent2[destring]:
```

 date2[destring]: Character removed was: space
 date2[destring_cmd]: destring date price percent, generate(date2 pri..
 price2[destring]: Characters removed were: \$,
 price2[destring_cmd]: destring date price percent, generate(date2 pri..
 percent2[destring_cmd]: destring date price percent, generate(date2 pri..

Acknowledgment

destring and tostring were originally written by Nicholas J. Cox of the Department of Geography at Durham University, UK, and coeditor of the Stata Journal and author of Speaking Stata Graphics.

References

Cox, N. J. 1999a. dm45.1: Changing string variables to numeric: Update. Stata Technical Bulletin 49: 2. Reprinted in Stata Technical Bulletin Reprints, vol. 9, p. 14. College Station, TX: Stata Press.

1999b. dm45.2: Changing string variables to numeric: Correction. Stata Technical Bulletin 52: 2. Reprinted in Stata Technical Bulletin Reprints, vol. 9, p. 14. College Station, TX: Stata Press.

- 2011. Speaking Stata: MMXI and all that: Handling Roman numerals within Stata. Stata Journal 11: 126-142.

Cox, N. J., and W. W. Gould. 1997. dm45: Changing string variables to numeric. Stata Technical Bulletin 37: 4-6. Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 34-37. College Station, TX: Stata Press.

Cox, N. J., and J. B. Wernow. 2000a. dm80: Changing numeric variables to string. Stata Technical Bulletin 56: 8-12. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 24-28. College Station, TX: Stata Press.
——. 2000b. dm80.1: Update to changing numeric variables to string. Stata Technical Bulletin 57: 2. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 28-29. College Station, TX: Stata Press.

Jeanty, P. W. 2013. Dealing with identifier variables in data management and analysis. Stata Journal 13: 699-718.

Also see

[D] egen - Extensions to generate
[D] encode - Encode string into numeric and vice versa
[D] generate - Create or change contents of variable
[D] split - Split string variables into parts
[FN] String functions

Title

dir - Display filenames
Description Quick start Syntax Option Remarks and examples
Also see

Description

dir and ls-they work the same way-list the names of files in the specified directory; the names of the commands come from names popular on Unix and Windows computers.

Quick start

List the names of all files in the current directory using Stata for Windows dir

As above, but for Mac or Unix
ls
List Stata datasets in the current directory using Stata for Windows
dir *.dta

As above, but for Mac or Unix
ls *.dta
List dataset name for all .dta in the C: \backslash directory using Stata for Windows
dir C:*.dta
List dataset name for all .dta files in the home directory using Stata for Mac or Unix
ls ~/*.dta

Syntax

$\{\operatorname{dir} \mid 1 \mathrm{~s}\}["][$ filespec $]["][$, wide $]$
filespec is any valid Mac, Unix, or Windows file path or file specification (see [U] 11.6 Filenaming conventions) and may include ' $*$ ' to indicate any string of characters.
Note: Double quotes must be used to enclose filespec if the name contains spaces.

Option

wide under Mac and Windows produces an effect similar to specifying /W with the DOS dir command-it compresses the resulting listing by placing more than one filename on a line. Under Unix, it produces the same effect as typing ls -F -C. Without the wide option, ls is equivalent to typing ls $-\mathrm{F}-\mathrm{l}$.

Remarks and examples

Mac and Unix: The only difference between the Stata and Unix ls commands is that piping through the more(1) or $\mathrm{pg}(1)$ filter is unnecessary - Stata always pauses when the screen is full.

Windows: Other than minor differences in presentation format, there is only one difference between the Stata and DOS dir commands: the DOS /P option is unnecessary, because Stata always pauses when the screen is full.

Example 1

If you use Stata for Windows and wish to obtain a list of all your Stata-format data files, type

```
. dir *.dta
    3.9k 7/07/15 13:51 auto.dta
    0.6k 8/04/15 10:40 cancer.dta
    3.5k 7/06/08 17:06 census.dta
    3.4k 1/25/08 9:20 hsng.dta
    0.3k 1/26/08 16:54 kva.dta
    0.7k 4/27/11 11:39 sysage.dta
    0.5k 5/09/07 2:56 systolic.dta
    10.3k 7/13/08 8:37 Household Survey.dta
```

You could also include the wide option:
. dir *.dta, wide

3.9 k auto.dta	0.6 k cancer.dta	3.5 k census.dta
3.4 k hsng.dta	0.3 k kva.dta	0.7 k sysage.dta
0.5 k systolic.dta	10.3 k Household Survey.dta	

Unix users will find it more natural to type

```
. ls *.dta
-rw-r----- 1 roger 2868 Mar 4 15:34 highway.dta
-rw-r----- 1 roger 941 Apr 5 09:43 hoyle.dta
-rw-r----- 1 roger 19312 May 14 10:36 p1.dta
-rw-r----- 1 roger 11838 Apr 11 13:26 p2.dta
```

but they could type dir if they preferred. Mac users may also type either command.

```
. dir *.dta
-rw-r----- 1 roger 2868 Mar 4 15:34 highway.dta
-rw-r----- 1 roger 941 Apr 5 09:43 hoyle.dta
-rw-r----- 1 roger 19312 May 14 10:36 p1.dta
-rw-r----- 1 roger 11838 Apr 11 13:26 p2.dta
```


Technical note

There is an extended macro function named dir which allows you to obtain a list of files in a macro for later processing. See Macro extended functions for filenames and file paths in $[\mathrm{P}]$ macro.

Also see

[D] cd - Change directory
[D] copy - Copy file from disk or URL
[D] erase - Erase a disk file
[D] mkdir - Create directory
[D] rmdir - Remove directory
[D] shell - Temporarily invoke operating system
[D] type - Display contents of a file
[U] 11.6 Filenaming conventions

Title

drawnorm - Draw sample from multivariate normal distribution

Description	Quick start	Menu	Syntax
Options	Remarks and examples	Methods and formulas	References
Also see			

Description

drawnorm draws a sample from a multivariate normal distribution with desired means and covariance matrix. The default is orthogonal data with mean 0 and variance 1 . The covariance matrix may be singular. The values generated are a function of the current random-number seed or the number specified with set seed(); see [R] set seed.

Quick start

Generate independent variables x and y , where x has mean 2 and standard deviation 0.5 and y has mean 3 and standard deviation 1

```
drawnorm x y, means(2,3) sds(.5,1)
```

As above, but create dataset of 1,000 observations on x and y with means stored in vector m and standard deviations stored in vector sd

```
drawnorm x y, means(m) sds(sd) n(1000)
```

As above, and set the seed for the random-number generator to reproduce results

```
drawnorm x y, means(m) sds(sd) n(1000) seed(81625)
```

Sample from bivariate standard normal distribution with covariance between x and y of 0.5 stored in variance-covariance matrix C

```
matrix C = (1, .5 \ .5, 1)
drawnorm x y, cov(C)
```

Sample from a trivariate standard normal distribution with correlation between x and y of $0.4, \mathrm{x}$ and z of 0.3 , and y and z of 0.6 stored in correlation matrix C

```
matrix C = (1, .4, . 3 \ .4, 1, . 6 \ .3, .6, 1)
drawnorm x y z, corr(C)
```

Same as above, but avoid typing full matrix by specifying correlations in vector v treated as a lower triangular matrix

```
matrix v = (1, .4, 1, .3, .6, 1)
drawnorm x y z, corr(v) cstorage(lower)
```


Menu

Data $>$ Create or change data $>$ Other variable-creation commands $>$ Draw sample from normal distribution

Syntax

drawnorm newvarlist [, options]
options
Description
Main
clear
double
n(\#)
sds(vector)
corr (matrix \mid vector)
cov (matrix \mid vector)
cstorage (full)
cstorage (lower)
cstorage (upper)
forcepsd
means (vector)
replace the current dataset
generate variable type as double; default is float
\# of observations to be generated; default is current number standard deviations of generated variables
correlation matrix
covariance matrix
correlation/covariance structure is stored as a symmetric $k \times k$ matrix correlation/covariance structure is stored as a lower triangular matrix correlation/covariance structure is stored as an upper triangular matrix force the covariance/correlation matrix to be positive semidefinite means of generated variables; default is means (0)

Options

seed (\#)

Options

\qquad Main
clear specifies that the dataset in memory be replaced, even though the current dataset has not been saved on disk.
double specifies that the new variables be stored as Stata doubles, meaning 8-byte reals. If double is not specified, variables are stored as floats, meaning 4-byte reals. See [D] data types.
$\mathrm{n}(\#)$ specifies the number of observations to be generated. The default is the current number of observations. If $n(\#)$ is not specified or is the same as the current number of observations, drawnorm adds the new variables to the existing dataset; otherwise, drawnorm replaces the data in memory.
sds(vector) specifies the standard deviations of the generated variables. sds() may not be specified with $\operatorname{cov}()$.
corr (matrix \mid vector) specifies the correlation matrix. If neither $\operatorname{corr}()$ nor $\operatorname{cov}()$ is specified, the default is orthogonal data.
$\operatorname{cov}($ matrix \mid vector $)$ specifies the covariance matrix. If neither $\operatorname{cov}()$ nor $\operatorname{corr}()$ is specified, the default is orthogonal data.
cstorage (full |lower|upper) specifies the storage mode for the correlation or covariance structure in corr () or $\operatorname{cov}()$. The following storage modes are supported:
full specifies that the correlation or covariance structure is stored (recorded) as a symmetric $k \times k$ matrix.
lower specifies that the correlation or covariance structure is recorded as a lower triangular matrix.
With k variables, the matrix should have $k(k+1) / 2$ elements in the following order:

$$
\mathrm{C}_{11} \mathrm{C}_{21} \mathrm{C}_{22} \mathrm{C}_{31} \mathrm{C}_{32} \mathrm{C}_{33} \ldots \mathrm{C}_{k 1} \mathrm{C}_{k 2} \ldots \mathrm{C}_{k k}
$$

upper specifies that the correlation or covariance structure is recorded as an upper triangular matrix. With k variables, the matrix should have $k(k+1) / 2$ elements in the following order:

$$
\mathrm{C}_{11} \mathrm{C}_{12} \mathrm{C}_{13} \ldots \mathrm{C}_{1 k} \mathrm{C}_{22} \mathrm{C}_{23} \ldots \mathrm{C}_{2 k} \ldots \mathrm{C}_{(k-1 k-1)} \mathrm{C}_{(k-1 k)} \mathrm{C}_{k k}
$$

Specifying cstorage (full) is optional if the matrix is square. cstorage(lower) or cstorage (upper) is required for the vectorized storage methods. See Example 2: Storage modes for correlation and covariance matrices.
forcepsd modifies the matrix C to be positive semidefinite (psd), and so be a proper covariance matrix. If C is not positive semidefinite, it will have negative eigenvalues. By setting negative eigenvalues to 0 and reconstructing, we obtain the least-squares positive-semidefinite approximation to C. This approximation is a singular covariance matrix.
means (vector) specifies the means of the generated variables. The default is means (0).

Options

seed(\#) specifies the initial value of the random-number seed used by the runiform() function. The default is the current random-number seed. Specifying seed (\#) is the same as typing set seed \# before issuing the drawnorm command.

Remarks and examples

> Example 1

Suppose that we want to draw a sample of 1,000 observations from a normal distribution $N(\mathbf{M}, \mathbf{V})$, where \mathbf{M} is the mean matrix and \mathbf{V} is the covariance matrix:

```
. matrix M = 5, -6, 0.5
. matrix V = (9, 5, 2 \ 5 , 4 , 1 \ 2, 1, 1)
. matrix list M
M[1,3]
\begin{tabular}{rrrr} 
& \(c 1\) & \(c 2\) & \(c 3\) \\
r1 & 5 & -6 & .5
\end{tabular}
. matrix list V
symmetric V[3,3]
    c1 c2 c3
r1 9
r2 5 4
r3 2 1 1
. drawnorm x y z, n(1000) cov(V) means(M)
(obs 1,000)
```

- summarize

Variable	Obs	Mean	Std. Dev.	Min	Max
x	1,000	4.870231	2.974229	-4.404625	13.38458
y	1,000	-6.046418	1.952715	-11.9833	-.5787959
z	1,000	.4647648	1.020487	-2.305723	3.493608

```
. correlate, cov
(obs=1,000)
\begin{tabular}{r|rrr} 
& x & y & z \\
\hline x & 8.84604 & & \\
y & 4.87138 & 3.81309 & \\
z & 2.03885 & 1.02233 & 1.04139
\end{tabular}
```


- Technical note

The values generated by drawnorm are a function of the current random-number seed. To reproduce the same dataset each time drawnorm is run with the same setup, specify the same seed number in the seed () option.

> Example 2: Storage modes for correlation and covariance matrices

The three storage modes for specifying the correlation or covariance matrix in corr2data and drawnorm can be illustrated with a correlation structure, C, of 4 variables. In full storage mode, this structure can be entered as a 4×4 Stata matrix:

```
. matrix C = ( 1.0000, 0.3232, 0.1112, 0.0066 \ ///
    0.3232, 1.0000, 0.6608, -0.1572 \ ///
    0.1112, 0.6608, 1.0000, -0.1480 \ ///
    0.0066, -0.1572, -0.1480, 1.0000 )
```

Elements within a row are separated by commas, and rows are separated by a backslash, \. We use the input continuation operator /// for convenient multiline input; see [P] comments. In this storage mode, we probably want to set the row and column names to the variable names:

```
. matrix rownames C = price trunk headroom rep78
. matrix colnames C = price trunk headroom rep78
```

This correlation structure can be entered more conveniently in one of the two vectorized storage modes. In these modes, we enter the lower triangle or the upper triangle of C in rowwise order; these two storage modes differ only in the order in which the $k(k+1) / 2$ matrix elements are recorded. The lower storage mode for C comprises a vector with $4(4+1) / 2=10$ elements, that is, a 1×10 or 10×1 Stata matrix, with one row or column,

```
. matrix C = ( 1.0000, ///
    0.3232, 1.0000, ///
    0.1112, 0.6608, 1.0000, ///
    0.0066, -0.1572, -0.1480, 1.0000)
```

or more compactly as

```
. matrix C = ( 1, 0.3232, 1, 0.1112, 0.6608, 1, 0.0066, -0.1572, -0.1480, 1 )
```

C may also be entered in upper storage mode as a vector with $4(4+1) / 2=10$ elements, that is, a 1×10 or 10×1 Stata matrix,

$$
\left.\begin{array}{llll}
\text { matrix } C=(1.0000, & 0.3232, & 0.1112, & 0.0066, / / / \\
& 1.0000, & 0.6608,-0.1572, / / / \\
& & 1.0000, & -0.1480, / / / \\
& & & 1.0000
\end{array}\right)
$$

or more compactly as
. matrix $C=(1,0.3232,0.1112,0.0066,1,0.6608,-0.1572,1,-0.1480,1)$

Methods and formulas

Results are asymptotic. The more observations generated, the closer the correlation matrix of the dataset is to the desired correlation structure.

Let $\mathbf{V}=\mathbf{A}^{\prime} \mathbf{A}$ be the desired covariance matrix and \mathbf{M} be the desired mean matrix. We first generate \mathbf{X}, such that $\mathbf{X} \sim N(\mathbf{0}, \mathbf{I})$. Let $\mathbf{Y}=\mathbf{A}^{\prime} \mathbf{X}+\mathbf{M}$, then $\mathbf{Y} \sim N(\mathbf{M}, \mathbf{V})$.

References

Chen, M. 2015. Generating nonnegatively correlated binary random variates. Stata Journal 15: 301-308.
Gould, W. W. 2012a. Using Stata's random-number generators, part 2: Drawing without replacement. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/.
__. 2012b. Using Stata's random-number generators, part 3: Drawing with replacement. The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-with-replacement/.
Lee, S. 2015. Generating univariate and multivariate nonnormal data. Stata Journal 15: 95-109.

Also see

[D] corr2data - Create dataset with specified correlation structure
$[R]$ set seed - Specify random-number seed and state

Title

drop - Drop variables or observations

Description	Quick start	Menu	Syntax
Remarks and examples	References	Also see	

Description

drop eliminates variables or observations from the data in memory.
keep works the same way as drop, except that you specify the variables or observations to be kept rather than the variables or observations to be deleted.

Warning: drop and keep are not reversible. Once you have eliminated observations, you cannot read them back in again. You would need to go back to the original dataset and read it in again. Instead of applying drop or keep for a subset analysis, consider using if or in to select subsets temporarily. This is usually the best strategy. Alternatively, applying preserve followed in due course by restore may be a good approach.

Quick start

Remove v1, v2, and v3 from memory drop v1 v2 v3

Remove all variables whose name begins with code from memory
drop code*
Remove observations where $v 1$ is equal to 99
drop if $\mathrm{v} 1==99$
Also drop observations where v1 equals 88 or v 2 is missing
drop if inlist(v1,88,99) | missing(v2)
Keep observations where v3 is not missing
keep if !missing(v3)
Keep the first observation from each cluster identified by cvar
by cvar: keep if _n==1

Menu

Drop or keep variables
Data $>$ Variables Manager

Drop or keep observations

Data $>$ Create or change data $>$ Drop or keep observations

Syntax

Drop variables
drop varlist

Drop observations drop if exp

Drop a range of observations drop in range [if exp]

Keep variables
keep varlist

Keep observations that satisfy specified condition
keep if \exp

Keep a range of observations

```
keep in range [if exp]
```

by is allowed with the second syntax of drop and the second syntax of keep; see [D] by.

Remarks and examples

You can clear the entire dataset by typing drop _all without affecting value labels, macros, and programs. (Also see [U] 12.6 Dataset, variable, and value labels, [U] 18.3 Macros, and [P] program.)

$>$ Example 1

We will systematically eliminate data until, at the end, no data are left in memory. We begin by describing the data:

```
. use http://www.stata-press.com/data/r14/census11
(1980 Census data by state)
. describe
Contains data from http://www.stata-press.com/data/r14/census11.dta
    obs: 50 1980 Census data by state
    vars: 15 2 Dec 2014 14:31
    size: 3,200
```

variable name	storage type	display format	value label	variable label
state	str13	$\%-13 \mathrm{~s}$		State
state2	str2	$\%-2 \mathrm{~s}$		Two-letter state abbreviation
region	byte	$\%-8.0 \mathrm{~g}$	cenreg	Census region
pop	long	$\% 12.0 \mathrm{gc}$		Population
poplt5	long	$\% 12.0 \mathrm{gc}$		Pop, < 5 year
pop5_17	long	$\% 12.0 \mathrm{gc}$		Pop, 5 to 17 years
pop18p	long	$\% 12.0 \mathrm{gc}$		Pop, 18 and older
pop65p	long	$\% 12.0 \mathrm{gc}$	Pop, 65 and older	
popurban	long	$\% 12.0 \mathrm{gc}$		Urban population
medage	float	$\% 9.2 \mathrm{f}$		Median age
death	long	$\% 12.0 \mathrm{gc}$		Number of deaths
marriage	long	$\% 12.0 \mathrm{gc}$		Number of marriages
divorce	long	$\% 12.0 \mathrm{gc}$		Number of divorces
mrgrate	float	$\% 9.0 \mathrm{~g}$		Marriage rate
dvcrate	float	$\% 9.0 \mathrm{~g}$		Divorce rate

Sorted by: region
We can eliminate all the variables with names that begin with pop by typing drop pop*:

```Contains data obs: vars: size:```	$\begin{gathered} \text { from htt } \\ 50 \\ 9 \\ 2,000 \end{gathered}$	//www.s	a-press	/data/r14/census11.dta 1980 Census data by state 2 Dec 2014 14:31
variable name	storage type	display   format	value   label	variable label
state	str13	$\%-13 \mathrm{~s}$		State
state2	str2	\%-2s		Two-letter state abbreviation
region	byte	\%-8.0g	cenreg	Census region
medage	float	$\% 9.2 f$		Median age
death	long	$\% 12.0 \mathrm{gc}$		Number of deaths
marriage	long	\%12.0gc		Number of marriages
divorce	long	$\% 12.0 \mathrm{gc}$		Number of divorces
mrgrate	float	\%9.0g		Marriage rate
dvcrate	float	\%9.0g		Divorce rate

Sorted by: region
Note: Dataset has changed since last saved.
Let's eliminate more variables and then eliminate observations:

```
. drop marriage divorce mrgrate dvcrate
. describe
Contains data from http://www.stata-press.com/data/r14/census11.dta
 obs: 50 1980 Census data by state
 vars: 5 2 Dec 2014 14:31
 size: 1,200
```

variable name	storage   type	display   format	value   label	variable label
state	str13	$\%-13 \mathrm{~s}$		State
state2	str2	$\%-2 \mathrm{~s}$		Two-letter state abbreviation   region
byte	$\%-8.0 \mathrm{~g}$	cenreg	Census region	
medage	float	$\% 9.2 \mathrm{f}$		Median age
death	long	$\% 12.0 \mathrm{gc}$		Number of deaths

Sorted by: region
Note: Dataset has changed since last saved.
Next we will drop any observation for which medage is greater than 32 .

```
. drop if medage > 32
(3 observations deleted)
```

Let's drop the first observation in each region:
. by region: drop if _n==1
(4 observations deleted)
Now we drop all but the last observation in each region:

```
. by region: drop if _n!=_N
(39 observations deleted)
```

Let's now drop the first 2 observations in our dataset:
. drop in $1 / 2$
(2 observations deleted)

Finally, let's get rid of everything:

```
. drop _all
. describe
Contains data
 obs: 0
 vars: 0
 size: 0
Sorted by:
```

Typing keep in $10 / 1$ is the same as typing drop in $1 / 9$.
Typing keep if $\mathrm{x}==3$ is the same as typing drop if $\mathrm{x}!=3$.
keep is especially useful for keeping a few variables from a large dataset. Typing keep myvar1 myvar2 is the same as typing drop followed by all the variables in the dataset except myvar1 and myvar2.

## Technical note

In addition to dropping variables and observations, drop _all removes any business calendars; see [D] datetime business calendars.

## References

Cox, N. J. 2001. dm89: Dropping variables or observations with missing values. Stata Technical Bulletin 60: 7-8. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 44-46. College Station, TX: Stata Press.
_-. 2015. Speaking Stata: A set of utilities for managing missing values. Stata Journal 15: 1174-1185.

## Also see

[D] clear - Clear memory
[D] varmanage - Manage variable labels, formats, and other properties
[U] 11 Language syntax
[U] 13 Functions and expressions

## Title

ds — List variables matching name patterns or other characteristics

Description	Quick start	Menu	Syntax
Options	Remarks and examples	Stored results	Acknowledgments
References	Also see		

## Description

ds lists variable names of the dataset currently in memory in a compact or detailed format, and lets you specify subsets of variables to be listed, either by name or by properties (for example, the variables are numeric). In addition, ds leaves behind in $r$ (varlist) the names of variables selected so that you can use them in a subsequent command.
ds, typed without arguments, lists all variable names of the dataset currently in memory in a compact form.

## Quick start

List variables in alphabetical order
ds, alpha
List all string variables
ds, has(type string)
List all numeric variables
ds, has(type numeric)
As above, but exclude date-formatted variables
ds, not (format \%td* type string)
List all variables whose label includes the phrase "my text" regardless of case
ds, has(varlabel "*my text*") insensitive

## Menu

Data $>$ Describe data $>$ Compactly list variable names

## Syntax

Simple syntax
ds [, alpha]

Advanced syntax
ds [varlist] [, options]
options
Description
Main
not list variables not specified in varlist
alpha list variables in alphabetical order
detail
display additional details
varwidth(\#) display width for variable names; default is varwidth(12)
skip(\#) gap between variables; default is skip(2)
Advanced
$\left.\begin{array}{ll}\text { has (spec) } & \begin{array}{l}\text { describe subset that matches spec } \\ \text { not (spec) }\end{array} \\ \text { describe subset that does not match spec }\end{array}\right\}$
insensitive and indent(\#) are not shown in the dialog box.
spec Description
type typelist
format patternlist
varlabel [patternlist]
char [patternlist]
vallabel [patternlist]
specified types
display format matching patternlist
variable label or variable label matching patternlist
characteristic or characteristic matching patternlist
value label or value label matching patternlist
typelist used in has (type typelist) and not (type typelist) is a list of one or more types, each of which may be numeric, string, str\#, strL, byte, int, long, float, or double, or may be a numlist such as $1 / 8$ to mean "str1 str2 ... str8". Examples include
$\begin{array}{ll}\text { has (type int) } & \text { is of type int } \\ \text { has (type byte int long) } & \text { is of integer type }\end{array}$
$\begin{array}{ll}\text { has (type int) } & \text { is of type int } \\ \text { has (type byte int long) } & \text { is of integer type }\end{array}$
not (type int) is not of type int
not (type byte int long) is not of the integer types
has(type numeric) is a numeric variable
not (type string) is not a string (str\# or strL) variable (same as above)
has (type 1/40) is str1, str2, ..., str40
has(type str\#) is str1, str2, ..., str2045 but not strL
has (type strL) is of type strL but not str\#
has (type numeric 1/2) is numeric or str1 or str2
is of type int
patternlist used in, for instance, has (format patternlist), is a list of one or more patterns. A pattern is the expected text with the addition of the characters $*$ and ?. $*$ indicates 0 or more characters go here, and ? indicates exactly 1 character goes here. Examples include

```
has(format *f) format is %#.#f
has(format %t*) has time or date format
has(format %-*s) is a left-justified string
has(varl *weight*) variable label includes word weight
has(varl *weight* *Weight*) variable label has weight or Weight
```

To match a phrase, enclose the phrase in quotes.

```
has(varl "*some phrase*") variable label has some phrase
```

If instead you used has (varl *some phrase*), then only variables having labels ending in some or starting with phrase would be listed.

## Options

not specifies that the variables in varlist not be listed. For instance, ds pop*, not specifies that all variables not starting with the letters pop be listed. The default is to list all the variables in the dataset or, if varlist is specified, the variables specified.
alpha specifies that the variables be listed in alphabetical order. If the variable contains Unicode characters other than plain ASCII, the sort order is determined strictly by the underlying byte order. See [U] 12.4.2.5 Sorting strings containing Unicode characters.
detail specifies that detailed output identical to that of describe be produced. If detail is specified, varwidth(), skip(), and indent() are ignored.
varwidth(\#) specifies the display width of the variable names; the default is varwidth(12).
skip(\#) specifies the number of spaces between variable names, where all variable names are assumed to be the length of the longest variable name; the default is skip(2).
has (spec) and not (spec) select from the dataset (or from varlist) the subset of variables that meet or fail the specification spec. Selection may be made on the basis of storage type, variable label, value label, display format, or characteristics. Only one not, has(), or not() option may be specified.
has(type string) selects all string variables. Typing ds, has(type string) would list all string variables in the dataset, and typing ds pop*, has(type string) would list all string variables whose names begin with the letters pop.
has (varlabel) selects variables with defined variable labels. has (varlabel *weight*) selects variables with variable labels including the word "weight". not(varlabel) would select all variables with no variable labels.
has (vallabel) selects variables with defined value labels. has (vallabel yesno) selects variables whose value label is yesno. has (vallabel $*$ no) selects variables whose value label ends in the letters no.
has (format patternlist) specifies variables whose format matches any of the patterns in patternlist. has (format $* f$ ) would select all variables with formats ending in $f$, which presumably would be all \%\#.\#f, \%O\#.\#f, and \%-\#.\#f formats. has (format $* f * f c$ ) would select all variables with formats ending in $f$ or $f c$. not (format $\% t * \%-t *$ ) would select all variables except those with date or time-series formats.
has (char) selects all variables with defined characteristics. has (char problem) selects all variables with a characteristic named problem.

The following options are available with ds but are not shown in the dialog box:
insensitive specifies that the matching of the pattern in has() and not() be case insensitive.
Note that the case insensitivity applies only to ASCII characters.
indent (\#) specifies the amount the lines are indented.

## Remarks and examples

If ds is typed without any operands, then a compact list of the variable names for the data currently in memory is displayed.
> Example 1
ds can be especially useful if you have a dataset with over 1,000 variables, but you may find it convenient even if you have considerably fewer variables.

```
. use http://www.stata-press.com/data/r14/educ3
(ccdb46, 52-54)
. ds
fips popcol medhhinc tlf emp clfbls z
crimes
pcrimes
crimrate
pop25pls
pophspls perwhite dc empself
```


emptrade fam2w pertrade osigind famwsamp perserv osigindp pop18pls perother
> Example 2
You might wonder why you would ever specify a varlist with this command. Remember that a varlist understands the ' $*$ ' abbreviation character and the '-' dash notation; see [U] 11.4 varlists.

```
. ds p*
pcrimes pophspls perhspls prcolhs pop18pls pertrade perother
pop25pls popcol perclpls perwhite perman perserv
. ds popcol-clfue
popcol perclpls medage medhhinc state region tlf clffem
perhspls prcolhs perwhite medfinc division dc clf clfue
```


## > Example 3

Because the primary use of ds is to inspect the names of variables, it is sometimes useful to let ds display the variable names in alphabetical order.

. ds, alpha						
adjinc	crimes	empmanuf	famwsamp	osigindp	perserv	pophspls
clf	crimrate	empself	fips	pcrimes	pertrade	prcolhs
clfbls	dc	empserv	medage	perclpls	perwhite	region
clffem	division	emptrade	medfinc	perhspls	pop18pls	state
clfue	emp	fam2w	medhhinc	perman	pop25pls	tlf
clfuebls	empgovt	famnw	osigind	perother	popcol	z

## Stored results

ds stores the following in $r()$ :
Macros
$r$ (varlist) the varlist of found variables

## Acknowledgments

ds was originally written by StataCorp. It was redesigned and rewritten by Nicholas J. Cox of the Department of Geography at Durham University, UK, and coeditor of the Stata Journal and author of Speaking Stata Graphics. The purpose was to include the selection options not, has(), and not(); to produce better-formatted output; and to be faster. Cox thanks Richard Goldstein, William Gould, Kenneth Higbee, Jay Kaufman, Jean Marie Linhart, and Fred Wolfe for their helpful suggestions on previous versions.

## References

Cox, N. J. 2000. dm78: Describing variables in memory. Stata Technical Bulletin 56: 2-4. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 15-17. College Station, TX: Stata Press.
——. 2001. dm78.1: Describing variables in memory: Update to Stata 7. Stata Technical Bulletin 60: 3. Reprinted in Stata Technical Bulletin Reprints, vol. 10, p. 17. College Station, TX: Stata Press.
-_. 2010a. Speaking Stata: Finding variables. Stata Journal 10: 281-296.

- 2010b. Software Updates: Finding variables. Stata Journal 10: 691-692.
-_. 2012. Software Updates: Finding variables. Stata Journal 12: 167.
Weiss, M. 2008. Stata tip 66: ds—A hidden gem. Stata Journal 8: 448-449.


## Also see

[D] cf - Compare two datasets
[D] codebook - Describe data contents
[D] compare - Compare two variables
[D] compress - Compress data in memory
[D] describe - Describe data in memory or in file
[D] format - Set variables’ output format
[D] label - Manipulate labels
[D] lookfor - Search for string in variable names and labels
[D] notes - Place notes in data
[D] order - Reorder variables in dataset
[D] rename - Rename variable

## Title

duplicates - Report, tag, or drop duplicate observations

Description
Remarks and examples
$\begin{array}{ll}\text { Quick start } & \text { Menu } \\ \text { Acknowledgments } & \text { References }\end{array}$

Syntax Options
Also see

## Description

duplicates reports, displays, lists, tags, or drops duplicate observations, depending on the subcommand specified. Duplicates are observations with identical values either on all variables if no varlist is specified or on a specified varlist.
duplicates report produces a table showing observations that occur as one or more copies and indicating how many observations are "surplus" in the sense that they are the second (third, ...) copy of the first of each group of duplicates.
duplicates examples lists one example for each group of duplicated observations. Each example represents the first occurrence of each group in the dataset.
duplicates list lists all duplicated observations.
duplicates tag generates a variable representing the number of duplicates for each observation. This will be 0 for all unique observations.
duplicates drop drops all but the first occurrence of each group of duplicated observations. The word drop may not be abbreviated.

Any observations that do not satisfy specified if and/or in conditions are ignored when you use report, examples, list, or drop. The variable created by tag will have missing values for such observations.

## Quick start

Report the total number of observations and the number of duplicates duplicates report

As above, but only check for duplicates jointly by v1, v2, and v3
duplicates report v1 v2 v3
Generate newv equal to the number of duplicate observations or 0 for unique observations duplicates tag, generate(newv)

List all duplicate observations
duplicates list
As above, but determine duplicates by v 1 , v 2 , and v 3 and separate list by values of v 1 duplicates list v1 v2 v3, sepby(v1)

Drop duplicate observations
duplicates drop
Force dropping observations with duplicates for v1, v2, and v3 if observations are unique by other variables
duplicates drop v1 v2 v3, force

## Menu

## duplicates report, duplicates examples, and duplicates list

Data $>$ Data utilities $>$ Report and list duplicated observations

## duplicates tag

Data $>$ Data utilities $>$ Tag duplicated observations

## duplicates drop

Data $>$ Data utilities $>$ Drop duplicated observations

## Syntax

Report duplicates
duplicates report [varlist] [if] [in]

List one example for each group of duplicates duplicates examples [varlist] [if] [in] [, options]

List all duplicates

```
duplicates list [varlist] [if] [in] [, options]
```

Tag duplicates

```
duplicates tag [varlist] [if] [in], generate(newvar)
```

Drop duplicates

```
duplicates drop [if] [in]
duplicates drop varlist [if] [in], force
```


## options

Description
Main
compress
nocompress
fast
abbreviate(\#)
string(\#)
compress width of columns in both table and display formats use display format of each variable synonym for nocompress; no delay in output of large datasets abbreviate variable names to \# characters; default is ab (8) truncate string variables to \# characters; default is string(10)

Options
table
display
header
noheader
header (\#)
clean
divider
separator (\#)
sepby (varlist)
nolabel
Summary
$\operatorname{mean}[$ (varlist) $]$
sum $[$ (varlist) $]$
$\mathrm{N}[$ (varlist $)]$
labvar (varname)
Advanced
constant [(varlist)]
notrim
absolute
nodotz
subvarname
linesize(\#)
force table format
force display format
display variable header once; default is table mode
suppress variable header
display variable header every \# lines
force table format with no divider or separator lines
draw divider lines between columns
draw a separator line every \# lines; default is separator (5)
draw a separator line whenever varlist values change
display numeric codes rather than label values
add line reporting the mean for each of the (specified) variables add line reporting the sum for each of the (specified) variables
add line reporting the number of nonmissing values for each of the (specified) variables
substitute Mean, Sum, or N for value of varname in last row of table
separate and list variables that are constant only once suppress string trimming display overall observation numbers when using by varlist: display numerical values equal to.$z$ as field of blanks substitute characteristic for variable name in header columns per line; default is linesize(79)

## Options

Options are presented under the following headings:
Options for duplicates examples and duplicates list
Option for duplicates tag
Option for duplicates drop

## Options for duplicates examples and duplicates list



Options
table, display, header, noheader, header(\#), clean, divider, separator(\#), sepby (varlist), nolabel; see [D] list.


Advanced
constant $[(v a r l i s t)]$, notrim, absolute, nodotz, subvarname, linesize(\#); see [D] list.

## Option for duplicates tag

generate (newvar) is required and specifies the name of a new variable that will tag duplicates.

## Option for duplicates drop

force specifies that observations duplicated with respect to a named varlist be dropped. The force option is required when such a varlist is given as a reminder that information may be lost by dropping observations, given that those observations may differ on any variable not included in varlist.

## Remarks and examples

Current data management and analysis may hinge on detecting (and sometimes dropping) duplicate observations. In Stata terms, duplicates are observations with identical values, either on all variables if no varlist is specified or on a specified varlist; that is, 2 or more observations that are identical on all specified variables form a group of duplicates. When the specified variables are a set of explanatory variables, such a group is often called a covariate pattern or a covariate class.

Linguistic purists will point out that duplicate observations are strictly only those that occur in pairs, and they might prefer a more literal term, although the most obvious replacement, "replicates", already has another statistical meaning. However, the looser term appears in practice to be much more frequently used for this purpose and to be as easy to understand.

Observations may occur as duplicates through some error; for example, the same observations might have been entered more than once into your dataset. In contrast, some researchers deliberately enter a dataset twice. Each entry is a check on the other, and all observations should occur as identical pairs, assuming that one or more variables identify unique records. If there is just one copy, or more than two copies, there has been an error in data entry.

Or duplicate observations may also arise simply because some observations just happen to be identical, which is especially likely with categorical variables or large datasets. In this second situation, consider whether contract, which automatically produces a count of each distinct set of observations, is more appropriate for your problem. See [D] contract.

Observations unique on all variables in varlist occur as single copies. Thus there are no surplus observations in the sense that no observation may be dropped without losing information about the contents of observations. (Information will inevitably be lost on the frequency of such observations. Again, if recording frequency is important to you, contract is the better command to use.) Observations that are duplicated twice or more occur as copies, and in each case, all but one copy may be considered surplus.

This command helps you produce a dataset, usually smaller than the original, in which each observation is unique (literally, each occurs only once) and distinct (each differs from all the others). If you are familiar with Unix systems, or with sets of Unix utilities ported to other platforms, you will know the uniq command, which removes duplicate adjacent lines from a file, usually as part of a pipe.

## > Example 1

Suppose that we are given a dataset in which some observations are unique (no other observation is identical on all variables) and other observations are duplicates (in each case, at least 1 other observation exists that is identical). Imagine dropping all but 1 observation from each group of duplicates, that is, dropping the surplus observations. Now all the observations are unique. This example helps clarify the difference between 1) identifying unique observations before dropping surplus copies and 2) identifying unique observations after dropping surplus copies (whether in truth or merely in imagination). codebook (see [D] codebook) reports the number of unique values for each variable in this second sense.

Suppose that we have typed in a dataset for 200 individuals. However, a simple describe or count shows that we have 202 observations in our dataset. We guess that we may have typed in 2 observations twice. duplicates report gives a quick report of the occurrence of duplicates:

```
. use http://www.stata-press.com/data/r14/dupxmpl
. duplicates report
Duplicates in terms of all variables
```

copies	observations	surplus
1	198	0
2	4	2

Our hypothesis is supported: 198 observations are unique (just 1 copy of each), whereas 4 occur as duplicates ( 2 copies of each; in each case, 1 may be dubbed surplus). We now wish to see which observations are duplicates, so the next step is to ask for a duplicates list.

```
. duplicates list
Duplicates in terms of all variables
```

group:	obs:	id	x	y
1	42	42	0	2
1	43	42	0	2
2	145	144	4	4
2	146	144	4	4

The records for id 42 and id 144 were evidently entered twice. Satisfied, we now issue duplicates drop.

```
. duplicates drop
Duplicates in terms of all variables
(2 observations deleted)
```

The report, list, and drop subcommands of duplicates are perhaps the most useful, especially for a relatively small dataset. For a larger dataset with many duplicates, a full listing may be too long to be manageable, especially as you see repetitions of the same data. duplicates examples gives you a more compact listing in which each group of duplicates is represented by just 1 observation, the first to occur.

A subcommand that is occasionally useful is duplicates tag, which generates a new variable containing the number of duplicates for each observation. Thus unique observations are tagged with value 0 , and all duplicate observations are tagged with values greater than 0 . For checking double data entry, in which you expect just one surplus copy for each individual record, you can generate a tag variable and then look at observations with tag not equal to 1 because both unique observations and groups with two or more surplus copies need inspection.
. duplicates tag, gen(tag)
Duplicates in terms of all variables
As of Stata 11, the browse subcommand is no longer available. To open duplicates in the Data Browser, use the following commands:
. duplicates tag, generate(newvar)
. browse if newvar > 0
See [D] edit for details on the browse command.

## Acknowledgments

duplicates was written by Nicholas J. Cox of the Department of Geography at Durham University, UK, and coeditor of the Stata Journal and author of Speaking Stata Graphics. He in turn thanks Thomas Steichen of RJRT for ideas contributed to an earlier jointly written program (Steichen and Cox 1998).

## References

Jacobs, M. 1991. dm4: A duplicated value identification program. Stata Technical Bulletin 4: 5. Reprinted in Stata Technical Bulletin Reprints, vol. 1, p. 30. College Station, TX: Stata Press.

Steichen, T. J., and N. J. Cox. 1998. dm53: Detection and deletion of duplicate observations. Stata Technical Bulletin 41: 2-4. Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 52-55. College Station, TX: Stata Press.
Wang, D. 2000. dm77: Removing duplicate observations in a dataset. Stata Technical Bulletin 54: 16-17. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 87-88. College Station, TX: Stata Press.

## Also see

[D] codebook - Describe data contents
[D] contract - Make dataset of frequencies and percentages
[D] edit - Browse or edit data with Data Editor
[D] isid - Check for unique identifiers
[D] list - List values of variables

## Title

edit - Browse or edit data with Data Editor

Description	Quick start	Menu	Syntax
Option	Remarks and examples	References	Also see

## Description

edit brings up a spreadsheet-style data editor for entering new data and editing existing data. edit is a better alternative to input; see [D] input.
browse is similar to edit, except that modifications to the data by editing in the grid are not permitted. browse is a convenient alternative to list; see [D] list.

See [GS] 6 Using the Data Editor (GSM, GSU, or GSW) for a tutorial discussion of the Data Editor. This entry provides the technical details.

## Quick start

Open dataset in the Data Editor for entering new data or editing existing data edit

As above, but include only v1, v2, and v3
edit v1 v2 v3
As above, but only for observations where v3 is missing edit v1 v2 v3 if v3 >= .

Open dataset in the Data Editor with no ability to edit data browse

As above, but include only v1, v2, and v3 and suppress value labels browse v1 v2 v3, nolabel

## Menu

## edit

Data $>$ Data Editor $>$ Data Editor (Edit)
browse
Data $>$ Data Editor $>$ Data Editor (Browse)

## Syntax

Edit using Data Editor
edit $[$ varlist $][$ if $][$ in $][$, nolabel $]$

Browse using Data Editor
browse [varlist][if][in][, nolabel]

## Option

nolabel causes the underlying numeric values, rather than the label values (equivalent strings), to be displayed for variables with value labels; see [D] label.

## Remarks and examples

Remarks are presented under the following headings:

```
Modes
The current observation and current variable
Assigning value labels to variables
Changing values of existing cells
Adding new variables
Adding new observations
Copying and pasting
Logging changes
Advice
```

Clicking on Stata's Data Editor (Edit) button is equivalent to typing edit by itself. Clicking on Stata's Data Editor (Browse) button is equivalent to typing browse by itself.
edit, typed by itself, opens the Data Editor with all observations on all variables displayed. If you specify a varlist, only the specified variables are displayed in the Editor. If you specify one or both of in range and if exp, only the observations specified are displayed.

## Modes

We will refer to the Data Editor in the singular with edit and browse referring to two of its three modes.

Full-edit mode. This is the Editor's mode that you enter when you type edit or type edit followed by a list of variables. All features of the Editor are turned on.
Filtered mode. This is the Editor's mode that you enter when you use edit with or without a list of variables but include in range, if exp, or both, or if you filter the data from within the Editor. A few of the Editor's features are turned off, most notably, the ability to sort data and the ability to paste data into the Editor.

Browse mode. This is the Editor's mode that you enter when you use browse or when you change the Editor's mode to Browse after you start the Editor. The ability to type in the Editor, thereby changing data, is turned off, ensuring that the data cannot accidentally be changed. One feature that is left on may surprise you: the ability to sort data. Sorting, in Stata's mind, is not really a change to the dataset. On the other hand, if you enter using browse and specify in range or if $\exp$, sorting is not allowed. You can think of this as restricted-browse mode.

Actually, the Editor does not set its mode to filtered just because you specify an in range or if exp. It sets its mode to filtered if you specify in or if and if this restriction is effective, that is, if the in or if would actually cause some data to be omitted. For instance, typing edit if $x>0$ would result in unrestricted full-edit mode if x were greater than zero for all observations.

## The current observation and current variable

The Data Editor looks much like a spreadsheet, with rows and columns corresponding to observations and variables, respectively. At all times, one of the cells is highlighted. This is called the current cell. The observation (row) of the current cell is called the current observation. The variable (column) of the current cell is called the current variable.

You change the current cell by clicking with the mouse on another cell or by using the arrow keys.
To help distinguish between the different types of variables in the Editor, string values are displayed in red, value labels are displayed in blue, and all other values are displayed in black. You can change the colors for strings and value labels by right-clicking on the Data Editor window and selecting Preferences....

## Assigning value labels to variables

You can assign a value label to a nonstring variable by right-clicking any cell on the variable column, choosing the Data > Value Labels menu, and selecting a value label from the Attach Value Label to Variable 'varname' menu. You can define a value label by right-clicking on the Data Editor window and selecting Data > Value Labels > Manage Value Labels.... You can also accomplish these tasks by using the Properties pane; see [GS] 6 Using the Data Editor (GSM, GSU, or GSW) for details.

## Changing values of existing cells

Make the cell you wish to change the current cell. Type the new value, and press Enter. When updating string variables, do not type double quotes around the string. For variables that have a value label, you can right-click on the cell to display a list of values for the value label. You can assign a new value to the cell by selecting a value from the list.

## Technical note

Stata experts will wonder about storage types. Say that variable mpg is stored as an int and you want to change the fourth observation to contain 22.5. The Data Editor will change the storage type of the variable. Similarly, if the variable is a str4 and you type alpha, it will be changed to str5.

The Editor will not, however, change numeric variable types to strings (unless the numeric variable contains only missing values). This is intentional, as such a change could result in a loss of data and is probably the result of a mistake.

## - Technical note

Stata can store long strings in the strL storage type. Although the strL type can hold very long strings, these strings may only be edited if they are 2045 characters or less. Similarly, strLs that hold binary data may not be edited. For more information on storage types, see [D] data types.

## Adding new variables

Go to the first empty column, and begin entering your data. The first entry that you make will create the variable and determine whether that variable is numeric or string. The variable will be given a name like var1, but you can rename it by using the Properties pane.

## - Technical note

Stata experts: The storage type will be determined automatically. If you type a number, the created variable will be numeric; if you type a string, it will be a string. Thus if you want a string variable, be sure that your first entry cannot be interpreted as a number. A way to achieve this is to use surrounding quotes so that "123" will be taken as the string "123", not the number 123 . If you want a numeric variable, do not worry about whether it is byte, int, float, etc. If a byte will hold your first number but you need a float to hold your second number, the Editor will recast the variable later.

## - Technical note

If you do not type in the first empty column but instead type in one to the right of it, the Editor will create variables for all the intervening columns.

## Adding new observations

Go to the first empty row, and begin entering your data. As soon as you add one cell below the last row of the dataset, an observation will be created.

- Technical note

If you do not enter data in the first empty row but, instead, enter data in a row below it, the Data Editor will create observations for all the intervening rows.

## Copying and pasting

You can copy and paste data between Stata's Data Editor and other applications.
First, select the data you wish to copy. In Stata, click on a cell and drag the mouse across other cells to select a range of cells. If you want to select an entire column, click once on the variable name at the top of that column. If you want to select an entire row, click once on the observation number at the left of that row. You can hold down the mouse button after clicking and drag to select multiple columns or rows.

Once you have selected the data, copy the data to the Clipboard. In Stata, right-click on the selected data, and select Copy.

You can copy data to the Clipboard from Stata with or without the variable names at the top of each column by right-clicking on the Data Editor window, selecting Preferences..., and checking or unchecking Include variable names on copy to Clipboard.

You can choose to copy either the value labels or the underlying numeric values associated with the selected data by right-clicking on the Data Editor window, selecting Preferences..., and checking or unchecking Copy value labels instead of numbers. For more information about value labels, see [U] 12.6.3 Value labels and [D] label.

After you have copied data to the Clipboard from Stata's Data Editor or another spreadsheet, you can paste the data into Stata's Data Editor. First, select the top-left cell of the area into which you wish to paste the data by clicking on it once. Then right-click on the cell and select Paste. Stata will paste the data from the Clipboard into the Editor, overwriting any data below and to the right of the cell you selected as the top left of the paste area. If the Data Editor is in filtered mode or in browse mode, Paste will be disabled, meaning that you cannot paste into the Data Editor. You can have more control over how data is pasted by selecting Paste Special....

## - Technical note

If you attempt to paste one or more string values into numeric variables, the original numeric values will be left unchanged for those cells. Stata will display a message box to let you know that this has happened: "You attempted to paste one or more string values into numeric variables. The contents of these cells, if any, are unchanged."

If you see this message, you should look carefully at the data that you pasted into Stata's Data Editor to make sure that you pasted into the area that you intended. We recommend that you take a snapshot of your data before pasting into Stata's Data Editor so that you can restore the data from the snapshot if you make a mistake. See [GS] 6 Using the Data Editor (GSM, GSU, or GSW) to read about snapshots.

## Logging changes

When you use edit to enter new data or change existing data, you will find output in the Stata Results window documenting the changes that you made. For example, a line of this output might be

```
. replace mpg = 22.5 in 5
```

The Editor submits a command to Stata for everything you do in it except pasting. If you are logging your results, you will have a permanent record of what you did in the Editor.

## Advice

- People who care about data integrity know that editors are dangerous-it is too easy to make changes accidentally. Never use edit when you want to browse.
- Protect yourself when you edit existing data by limiting exposure. If you need to change mpg and need to see model to know which value of mpg to change, do not click on the Data Editor button. Instead, type edit model mpg. It is now impossible for you to change (damage) variables other than model and mpg. Furthermore, if you know that you need to change mpg only if it is missing, you can reduce your exposure even more by typing 'edit model mpg if $\mathrm{mpg}>=$.'.
- Stata's Data Editor is safer than most because it logs changes to the Results window. Use this feature-look at the log afterward, and verify that the changes you made are the changes you wanted to make.


## References

Brady, T. 1998. dm63: Dialog box window for browsing, editing, and entering observations. Stata Technical Bulletin 46: 2-6. Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 28-34. College Station, TX: Stata Press.
——. 2000. dm63.1: A new version of winshow for Stata 6. Stata Technical Bulletin 53: 3-5. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 15-19. College Station, TX: Stata Press.

## Also see

[D] import - Overview of importing data into Stata
[D] input - Enter data from keyboard
[D] list - List values of variables
[D] save - Save Stata dataset
[GSM] 6 Using the Data Editor
[GSW] 6 Using the Data Editor
[GSU] 6 Using the Data Editor

## Title

egen - Extensions to generate

Description
Remarks and examples
Also see

Quick start	Menu	Syntax
Methods and formulas	Acknowledgments	References

## Description

egen creates newvar of the optionally specified storage type equal to fcn(arguments). Here fcn() is a function specifically written for egen, as documented below or as written by users. Only egen functions may be used with egen, and conversely, only egen may be used to run egen functions.

Depending on $f c n()$, arguments, if present, refers to an expression, varlist, or a numlist, and the options are similarly fcn dependent. Explicit subscripting (using _N and _n), which is commonly used with generate, should not be used with egen; see [U] 13.7 Explicit subscripting.

## Quick start

Generate newv1 for distinct groups of v1 and v2 and create and apply value label mylabel egen newv1 = group(v1 v2), label lname(mylabel)

Generate newv2 equal to the minimum of $\mathrm{v} 1, \mathrm{v} 2$, and v 3 for each observation
egen newv2 = rowmin(v1 v2 v3)
Generate newv3 equal to the overall sum of v1
egen newv3 $=$ total(v1)
As above, but calculate total within each level of catvar

```
egen newv3 = total(v1), by(catvar)
```

Generate newv4 equal to the number of nonmissing numeric values across v1, v2, and v 3 for each observation

```
egen newv4 = rownonmiss(v1 v2 v3)
```

As above, but allow string values

```
egen newv4 = rownonmiss(v1 v2 v3), strok
```

Generate newv5 as the concatenation of numeric v1 and string v4 separated by a space

```
egen newv5 = concat(v1 v4), punct(" ")
```


## Menu

Data $>$ Create or change data $>$ Create new variable (extended)

## Syntax

egen [type] newvar $=$ fcn(arguments) [if][in][, options]
by is allowed with some of the egen functions, as noted below.
where depending on the fcn, arguments refers to an expression, varlist, or numlist, and the options are also $f c n$ dependent, and where $f c n$ is
anycount (varlist), values (integer numlist)
may not be combined with by. It returns the number of variables in varlist for which values are equal to any integer value in a supplied numlist. Values for any observations excluded by either if or in are set to 0 (not missing). Also see anyvalue (varname) and anymatch (varlist).
anymatch (varlist), values (integer numlist)
may not be combined with by. It is 1 if any variable in varlist is equal to any integer value in a supplied numlist and 0 otherwise. Values for any observations excluded by either if or in are set to 0 (not missing). Also see anyvalue(varname) and anycount (varlist).
anyvalue(varname), values (integer numlist)
may not be combined with by. It takes the value of varname if varname is equal to any integer value in a supplied numlist and is missing otherwise. Also see anymatch(varlist) and anycount (varlist).
concat (varlist) [, format (\%fmt) decode maxlength (\#) punct (pchars)]
may not be combined with by. It concatenates varlist to produce a string variable. Values of string variables are unchanged. Values of numeric variables are converted to string, as is, or are converted using a numeric format under the format ( $\% f m t$ ) option or decoded under the decode option, in which case maxlength() may also be used to control the maximum label length used. By default, variables are added end to end: punct (pchars) may be used to specify punctuation, such as a space, punct(" "), or a comma, punct(,).
count (exp)
(allows by varlist:)
creates a constant (within varlist) containing the number of nonmissing observations of exp. Also see rownonmiss() and rowmiss ().

```
cut(varname), {at(#,#,...,#)|group(#)} [icodes label]
```

may not be combined with by. It creates a new categorical variable coded with the left-hand ends of the grouping intervals specified in the at () option, which expects an ascending numlist.
at (\#,\#,...,\#) supplies the breaks for the groups, in ascending order. The list of breakpoints may be simply a list of numbers separated by commas but can also include the syntax a(b)c, meaning from a to $c$ in steps of size $b$. If no breaks are specified, the command expects the group() option.
group(\#) specifies the number of equal frequency grouping intervals to be used in the absence of breaks. Specifying this option automatically invokes icodes.
icodes requests that the codes $0,1,2$, etc., be used in place of the left-hand ends of the intervals.
label requests that the integer-coded values of the grouped variable be labeled with the left-hand ends of the grouping intervals. Specifying this option automatically invokes icodes.
diff(varlist)
may not be combined with by. It creates an indicator variable equal to 1 if the variables in varlist are not equal and 0 otherwise.
ends(strvar) [, punct(pchars) trim [head|last|tail]]
may not be combined with by. It gives the first "word" or head (with the head option), the last "word" (with the last option), or the remainder or tail (with the tail option) from string variable strvar.
head, last, and tail are determined by the occurrence of pchars, which is by default one space (" ").

The head is whatever precedes the first occurrence of pchars, or the whole of the string if it does not occur. For example, the head of "frog toad" is "frog" and that of "frog" is "frog". With punct (, ), the head of "frog,toad" is "frog".

The last word is whatever follows the last occurrence of pchars or is the whole of the string if a space does not occur. The last word of "frog toad newt" is "newt" and that of "frog" is "frog". With punct (, ), the last word of "frog,toad" is "toad".

The remainder or tail is whatever follows the first occurrence of pchars, which will be the empty string "" if pchars does not occur. The tail of "frog toad newt" is "toad newt" and that of "frog" is "". With punct (, ), the tail of "frog,toad" is "toad".

The trim option trims any leading or trailing spaces.

## fill(numlist)

may not be combined with by. It creates a variable of ascending or descending numbers or complex repeating patterns. numlist must contain at least two numbers and may be specified using standard numlist notation; see [U] 11.1.8 numlist. if and in are not allowed with fill().
group(varlist) [, missing label lname(name) truncate(num)]
may not be combined with by. It creates one variable taking on values $1,2, \ldots$ for the groups formed by varlist. varlist may contain numeric variables, string variables, or a combination of the two. The order of the groups is that of the sort order of varlist. missing indicates that missing values in varlist (either . or "") are to be treated like any other value when assigning groups, instead of as missing values being assigned to the group missing. The label option returns integers from 1 up according to the distinct groups of varlist in sorted order. The integers are labeled with the values of varlist or the value labels, if they exist. lname() specifies the name to be given to the value label created to hold the labels; lname() implies label. The truncate() option truncates the values contributed to the label from each variable in varlist to the length specified by the integer argument num. The truncate option cannot be used without specifying the label option. The truncate option does not change the groups that are formed; it changes only their labels.
iqr(exp) (allows by varlist:) creates a constant (within varlist) containing the interquartile range of exp. Also see pctile().
kurt (varname)
(allows by varlist:)
returns the kurtosis (within varlist) of varname.
$\operatorname{mad}(\exp )$
(allows by varlist:) returns the median absolute deviation from the median (within varlist) of exp.
$\max (\exp )$
(allows by varlist:)
creates a constant (within varlist) containing the maximum value of exp.
mdev (exp)
(allows by varlist:)
returns the mean absolute deviation from the mean (within varlist) of exp.
mean ( $\exp$ )
(allows by varlist:)
creates a constant (within varlist) containing the mean of exp.
median (exp)
(allows by varlist:)
creates a constant (within varlist) containing the median of exp. Also see pctile().
$\min (\exp )$
(allows by varlist:)
creates a constant (within varlist) containing the minimum value of exp.
mode (varname) [, minmode maxmode nummode (integer) missing]
(allows by varlist:) produces the mode (within varlist) for varname, which may be numeric or string. The mode is the value occurring most frequently. If two or more modes exist or if varname contains all missing values, the mode produced will be a missing value. To avoid this, the minmode, maxmode, or nummode () option may be used to specify choices for selecting among the multiple modes, and the missing option will treat missing values as categories. minmode returns the lowest value, and maxmode returns the highest value. nummode(\#) will return the \#th mode, counting from the lowest up. Missing values are excluded from determination of the mode unless missing is specified. Even so, the value of the mode is recorded for observations for which the values of varname are missing unless they are explicitly excluded, that is, by if varname < . or if varname != "".
mtr (year income)
may not be combined with by. It returns the U.S. marginal income tax rate for a married couple with taxable income income in year year, where $1930 \leq$ year $\leq 2016$. year and income may be specified as variable names or constants; for example, $\operatorname{mtr}$ (1993 faminc), mtr (surveyyr 28000), or mtr (surveyyr faminc). A blank or comma may be used to separate income from year.
pc (exp) [, prop]
(allows by varlist:) returns $\exp$ (within varlist) scaled to be a percentage of the total, between 0 and 100. The prop option returns $\exp$ scaled to be a proportion of the total, between 0 and 1.
pctile (exp) [, p(\#)]
(allows by varlist:) creates a constant (within varlist) containing the \#th percentile of $\exp$. If $\mathrm{p}(\#)$ is not specified, 50 is assumed, meaning medians. Also see median().
$\operatorname{rank}(\exp )[, \underline{\text { field }}|\underline{\text { track }}| \underline{\text { unique }}]$
(allows by varlist:)
creates ranks (within varlist) of exp; by default, equal observations are assigned the average rank. The field option calculates the field rank of exp: the highest value is ranked 1 , and there is no correction for ties. That is, the field rank is $1+$ the number of values that are higher. The track option calculates the track rank of exp: the lowest value is ranked 1, and there is no correction for ties. That is, the track rank is $1+$ the number of values that are lower. The unique option calculates the unique rank of exp: values are ranked $1, \ldots$, \#, and values and ties are broken arbitrarily. Two values that are tied for second are ranked 2 and 3.
rowfirst (varlist)
may not be combined with by. It gives the first nonmissing value in varlist for each observation (row). If all values in varlist are missing for an observation, newvar is set to missing.
rowlast (varlist)
may not be combined with by. It gives the last nonmissing value in varlist for each observation (row). If all values in varlist are missing for an observation, newvar is set to missing.
rowmax (varlist)
may not be combined with by. It gives the maximum value (ignoring missing values) in varlist for each observation (row). If all values in varlist are missing for an observation, newvar is set to missing.

## rowmean(varlist)

may not be combined with by. It creates the (row) means of the variables in varlist, ignoring missing values; for example, if three variables are specified and, in some observations, one of the variables is missing, in those observations newvar will contain the mean of the two variables that do exist. Other observations will contain the mean of all three variables. Where none of the variables exist, newvar is set to missing.
rowmedian(varlist)
may not be combined with by. It gives the (row) median of the variables in varlist, ignoring missing values. If all variables in varlist are missing for an observation, newvar is set to missing in that observation. Also see rowpctile().
rowmin(varlist)
may not be combined with by. It gives the minimum value in varlist for each observation (row). If all values in varlist are missing for an observation, newvar is set to missing.
rowmiss (varlist)
may not be combined with by. It gives the number of missing values in varlist for each observation (row).
rownonmiss(varlist)[, strok]
may not be combined with by. It gives the number of nonmissing values in varlist for each observation (row)-this is the value used by rowmean() for the denominator in the mean calculation.

String variables may not be specified unless the strok option is also specified. If strok is specified, string variables will be counted as containing missing values when they contain "". Numeric variables will be counted as containing missing when their value is " $\geq$.".
rowpctile(varlist) $[, \mathrm{p}(\#)]$
may not be combined with by. It gives the \#th percentile of the variables in varlist, ignoring missing values. If all variables in varlist are missing for an observation, newvar is set to missing in that observation. If $p()$ is not specified, $p(50)$ is assumed, meaning medians. Also see rowmedian().
rowsd (varlist)
may not be combined with by. It creates the (row) standard deviations of the variables in varlist, ignoring missing values.
rowtotal(varlist) [, missing]
may not be combined with by. It creates the (row) sum of the variables in varlist, treating missing values as 0 . If missing is specified and all values in varlist are missing for an observation, newvar is set to missing.
sd (exp)
(allows by varlist:)
creates a constant (within varlist) containing the standard deviation of exp. Also see mean().
$\operatorname{seq}()[, \underline{f r o m(\#) t o(\#)} \underline{b} l o c k(\#)]$ (allows by varlist:) returns integer sequences. Values start from from() (default 1) and increase to to () (the default is the maximum number of values) in blocks (default size 1). If to() is less than the maximum number, sequences restart at from (). Numbering may also be separate within groups defined by varlist or decreasing if to() is less than from(). Sequences depend on the sort order of observations, following three rules: 1) observations excluded by if or in are not counted; 2) observations are sorted by varlist, if specified; and 3) otherwise, the order is that when called. No arguments are specified.
skew (varname)
(allows by varlist:)
returns the skewness (within varlist) of varname.
std(exp) [, mean(\#)std(\#)]
may not be combined with by. It creates the standardized values of exp. The options specify the desired mean and standard deviation. The default is mean(0) and std(1), producing a variable with mean 0 and standard deviation 1.
tag (varlist) [, missing]
may not be combined with by. It tags just 1 observation in each distinct group defined by varlist. When all observations in a group have the same value for a summary variable calculated for the group, it will be sufficient to use just one value for many purposes. The result will be 1 if the observation is tagged and never missing, and 0 otherwise. Values for any observations excluded by either if or in are set to 0 (not missing). Hence, if tag is the variable produced by egen $\operatorname{tag}=\operatorname{tag}($ varlist $)$, the idiom if tag is always safe. missing specifies that missing values of varlist may be included.
total (exp) [, missing]
(allows by varlist:)
creates a constant (within varlist) containing the sum of exp treating missing as 0 . If missing is specified and all values in exp are missing, newvar is set to missing. Also see mean().

## Remarks and examples

Remarks are presented under the following headings:

```
Summary statistics
Generating patterns
Marking differences among variables
Ranks
Standardized variables
Row functions
Categorical and integer variables
String variables
U.S. marginal income tax rate
```

See Mitchell (2010) for numerous examples using egen.

## Summary statistics

The functions count(), iqr(), kurt(), mad(), max(), mdev(), mean(), median(), min(), mode(), pc(), pctile(), sd(), skew(), and total() create variables containing summary statistics. These functions take a by ... : prefix and, if specified, calculate the summary statistics within each by-group.

## > Example 1: Without the by prefix

Without the by prefix, the result produced by these functions is a constant for every observation in the data. For instance, we have data on cholesterol levels (chol) and wish to have a variable that, for each patient, records the deviation from the average across all patients:

```
. use http://www.stata-press.com/data/r14/egenxmpl
. egen avg = mean(chol)
. generate deviation = chol - avg
```


## > Example 2: With the by prefix

These functions are most useful when the by prefix is specified. For instance, assume that our dataset includes dcode, a hospital-patient diagnostic code, and los, the number of days that the patient remained in the hospital. We wish to obtain the deviation in length of stay from the median for all patients having the same diagnostic code:

```
. use http://www.stata-press.com/data/r14/egenxmpl2, clear
. by dcode, sort: egen medstay = median(los)
. generate deltalos = los - medstay
```


## - Technical note

Distinguish carefully between Stata's sum() function and egen's total() function. Stata's sum() function creates the running sum, whereas egen's total() function creates a constant equal to the overall sum; for example,

```
. clear
. set obs 5
number of observations (_N) was 0, now 5
. generate a = _n
. generate sum1=sum(a)
. egen sum2=total(a)
. list
```

a	sum1	sum2
1	1	15
2	3	15
3	6	15
4	10	15
5	15	15

## - Technical note

The definitions and formulas used by these functions are the same as those used by summarize; see $[R]$ summarize. For comparison with summarize, mean() and $\operatorname{sd}()$ correspond to the mean and standard deviation. total() is the numerator of the mean, and count () is its denominator. min() and $\max ()$ correspond to the minimum and maximum. median() -or, equally well, pctile() with $\mathrm{p}(50)$ - is the median. pctile() with $\mathrm{p}(5)$ refers to the fifth percentile, and so on. iqr() is the difference between the 75th and 25 th percentiles.

The mode is the most common value of a dataset, whether it contains numeric or string variables. It is perhaps most useful for categorical variables (whether defined by integers or strings) or for other integer-valued values, but mode() can be applied to variables of any type. Nevertheless, the modes of continuous (or nearly continuous) variables are perhaps better estimated either from inspection of a graph of a frequency distribution or from the results of some density estimation (see $[R]$ kdensity).

Missing values need special attention. It is possible that missing is the most common value in a variable (whether missing is defined by the period [.] or extended missing values [.a, .b, ..., .z] for numeric variables or the empty string [""] for string variables). However, missing values are by default excluded from determination of modes. If you wish to include them, use the missing option.

In contrast, egen mode $=$ mode (varname) allows the generation of nonmissing modes for observations for which varname is missing. This allows use of the mode as one simple means of imputing categorical variables. If you want the mode to be missing whenever varname is missing, you can specify if varname < . or if varname != "" or, most generally, if !missing(varname).
$\operatorname{mad}()$ and $\operatorname{mdev}()$ produce alternative measures of spread. The median absolute deviation from the median and even the mean deviation will both be more resistant than the standard deviation to heavy tails or outliers, in particular from distributions with heavier tails than the normal or Gaussian. The first measure was named the MAD by Andrews et al. (1972) but was already known to K. F. Gauss in 1816, according to Hampel et al. (1986). For more historical and statistical details, see David (1998) and Wilcox (2003, 72-73).

## Generating patterns

To create a sequence of numbers, simply "show" the fill() function how the sequence should look. It must be a linear progression to produce the expected results. Stata does not understand geometric progressions. To produce repeating patterns, you present fill() with the pattern twice in the numlist.
> Example 3: Sequences produced by fill()
Here are some examples of ascending and descending sequences produced by fill():

```
. clear
. set obs 12
number of observations (_N) was 0, now 12
. egen i=fill(1 2)
. egen w=fill(100 99)
. egen x=fill(22 17)
. egen y=fill(1 1 2 2)
. egen z=fill(8 8 8 7 7 7)
. list, sep(4)
```

i	$w$	$x$	$y$	$z$
1	100	22	1	8
2	99	17	1	8
3	98	12	2	8
4	97	7	2	7
5	96	2	3	7
6	95	-3	3	7
7	94	-8	4	6
8	93	-13	4	6
9	92	-18	5	6
10	91	-23	5	5
11	90	-28	6	5
12	89	-33	6	5

> Example 4: Patterns produced by fill()
Here are examples of patterns produced by fill():

```
. clear
. set obs 12
number of observations (_N) was 0, now 12
. egen a=fill(0 0 1 0 0 1)
. egen b=fill(1 3 8 1 3 8)
. egen c=fill(-3(3)6 -3(3)6)
. egen d=fill(10 20 to 50 10 20 to 50)
. list, sep(4)
```

	a	b	c	d
1.	0	1	-3	10
2.	0	3	0	20
3.	1	8	3	30
4.	0	1	6	40
5.	0	3	-3	50
6.	1	8	0	10
7.	0	1	3	20
8.	0	3	6	30
9.	1	8	-3	40
10.	0	1	0	50
11.	0	3	3	10
12.	1	8	6	20

## Example 5: seq()

seq() creates a new variable containing one or more sequences of integers. It is useful mainly for quickly creating observation identifiers or automatically numbering levels of factors or categorical variables.

```
. clear
. set obs 12
```

In the simplest case,

```
. egen a = seq()
```

is just equivalent to the common idiom

```
. generate a = _n
```

a may also be obtained from

```
. range a 1 _N
```

(the actual value of $_\mathrm{N}$ may also be used).
In more complicated cases, seq() with option calls is equivalent to calls to the versatile functions int and mod.

```
. egen b = seq(), b(2)
```

produces integers in blocks of 2, whereas

```
. egen c = seq(), t(6)
```

restarts the sequence after 6 is reached.

```
. egen d = seq(), f(10) t(12)
```

shows that sequences may start with integers other than 1 , and
. egen $e=\operatorname{seq}(), f(3) t(1)$
shows that they may decrease.
The results of these commands are shown by
. list, sep(4)

	a	b	c	d	e
1.	1	1	1	10	3
2.	2	1	2	11	2
3.	3	2	3	12	1
4.	4	2	4	10	3
5.	5	3	5	11	2
6.	6	3	6	12	1
7.	7	4	1	10	3
8.	8	4	2	11	2
9.	9	5	3	12	1
10.	10	5	4	10	3
11.	11	6	5	11	2
12.	12	6	6	12	1

All of these sequences could have been generated in one line with generate and with the use of the int and mod functions. The variables $b$ through $e$ are obtained with

- gen $b=1+i n t\left(\left(_n-1\right) / 2\right)$
- gen $c=1+\bmod \left(_n-1,6\right)$
- gen $d=10+\bmod \left(_n-1,3\right)$
- gen $e=3-\bmod \left(_n-1,3\right)$

Nevertheless, seq() may save users from puzzling out such solutions or from typing in the needed values.

In general, the sequences produced depend on the sort order of observations, following three rules:

1. observations excluded by if or in are not counted;
2. observations are sorted by varlist, if specified; and
3. otherwise, the order is that specified when seq() is called.

The fill() and seq() functions are alternatives. In essence, fill() requires a minimal example that indicates the kind of sequence required, whereas seq() requires that the rule be specified through options. There are sequences that fill() can produce that seq() cannot, and vice versa. fill() cannot be combined with if or in, in contrast to seq(), which can.

## Marking differences among variables

> Example 6: diff()
We have three measures of respondents' income obtained from different sources. We wish to create the variable differ equal to 1 for disagreements:

```
. use http://www.stata-press.com/data/r14/egenxmpl3, clear
. egen byte differ = diff(inc*)
. list if differ==1
```

	inc1	inc2	inc3	id	differ
10.	42,491	41,491	41,491	110	1
11.	26,075	25,075	25,075	111	1
12.	26,283	25,283	25,283	112	1
78.	41,780	41,780	41,880	178	1
100.	25,687	26,687	25,687	200	1
					1
101.	25,359	26,359	25,359	201	1
103.	25,969	26,969	25,969	202	1
104.	25,339	26,339	25,339	203	1
105.	41,800	41,000	41,000	205	1
134.	26,233	26,233	26,133	234	1

Rather than typing diff(inc*), we could have typed diff(inc1 inc2 inc3).

## Ranks

> Example 7: rank()
Most applications of rank() will be to one variable, but the argument $\exp$ can be more general, namely, an expression. In particular, rank(-varname) reverses ranks from those obtained by rank (varname).

The default ranking and those obtained by using one of the track, field, and unique options differ principally in their treatment of ties. The default is to assign the same rank to tied values such that the sum of the ranks is preserved. The track option assigns the same rank but resembles the convention in track events; thus, if one person had the lowest time and three persons tied for second-lowest time, their ranks would be $1,2,2$, and 2 , and the next person(s) would have rank 5. The field option acts similarly except that the highest is assigned rank 1, as in field events in which the greatest distance or height wins. The unique option breaks ties arbitrarily: its most obvious use is assigning ranks for a graph of ordered values. See also group() for another kind of "ranking".

```
. use http://www.stata-press.com/data/r14/auto, clear
(1978 Automobile Data)
. keep in 1/10
(64 observations deleted)
. egen rank = rank(mpg)
. egen rank_r = rank(-mpg)
. egen rank_f = rank(mpg), field
```

```
. egen rank_t = rank(mpg), track
. egen rank_u = rank(mpg), unique
. egen rank_ur = rank(-mpg), unique
. sort rank_u
. list mpg rank*
```

mpg	rank	rank_r	rank_f	rank_t	rank_u	rank_ur
15	1	10	10	1	1	10
16	2	9	9	2	2	9
17	3	8	8	3	3	8
18	4	7	7	4	4	7
19	5	6	6	5	5	6
20	6.5	4.5	4	6	6	5
20	6.5	4.5	4	6	7	4
22	8.5	2.5	2	8	8	2
22	8.5	2.5	2	8	9	3
26	10	1	1	10	10	1

## Standardized variables

## > Example 8: std()

We have a variable called age recording the median age in the 50 states. We wish to create the standardized value of age and verify the calculation:

```
. use http://www.stata-press.com/data/r14/states1, clear
(State data)
. egen stdage = std(age)
. summarize age stdage
\begin{tabular}{r|rrrrr}
Variable & Obs & Mean & Std. Dev. & Min & Max \\
\hline age & 50 & 29.54 & 1.693445 & 24.2 & 34.7 \\
stdage & 50 & \(6.41 \mathrm{e}-09\) & 1 & -3.153336 & 3.047044
\end{tabular}
. correlate age stdage
(obs=50)
\begin{tabular}{r|rr}
& age & stdage \\
\hline age & 1.0000 & \\
stdage & 1.0000 & 1.0000
\end{tabular}
```

summarize shows that the new variable has a mean of approximately zero; $10^{-9}$ is the precision of a float and is close enough to zero for all practical purposes. If we wanted, we could have typed egen double stdage $=$ std (age), making stdage a double-precision variable, and the mean would have been $10^{-16}$. In any case, summarize also shows that the standard deviation is 1 . correlate shows that the new variable and the original variable are perfectly correlated.

We may optionally specify the mean and standard deviation for the new variable. For instance,
. egen newage $1=\operatorname{std}($ age $), \operatorname{std}(2)$
. egen newage $2=$ std(age), mean(2) std(4)
. egen newage $3=\operatorname{std}($ age $)$, mean(2)
. summarize age newage1-newage3

Variable	Obs	Mean	Std. Dev.	Min	Max
age	50	29.54	1.693445	24.2	34.7
newage1	50	$1.28 \mathrm{e}-08$	2	-6.306671	6.094089
newage2	50	2	4	-10.61334	14.18818
newage3	50	2	1	-1.153336	5.047044

. correlate age newage1-newage3
(obs=50)

	age	newage1	newage2	newage3
age	1.0000			
newage1	1.0000	1.0000		
newage2	1.0000	1.0000	1.0000	
newage3	1.0000	1.0000	1.0000	1.0000

## Row functions

## > Example 9: rowtotal()

generate's sum() function creates the vertical, running sum of its argument, whereas egen's total() function creates a constant equal to the overall sum. egen's rowtotal() function, however, creates the horizontal sum of its arguments. They all treat missing as zero. However, if the missing option is specified with total() or rowtotal(), then newvar will contain missing values if all values of exp or varlist are missing.

```
. use http://www.stata-press.com/data/r14/egenxmpl4, clear
. egen hsum = rsum(a b c)
. generate vsum = sum(hsum)
. egen sum = sum(hsum)
. list
```

	a	b	c	hsum	vsum	sum
	1.	.	2	3	5	5
2.	4	.	6	10	15	63
3.	7	8	.	15	30	63
4.	10	11	12	33	63	63

> Example 10: rowmean(), rowmedian(), rowpctile(), rowsd(), and rownonmiss()
summarize displays the mean and standard deviation of a variable across observations; program writers can access the mean in $r$ (mean) and the standard deviation in $r$ ( $s d$ ) (see [ $R$ ] summarize). egen's rowmean() function creates the means of observations across variables. rowmedian() creates the medians of observations across variables. rowpctile() returns the \#th percentile of the variables specified in varlist. rowsd() creates the standard deviations of observations across variables. rownonmiss () creates a count of the number of nonmissing observations, the denominator of the rowmean() calculation:

```
. use http://www.stata-press.com/data/r14/egenxmpl4, clear
. egen avg = rowmean(a b c)
. egen median = rowmedian(a b c)
. egen pct25 = rowpctile(a b c), p(25)
. egen std = rowsd(a b c)
. egen n = rownonmiss(a b c)
. list
```

a	b	c	avg	median	pct25	std	n
.	2	3	2.5	2.5	2	.7071068	2
4	.	6	5	5	4	1.414214	2
7	8	.	7.5	7.5	7	.7071068	2
10	11	12	11	11	10	1	3

## > Example 11: rowmiss()

rowmiss () returns $k$-rownonmiss (), where $k$ is the number of variables specified. rowmiss() can be especially useful for finding casewise-deleted observations caused by missing values.

```
. use http://www.stata-press.com/data/r14/auto3, clear
(1978 Automobile Data)
. correlate price weight mpg
(obs=70)
\begin{tabular}{r|rrr}
& price & weight & mpg \\
\hline price & 1.0000 & & \\
weight & 0.5309 & 1.0000 & \\
mpg & -0.4478 & -0.7985 & 1.0000
\end{tabular}
. egen excluded = rmiss(price weight mpg)
. list make price weight mpg if excluded~=0
```

make	price	weight	mpg
Buick Electra	.	4,080	15
Cad. Eldorado	14,500	3,900	.
Olds Starfire	4,195	.	24
Pont. Phoenix	$\cdot$	3,420	.

> Example 12: rowmin(), rowmax(), rowfirst(), and rowlast()
rowmin(), rowmax (), rowfirst (), and rowlast () return the minimum, maximum, first, or last nonmissing value, respectively, for the specified variables within an observation (row).

```
. use http://www.stata-press.com/data/r14/egenxmpl5, clear
. egen min = rmin(x y z)
(1 missing value generated)
. egen max = rmax(x y z)
(1 missing value generated)
. egen first = rfirst(x y z)
(1 missing value generated)
. egen last = rlast(x y z)
(1 missing value generated)
. list, sep(4)
```

$x$	$y$	$z$	$\min$	$\max$	first	last
-1	2	3	-1	3	-1	3
.	-6	$\cdot$	-6	-6	-6	-6
7	$\cdot$	-5	-5	7	7	-5
$\cdot$						
4	$\cdot$	.	4	4	4	4
.	$\cdot$	8	8	8	8	8
$\cdot$	3	7	3	7	3	7
5	-1	6	-1	6	5	6

## Categorical and integer variables

## $>$ Example 13: anyvalue( ), anymatch( ), and anycount()

anyvalue(), anymatch(), and anycount() are for categorical or other variables taking integer values. If we define a subset of values specified by an integer numlist (see [U] 11.1.8 numlist), anyvalue() extracts the subset, leaving every other value missing; anymatch() defines an indicator variable ( 1 if in subset, 0 otherwise); and anycount () counts occurrences of the subset across a set of variables. Therefore, with just one variable, anymatch(varname) and anycount (varname) are equivalent.

With the auto dataset, we can generate a variable containing the high values of rep78 and a variable indicating whether rep78 has a high value:

```
. use http://www.stata-press.com/data/r14/auto, clear
(1978 Automobile Data)
. egen hirep = anyvalue(rep78), v(3/5)
(15 missing values generated)
. egen ishirep = anymatch(rep78), v(3/5)
```

Here it is easy to produce the same results with official Stata commands:
. generate hirep $=$ rep78 if inlist(rep78,3,4,5)
. generate byte ishirep $=$ inlist (rep78,3,4,5)

However, as the specification becomes more complicated or involves several variables, the egen functions may be more convenient.
> Example 14: group()
group() maps the distinct groups of a varlist to a categorical variable that takes on integer values from 1 to the total number of groups. order of the groups is that of the sort order of varlist. The varlist may be of numeric variables, string variables, or a mixture of the two. The resulting variable can be useful for many purposes, including stepping through the distinct groups easily and systematically and cleaning up an untidy ordering. Suppose that the actual (and arbitrary) codes present in the data are $1,2,4$, and 7 , but we desire equally spaced numbers, as when the codes will be values on one axis of a graph. group() maps these to $1,2,3$, and 4.

We have a variable agegrp that takes on the values $24,40,50$, and 65 , corresponding to age groups $18-24,25-40,41-50$, and 51 and above. Perhaps we created this coding using the recode() function (see [U] 13.3 Functions and [U] 25 Working with categorical data and factor variables) from another age-in-years variable:

```
. generate agegrp=recode(age, 24,40,50,65)
```

We now want to change the codes to $1,2,3$, and 4 :

```
. egen agegrp2 = group(agegrp)
```

> Example 15: group() with missing values
We have two categorical variables, race and sex, which may be string or numeric. We want to use ir (see [R] epitab) to create a Mantel-Haenszel weighted estimate of the incidence rate. ir, however, allows only one variable to be specified in its by () option. We type

```
. use http://www.stata-press.com/data/r14/egenxmpl6, clear
. egen racesex = group(race sex)
(2 missing values generated)
. ir deaths smokes pyears, by(racesex)
 (output omitted)
```

The new numeric variable, racesex, will be missing wherever race or sex is missing (meaning . for numeric variables and "" for string variables), so missing values will be handled correctly. When we list some of the data, we see

```
. list race sex racesex in 1/7, sep(0)
```

race	sex	racesex
White	Female	1
White	Male	2
Black	Female	3
Black	Male	4
Black	Male	4
Black	Female	$\cdot$
	$\cdot$	$\cdot$

group() began by putting the data in the order of the grouping variables and then assigned the numeric codes. Observations 6 and 7 were assigned to racesex==. because, in one case, race was not known, and in the other, sex was not known. (These observations were not used by ir.)

If we wanted the unknown groups to be treated just as any other category, we could have typed

```
. egen rs2=group(race sex), missing
. list race sex rs2 in 1/7, sep(0)
```

race	sex	rs2
White	Female	1
White	Male	2
Black	Female	3
Black	Male	4
Black	Male	4
.	Female	6
Black	$\cdot$	5

The resulting variable from group() does not have value labels. Therefore, the values carry no indication of meaning. Interpretation requires comparison with the original varlist.

The label option produces a categorical variable with value labels. These value labels are either the actual values of varname or any value labels of varname, if they exist. The values of varname could be as long as those of one str2045 variable, but value labels may be no longer than 80 characters.

## String variables

Concatenation of string variables is provided in Stata. In context, Stata understands the addition symbol + as specifying concatenation or adding strings end to end. "soft" + "ware" produces "software", and given string variables s1 and $s 2$, $s 1+s 2$ indicates their concatenation.

The complications that may arise in practice include wanting 1) to concatenate the string versions of numeric variables and 2) to concatenate variables, together with some separator such as a space or a comma. Given numeric variables n 1 and n 2 ,

```
. generate newstr = s1 + string(n1) + string(n2) + s2
```

shows how numeric values may be converted to their string equivalents before concatenation, and

```
. generate newstr = s1 + " " + s2 + " " + s3
```

shows how spaces may be added between variables. Stata will automatically assign the most appropriate data type for the new string variables.
$>$ Example 16: concat()
concat () allows us to do everything in one line concisely.

```
. egen newstr = concat(s1 n1 n2 s2)
```

carries with it an implicit instruction to convert numeric values to their string equivalents, and the appropriate string data type is worked out within concat () by Stata's automatic promotion. Moreover,

```
. egen newstr = concat(s1 s2 s3), p(" ")
```

specifies that spaces be used as separators. (The default is to have no separation of concatenated strings.)

As an example of punctuation other than a space, consider

```
. egen fullname = concat(surname forename), p(", ")
```

Noninteger numerical values can cause difficulties, but

```
. egen newstr = concat(n1 n2), format(%9.3f) p(" ")
```

specifies the use of format $\% 9.3 \mathrm{f}$. This is equivalent to

```
. generate str1 newstr = ""
. replace newstr = string(n1,"%9.3f") + " " + string(n2,"%9.3f")
```

See [FN] String functions for more about string().

As a final flourish, the decode option instructs concat() to use value labels. With that option, the maxlength() option may also be used. For more details about decode, see [D] encode. Unlike the decode command, however, concat() uses string(varname), not "", whenever values of varname are not associated with value labels, and the format() option, whenever specified, applies to this use of string ().

## > Example 17: ends()

The ends (strvar) function is used for subdividing strings. The approach is to find specified separators by using the strpos() string function and then to extract what is desired, which either precedes or follows the separators, using the substr() string function.

By default, substrings are considered to be separated by individual spaces, so we will give definitions in those terms and then generalize.

The head of the string is whatever precedes the first space or is the whole of the string if no space occurs. This could also be called the first "word". The tail of the string is whatever follows the first space. This could be nothing or one or more words. The last word in the string is whatever follows the last space or is the whole of the string if no space occurs.

To clarify, let's look at some examples. The quotation marks here just mark the limits of each string and are not part of the strings.

	head	tail	last
"frog"	"frog"	""	"frog"
"frog toad"	"frog"	"toad"	"toad"
"frog toad newt"	"frog"	"toad newt"	"newt"
"frog toad newt"	"frog"	"toad newt"	"newt"
"frog toad newt"	"frog"	"toad newt"	"newt"

The main subtlety is that these functions are literal, so the tail of "frog toad newt", in which two spaces follow "frog", includes the second of those spaces, and is thus " toad newt". Therefore, you may prefer to use the trim option to trim the result of any leading or trailing spaces, producing "toad newt" in this instance.

The punct (pchars) option may be used to specify separators other than spaces. The general definitions of the head, tail, and last options are therefore interpreted in terms of whatever separator has been specified; that is, they are relative to the first or last occurrence of the separator in the string value. Thus, with punct(,) and the string "Darwin, Charles Robert", the head is "Darwin", and the tail and the last are both " Charles Robert". Note again the leading space in this example, which may be trimmed with trim. The punctuation (here the comma, ",") is discarded, just as it is with one space.
pchars, the argument of punct (), will usually, but not always, be one character. If two or more characters are specified, these must occur together; for example, punct (: ; ) would mean that words are separated by a colon followed by a semicolon (that is, :;). It is not implied, in particular, that the colon and semicolon are alternatives. To do that, you would have to modify the programs presented here or resort to first principles by using split; see [D] split.

With personal names, the head or last option might be applied to extract surnames if strings were similar to "Darwin, Charles Robert" or "Charles Robert Darwin", with the surname coming first or last. What then happens with surnames like "von Neumann" or "de la Mare"? "von Neumann, John" is no problem, if the comma is specified as a separator, but the last option is not intelligent enough to handle "Walter de la Mare" properly. For that, the best advice is to use programs specially written for person-name extraction, such as extrname (Gould 1993).

## U.S. marginal income tax rate

mtr (year income) (Schmidt 1993, 1994) returns the U.S. marginal income tax rate for a married couple with taxable income income in year year, where $1930 \leq$ year $\leq 2016$.
> Example 18: mtr()
Schmidt (1993) examines the change in the progressivity of the U.S. tax schedule over the period from 1930 to 1990. As a measure of progressivity, he calculates the difference in the marginal tax rates at the 75 th and 25 th percentiles of income, using a dataset of percentiles of taxable income developed by Hakkio, Rush, and Schmidt (1996). (Certain aspects of the income distribution are imputed in these data.) A subset of the data contains the following:

```Contains data obs: vars: size:```	$\begin{array}{r} \text { from inc } \\ 61 \\ 4 \\ 1,020 \end{array}$	e1.dta		12 Feb 2016 03:33
variable name	storage type	display format	value label	variable label
year	float	\%9.0g		Year
inc25	float	\%9.0g		25th percentile
inc50	float	\%9.0g		50th percentile
inc75	float	\%9.0g		75 th percentile

Sorted by:

. summarize					
Variable	Obs	Mean	Std. Dev.	Min	Max
year	61	1960	17.75293	1930	1990
inc25	61	6948.272	6891.921	819.4	27227.35
inc50	61	11645.15	11550.71	1373.29	45632.43
inc75	61	18166.43	18019.1	2142.33	71186.58

Given the series for income and the four-digit year, we can generate the marginal tax rates corresponding to the 25 th and 75 th percentiles of income:

```
. egen mtr25 = mtr(year inc25)
. egen mtr75 = mtr(year inc75)
. summarize mtr25 mtr75
\begin{tabular}{r|rrrrr} 
Variable & Obs & Mean & Std. Dev. & Min & Max \\
\hline \(\operatorname{mtr} 25\) & 61 & .1664898 & .0677949 & .01125 & .23 \\
\(\operatorname{mtr} 75\) & 61 & .2442053 & .1148427 & .01125 & .424625
\end{tabular}
```


Methods and formulas

Stata users have written many extra functions for egen. Type net search egen to locate Internet sources of programs.

Acknowledgments

The mtr() function of egen was written by Timothy J. Schmidt of the Federal Reserve Bank of Kansas City.

The cut () function was written by David Clayton of the Cambridge Institute for Medical Research and Michael Hills (retired) of the London School of Hygiene and Tropical Medicine (1999a, 1999b, 1999c).

Many of the other egen functions were written by Nicholas J. Cox of the Department of Geography at Durham University, UK, and coeditor of the Stata Journal and author of Speaking Stata Graphics.

References

Andrews, D. F., P. J. Bickel, F. R. Hampel, P. J. Huber, W. H. Rogers, and J. W. Tukey. 1972. Robust Estimates of Location: Survey and Advances. Princeton: Princeton University Press.

Cappellari, L., and S. P. Jenkins. 2006. Calculation of multivariate normal probabilities by simulation, with applications to maximum simulated likelihood estimation. Stata Journal 6: 156-189.
Clayton, D. G., and M. Hills. 1999a. dm66: Recoding variables using grouped values. Stata Technical Bulletin 49: 6-7. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 23-25. College Station, TX: Stata Press.
__ 1999b. dm66.1: Stata 6 version of recoding variables using grouped values. Stata Technical Bulletin 50: 3. Reprinted in Stata Technical Bulletin Reprints, vol. 9, p. 25. College Station, TX: Stata Press.
—_. 1999c. dm66.2: Update of cut to Stata 6. Stata Technical Bulletin 51: 2-3. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 25-26. College Station, TX: Stata Press.

Cox, N. J. 1999. dm70: Extensions to generate, extended. Stata Technical Bulletin 50: 9-17. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 34-45. College Station, TX: Stata Press.
—_. 2000. dm70.1: Extensions to generate, extended: Corrections. Stata Technical Bulletin 57: 2. Reprinted in Stata Technical Bulletin Reprints, vol. 10, p. 9. College Station, TX: Stata Press.
-_. 2009. Speaking Stata: Rowwise. Stata Journal 9: 137-157.
——. 2014. Speaking Stata: Self and others. Stata Journal 14: 432-444.
Cox, N. J., and R. Goldstein. 1999a. dm72: Alternative ranking procedures. Stata Technical Bulletin 51: 5-7. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 48-51. College Station, TX: Stata Press.
——. 1999b. dm72.1: Alternative ranking procedures: Update. Stata Technical Bulletin 52: 2. Reprinted in Stata Technical Bulletin Reprints, vol. 9, p. 51. College Station, TX: Stata Press.
David, H. A. 1998. Early sample measures of variability. Statistical Science 13: 368-377.
Esman, R. M. 1998. dm55: Generating sequences and patterns of numeric data: An extension to egen. Stata Technical Bulletin 43: 2-3. Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 4-5. College Station, TX: Stata Press.

Gould, W. W. 1993. dm13: Person name extraction. Stata Technical Bulletin 13: 6-11. Reprinted in Stata Technical Bulletin Reprints, vol. 3, pp. 25-31. College Station, TX: Stata Press.
Hakkio, C. S., M. Rush, and T. J. Schmidt. 1996. The marginal income tax rate schedule from 1930 to 1990. Journal of Monetary Economics 38: 117-138.

Hampel, F. R., E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. 1986. Robust Statistics: The Approach Based on Influence Functions. New York: Wiley.
Kohler, U., and J. Zeh. 2012. Apportionment methods. Stata Journal 12: 375-392.
Mitchell, M. N. 2010. Data Management Using Stata: A Practical Handbook. College Station, TX: Stata Press.
Ryan, P. 1999. dm71: Calculating the product of observations. Stata Technical Bulletin 51: 3-4. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 45-48. College Station, TX: Stata Press.
-_. 2001. dm87: Calculating the row product of observations. Stata Technical Bulletin 60: 3-4. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 39-41. College Station, TX: Stata Press.

Salas Pauliac, C. H. 2013. group2: Generating the finest partition that is coarser than two given partitions. Stata Journal 13: 867-875.
Schmidt, T. J. 1993. sss1: Calculating U.S. marginal income tax rates. Stata Technical Bulletin 15: 17-19. Reprinted in Stata Technical Bulletin Reprints, vol. 3, pp. 197-200. College Station, TX: Stata Press.
—_. 1994. sss1.1: Updated U.S. marginal income tax rate function. Stata Technical Bulletin 22: 29. Reprinted in Stata Technical Bulletin Reprints, vol. 4, p. 224. College Station, TX: Stata Press.
Weiss, M. 2009. Stata tip 80: Constructing a group variable with specified group sizes. Stata Journal 9: 640-642.
Wilcox, R. R. 2003. Applying Contemporary Statistical Techniques. San Diego, CA: Academic Press.

Also see

[D] collapse - Make dataset of summary statistics
[D] generate - Create or change contents of variable

[U] 13.3 Functions

Title

encode - Encode string into numeric and vice versa

Description	Quick start	Menu	Syntax
Options for encode	Options for decode	Remarks and examples	Reference

Description

encode creates a new variable named newvar based on the string variable varname, creating, adding to, or just using (as necessary) the value label newvar or, if specified, name. Do not use encode if varname contains numbers that merely happen to be stored as strings; instead, use generate newvar = real (varname) or destring; see [U] 23.2 Categorical string variables, [FN] String functions, and [D] destring.
decode creates a new string variable named newvar based on the "encoded" numeric variable varname and its value label.

Quick start

Generate numeric newv1 from string v1, using the values of v1 to create a value label that is applied to newv1

```
encode v1, generate(newv1)
```

As above, but name the value label mylabel1

```
encode v1, generate(newv1) label(mylabel1)
```

As above, but refuse to encode v 1 if values exist in v 1 that are not present in preexisting value label mylabel1
encode v1, generate(newv1) label(mylabel1) noextend
Convert numeric v2 to string newv2 using the value label applied to v2 to generate values of newv2 decode v2, generate(newv2)

Menu

encode

Data $>$ Create or change data $>$ Other variable-transformation commands $>$ Encode value labels from string variable

decode

Data $>$ Create or change data $>$ Other variable-transformation commands $>$ Decode strings from labeled numeric variable

Syntax

String variable to numeric variable

```
encode varname [if] [in], generate(newvar) [label(name) noextend]
```

Numeric variable to string variable
decode varname $[$ if $][$ in $]$, generate(newvar) [甶axlength(\#)]

Options for encode

generate (newvar) is required and specifies the name of the variable to be created.
label (name) specifies the name of the value label to be created or used and added to if the named value label already exists. If label () is not specified, encode uses the same name for the label as it does for the new variable.
noextend specifies that varname not be encoded if there are values contained in varname that are not present in label (name). By default, any values not present in label (name) will be added to that label.

Options for decode

generate (newvar) is required and specifies the name of the variable to be created.
maxlength(\#) specifies how many bytes of the value label to retain; \# must be between 1 and 32000. The default is maxlength (32000).

Remarks and examples

Remarks are presented under the following headings:

> encode
> decode

encode

encode is most useful in making string variables accessible to Stata's statistical routines, most of which can work only with numeric variables. encode is also useful in reducing the size of a dataset. If you are not familiar with value labels, read [U] 12.6.3 Value labels.

The maximum number of associations within each value label is 65,536 (1,000 for Small Stata). Each association in a value label maps a string of up to 32,000 bytes to a number. For plain ASCII text, the number of bytes is equal to the number of characters. If your string has other Unicode characters, the number of bytes is greater than the number of characters. See [U] 12.4.2 Handling Unicode strings. If your variable contains string values longer than 32,000 bytes, then only the first 32,000 bytes are retained and assigned as a value label to a number.

> Example 1

We have a dataset on high blood pressure, and among the variables is sex, a string variable containing either "male" or "female". We wish to run a regression of high blood pressure on race, sex, and age group. We type regress hbp race sex age_grp and get the message "no observations".

```
. use http://www.stata-press.com/data/r14/hbp2
. regress hbp sex race age_grp
no observations
r(2000);
```

Stata's statistical procedures cannot directly deal with string variables; as far as they are concerned, all observations on sex are missing. encode provides the solution:
. encode sex, gen(gender)
. regress hbp gender race age_grp

Source	SS	df	MS	Number of obs	=	1,121
				$\mathrm{F}(3,1117)$	=	15.15
Model	2.01013476	3	. 67004492	Prob > F	=	0.0000
Residual	49.3886164	1,117	. 044215413	R -squared	=	0.0391
				Adj R-squared	=	0.0365
Total	51.3987511	1,120	. 045891742	Root MSE	=	. 21027

hbp	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
gender	.0394747	.0130022	3.04	0.002	.0139633	.0649861
race	-.0409453	.0113721	-3.60	0.000	-.0632584	-.0186322
age_grp	.0241484	.00624	3.87	0.000	.0119049	.0363919
_cons	-.016815	.0389167	-0.43	0.666	-.093173	.059543

encode looks at a string variable and makes an internal table of all the values it takes on, here "male" and "female". It then alphabetizes that list and assigns numeric codes to each entry. Thus 1 becomes "female" and 2 becomes "male". It creates a new int variable (gender) and substitutes a 1 where sex is "female", a 2 where sex is "male", and a missing (.) where sex is null (""). It creates a value label (also named gender) that records the mapping $1 \leftrightarrow$ female and $2 \leftrightarrow$ male. Finally, encode labels the values of the new variable with the value label.

> Example 2

It is difficult to distinguish the result of encode from the original string variable. For instance, in our last two examples, we typed encode sex, gen(gender). Let's compare the two variables:
. list sex gender in $1 / 4$

sex	gender
female	female
male	male
male	male

They look almost identical, although you should notice the missing value for gender in the second observation.

The difference does show, however, if we tell list to ignore the value labels and show how the data really appear:

```
. list sex gender in 1/4, nolabel
```

sex	gender
female	1
male	2
male	2

We could also ask to see the underlying value label:

```
. label list gender
gender:
    1 female
    2 male
```

gender really is a numeric variable, but because all Stata commands understand value labels, the variable displays as "male" and "female", just as the underlying string variable sex would.

> Example 3

We can drastically reduce the size of our dataset by encoding strings and then discarding the underlying string variable. We have a string variable, sex, that records each person's sex as "male" and "female". Because female has six characters, the variable is stored as a str6.

We can encode the sex variable and use compress to store the variable as a byte, which takes only 1 byte. Because our dataset contains 1,130 people, the string variable takes 6,780 bytes, but the encoded variable will take only 1,130 bytes.

```
. use http://www.stata-press.com/data/r14/hbp2, clear
. describe
Contains data from http://www.stata-press.com/data/r14/hbp2.dta
    obs: 1,130
    vars: 7 3 Mar 2014 06:47
    size: 24,860
\begin{tabular}{lllll}
\hline variable name & \begin{tabular}{c} 
storage \\
type
\end{tabular} & \begin{tabular}{l} 
display \\
format
\end{tabular} & \begin{tabular}{l} 
value \\
label
\end{tabular} & variable label \\
\hline id & str10 & \(\% 10 \mathrm{~s}\) & & Record identification number \\
city & byte & \(\% 8.0 \mathrm{~g}\) & & \\
year & int & \(\% 8.0 \mathrm{~g}\) & & \\
age_grp & byte & \(\% 8.0 \mathrm{~g}\) & agefmt & \\
race & byte & \(\% 8.0 \mathrm{~g}\) & racefmt & \\
hbp & byte & \(\% 8.0 \mathrm{~g}\) & yn & high blood pressure \\
sex & str6 & \(\% 9 \mathrm{~s}\) & & \\
\hline
\end{tabular}
```

Sorted by:
. encode sex, generate(gender)
. list sex gender in $1 / 5$

size: $\quad 19,210$

variable name	storage type	display format	value label	variable label
id	str10	$\% 10 \mathrm{~s}$		Record identification number
city	byte	$\% 8.0 \mathrm{~g}$		
year	int	$\% 8.0 \mathrm{~g}$		
age_grp	byte	$\% 8.0 \mathrm{~g}$	agefmt	
race	byte	$\% 8.0 \mathrm{~g}$	racefmt	
hbp	byte	$\% 8.0 \mathrm{~g}$	yn	high blood pressure
sex	byte	$\% 8.0 \mathrm{~g}$	gender	

Sorted by:
Note: Dataset has changed since last saved.
The size of our dataset has fallen from 24,860 bytes to 19,210 bytes.

Technical note

In the examples above, the value label did not exist before encode created it, because that is not required. If the value label does exist, encode uses your encoding as far as it can and adds new mappings for anything not found in your value label. For instance, if you wanted "female" to be encoded as 0 rather than 1 (possibly for use in linear regression), you could type

```
. label define gender 0 "female"
. encode sex, gen(gender)
```

You can also specify the name of the value label. If you do not, the value label is assumed to have the same name as the newly created variable. For instance,

```
. label define sexlbl 0 "female"
. encode sex, gen(gender) label(sexlbl)
```


decode

decode is used to convert numeric variables with associated value labels into true string variables.

> Example 4

We have a numeric variable named female that records the values 0 and 1 . female is associated with a value label named sexlbl that says that 0 means male and 1 means female:

```
. use http://www.stata-press.com/data/r14/hbp3, clear
. describe female
```


We see that female is stored as a byte. It is a numeric variable. Nevertheless, it has an associated value label describing what the numeric codes mean, so if we tabulate the variable, for instance, it appears to contain the strings "male" and "female":

. tabulate female			
female	Freq.	Percent	Cum.
male	695	61.61	61.61
female	433	38.39	100.00
Total	1,128	100.00	

We can create a real string variable from this numerically encoded variable by using decode:

```
. decode female, gen(sex)
. describe sex
\begin{tabular}{lclll} 
variable name & \begin{tabular}{c} 
storage \\
type
\end{tabular} & \begin{tabular}{l} 
display \\
format
\end{tabular} & \begin{tabular}{l} 
value \\
label
\end{tabular} & variable label \\
\hline sex & str6 & \(\% 9 s\) & &
\end{tabular}
```

We have a new variable called sex. It is a string, and Stata automatically created the shortest possible string. The word "female" has six characters, so our new variable is a str6. female and sex appear indistinguishable:

```
. list female sex in 1/4
```

female	sex
female	female
$\dot{.}$	
male	male
male	male

But when we add nolabel, the difference is apparent:

```
. list female sex in 1/4, nolabel
```

	female	sex
	1.	1
2.	female	
3.	0	male
4.	0	male

> Example 5

decode is most useful in instances when we wish to match-merge two datasets on a variable that has been encoded inconsistently.

For instance, we have two datasets on individual states in which one of the variables (state) takes on values such as "CA" and "NY". The state variable was originally a string, but along the way the variable was encoded into an integer with a corresponding value label in one or both datasets.

We wish to merge these two datasets, but either 1) one of the datasets has a string variable for state and the other an encoded variable or 2) although both are numeric, we are not certain that the codings are consistent. Perhaps "CA" has been coded 5 in one dataset and 6 in another.

Because decode will take an encoded variable and turn it back into a string, decode provides the solution:

```
use first
decode state, gen(st)
drop state
sort st
save first, replace
use second
decode state, gen(st)
drop state
sort st
merge 1:1 st using first
```

```
(load the first dataset)
(make a string state variable)
(discard the encoded variable)
(sort on string)
(save the dataset)
(load the second dataset)
(make a string variable)
(discard the encoded variable)
(sort on string)
(merge the data)
```


Reference

Schechter, C. B. 2011. Stata tip 99: Taking extra care with encode. Stata Journal 11: 321-322.

Also see

[D] compress - Compress data in memory
[D] destring - Convert string variables to numeric variables and vice versa
[D] generate - Create or change contents of variable
[U] 12.6.3 Value labels
[U] 23.2 Categorical string variables

Title

erase - Erase a disk file

Description Quick start Syntax Remarks and examples

Also see

Description

The erase command erases files stored on disk. rm is a synonym for erase for the convenience of Mac and Unix users.

Stata for Mac users: erase is permanent; the file is not moved to the Trash but is immediately removed from the disk.

Stata for Windows users: erase is permanent; the file is not moved to the Recycle Bin but is immediately removed from the disk.

Quick start

Delete mylog.smcl from current directory in Stata for Windows erase mylog.smcl

Same as above for Mac and Unix
rm mylog.smcl
Delete mydata.dta from current directory in Stata for Windows

```
erase mydata.dta
```

Same as above for Mac and Unix
rm mydata.dta
Delete mylog.smcl from C:\my dir $\backslash m y$ folder in Stata for Windows erase "c:\my dir\my folder\mylog.smcl"

Same as above for Mac and Unix
rm "~/my dir/my folder/mylog.smcl"

Syntax

$\{$ erase $\mid \mathrm{rm}\}["]$ filename $["]$
Note: Double quotes must be used to enclose filename if the name contains spaces.

Remarks and examples

The only difference between Stata's erase (rm) command and the DOS DEL or Unix rm(1) command is that we may not specify groups of files. Stata requires that we erase files one at a time.

Mac users may prefer to discard files by dragging them to the Trash.
Windows users may prefer to discard files by dragging them to the Recycle Bin.

> Example 1

Stata provides seven operating system equivalent commands: cd, copy, dir, erase, mkdir, rmdir, and type, or, from the Unix perspective, cd, copy, ls, rm, mkdir, rmdir, and cat. These commands are provided for Mac users, too. Stata users can also issue any operating system command by using Stata's shell command, so you should never have to exit Stata to perform some housekeeping detail.

Suppose that we have the file mydata.dta stored on disk and we wish to permanently eliminate it:

```
. erase mydata
file mydata not found
r(601);
. erase mydata.dta
```

Our first attempt, erase mydata, was unsuccessful. Although Stata ordinarily supplies the file extension for you, it does not do so when you type erase. You must be explicit. Our second attempt eliminated the file. Unix users could have typed rm mydata.dta if they preferred.

Also see

[D] cd — Change directory
[D] copy - Copy file from disk or URL
[D] dir - Display filenames
[D] mkdir - Create directory
[D] rmdir - Remove directory
[D] shell - Temporarily invoke operating system
[D] type - Display contents of a file
[U] 11.6 Filenaming conventions

Title

expand - Duplicate observations

Description	Quick start	Menu	Syntax
Option	Remarks and examples	References	Also see

Description

expand replaces each observation in the dataset with n copies of the observation, where n is equal to the required expression rounded to the nearest integer. If the expression is less than 1 or equal to missing, it is interpreted as if it were 1, and the observation is retained but not duplicated.

Quick start

Duplicate each observation 3 times, resulting in the original and 2 copies expand 3

Duplicate each observation the number of times stored in v
expand v
As above, but flag duplicated observations using generated newv
expand v , generate (newv)
As above, but only duplicate observations where catvar equals 4
expand v if catvar==4, generate(newv)

Menu

Data $>$ Create or change data $>$ Other variable-transformation commands $>$ Duplicate observations

Syntax

expand $[=] \exp [$ if $][$ in $][$, generate(newvar) $]$

Option

generate (newvar) creates new variable newvar containing 0 if the observation originally appeared in the dataset and 1 if the observation is a duplicate. For instance, after an expand, you could revert to the original observations by typing keep if newvar==0.

Remarks and examples

> Example 1
expand is, admittedly, a strange command. It can, however, be useful in tricky programs or for reformatting data for survival analysis (see examples in [R] epitab). Here is a silly use of expand:

```
. use http://www.stata-press.com/data/r14/expandxmpl
```

. list

		n
1.	x	
2.	-1	1
3.	0	2
4.	1	3
5.	2	4
		5

- expand n
(1 negative count ignored; observation not deleted)
(1 zero count ignored; observation not deleted)
(3 observations created)
. list

n	x
-1	1
0	2
1	3
2	4
3	5
2	4
3	5
3	5

The new observations are added to the end of the dataset. expand informed us that it created 3 observations. The first 3 observations were not replicated because n was less than or equal to $1 . \mathrm{n}$ is 2 in the fourth observation, so expand created one replication of this observation, bringing the total number of observations of this type to 2 . expand created two replications of observation 5 because n is 3 .

Because there were 5 observations in the original dataset and because expand adds new observations onto the end of the dataset, we could now undo the expansion by typing drop in $6 / 1$.

References

Cox, N. J. 2013. Stata tip 114: Expand paired dates to pairs of dates. Stata Journal 13: 217-219.
——. 2014. Stata tip 119: Expanding datasets for graphical ends. Stata Journal 14: 230-235.

Also see

[D] contract - Make dataset of frequencies and percentages
[D] expandcl - Duplicate clustered observations
[D] fillin - Rectangularize dataset

Title

expandcl - Duplicate clustered observations

Description	Quick start	Menu	Syntax
Options	Remarks and examples	Also see	

Description

expandcl duplicates clusters of observations and generates a new variable that identifies the clusters uniquely.
expandcl replaces each cluster in the dataset with n copies of the cluster, where n is equal to the required expression rounded to the nearest integer. The expression is required to be constant within cluster. If the expression is less than 1 or equal to missing, it is interpreted as if it were 1 , and the cluster is retained but not duplicated.

Quick start

Duplicate each set of observations on clusters identified by cvar 3 times and store new cluster identifier in newcv
expandcl 3, cluster(cvar) generate(newcv)
Duplicate each cluster of observations the number of times stored in v
expandcl v, cluster(cvar) generate(newcv)

Menu

Data $>$ Create or change data $>$ Other variable-transformation commands $>$ Duplicate clustered observations

Syntax

expandcl [=]exp [if][in], cluster(varlist) generate(newvar)

Options

cluster (varlist) is required and specifies the variables that identify the clusters before expanding the data.
generate (newvar) is required and stores unique identifiers for the duplicated clusters in newvar. newvar will identify the clusters by using consecutive integers starting from 1.

Remarks and examples

Example 1

We will show how expandcl works by using a small dataset with five clusters. In this dataset, cl identifies the clusters, x contains a unique value for each observation, and n identifies how many copies we want of each cluster.

```
. use http://www.stata-press.com/data/r14/expclxmpl
. list, sepby(cl)
```

	cl	x	n
1.	10	1	-1
2.	10	2	-1
3.	20	3	0
4.	20	4	0
5.	30	5	1
6.	30	6	1
7.	40	7	2.7
8.	40	8	2.7
9.	50	9	3
10.	50	10	3
11.	60	11	.
12.	60	12	.

```
. expandcl n, generate(newcl) cluster(cl)
(2 missing counts ignored; observations not deleted)
(2 noninteger counts rounded to integer)
(2 negative counts ignored; observations not deleted)
(2 zero counts ignored; observations not deleted)
(8 observations created)
```

. sort newcl cl x
. list, sepby(newcl)

	cl	x	n	newcl
1.	10	1	-1	1
2.	10	2	-1	1
3.	20	3	0	2
4.	20	4	0	2
5.	30	5	1	3
6.	30	6	1	3
7.	40	7	2.7	4
8.	40	8	2.7	4
9.	40	7	2.7	5
10.	40	8	2.7	5
11.	40	7	2.7	6
12.	40	8	2.7	6
13.	50	9	3	7
14.	50	10	3	7
15.	50	9	3	8
16.	50	10	3	8
17.	50	9	3	9
18.	50	10	3	9
19.	60	11	.	10
20.	60	12	.	10

The first three clusters were not replicated because n was less than or equal to $1 . \mathrm{n}$ is 2.7 in the fourth cluster, so expandcl created two replications (2.7 was rounded to 3) of this cluster, bringing the total number of clusters of this type to 3 . expandcl created two replications of cluster 50 because n is 3 . Finally, expandcl did not replicate the last cluster because n was missing.

Also see

[D] expand - Duplicate observations
[R] bsample - Sampling with replacement

Title

export - Overview of exporting data from Stata

Description Remarks and examples Also see

Description

This entry provides a quick reference for determining which method to use for exporting Stata data from memory to other formats.

Remarks and examples

Remarks are presented under the following headings:
Summary of the different methods
export excel
export delimited
odbc
outfile
export sasxport
xmlsave

Summary of the different methods

export excel

- export excel creates Microsoft Excel worksheets in .xls and .xlsx files.
- Entire worksheets can be exported, or custom cell ranges can be overwritten.
- See [D] import excel.

export delimited

- export delimited creates comma-separated or tab-delimited files that many other programs can read.
- A custom delimiter may also be specified.
- The first line of the file can optionally contain the names of the variables.
- See [D] import delimited.
odbc
- ODBC, an acronym for Open DataBase Connectivity, is a standard for exchanging data between programs. Stata supports the ODBC standard for exporting data via the odbc command and can write to any ODBC data source on your computer.
- See [D] odbc.

outfile

- outfile creates text-format datasets.
- The data can be written in space-separated or comma-separated format.
- Alternatively, the data can be written in fixed-column format.
- See [D] outfile.

export sasxport

- export sasxport saves SAS XPORT Transport format files.
- export sasxport can also write value label information to a formats.xpf XPORT file.
- See [D] import sasxport.

xmlsave

- xmlsave writes extensible markup language (XML) files—highly adaptable text-format files derived from the standard generalized markup language (SGML).
- xmlsave can write either an Excel-format XML or a Stata-format XML file.
- See [D] xmlsave.

Also see

[D] import delimited - Import delimited text data
[D] import excel - Import and export Excel files
[D] import sasxport - Import and export datasets in SAS XPORT format
[D] odbc - Load, write, or view data from ODBC sources
[D] outfile - Export dataset in text format
[D] xmlsave - Export or import dataset in XML format
[D] import - Overview of importing data into Stata
[M-5] _docx*() - Generate Office Open XML (.docx) file
[M-5] xl() - Excel file I/O class
[P] putexcel - Export results to an Excel file

Title

filefilter - Convert ASCII or binary patterns in a file

Description	Quick start	Syntax	Options
Remarks and examples	Stored results	Reference	Also see

Description

filefilter reads an input file, searching for oldpattern. Whenever a matching pattern is found, it is replaced with newpattern. All resulting data, whether matching or nonmatching, are then written to the new file.

Because of the buffering design of filefilter, arbitrarily large files can be converted quickly. filefilter is also useful when traditional editors cannot edit a file, such as when unprintable ASCII characters are involved. In fact, converting end-of-line characters between Mac OS X, Classic Mac, Windows, and Unix is convenient with the EOL codes.

Unicode is not directly supported at this time, but UTF-8 encoded files can be operated on by using byte-sequence methods in some cases.

Although it is not mandatory, you may want to use quotes to delimit a pattern, protecting the pattern from Stata's parsing routines. A pattern that contains blanks must be in quotes.

Quick start

Create newfile.txt from oldfile.txt by replacing all tabs with semicolons filefilter oldfile.txt newfile.txt, from(\t) to(";")

Create newfile.txt from oldfile.txt by replacing all instances of "The" with "the" filefilter oldfile.txt newfile.txt, from("The") to("the")

Syntax

filefilter oldfile newfile,
$\{\underline{\text { from }}$ (oldpattern) to(newpattern) |ascii2ebcdic|ebcdic2ascii $\}$ [options]
where oldpattern and newpattern for ASCII characters are

```
"string" or string
string := [char[char[char[...]]]]
char := regchar \ code
regchar := ASCII 32-91, 93-127, or
    extended ASCII 128, 161-255; excludes '\'
code := \BS backslash
        \r carriage return
        \n newline
        \t tab
        \M Classic Mac EOL, or \r
        \W Windows EOL, or \r\n
        \U Unix or Mac EOL, or \n
        \LQ left single quote,
        \RQ right single quote,'
        \Q double quote,,
        \$ dollar sign,$
        \###d 3-digit [0-9] decimal ASCII
        \##h 2-digit [0-9, A-F] hexadecimal ASCII
```

options
Description

* from (oldpattern) find oldpattern to be replaced
* to (newpattern) use newpattern to replace occurrences of from()
* ascii2ebcdic convert file from ASCII to EBCDIC
*ebcdic2ascii convert file from EBCDIC to ASCII
replace replace newfile if it already exists
* Both from (oldpattern) and to(newpattern) are required, or ascii2ebcdic or ebcdic2ascii is required.

Options

from(oldpattern) specifies the pattern to be found and replaced. It is required unless ascii2ebcdic or ebcdic2ascii is specified.
to (newpattern) specifies the pattern used to replace occurrences of from(). It is required unless ascii2ebcdic or ebcdic2ascii is specified.
ascii2ebcdic specifies that characters in the file be converted from ASCII coding to EBCDIC coding. from(), to(), and ebcdic2ascii are not allowed with ascii2ebcdic.
ebcdic2ascii specifies that characters in the file be converted from EBCDIC coding to ASCII coding. from(), to(), and ascii2ebcdic are not allowed with ebcdic2ascii.
replace specifies that newfile be replaced if it already exists.

Remarks and examples

Convert Classic Mac-style EOL characters to Windows-style . filefilter macfile.txt winfile.txt, from(\M) to(\W) replace

Convert left quote (') characters to the string "left quote"

```
. filefilter auto1.csv auto2.csv, from(\LQ) to("left quote")
```

Convert the character with hexidecimal code 60 to the string "left quote"

```
. filefilter auto1.csv auto2.csv, from(\60h) to("left quote")
```

Convert the character with decimal code 96 to the string "left quote" . filefilter auto1.csv auto2.csv, from(\096d) to("left quote")

Convert strings beginning with hexidecimal code 6B followed by "Text" followed by decimal character 100 followed by "Text" to an empty string (remove them from the file)

```
. filefilter file1.txt file2.txt, from("\6BhText\100dText") to("")
```

Convert file from EBCDIC to ASCII encoding

```
. filefilter ebcdicfile.txt asciifile.txt, ebcdic2ascii
```


- Technical note

Unicode is not directly supported at this time, but you can try to operate on a UTF-8 encoded Unicode file by working on the byte sequence representation of the UTF-8 encoded Unicode character. For example, the Unicode character é, the Latin small letter "e" with an acute accent (Unicode code point $\backslash u 00 e 9$), has the byte sequence representation $(195,169)$. You can obtain the byte sequence by using tobytes ("é"). Although you may use 195 and 169 in regchar and code, they will be treated as two separate bytes instead of one character é (195 followed by 169). In short, this goes beyond the original design of the command and is technically unsupported. If you try to use filefilter in this way, you might encounter problems.

Stored results

filefilter stores the following in $r()$:
Scalars
r(occurrences) number of oldpattern found
r(bytes_from) \# of bytes represented by oldpattern
r (bytes_to) \# of bytes represented by newpattern

Reference

Riley, A. R. 2008. Stata tip 60: Making fast and easy changes to files with filefilter. Stata Journal 8: 290-292.

Also see

[P] file - Read and write text and binary files
[D] changeeol - Convert end-of-line characters of text file
[D] hexdump - Display hexadecimal report on file

Title

fillin - Rectangularize dataset

Description	Quick start	Menu	Syntax
Remarks and examples	References	Also see	

Description

fillin adds observations with missing data so that all interactions of varlist exist, thus making a complete rectangularization of varlist. fillin also adds the variable _fillin to the dataset. _fillin is 1 for observations created by using fillin and 0 for previously existing observations. varlist may not contain strLs.

Quick start

Add observations so that all possible interactions of v1 and v2 exist and flag new observations with _fillin = 1
fillin v1 v2
As above, but also include interactions with v3
fillin v1 v2 v3

Menu

Data $>$ Create or change data $>$ Other variable-transformation commands $>$ Rectangularize dataset

Syntax

fillin varlist

Remarks and examples

> Example 1

We have data on something by sex, race, and age group. We suspect that some of the combinations of sex, race, and age do not exist, but if so, we want them to exist with whatever remaining variables there are in the dataset set to missing. For example, rather than having a missing observation for black females aged $20-24$, we want to create an observation that contains missing values:

```
. use http://www.stata-press.com/data/r14/fillin1
```

. list

	sex	race	age_gr~p	x1	x2
1.	female	white	$20-24$	20393	14.5
2.	male	white	$25-29$	32750	12.7
3.	female	black	$30-34$	39399	14.2

```
. fillin sex race age_group
. list, sepby(sex)
```

sex	race	age_gr~p	x1	x2	_fillin
female	white	$20-24$	20393	14.5	0
female	white	$25-29$.	.	1
female	white	$30-34$.	.	1
female	black	$20-24$.	.	1
female	black	$25-29$.	.	1
female	black	$30-34$	39399	14.2	0
male	white	$20-24$.	.	1
male	white	$25-29$	32750	12.7	0
male	white	$30-34$.	.	1
male	black	$20-24$.	.	1
male	black	$25-29$.	.	1
male	black	$30-34$.	.	1

References

Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press. Cox, N. J. 2005. Stata tip 17: Filling in the gaps. Stata Journal 5: 135-136.

Also see

[D] cross - Form every pairwise combination of two datasets
[D] expand - Duplicate observations
[D] joinby - Form all pairwise combinations within groups
[D] save - Save Stata dataset

Title

format - Set variables' output format

Description	Quick start	Menu	Syntax
Option	Remarks and examples	References	Also see

Description

format varlist \% fmt and format \% fint varlist are the same commands. They set the display format associated with the variables specified. The default formats are a function of the type of the variable:

byte	$\% 8.0 \mathrm{~g}$
int	$\% 8.0 \mathrm{~g}$
long	$\% 12.0 \mathrm{~g}$
float	$\% 9.0 \mathrm{~g}$
double	$\% 10.0 \mathrm{~g}$
str\#	$\% \# \mathrm{~s}$
strL	$\% 9 \mathrm{~s}$

set dp sets the symbol that Stata uses to represent the decimal point. The default is period, meaning that one and a half is displayed as 1.5 .
format [varlist] displays the current formats associated with the variables. format by itself lists all variables that have formats too long to be listed in their entirety by describe. format varlist lists the formats for the specified variables regardless of their length. format $*$ lists the formats for all the variables.

Quick start

Show 10-digit v1 as whole numbers with commas format v1 \% 15.0 gc

Same as above
format $\% 15.0 \mathrm{gc} \mathrm{v} 1$
Left-align string variable v2 of type str20 format v2 \%-20s

Show 3-digit v3 with 1 digit after the decimal
format v3 $\% 4.1 f$
Left-align v4 and v5 and show with leading zeros if less than 4 digits in length format v4 v5 \%-04.0f

Show v6 in Stata default date format like 19jun2014 format v6 \%td

As above, but show v6 in a date format like 06/14/2014
format v6 \%tdNN/DD/CCYY

Menu

Data $>$ Variables Manager

Syntax

Set formats
format varlist $\%$ fmt
format \% fint varlist

Set style of decimal point

```
set dp {\underline{comma|period } [, permanently]}]
```

Display long formats

```
format [varlist]
```

where \% fint can be a numerical, date, business calendar, or string format.

Numerical \% fmt	Description	Example
right-justified		
\%\#.\#g	general	$\% 9.0 \mathrm{~g}$
\%\#.\#f	fixed	$\% 9.2 \mathrm{f}$
\%\#.\#e	exponential	$\% 10.7 e$
\%21x	hexadecimal	\%21x
\%16H	binary, hilo	\%16H
\%16L	binary, lohi	\%16L
\%8H	binary, hilo	\%8H
\%8L	binary, lohi	\%8L
right-justified with commas		
\%\#.\#gc	general	\%9.0gc
\%\#.\#fc	fixed	\%9.2fc
right-justified with leading zeros		
\%0\#.\#f	fixed	\%09.2f
left-justified		
\%-\#.\#g	general	\%-9.0g
\%-\#.\#f	fixed	$\%-9.2 \mathrm{f}$
\%-\#.\#e	exponential	$\%-10.7 e$
left-justified with commas		
\%-\#.\#gc	general	\%-9.0gc
\%-\#.\#fc	fixed	$\%-9.2 f \mathrm{c}$

You may substitute comma (,) for period (.) in any
of the above formats to make comma the decimal point. In
$\% 9,2 \mathrm{fc}, 1000.03$ is $1.000,03$. Or you can set dp comma.

date \% frmt	Description	Example
right-justified		
\%tc	date/time	\%tc
\%tc	date/time	\%tC
\%td	date	\%td
\%tw	week	\%tw
\%tm	month	\%tm
\%tq	quarter	\%tq
\%th	half-year	\%th
\%ty	year	\%ty
\%tg	generic	\%tg
left-justified		
\%-tc	date/time	\%-tc
\%-tC	date/time	\%-tC
$\begin{aligned} & \%-\mathrm{td} \\ & \text { etc. } \end{aligned}$	date	\%-td

There are many variations allowed. See [D] datetime display formats.

business calendar \%fmt	Description	Example
\%tbcalname	a business	\%tbsimple
$[$: datetime-specifiers $]$	calendar defined in calname.stbcal	

See [D] datetime business calendars.

string \%fmt	Description	Example
right-justified $\% \# s$	string	$\% 15 \mathrm{~s}$
left-justified $\%$-\#s	string	$\%-20 \mathrm{~s}$
centered $\% \sim \# s$	string	$\% \sim 12 \mathrm{~s}$

The centered format is for use with display only.

Option

permanently specifies that, in addition to making the change right now, the dp setting be remembered and become the default setting when you invoke Stata.

Remarks and examples

Remarks are presented under the following headings:

Setting formats
Setting European formats
Details of formats
The \%f format
The \%fc format
The \%g format
The \%gc format
The \%e format
The \%21x format
The $\% 16 H$ and $\% 16 \mathrm{~L}$ formats
The $\% 8 H$ and $\% 8 \mathrm{~L}$ formats
The \%t format
The \%s format
Other effects of formats
Displaying current formats

Setting formats

See [U] 12.5 Formats: Controlling how data are displayed for an explanation of $\%$ fint. To review: Stata's three numeric formats are denoted by a leading percent sign, \%, followed by the string w.d (or w, d for European format), where w and d stand for two integers. The first integer, w, specifies the width of the format. The second integer, d, specifies the number of digits that are to follow the decimal point; d must be less than w. Finally, a character denoting the format type (e, f, or g) is appended. For example, $\% 9.2 \mathrm{f}$ specifies the f format that is nine characters wide and has two digits following the decimal point. For f and g, a c may also be suffixed to indicate comma formats. Other "numeric" formats known collectively as the \%t formats are used to display dates and times; see [D] datetime display formats. String formats are denoted by $\% w s$, where w indicates the width of the format.
> Example 1
We have census data by region and state on median age and population in 1980.

```
. use http://www.stata-press.com/data/r14/census10
(1980 Census data by state)
. describe
Contains data from http://www.stata-press.com/data/r14/census10.dta
    obs: 50 1980 Census data by state
    vars: 4 9 Apr 2014 08:05
    size: 1,200
```

	storage type	display format	value label	variable label
state	str14	$\% 14 \mathrm{~s}$		State
region	int	$\% 8.0 \mathrm{~g}$	cenreg	Census region
pop	long	$\% 11.0 \mathrm{~g}$		Population
medage	float	$\% 9.0 \mathrm{~g}$		Median age

Sorted by:
. list in $1 / 8$

	state	region	pop	medage
1.	Alabama	South	3893888	29.3
2.	Alaska	West	401851	26.1
3.	Arizona	West	2718215	29.2
4.	Arkansas	South	2286435	30.6
5.	California	West	23667902	29.9
6.	Colorado	West	2889964	28.6
7.	Connecticut	NE	3107576	32
8.	Delaware	South	594338	29.8

The state variable has a display format of $\% 14 \mathrm{~s}$. To left-align the state data, we type

```
. format state %-14s
. list in 1/8
```

	state	region	pop	medage
1.	Alabama	South	3893888	29.3
2.	Alaska	West	401851	26.1
3.	Arizona	West	2718215	29.2
4.	Arkansas	South	2286435	30.6
5.	California	West	23667902	29.9
6.	Colorado	West	2889964	28.6
7.	Connecticut	NE	3107576	32
8.	Delaware	South	594338	29.8

Although it seems like region is a string variable, it is really a numeric variable with an attached value label. You do the same thing to left-align a numeric variable as you do a string variable: insert a negative sign.
. format region $\%-8.0 \mathrm{~g}$
. list in $1 / 8$

	state	region	pop	medage
1.	Alabama	South	3893888	29.3
2.	Alaska	West	401851	26.1
3.	Arizona	West	2718215	29.2
4.	Arkansas	South	2286435	30.6
5.	California	West	23667902	29.9
6.	Colorado	West	2889964	28.6
7.	Connecticut	NE	3107576	32
8.	Delaware	South	594338	29.8

The pop variable would probably be easier to read if we inserted commas by appending a ' c ':
. format pop \% 11.0 gc
. list in $1 / 8$

	state	region	pop	medage
1.	Alabama	South	$3,893,888$	29.3
2.	Alaska	West	401,851	26.1
3.	Arizona	West	$2,718,215$	29.2
4.	Arkansas	South	$2,286,435$	30.6
5.	California	West	23667902	29.9
6.	Colorado	West	$2,889,964$	28.6
7.	Connecticut	NE	$3,107,576$	32
8.	Delaware	South	594,338	29.8

Look at the value of pop for observation 5. There are no commas. This number was too large for Stata to insert commas and still respect the current width of 11 . Let's try again:

```
. format pop %12.0gc
. list in 1/8
```

	state	region	pop	medage
1.	Alabama	South	$3,893,888$	29.3
2.	Alaska	West	401,851	26.1
3.	Arizona	West	$2,718,215$	29.2
4.	Arkansas	South	$2,286,435$	30.6
5.	California	West	$23,667,902$	29.9
6.	Colorado	West	$2,889,964$	28.6
7.	Connecticut	NE	$3,107,576$	32
8.	Delaware	South	594,338	29.8

Finally, medage would look better if the decimal points were vertically aligned.

```
. format medage %8.1f
. list in 1/8
```

	state	region	pop	medage
1.	Alabama	South	$3,893,888$	29.3
2.	Alaska	West	401,851	26.1
3.	Arizona	West	$2,718,215$	29.2
4.	Arkansas	South	$2,286,435$	30.6
5.	California	West	$23,667,902$	29.9
6.	Colorado	West	$2,889,964$	28.6
7.	Connecticut	NE	$3,107,576$	32.0
8.	Delaware	South	594,338	29.8

Display formats are permanently attached to variables by the format command. If we save the data, the next time we use it, state will still be formatted as $\%-14 \mathrm{~s}$, region will still be formatted as $\%-8.0 \mathrm{~g}$, etc.

> Example 2

Suppose that we have an employee identification variable, empid, and that we want to retain the leading zeros when we list our data. format has a leading-zero option that allows this.

```
. use http://www.stata-press.com/data/r14/fmtxmpl
. describe empid
variable name \begin{tabular}{clll} 
storage \\
type
\end{tabular}\(\quad\)\begin{tabular}{l} 
display \\
format
\end{tabular}\(\quad\)\begin{tabular}{l} 
value \\
label
\end{tabular}\(\quad\) variable label
empid float %9.0g
. list empid in 83/87
\begin{tabular}{l|r|}
\cline { 2 - 2 } & empid \\
\hline 83. & 98 \\
84. & 99 \\
85. & 100 \\
86. & 101 \\
87. & 102 \\
\hline
\end{tabular}
```

. format empid \%05.0f

- list empid in $83 / 87$

83.

empid
00098
00099
00100
00101
00102

- Technical note

The syntax of the format command allows a varlist and not just one variable name. Thus you can attach the \%9.2f format to the variables myvar, thisvar, and thatvar by typing
. format myvar thisvar thatvar \%9.2f

> Example 3

We have employee data that includes hiredate and login and logout times. hiredate is stored as a float, but we were careful to store login and logout as doubles. We need to attach a date format to these three variables.

```
. use http://www.stata-press.com/data/r14/fmtxmpl2
. format hiredate login logout
variable name display format
hiredate %9.0g
login %10.0g
logout %10.0g
```

```
. format login logout %tcDDmonCCYY_HH:MM:SS.ss
```

. list login logout in $1 / 5$

	login	logout	
08nov2006	08:16:42.30	08nov2006	05:32:23.53
08nov2006	08:07:20.53	08nov2006	05:57:13.40
08nov2006	08:10:29.48	08nov2006	06:17:07.51
08nov2006	08:30:02.19	08nov2006	05:42:23.17
08nov2006	08:29:43.25	08nov2006	05:29:39.48

. format hiredate \%td
. list hiredate in $1 / 5$

```
hiredate
    24jan1986
    10mar1994
    29sep2006
    14apr2006
    03dec1999
```

We remember that the project manager requested that hire dates be presented in the same form as they were previously.

```
. format hiredate %tdDD/NN/CCYY
. list hiredate in 1/5
```

hiredate
$24 / 01 / 1986$
$10 / 03 / 1994$
$29 / 09 / 2006$
$14 / 04 / 2006$
$03 / 12 / 1999$

Setting European formats

Do you prefer that one and one half be written as 1,5 and that one thousand one and a half be written as $1.001,5$? Stata will present numbers in that format if, when you set the format, you specify ',' rather than '.' as follows:

```
. use http://www.stata-press.com/data/r14/census10
(1980 Census data by state)
. format pop %12,0gc
. format medage %9,2f
```

. list in $1 / 8$

state	region	pop	medage
Alabama	South	3.893 .888	29,30
Alaska	West	401.851	26,10
Arizona	West	2.718 .215	29,20
Arkansas	South	2.286 .435	30,60
California	West	23.667 .902	29,90
Colorado	West	2.889 .964	28,60
Connecticut	NE	3.107 .576	32,00
Delaware	South	594.338	29,80

You can also leave the formats just as they were and instead type set dp comma. That tells Stata to interpret all formats as if you had typed the comma instead of the period:

```
. format pop %12.0gc (put the formats back as they were)
. format medage %9.2f
. set dp comma
(tell Stata to use European format)
. list in 1/8
(same output appears as above)
```

set dp comma affects all Stata output, so if you run a regression, display summary statistics, or make a table, commas will be used instead of periods in the output:

. tabulate region [fw=pop]			
Census region	Freq.	Percent	Cum.
NE	49135283	21,75	21,75
N Cntrl	58865670	26,06	47,81
South	74734029	33,08	80,89
West	43172490	19,11	100,00
Total	225907472	100,00	

You can return to using periods by typing

```
. set dp period
```

Setting a variable's display format to European affects how the variable's values are displayed by list and in a few other places. Setting dp to comma affects every bit of Stata.

Also, set dp comma affects only how Stata displays output, not how it gets input. When you need to type one and a half, you must type 1.5 regardless of context.

- Technical note

set dp comma makes drastic changes inside Stata, and we mention this because some older, userwritten programs may not be able to deal with those changes. If you are using an older, user-written program, you might set dp comma only to find that the program does not work and instead presents some sort of syntax error.

If, using any program, you get an unanticipated error, try setting dp back to period.
Even with set dp comma, you might still see some output with the decimal symbol shown as a period rather than a comma. There are two places in Stata where Stata ignores set dp comma because the features are generally used to produce what will be treated as input, and set dp comma does not affect how Stata inputs numbers. First,
local $\mathrm{x}=\operatorname{sqrt}(2)$
stores the string " 1.414213562373095 " in x and not " 1,414213562373095 ", so if some program were to display ' x ' as a string in the output, the period would be displayed. Most programs, however, would use ' x ' in subsequent calculations or, at the least, when the time came to display what was in ' x ', would display it as a number. They would code

```
display ... 'x' ...
```

and not

```
    display ... "'x'" ...
```

so the output would be

```
... 1,4142135 ...
```

The other place where Stata ignores set dp comma is the string() function. If you type

```
. generate res = string(numvar)
```

new variable res will contain the string representation of numeric variable numvar, with the decimal symbol being a period, even if you have previously set dp comma. Of course, if you explicitly ask that string() use European format,
. generate res = string(numvar, " $\% 9,0 \mathrm{~g} "$)
then string() honors your request; string() merely ignores the global set dp comma.

Details of formats

The \%f format

In $\% w . d \mathrm{f}, w$ is the total output width, including sign and decimal point, and d is the number of digits to appear to the right of the decimal point. The result is right-justified.

The number 5.139 in $\% 12.2 \mathrm{f}$ format displays as

5.14

When $d=0$, the decimal point is not displayed. The number 5.14 in $\% 12.0 \mathrm{f}$ format displays as

5
$\%-w . d \mathrm{f}$ works the same way, except that the output is left-justified in the field. The number 5.139 in $\%-12.2 \mathrm{f}$ displays as

5.14

The \%fc format

$\% w . d \mathrm{fc}$ works like $\% w . d \mathrm{f}$ except that commas are inserted to make larger numbers more readable. w records the total width of the result, including commas.

The number 5.139 in $\% 12.2 \mathrm{fc}$ format displays as

The number 5203.139 in $\% 12.2 \mathrm{fc}$ format displays as

```
----+----1--
    5,203.14
```

As with \%f, if $d=0$, the decimal point is not displayed. The number $5203.139 \mathrm{in} \% 12.0 \mathrm{f} \mathrm{c}$ format displays as

```
----+----1--
```

As with \%f, a minus sign may be inserted to left justify the output. The number 5203.139 in $\%-12.0 f \mathrm{c}$ format displays as

```
----+----1--
5,203
```


The \%g format

In $\% w . d \mathrm{~g}, w$ is the overall width, and d is usually specified as 0 , which leaves up to the format the number of digits to be displayed to the right of the decimal point. If $d \neq 0$ is specified, then not more than d digits will be displayed. As with \%f, a minus sign may be inserted to left-justify results.
$\% \mathrm{~g}$ differs from $\% \mathrm{f}$ in that 1) it decides how many digits to display to the right of the decimal point, and 2) it will switch to a \%e format if the number is too large or too small.

The number 5.139 in $\% 12.0 \mathrm{~g}$ format displays as

The number 5231371222.139 in $\% 12.0 \mathrm{~g}$ format displays as

5231371222
The number 52313712223.139 displays as

```
----+----1--
```

 \(5.23137 e+10\)
 The number 0.0000029394 displays as

```
----+----1--
2.93940e-06
```


The \%gc format

$\% w . d \mathrm{gc}$ is $\% w . d \mathrm{~g}$ with commas. It works in the same way as the $\% \mathrm{~g}$ and $\% \mathrm{fc}$ formats.

The \%e format

$\% w . d e$ displays numeric values in exponential format. w records the width of the format. d records the number of digits to be shown after the decimal place. w should be greater than or equal to $d+7$ or, if 3-digit exponents are expected, $d+8$.

The number 5.139 in $\% 12.4 \mathrm{e}$ format is

The number 5.139×10^{220} is

```
----+----1--
    5.1390e+220
```


The \%21x format

The $\% 21 \mathrm{x}$ format is for those, typically programmers, who wish to analyze routines for numerical roundoff error. There is no better way to look at numbers than how the computer actually records them.

The number 5.139 in $\% 21 \mathrm{x}$ format is
----+----1----+-----2-
$+1.48 \mathrm{e} 5604189375 \mathrm{X}+002$
The number 5.125 is
----+----1----+-----2-
$+1.4800000000000 \mathrm{X}+002$
Reported is a signed, base-16 number with base-16 point, the letter X , and a signed, 3-digit base-16 integer. Call the two numbers f and e. The interpretation is $f \times 2^{e}$.

The \%16H and \%16L formats

The $\% 16 \mathrm{H}$ and $\% 16 \mathrm{~L}$ formats show the value in the IEEE floating point, double-precision form. $\% 16 \mathrm{H}$ shows the value in most-significant-byte-first (hilo) form. \%16L shows the number in least-significant-byte-first (lohi) form.

The number 5.139 in $\% 16 \mathrm{H}$ is
----+----1----+-
40148e5604189375
The number 5.139 in \%16L is
----+----1----+-
75931804568 e 1440
The format is sometimes used by programmers who are simultaneously studying a hexadecimal dump of a binary file.

The \%8H and \%8L formats

$\% 8 \mathrm{H}$ and $\% 8 \mathrm{~L}$ are similar to $\% 16 \mathrm{H}$ and $\% 16 \mathrm{~L}$ but show the number in IEEE single-precision form. The number 5.139 in $\% 8 \mathrm{H}$ is

```
----+---
```

40a472bo

The number 5.139 in \%8L is
----+---
b072a440

The \%t format

The \%t format displays numerical variables as dates and times. See [D] datetime display formats.

The \%s format

The \% $\%$ s format displays a string in a right-justified field of width $w . \%-w$ s displays the string left-justified.
"Mary Smith" in \%16s format is

```
----+----1----+-
Mary Smith
```

"Mary Smith" in \%-16s format is

```
----+----1----++
```

Mary Smith

Also, in some contexts, particularly display (see [P] display), \% $\sim w$ s is allowed, which centers the string. "Mary Smith" in $\% \sim 16 s$ format is

```
----+----1----+-
```

Mary Smith

Other effects of formats

You have data on the age of employees, and you type summarize age to obtain the mean and standard deviation. By default, Stata uses its default g format to provide as much precision as possible.

```
. use http://www.stata-press.com/data/r14/fmtxmpl
. summarize age
\begin{tabular}{r|rrrrr} 
Variable & Obs & Mean & Std. Dev. & Min & Max \\
\hline age & 204 & 30.18627 & 10.38067 & 18 & 66
\end{tabular}
```

If you attach a $\% 9.2 \mathrm{f}$ format to the variable and specify the format option, Stata uses that specification to format the results:

```
. format age %9.2f
```

- summarize age, format

Variable	Obs	Mean	Std. Dev.	Min	Max
age	204	30.19	10.38	18.00	66.00

Displaying current formats

format varlist is not often used to display the formats associated with variables because using describe (see [D] describe) is easier and provides more information. The exceptions are date variables. Unless you use the default $\% \mathrm{tc}, \% \mathrm{tc}, \ldots$ formats (and most people do), the format specifier itself can become very long, such as

```
. format admittime %tcDDmonCCYY_HH:MM:SS.sss
```

Such formats are too long for describe to display, so it gives up. In such cases, you can use format to display the format:

```
. format admittime
variable name display format
admittime \%tcDDmonCCYY_HH:MM:SS.sss
```

Type format * to see the formats for all the variables.

References

Cox, N. J. 2011. Speaking Stata: MMXI and all that: Handling Roman numerals within Stata. Stata Journal 11: 126-142.

Gould, W. W. 2011a. How to read the \%21x format. The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2011/02/02/how-to-read-the-percent-21x-format/.

2011b. How to read the \%21x format, part 2. The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2011/02/10/how-to-read-the-percent-21x-format-part-2/.

Linhart, J. M. 2008. Mata Matters: Overflow, underflow and the IEEE floating-point format. Stata Journal 8: 255-268.

Also see

[D] datetime business calendars - Business calendars
[D] datetime display formats - Display formats for dates and times
[D] list - List values of variables
[D] varmanage - Manage variable labels, formats, and other properties
[P] display - Display strings and values of scalar expressions
[U] 12.5 Formats: Controlling how data are displayed
[U] 12.6 Dataset, variable, and value labels

Title

generate - Create or change contents of variable

Description
Options
Also see

Quick start Menu
Remarks and examples

Methods and formulas

Syntax
References

Description

generate creates a new variable. The values of the variable are specified by $=\exp$.
If no type is specified, the new variable type is determined by the type of result returned by $=$ exp. A float variable (or a double, according to set type) is created if the result is numeric, and a string variable is created if the result is a string. In the latter case, if the string variable contains values greater than 2,045 characters or contains values with a binary $0(\backslash 0)$, a strL variable is created. Otherwise, a str\# variable is created, where \# is the smallest string that will hold the result.

If a type is specified, the result returned by $=\exp$ must be a string or numeric according to whether type is string or numeric. If str is specified, a strL or a str\# variable is created using the same rules as above.

See [D] egen for extensions to generate.
replace changes the contents of an existing variable. Because replace alters data, the command cannot be abbreviated.
set type specifies the default storage type assigned to new variables (such as those created by generate) when the storage type is not explicitly specified.

Quick start

Create numeric variable newv1 equal to $\mathrm{v} 1+2$
generate newv1 = v1 + 2
As above, but use type byte and label the values of newv1 with value label mylabel
generate byte newv1:mylabel = v1 + 2
String variable newv2 equal to "my text"
generate newv2 = "my text"
Variable newv3 equal to the observation number
generate newv3 = _n
Replace newv3 with observation number within each value of catvar
by catvar: replace newv3 = _n
Binary indicator for first observation within each value of catvar after sorting on v2
bysort catvar (v2): generate byte first = _n==1
As above, but for last observation
bysort catvar (v2): generate byte last = _n==_N
Combined datetime variable newv 4 from \%td formatted date and \% tc formatted time generate double newv4 $=$ cofd(date) + time

Menu

generate

Data $>$ Create or change data $>$ Create new variable

replace

Data $>$ Create or change data $>$ Change contents of variable

Syntax

Create new variable

```
generate [type] newvar[:lblname] =exp [if][in]
    [, before(varname)|\underline{fter(varname)]}
```

Replace contents of existing variable

$$
\text { replace oldvar }=\exp [\text { if }][\text { in }][\text {, nopromote }]
$$

Specify default storage type assigned to new variables

```
set type {float|double }[, permanently]
```

where type is one of byte | int | long | float | double | str | str1 | str2 | ...| str2045.

See Description below for an explanation of str. For the other types, see [U] 12 Data. by is allowed with generate and replace; see [D] by.

Options

before (varname) or after (varname) may be used with generate to place the newly generated variable in a specific position within the dataset. These options are primarily used by the Data Editor and are of limited use in other contexts. A more popular alternative for most users is order (see [D] order).
nopromote prevents replace from promoting the variable type to accommodate the change. For instance, consider a variable stored as an integer type (byte, int, or long), and assume that you replace some values with nonintegers. By default, replace changes the variable type to a floating point (float or double) and thus correctly stores the changed values. Similarly, replace promotes byte and int variables to longer integers (int and long) if the replacement value is an integer but is too large in absolute value for the current storage type. replace promotes strings to longer strings. nopromote prevents replace from doing this; instead, the replacement values are truncated to fit into the current storage type.
permanently specifies that, in addition to making the change right now, the new limit be remembered and become the default setting when you invoke Stata.

Remarks and examples

Remarks are presented under the following headings:
generate and replace
set type

generate and replace

generate and replace are used to create new variables and to modify the contents of existing variables, respectively. Although the commands do the same thing, they have different names so that you do not accidentally replace values in your data. Detailed descriptions of expressions are given in [U] 13 Functions and expressions.

Also see [D] edit.
> Example 1
We have a dataset containing the variable age2, which we have previously defined as age ${ }^{\wedge} 2$ (that is, age ${ }^{2}$). We have changed some of the age data and now want to correct age 2 to reflect the new values:

```
. use http://www.stata-press.com/data/r14/genxmpl1
(Wages of women)
. generate age2=age^2
age2 already defined
r(110);
```

When we attempt to re-generate age2, Stata refuses, telling us that age2 is already defined. We could drop age 2 and then re-generate it, or we could use the replace command:

```
. replace age2=age^2
(204 real changes made)
```

When we use replace, we are informed of the number of actual changes made to the dataset.

You can explicitly specify the storage type of the new variable being created by putting the type, such as byte, int, long, float, double, or str8, in front of the variable name. For example, you could type generate double revenue $=$ qty $*$ price. Not specifying a type is equivalent to specifying float if the variable is numeric, or, more correctly, it is equivalent to specifying the default type set by the set type command; see below. If the variable is alphanumeric, not specifying a type is equivalent to specifying str\#, where \# is the length of the largest string in the variable.

You may also specify a value label to be associated with the new variable by including ": lblname" after the variable name. This is seldom done because you can always associate the value label later by using the label values command; see [U] 12.6.3 Value labels.
$>$ Example 2
Among the variables in our dataset is name, which contains the first and last name of each person. We wish to create a new variable called lastname, which we will then use to sort the data. name is a string variable.

```
. use http://www.stata-press.com/data/r14/genxmpl2, clear
```

. list name

name
Johanna Roman
Dawn Mikulin
Malinda Vela
Kevin Crow
Zachary Bimslager

```
. generate lastname=word(name,2)
. describe
Contains data from http://www.stata-press.com/data/r14/genxmpl2.dta
    obs: 5
    vars: 2 18 Jan 2014 12:24
    size: 130
```

variable name	storage type	display format	value label	variable label
name	str17	$\% 17 \mathrm{~s}$		
lastname	str9	$\% 9 \mathrm{~s}$		

Sorted by:
Note: Dataset has changed since last saved.

Stata is smart. Even though we did not specify the storage type in our generate statement, Stata knew to create a str9 lastname variable, because the longest last name is Bimslager, which has nine characters.

$>$ Example 3

We wish to create a new variable, age2, that represents the variable age squared. We realize that because age is an integer, age 2 will also be an integer and will certainly be less than 32,740 . We therefore decide to store age 2 as an int to conserve memory:

```
. use http://www.stata-press.com/data/r14/genxmpl3, clear
. generate int age2=age^2
(9 missing values generated)
```

Preceding age 2 with int told Stata that the variable was to be stored as an int. After creating the new variable, Stata informed us that nine missing values were generated. generate informs us whenever it produces missing values.

See [U] 13 Functions and expressions and [U] 25 Working with categorical data and factor variables for more information and examples. Also see [D] recode for a convenient way to recode categorical variables.

- Technical note

If you specify the if or in qualifier, the $=\exp$ is evaluated only for those observations that meet the specified condition or are in the specified range (or both, if both if and in are specified). The other observations of the new variable are set to missing:

```
. use http://www.stata-press.com/data/r14/genxmpl3, clear
. generate int age2=age^2 if age>30
(290 missing values generated)
```


> Example 4

replace can be used to change just one value, as well as to make sweeping changes to our data. For instance, say that we enter data on the first five odd and even positive integers and then discover that we made a mistake:

```
. use http://www.stata-press.com/data/r14/genxmpl4, clear
. list
```

odd	even
1	2
3	4
-8	6
7	8
9	10

The third observation is wrong; the value of odd should be 5 , not -8 . We can use replace to correct the mistake:

```
. replace odd=5 in 3
(1 real change made)
```

We could also have corrected the mistake by typing replace odd=5 if odd==-8.

set type

When you create a new numeric variable and do not specify the storage type for it, say, by typing generate $y=x+2$, the new variable is made a float if you have not previously issued the set type command. If earlier in your session you typed set type double, the new numeric variable would be made a double.

Methods and formulas

You can do anything with replace that you can do with generate. The only difference between the commands is that replace requires that the variable already exist, whereas generate requires that the variable be new. In fact, inside Stata, generate and replace have the same code. Because Stata is an interactive system, we force a distinction between replacing existing values and generating new ones so that you do not accidentally replace valuable data while thinking that you are creating a new piece of information.

References

Gleason, J. R. 1997a. dm50: Defining variables and recording their definitions. Stata Technical Bulletin 40: 9-10. Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 48-49. College Station, TX: Stata Press.

1997b. dm50.1: Update to defv. Stata Technical Bulletin 51: 2. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 14-15. College Station, TX: Stata Press.

Newson, R. B. 2004. Stata tip 13: generate and replace use the current sort order. Stata Journal 4: 484-485.
Royston, P. 2013. marginscontplot: Plotting the marginal effects of continuous predictors. Stata Journal 13: 510-527.
Weesie, J. 1997. dm43: Automatic recording of definitions. Stata Technical Bulletin 35: 6-7. Reprinted in Stata Technical Bulletin Reprints, vol. 6, pp. 18-20. College Station, TX: Stata Press.

Also see
 [D] compress - Compress data in memory
 [D] corr2data - Create dataset with specified correlation structure
 [D] drawnorm - Draw sample from multivariate normal distribution
 [D] edit - Browse or edit data with Data Editor
 [D] egen - Extensions to generate
 [D] encode - Encode string into numeric and vice versa
 [D] label - Manipulate labels
 [D] recode - Recode categorical variables
 [D] rename - Rename variable
 [U] 12 Data
 [U] 13 Functions and expressions

Title

gsort - Ascending and descending sort

Description	Quick start	Menu	Syntax
Options	Remarks and examples	Also see	

Description

gsort arranges observations to be in ascending or descending order of the specified variables and so differs from sort in that sort produces ascending-order arrangements only; see [D] sort.

Each varname can be numeric or a string.
The observations are placed in ascending order of varname if + or nothing is typed in front of the name and are placed in descending order if - is typed.

Quick start

Sort dataset in memory by ascending values of v1, equivalent to sort
gsort v1
Sort dataset in memory by descending values of v 1
gsort -v1
Sort dataset by ascending values of v 1 and descending values of v 2
gsort v1 -v2
Create newv for use in subsequent by operations
gsort v1 -v2, generate(newv)
Place missing values of descending-order v 2 at the top of the dataset instead of the end
gsort v1 -v2, mfirst

Menu

Data $>$ Sort

Syntax

$$
\text { gsort }[+\mid-] \text { varname }[[+\mid-] \text { varname } . . .][\text {, generate (newvar) mfirst }]
$$

Options

generate (newvar) creates newvar containing $1,2,3, \ldots$ for each group denoted by the ordered data. This is useful when using the ordering in a subsequent by operation; see [U] $\mathbf{1 1 . 5}$ by varlist: construct and examples below.
mfirst specifies that missing values be placed first in descending orderings rather than last.

Remarks and examples

gsort is almost a plug-compatible replacement for sort, except that you cannot specify a general varlist with gsort. For instance, sort alpha-gamma means to sort the data in ascending order of alpha, within equal values of alpha; sort on the next variable in the dataset (presumably beta), within equal values of alpha and beta; etc. gsort alpha-gamma would be interpreted as gsort alpha -gamma, meaning to sort the data in ascending order of alpha and, within equal values of alpha, in descending order of gamma.
> Example 1
The difference in varlist interpretation aside, gsort can be used in place of sort. To list the 10 lowest-priced cars in the data, we might type
. use http://www.stata-press.com/data/r14/auto

- gsort price
. list make price in $1 / 10$
or, if we prefer,
. gsort +price
. list make price in $1 / 10$
To list the 10 highest-priced cars in the data, we could type
. gsort -price
. list make price in $1 / 10$
gsort can also be used with string variables. To list all the makes in reverse alphabetical order, we might type
. gsort -make
. list make
> Example 2
gsort can be used with multiple variables. Given a dataset on hospital patients with multiple observations per patient, typing
lists each patient's blood pressures in the order the measurements were taken. If we typed

```
. gsort id -time
```

. list id time bp
then each patient's blood pressures would be listed in reverse time order.

Technical note

Say that we wished to attach to each patient's records the lowest and highest blood pressures observed during the hospital stay. The easier way to achieve this result is with egen's min() and $\max ()$ functions:

```
. egen lo_bp = min(bp), by(id)
```

. egen hi_bp $=\max (b p)$, by(id)
See [D] egen. Here is how we could do it with gsort:
. use http://www.stata-press.com/data/r14/bp3, clear
. gsort id bp
. by id: generate lo_bp = bp[1]
. gsort id -bp
. by id: generate hi_bp = bp[1]
. list, sepby(id)
This works, even in the presence of missing values of bp , because such missing values are placed last within arrangements, regardless of the direction of the sort.

- Technical note

Assume that we have a dataset containing x for which we wish to obtain the forward and reverse cumulatives. The forward cumulative is defined as $F(X)=$ the fraction of observations such that $\mathrm{x} \leq X$. Again let's ignore the easier way to obtain the forward cumulative, which would be to use Stata's cumul command,
. set obs 100
. generate $\mathrm{x}=$ rnormal()

- cumul x, gen(cum)
(see [R] cumul). Eschewing cumul, we could type
. sort x
. by x : generate cum $=$ _ N if _n==1
. replace cum = sum (cum)
. replace cum = cum/cum[_N]
That is, we first place the data in ascending order of x; we used sort but could have used gsort. Next, for each observed value of x , we generated cum containing the number of observations that take on that value (you can think of this as the discrete density). We summed the density, obtaining the distribution, and finally normalized it to sum to 1 .

The reverse cumulative $G(X)$ is defined as the fraction of data such that $\mathrm{x} \geq X$. To obtain this, we could try simply reversing the sort:

```
. gsort -x
. by x: generate rcum = _N if _n==1
. replace rcum = sum(rcum)
. replace rcum = rcum/rcum[_N]
```

This would work, except for one detail: Stata will complain that the data are not sorted in the second line. Stata complains because it does not understand descending sorts (gsort is an ado-file). To remedy this problem, gsort's generate() option will create a new grouping variable that is in ascending order (thus satisfying Stata's narrow definition) and that is, in terms of the groups it defines, identical to that of the true sort variables:

```
. gsort -x, gen(revx)
```

. by revx: generate rcum = _N if _n==1
. replace rcum $=$ sum (rcum)
. replace rcum = rcum/rcum [_N]

Also see

[D] sort - Sort data

Title

hexdump - Display hexadecimal report on file

Description	Syntax	Options
Remarks and examples	Stored results	Also see

Description

hexdump displays a hexadecimal dump of a file or, optionally, a report analyzing the dump.

Syntax

hexdump filename [, options]
options Description

analyze tabulate	display a report on the dump rather than the dump itself display a full tabulation of the ASCII and extended ASCII characters in the analyze report
noextended	do not display printable extended ASCII characters store results containing the frequency with which each character code was observed; programmer's option
$\underline{\text { results }}$	dump or analyze first byte of the file; default is to start at first byte, from(0) from(\#)
dump or analyze last byte of the file; default is to continue to the end of the file	

Options

analyze specifies that a report on the dump, rather than the dump itself, be presented.
tabulate specifies in the analyze report that a full tabulation of the ASCII and extended ASCII characters also be presented.
noextended specifies that hexdump not display printable extended ASCII characters, characters in the range 161-254 or, equivalently, 0xa1-0xfe. (hexdump does not display characters 128-160 and 255.)
results is for programmers. It specifies that, in addition to other stored results, hexdump store $r(c 0), r(c 1), \ldots, r(c 255)$, containing the frequency with which each character code was observed.
from(\#) specifies the first byte of the file to be dumped or analyzed. The default is to start at the first byte of the file, from (0).
to (\#) specifies the last byte of the file to be dumped or analyzed. The default is to continue to the end of the file.

Remarks and examples

hexdump is useful when you are having difficulty reading a file with infile, infix, or import delimited. Sometimes, the reason for the difficulty is that the file does not contain what you think it contains, or that it does contain the format you have been told, and looking at the file in text mode is either not possible or not revealing enough.

Pretend that we have the file myfile.raw containing

Datsun 210	4589	35	5	1
VW Scirocco	6850	25	4	1
Merc. Bobcat	3829	22	4	0
Buick Regal	5189	20	3	0
VW Diesel	5397	41	5	1
Pont. Phoenix	4424	19	.	0
Merc. Zephyr	3291	20	3	0
Olds Starfire	4195	24	1	0
BMW 320i	9735	25	4	1

We will use myfile.raw with hexdump to produce output that looks like the following:

address	hex representation								$\begin{aligned} & \text { character } \\ & \text { representation } \\ & \text { 0123456789abcdef } \end{aligned}$		
	0	23	45	67	89	a b	c d	e f			
0	4461	7473	756e	2032	3130	2020	2020	2034	Datsun 210		4
10	3538	3920	2033	3520	2035	2020	310a	5657	$58935 \quad 5$		1.VW
20	2053	6369	726f	6363	6f20	2020	2036	3835	Scirocco		685
30	3020	2032	3520	2034	2020	310a	4d65	7263	$0 \quad 254$	1.	Merc
40	2e20	$426 f$	6263	6174	2020	2033	3832	3920	Bobcat	3	829
50	2032	3220	2034	2020	300a	4275	6963	6b20	2240.	Bu	ick
60	5265	6761	6c20	2020	2035	3138	3920	2032	Regal		2
70	3020	2033	2020	300a	5657	2044	6965	7365	03 0.VW	D	iese
80	6c20	2020	2020	2035	3339	3720	2034	3120	15397	7	
90	2035	2020	310a	$506 f$	6 e 74	2 e 20	5068	6f65	5 1.Pont	.	Phoe
a0	6 e 69	7820	2034	3432	3420	2031	3920	202e	nix 4424		
b0	2020	300a	4d65	7263	2e20	5a65	7068	7972	$0 . \mathrm{Merc}$.	Ze	phyr
c0	2020	2033	3239	3120	2032	3020	2033	2020	329120	0	3
d0	300a	4f6c	6473	2053	7461	7266	6972	6520	0.01 ds Sta	arf	ire
e0	2034	3139	3520	2032	3420	2031	2020	300a	419524	1	
f0	424	5720	3332	3069	2020	2020	2020	2039	BMW 320i		
100	3733	3520	2032	3520	2034	2020	310a		$735 \quad 25 \quad 4$		1.

hexdump can also produce output that looks like the following:

```
. hexdump myfile.raw, analyze
Line-end characters
        \r\n (Windows) 0
        \r by itself (Mac) 0
        \n by itself (Unix) 9
Space/separator characters
        [blank]
                            99
        [tab] 0
        [comma] (,) 0
Control characters
    binary 0
    CTL excl. \r, \n, \t
    DEL
        Extended (128-159,255)
ASCII printable
    A-Z 20
    a-z 61 File format ASCII
    0-9 77
    Special (!@#$ etc.) 4
    Extended (160-254) 0
Total
2 7 0
```

29

```
Line length (tab=1)
```

Line length (tab=1)
minimum 29
minimum 29
maximum 29
maximum 29
Number of lines 9
Number of lines 9
EOL at EOF? yes
EOL at EOF? yes
Length of first 5 lines
Line 2 29
Line 2 29
Line 3 29
Line 3 29
Line 4 29
Line 4 29
Line 5 29
Line 5 29
Observed were:
\n blank. O 123456789 B D M O P R S V W Z a b c def ghik l n o prstuxy

```

Of the two forms of output, the second is often the more useful because it summarizes the file, and the length of the summary is not a function of the length of the file. Here is the summary for a file that is just over 4 MB long:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Line-end characters} & \multicolumn{2}{|l|}{Line length ( \(\mathrm{tab}=1\) )} \\
\hline \(\backslash \mathrm{l} \backslash \mathrm{n}\) (Windows) & 147,456 & minimum & 29 \\
\hline \(\backslash \mathrm{r}\) by itself (Mac) & 0 & maximum & 30 \\
\hline \n by itself (Unix) & 2 & & \\
\hline Space/separator characters & & Number of lines & 147,458 \\
\hline [blank] & 1,622,039 & EOL at EOF? & yes \\
\hline [tab] & 0 & & \\
\hline [comma] (,) & 0 & Length of first 5 lines & \\
\hline Control characters & & Line 1 & 30 \\
\hline binary 0 & 0 & Line 2 & 30 \\
\hline CTL excl. \r, \n, \t & 0 & Line 3 & 30 \\
\hline DEL & 0 & Line 4 & 30 \\
\hline Extended (128-159,255) & 0 & Line 5 & 30 \\
\hline \multicolumn{4}{|l|}{ASCII printable} \\
\hline A-Z & 327,684 & & \\
\hline a-z & 999,436 & File format & ASCII \\
\hline 0-9 & 1,261,587 & & \\
\hline Special (!@\#\$ etc.) & 65,536 & & \\
\hline Extended (160-254) & 0 & & \\
\hline Total & 4,571,196 & & \\
\hline \begin{tabular}{l}
Observed were: \\
\n \(\backslash \mathrm{r}\) blank . 01234 \\
k l n o prstuxy
\end{tabular} & \[
6789 \text { B }
\] & O P R S V W Z a b c de & \[
\mathrm{g} \mathrm{~h} \mathrm{i}
\] \\
\hline
\end{tabular}

Here is the same file but with a subtle problem:
```

. hexdump badfile.raw, analyze
Line-end characters
\r\n (Windows) 147,456
\r by itself (Mac) 0
\n by itself (Unix) 0
Space/separator characters
[blank] 1,622,016
[tab]
[comma] (,)
Control characters
binary 0
CTL excl. \r, \n, \t
DEL
Extended (128-159,255)
ASCII printable
A-Z
a-z
327,683
999,426
0-9
Special (!@\#\$ etc.)
1,261,568
65,539
Extended (160-254)
0
0
8
Total
4,571,196
line length (tab=1)
line length (tab=1) 30
line length (tab=1)
line length (tab=1)
line length (tab=1)
line length (tab=1)
Observed were:
\0 ^C ^D `G \n \r ^U blank \& . O 1 2 3 4 5 6 7 8 9 B D E M O P R S U V W
Z a b c d e f ghikklnoprst u v x y } ~ E^A E^C E^I E^M E^P
ë é ö 255

```

In the above, the line length varies between 30 and 90 (we were told that each line would be 30 characters long). Also the file contains what hexdump, analyze labeled control characters. Finally, hexdump, analyze declared the file to be BINARY rather than ASCII.

We created the second file by removing two valid lines from bigfile.raw (60 characters) and substituting 60 characters of binary junk. We would defy you to find the problem without using hexdump, analyze. You would succeed, but only after much work. Remember, this file has 147,456 lines, and only two of them are bad. If you print 1,000 lines at random from the file, your chances of listing the bad part are only 0.013472 . To have a \(50 \%\) chance of finding the bad lines, you would have to list 52,000 lines, which is to say, review about 945 pages of output. On those 945 pages, each line would need to be drawn at random. More likely, you would list lines in groups, and that would greatly reduce your chances of encountering the bad lines.

The situation is not as dire as we make it out to be because, were you to read badfile.raw by using infile, it would complain, and here it would tell you exactly where it was complaining. Still, at that point you might wonder whether the problem was with how you were using infile or with the data. Moreover, our 60 bytes of binary junk experiment corresponds to transmission error. If the problem were instead that the person who constructed the file constructed two of the lines differently, infile might not complain, but later you would notice some odd values in your data (because obviously you would review the summary statistics, right?). Here hexdump, analyze might be the only way you could prove to yourself and others that the raw data need to be reconstructed.

\section*{- Technical note}

In the full hexadecimal dump,

addresses (listed on the left) are listed in hexadecimal. Above, 10 means decimal 16, 20 means decimal 32, and so on. Sixteen characters are listed across each line.

In some other dump, you might see something like


The \(*\) in the address field indicates that the previous line is repeated until we get to hexadecimal address 160 (decimal 352).

\section*{Stored results}
hexdump, analyze and hexdump, results store the following in \(r()\) :
Scalars
```

r(Windows) number of \r\n
r(Mac) number of \r by itself
r(Unix) number of \n by itself
r(blank) number of blanks
r(tab) number of tab characters
r(comma) number of comma (,) characters
r(ctl) number of binary 0s; A-Z, excluding \r, \n, \t; DELs; and 128-159, 255
r(uc) number of A-Z
r(lc) number of a-z
r(digit) number of 0-9
r(special) number of printable special characters (!@\#, etc.)
r(extended) number of printable extended characters (160-254)
r(filesize) number of characters
r(lmin) minimum line length
r(lmax) maximum line length
r(lnum) number of lines
r(eoleof) 1 if EOL at EOF, 0 otherwise
r(l1) length of 1st line
r(12) length of 2nd line
r(13) length of 3rd line
r(14) length of 4th line
r(15) length of 5th line
r(c0) number of binary 0s (results only)
r(c1) number of binary 1s (`A) (results only) r(c2) number of binary 2s (`B) (results only)
r(c255) number of binary 255s (results only)
r(format) ASCII, EXTENDED ASCII, or BINARY

```
Macros

\section*{Also see}
[D] filefilter - Convert ASCII or binary patterns in a file
[D] type - Display contents of a file

\section*{Title}
icd — Introduction to ICD commands

> Description Remarks and examples References Also see

\section*{Description}

This entry provides a brief introduction to the basic concepts of the International Classification of Diseases (ICD). If you are not familiar with ICD terminology, we recommend that you read this entry before proceeding to the individual command entries.

This entry also provides an overview of the format of the codes from each coding system that Stata's icd commands support. Stata supports ninth revision codes (ICD-9) and tenth revision codes (ICD-10). For ICD-9, Stata uses codes from the United States's Clinical Modification, the ICD-9-CM. For ICD-10, Stata uses the World Health Organization's (WHO's) codes for international morbidity and mortality reporting. We encourage you to read this entry to ensure that you choose the correct command and that your data are in the proper format for using the icd suite of commands.

Finally, this entry provides information about using the icd commands with multiple diagnosis or procedure codes at one time. None of the commands accepts a varlist, so we illustrate methods for working with multiple codes.

If you are familiar with ICD coding and the icd commands in Stata, you may want to skip to the command-specific entries for details about syntax and examples.

\section*{Commands for ICD-9 codes}
icd9 ICD-9-CM diagnostic codes
icd9p ICD-9-CM procedure codes
Commands for ICD-10 codes
icd10 ICD-10 diagnosis codes

\section*{Remarks and examples}

Remarks are presented under the following headings:

\author{
Introduction to ICD coding \\ Terminology \\ Diagnosis codes \\ Procedure codes \\ Working with multiple codes
}

\section*{Introduction to ICD coding}

The icd commands in Stata are implemented for two specific coding systems: ICD-9-CM and ICD-10.
The International Classification of Diseases (ICD) coding system was developed by and is copyrighted by the World Health Organization (WHO). The ICD coding system is used for standardized mortality reporting and, by many countries, for reporting of morbidity and coding of diagnoses during health care encounters. Since 1999, the ICD system has been under its tenth revision, ICD-10 (World Health Organization 2011). These codes provide information only about diagnoses, not about procedures.

The United States and some other countries have also developed country-specific coding systems that are extensions of WHO's system. These systems are used for coding information about health care encounters. In the United States, the coding system is referred to as the International Classification of Diseases, Clinical Modification. These codes are maintained and distributed by the National Center for Health Statistics (NCHS) at the U.S. Centers for Disease Control and Prevention (CDC) and by the Centers for Medicare and Medicaid Services (CMS).

\section*{Terminology}

The icd9 and icd10 entries assume knowledge of common terminology used in the ICD-9-CM documentation from the NCHS or CMS or in the ICD-10 revision manuals from WHO. The following brief definitions are provided as a reference.
edition. The ICD-9-CM and ICD-10 each have editions, which represent major periodic changes. ICD-9CM is currently in its sixth edition (National Center for Health Statistics 2011). ICD-10 is currently in its fifth edition (World Health Organization 2011).
version. In the ICD-9-CM coding system, a new version is published each year and is issued with a sequential version number. The current version is 32 .
update. In the ICD-10 coding system, an update may occur each year. The update is not issued with a number but may be identified by the year in which it occurred.
category code. A category code is the portion of the ICD code that precedes the period. It may represent a single disease or a group of related diseases or conditions.
valid code. A valid code is one that may be used for reporting in the current version of the ICD-9-CM or current update to the ICD-10 edition. What constitutes a valid code changes over time.
defined code. A defined code is any code that either is currently valid, was valid at a previous time, or has meaning as a grouping of codes. See [D] icd9 and [D] icd10 for information about how the individual commands treat defined codes.

\section*{Diagnosis codes}

Let's begin with the diagnostic codes processed by icd9. An ICD-9-CM diagnosis code may have one of two formats. Most use the format
\[
\{0-9, v\}\{0-9\}\{0-9\}[.][0-9[0-9]]
\]
while E-codes have the format
\[
E\{0-9\}\{0-9\}\{0-9\}[.][0-9]
\]
where braces, \(\}\), indicate required items and brackets, [], indicate optional items.
ICD-9-CM codes begin with a digit from 0 to 9 , the letter V, or the letter E. E-codes are always followed by three digits and may have another digit in the fifth place. All other codes are followed by two digits and may have up to two more digits.

The format of an ICD-10 diagnosis code is
\[
\{\mathrm{A}-\mathrm{T}, \mathrm{~V}-\mathrm{Z}\}\{0-9\}\{0-9\}[.][0-9]
\]

Each ICD-10 code begins with a single letter followed by two digits. It may have an additional third digit after the period.

Diagnosis codes must be stored in a string variable (see [D] data types). For codes from either revision, the period separating the category code from the other digits is treated as implied if it is not present.

\section*{- Technical note}

There are defined five- and six-character ICD-10 codes. However, these codes are not part of the standard four-character system codified by WHO for international morbidity and mortality reporting and are not considered valid by icd10. See [D] icd10 for additional details about these codes and options for using icd10 with them.

\section*{Technical note}

ICD-10 codes U00-U49 are reserved for use by WHO for provisional assignment of new diseases. Codes U50-U99 may be used for research purposes to identify subjects with specific conditions under study for which there is no defined ICD-10 code (World Health Organization 2011).

If you are working in one of these specialized cases, see the technical note in Creating new variables under Remarks and examples of [D] icd10.

\section*{Procedure codes}

The ICD-9-CM coding system also includes procedure codes. The format of ICD-9-CM procedure codes is
\[
\{0-9\}\{0-9\}[.][0-9[0-9]]
\]

Procedure codes must be stored in a string variable.

\section*{Working with multiple codes}

Oftentimes, multiple diagnoses or procedures are recorded for each observation. None of the icd commands accepts a varlist, but you can still work with multiple-diagnosis or multiple-procedure records. To use the icd commands with more than one diagnosis or procedure variable at a time, you must either first reshape your data or use a loop; see [D] reshape and [P] forvalues.
> Example 1: Summarizing information from multiple variables
In example 1 of [D] icd9, we add a variable indicating whether each diagnosis code was invalid or undefined. Here, we use the same extract from the National Hospital Discharge Survey (NHDS).

It is often more useful to add a single variable that summarizes the results from several diagnosis or procedure variables. For example, we may wish to add a variable indicating whether a particular diagnosis code or range of codes appeared in any field. Summary variables can be created from the results of the check subcommand with option generate() or the generate subcommand with option range().

Suppose that we want a single variable that contains the number of improperly formatted or undefined codes that each discharge had. To illustrate, we use the nhds2010 dataset, keeping the variables for discharge identifier (recid), patient age, and patient sex, as well as the three diagnosis variables. We list the first three observations below.
```

. use http://www.stata-press.com/data/r14/nhds2010
(Adult same-day discharges, 2010 NHDS)
. keep recid age sex dx1 dx2 dx3
. list in 1/10, noobs

```
\begin{tabular}{|rrllrr|}
\hline age & sex & \multicolumn{1}{c}{ dx1 } & \multicolumn{1}{c}{dx 2} & dx 3 & recid \\
\hline 85 & Female & 4414 & 99811 & 14275 & 84 \\
23 & Male & 25013 & 3572 & -2506 & 105 \\
63 & Male & 51909 & 1489 & - V146 & 255 \\
43 & Female & 9678 & E8528 & 8 & 651 \\
25 & Female & V271 & 64421 & 16564 & 696 \\
\hline 57 & Female & 5409 & V1582 & 2 V 106 & 779 \\
61 & Female & 27651 & V1087 & 7 V 436 & 814 \\
60 & Male & 9951 & 462 & -2724 & 826 \\
22 & Male & 42789 & 5409 & -2780 & 833 \\
49 & Male & 5770 & 29181 & 14255 & 863 \\
\hline
\end{tabular}

The data are in wide form, so we specify reshape long with stub dx because our diagnosis codes are in \(\mathrm{dx} 1, \mathrm{dx} 2\), and dx 3 . The observation identifier, recid, is specified in i() . reshape creates the new variable dxnum for us.
```

. reshape long dx, i(recid) j(dxnum)
(note: j = 1 2 3)

Data	wide	->	long
Number of obs.	2210	$->$	6630
Number of variables	6	\rightarrow	5
j variable (3 values)			dxnum
xij variables:	dx1 dx2 dx3	\rightarrow	dx

```

The output shows that dxnum has 3 values, so we know that all three diagnosis variables were recognized by reshape.
. list in \(1 / 9\), sepby (recid) noobs
\begin{tabular}{|rrrrl|}
\hline recid & dxnum & age & sex & \multicolumn{1}{c|}{ dx } \\
\hline 84 & 1 & 85 & Female & 4414 \\
84 & 2 & 85 & Female & 99811 \\
84 & 3 & 85 & Female & 14275 \\
\hline 105 & 1 & 23 & Male & 25013 \\
105 & 2 & 23 & Male & 3572 \\
105 & 3 & 23 & Male & -2506 \\
\hline 255 & 1 & 63 & Male & 51909 \\
255 & 2 & 63 & Male & 1489 \\
255 & 3 & 63 & Male & \(-V 146\) \\
\hline
\end{tabular}

Notice that our data on recid, age, and sex are retained and duplicated for each new observation. If you are working with a large dataset, you may wish to drop variables other than a merge key and your diagnosis (or procedure) variables to conserve space and speed up reshape.

After we reshape, we create prob using icd9 check, an indicator for whether there was a problem with a given diagnosis code. We then use egen to create anyprob, the total number of codes that had a problem within each recid. See [D] egen for information about summary functions.
```

. icd9 check dx, generate(prob)
(dx contains 358 missing values)
dx contains invalid codes:
1. Invalid placement of period
2. Too many periods 0
3. Code too short 177
4. Code too long 0
5. Invalid 1st char (not 0-9, E, or V) 875
6. Invalid 2nd char (not 0-9) 128
7. Invalid 3rd char (not 0-9) 0
8. Invalid 4th char (not 0-9) 0
9. Invalid 5th char (not 0-9) 36
10. Code not defined 778
Total
1,994

```
- generate anyprob=prob>0
. by recid, sort: egen numprobs=total (anyprob)
. list recid dxnum \(d x\) anyprob numprobs in \(1 / 9\), sepby (recid) noobs
\begin{tabular}{|rrlrr|}
\hline recid & dxnum & \multicolumn{1}{c}{ dx } & anyprob & numprobs \\
\hline 84 & 1 & 4414 & 0 & 1 \\
84 & 2 & 99811 & 0 & 1 \\
84 & 3 & 14275 & 1 & 1 \\
\hline 105 & 1 & 25013 & 0 & 1 \\
105 & 2 & 3572 & 0 & 1 \\
105 & 3 & -2506 & 1 & 1 \\
\hline 255 & 1 & 51909 & 0 & 1 \\
255 & 2 & 1489 & 0 & 1 \\
255 & 3 & \(-V 146\) & 1 & 1 \\
\hline
\end{tabular}

Before we reshape, we drop prob and anyprob because they are specific to diagnosis variables. By construction, numprobs is constant within recid, so we do not specify it when we reshape.
```

. drop prob anyprob
. reshape wide dx, i(recid) j(dxnum)
(note: j = 1 2 3)

Data	long	\rightarrow	wide
Number of obs.	6630	\rightarrow	2210
Number of variables	6	\rightarrow	7
j variable (3 values)	dxnum	\rightarrow	(dropped)
xij variables:	$d x$	\rightarrow	$d x 1$ dx2 dx3

```
. list in \(1 / 3\), noobs
\begin{tabular}{|rrrrrrr|}
\hline recid & \multicolumn{1}{c}{\(d x 1\)} & \(d x 2\) & \(d x 3\) & age & sex & numprobs \\
\hline 84 & 4414 & 99811 & 14275 & 85 & Female & 1 \\
105 & 25013 & 3572 & -2506 & 23 & Male & 1 \\
255 & 51909 & 1489 & \(-V 146\) & 63 & Male & 1 \\
\hline
\end{tabular}

The three diagnosis variables are restored to the dataset. However, we have added only a single variable showing the total number of codes with problems for each record.
> Example 2: Adding multiple variables from ICD codes
Now suppose that rather than creating a summary variable like we did in example 1, we want a new variable for each diagnosis variable in our dataset. For example, in example 1 of [D] icd9, we icd9 check each diagnosis code separately, requiring us to type the command three times. While this is not burdensome for three codes, the full NHDS includes fourteen diagnosis codes, for which we almost certainly would not want to type separate commands.

The easiest way to accomplish this is with a loop. We use forvalues because our codes all end in a number.
```

. use http://www.stata-press.com/data/r14/nhds2010, clear
(Adult same-day discharges, 2010 NHDS)
. forvalues i=1/3 {
2. icd9 check dx'i', generate(dx'i'_prob)
3. }
(dx1 contains defined ICD-9-CM codes; no missing values)
(dx2 contains defined ICD-9-CM codes; }179\mathrm{ missing values)
(dx3 contains }179\mathrm{ missing values)
dx3 contains invalid codes:
1. Invalid placement of period 0
2. Too many periods 0
3. Code too short 177
4. Code too long 0
5. Invalid 1st char (not 0-9, E, or V) 875
6. Invalid 2nd char (not 0-9) 128
7. Invalid 3rd char (not 0-9) 0
8. Invalid 4th char (not 0-9) 0
9. Invalid 5th char (not 0-9) 36
10. Code not defined 778
Total 1,994

```

This is exactly what we obtain in example 1 of [D] icd9.

If our variables had not been numbered sequentially, we could have either renamed them or used foreach; see [P] foreach.

The methods shown above will work for any of the icd9, icd9p, or icd10 data-management commands.

\section*{References}

Baum, C. F., and N. J. Cox. 2007. Stata tip 45: Getting those data into shape. Stata Journal 7: 268-271.
National Center for Health Statistics. 2011. International Classification of Diseases, Ninth Revision, Clinical Modification. ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Publications/ICD9-CM/2011/.
__. 2012. National Hospital Discharge Survey: 2010 Public Use Data File Documentation. ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/NHDS/NHDS_2010_Documentation.pdf.
World Health Organization. 2011. International Statistical Classification of Diseases and Related Health Problems, Vol. 2: 2016 Edition. Instruction manual.
http://apps.who.int/classifications/icd10/browse/Content/statichtml/ICD10Volume2_en_2016.pdf.

\section*{Also see}
[D] icd9 - ICD-9-CM diagnosis and procedure codes
[D] icd10 - ICD-10 diagnosis codes

\section*{Title}
icd9 - ICD-9-CM diagnosis and procedure codes
\begin{tabular}{llll} 
Description & Quick start & Menu & Syntax \\
Options & Remarks and examples & Stored results & References \\
Also see & & &
\end{tabular}

\section*{Description}

The icd9 and icd9p commands are a suite of commands for working with ICD-9-CM diagnosis and ICD-9-CM procedure codes from the 16th version (effective October 1998) and later. To see the current version of the ICD-9-CM diagnosis codes and any changes that have been applied, type icd9 query.
icd9 check, icd9 clean, and icd9 generate are data management commands. icd9 check verifies that a variable contains defined ICD-9-CM diagnosis codes and provides a summary of any problems encountered. icd9 clean standardizes the format of the codes. icd9 generate can create a binary indicator variable for whether the code is in a specified set of codes, a variable containing a corresponding higher-level code, or a variable containing the description of the code.
icd9 lookup and icd9 search are interactive utilities. icd9 lookup displays descriptions of the diagnosis codes specified on the command line. icd9 search looks for relevant ICD-9-CM diagnosis codes from key words given on the command line.
icd9p may be used in place of icd9 for any command above to obtain results for procedure codes.

\section*{Quick start}

Determine if ICD-9-CM diagnosis codes in diag1 are invalid and store reasons in invalid icd9 check diag1, generate(invalid)

Standardize display of codes in diag2 to remove all periods and align codes by padding with spaces icd9 clean diag2, pad

Create descr3 as the diagnosis code prepended to short description of diagnosis code in diag3
icd9 generate descr3 = diag3, description long
Create diabetes as an indicator for a diabetes diagnosis in diag4 using ICD-9-CM codes 250 .xx
icd9 generate diabetes \(=\) diag4, range (25000/25093)
Look up descriptions for ICD-9-CM diagnosis codes E827.0 to E828.9
icd9 lookup E8270/E8289

Note: For any command above, icd9p may be used in place of icd9 to obtain results for procedure codes.

\section*{Menu}

Data \(>\) ICD codes \(>\) ICD-9

\section*{Syntax}

Verify that variable contains defined codes
```

{icd9|icd9p} check varname [if] [in] [, any list generate(newvar)]

```

Clean variable and verify format of codes
\[
\{\text { icd9 } \mid \text { icd9p }\} \text { clean varname }[\text { if }][\text { in }][\text {, dots pad }]
\]

Generate new variable from existing variable
```

{icd9|icd9p} generate newvar = varname [if] [in], category
{icd9|icd9p} generate newvar = varname [if] [in], description [long end]
{icd9|icd9p} generate newvar = varname [if][in], range(codelist)

```

Display code descriptions
```

{icd9|icd9p} lookup codelist

```

Search for codes from descriptions
```

{icd9|icd9p} search ["]text["] [["]text["] ..] [, or]

```

Display ICD-9 code source
```

{icd9|icd9p} query

```
codelist is
\begin{tabular}{ll} 
icd9code & (the particular code) \\
icd9code \(*\) & (all codes starting with) \\
icd9code \(/ i c d 9 \operatorname{code}\) & (the code range)
\end{tabular}
or any combination of the above, such as \(001 * 018 / 019 \mathrm{E} * 018.02\). icd9codes must be typed with leading 0 s . For example, type 001 (diagnosis code) or 01 (procedure code); typing 1 will result in an error.

\section*{Options}

Options are presented under the following headings:
Options for icd9[p] check
Options for icd9[p] clean
Options for icd9[p] generate
Option for icd9[p] search
Warning: The option descriptions are brief and use jargon. Please read the Remarks and examples before using the icd9 or icd9p command.

\section*{Options for icd9[p] check}
any tells icd9 9 p\(]\) check to verify that the codes fit the format of ICD-9-CM codes but not to check whether the codes are defined.
list specifies that icd9 check list the observation number, the invalid or undefined ICD-9-CM code, and the reason the code is invalid or if it is undefined code. When specified with icd9p check, the list option references ICD-9-CM procedure codes.
generate (newvar) specifies that icd9 check create a new variable containing, for each observation, 0 if the observation contains a defined code or is missing. Otherwise, it contains a number from 1 to 10 . The positive numbers indicate the kind of problem and correspond to the listing produced by icd9 check. The values are labeled with the Stata-defined value label __icd_9.

\section*{Options for icd9[p] clean}
dots specifies that the period be included in the final format. If dots is not specified, then all periods are removed.
pad specifies that icd9[p] clean pad the codes with spaces, front and back, to make the (implied) dots align vertically in listings. Specifying pad makes the resulting codes look better when used with most other Stata commands.

\section*{Options for icd9[p] generate}
category, description, and range (codelist) specify the contents of the new variable that icd9[p] generate is to create. You do not need to icd9[p] clean varname before using icd9[p] generate; it will accept any ICD-9-CM format or combination of formats.
category generates a new variable that also contains ICD-9-CM codes. The resulting variable may be used with the other icd9 \([\mathrm{p}]\) subcommands. For procedure codes, the category code is the first two characters. For diagnostic codes, the category code is the first three characters, except for E-codes when it is the first four characters.
description creates newvar containing descriptions of the ICD-9-CM codes.
long is for use with description. It specifies that the code be prepended to the text describing the code.
end modifies long (specifying end implies long) and places the code at the end of the string. range (codelist) creates a new indicator variable equal to 1 when the ICD-9-CM code is in the range specified and equal to 0 otherwise.

\section*{Option for icd9[p] search}
or specifies that ICD-9-CM codes be searched for descriptions that contain any word specified with icd9 \([\mathrm{p}]\) search. The default is to list only descriptions that contain all the words specified.

\section*{Remarks and examples}

Remarks are presented under the following headings:
Using icd9 and icd9p
Verifying and cleaning variables
Interactive utilities
Creating new variables
If you have not yet read Introduction to ICD coding in [D] icd before using the icd9 and icd9p command.

\section*{Using icd9 and icd9p}

The ICD-9-CM coding system includes diagnosis and procedure codes. Some examples of diagnosis codes are 552.3 (Diaphragmatic hernia with obstruction) and E871.0 (Foreign object left in body during surgical operation). Some example of procedure codes are 01.2 (Craniotomy and craniectomy) and 55.23 (Closed renal biopsy).

Many datasets record (and some people write) codes without the period, for example, diagnosis code 550.1 may appear as 5501 . The icd9 and icd9p commands understand both ways of recording codes. The commands are also insensitive to codes recorded with or without leading and trailing blanks. For E-codes and V-codes, the icd9 commands are case-insensitive. All the following codes are acceptable formats.
\begin{tabular}{lc} 
diagnosis & procedure \\
001 & 27.62 \\
001. & 72 \\
00581 & 32.6 \\
552.3 & 97.11 \\
E800.2 & 872 \\
e8002 & 5523 \\
v82.2 & 08.51
\end{tabular}

Important note: What constitutes a valid code changes between versions. For the rest of this entry, a defined code is any code that is currently valid, was valid at some point since version 16 (V16, effective 1 October 1998), or has meaning as a grouping of codes. The list of valid codes and their associated descriptions is from the U.S. Centers for Medicare and Medicaid Services (CMS). These codes are jointly maintained and distributed by the U.S. Centers for Disease Control and Prevention's National Center for Health Statistics and by CMS (Centers for Disease Control and Prevention 2013).

In icd9 and icd9p, descriptions that end with an asterisk (*) are used to denote codes that are invalid for medical coding purposes but are defined as a category code or a subcategory code that has been further subdivided. For example, diagnosis code 001 (Cholera) is invalid without a fourth digit but is defined as a category code, so its description appears as cholera*. CMS does not distribute short descriptions of category and subcategory codes that are defined but not valid for coding. To ensure that Stata reports that these codes are defined, we added them to the datasets that icd9 and icd9p use with a description of \(*\).

Codes that were valid in the past, but no longer are, have descriptions that end with a hash mark (\#). For example, the diagnosis code 645.01 was deleted between V16 and V18. It remains a defined code, and its description appears as prolonged preg-delivered\#.

To view the current version of ICD-9-CM diagnosis codes in Stata, its source, and a log of changes that have been made to the list of ICD-9-CM codes since the icd9 commands were implemented, type
```

. icd9 query
ICD9 Diagnostic Code Mapping Data for use with Stata, History
(output omitted)
V32
Dataset obtained 26aug2014 from
<http://www.cms.gov/Medicare/Coding/ICD9ProviderDiagnosticCodes/
> codes.html>, by selecting the 'Version 32...' file. Can be gotten
directly via
<http://www.cms.gov/Medicare/Coding/ICD9ProviderDiagnosticCodes/
> Downloads/ICD-9-CM-v32-master-descriptions.zip>. After unzipping, the
useful file name is "CMS32_DESC_SHORT_DX.txt (there are other files we
did not use)."
09oct2014: V32 put into Stata distribution
BETWEEN V31 and V32: There were no additional codes.
BETWEEN V31 and V32: 0 codes were deleted.
BETWEEN V31 and V32: There were no description changes.
(output omitted)

```
icd9p query provides information about changes to procedure codes.
Throughout the remainder of this entry, we use nhds2010.dta, an extract of adult same-day discharges from the 2010 National Hospital Discharge Survey (NHDS). Below, we describe the data and list the first five observations for the diagnosis and procedure code variables.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{```
. use http://www.stata-press.com/data/r14/nhds2010
(Adult same-day discharges, 2010 NHDS)
. describe
```} \\
\hline ```
Contains data
 obs:
 vars:
 size:
``` & \[
\begin{gathered}
\text { from htt } \\
2,210 \\
15 \\
83,980
\end{gathered}
\] & ://www.st & -press & ```
/data/r14/nhds2010.dta
Adult same-day discharges, 2010
30 Jan 2015 15:03
(_dta has notes)
``` \\
\hline variable name & storage type & \begin{tabular}{l}
display \\
format
\end{tabular} & \begin{tabular}{l}
value \\
label
\end{tabular} & variable label \\
\hline ageu & byte & \%8.0g & ageu & Units for age \\
\hline age & byte & \%8.0g & & Age \\
\hline sex & byte & \%8.0g & sex & Sex \\
\hline race & byte & \%8.0g & race & Race \\
\hline month & byte & \%8.0g & & Discharge month \\
\hline status & byte & \%8.0g & status & Discharge status \\
\hline region & byte & \%8.0g & region & Region \\
\hline atype & byte & \% 8.0g & atype & Type of admission \\
\hline dx1 & str5 & \%9s & & Diagnosis 1 \\
\hline dx2 & str5 & \%9s & & Diagnosis 2 \\
\hline dx3 & str5 & \%9s & & Diagnosis 3 (imported incorrectly) \\
\hline dx3corr & str5 & \%9s & & Diagnosis 3 (corrected) \\
\hline pr1 & str4 & \%9s & & Procedure 1 \\
\hline wgt & int & \%12.0g & & Frequency weight \\
\hline recid & float & \%9.0g & & Order of record (raw data) \\
\hline
\end{tabular}

Sorted by: recid
. list recid dx1 dx2 dx3 pr1 in \(1 / 5\)
\begin{tabular}{|rllrr|}
\hline recid & \multicolumn{1}{c}{\(d x 1\)} & \multicolumn{1}{c}{\(d x 2\)} & \(d x 3\) & pr1 \\
\hline 84 & 4414 & 99811 & 14275 & 3834 \\
105 & 25013 & 3572 & -2506 & \\
255 & 51909 & 1489 & -V 146 & \\
651 & 9678 & E8528 & 8 & \\
696 & V271 & 64421 & 16564 & 7359 \\
\hline
\end{tabular}

\section*{Verifying and cleaning variables}
icd9[p] check verifies that varname contains defined ICD-9-CM codes and, if not, provides a full report on the problems. It is a good idea to begin with this command and fix any potential problems before proceeding to other icd9 \([\mathrm{p}]\) commands. However, the check subcommand is also useful for tracking down problems when any of the other icd9[p] commands tell you that the "variable does not contain ICD-9 codes".
icd9[p] clean modifies the variable to ensure consistency and to make subsequent output look better. This is not strictly necessary because all icd9[p] commands work equally well with cleaned or uncleaned codes. icd9[p] clean also can be used to verify that the codes in a variable conform with the ICD-9-CM format, without checking to see if the codes are defined.
\(>\) Example 1: Checking the validity of a variable
We noticed when we listed our data that dx3 appears to be padded with dashes instead of spaces. As a preemptive step, we replace the dashes with spaces by using the subinstr() function because the icd9[p] commands ignore spaces.
```

. replace dx3=subinstr(dx3,"-"," ",.)
(1,009 real changes made)
. list recid dx1 dx2 dx3 pr1 in 1/5

```
\begin{tabular}{|rllrr|}
\hline recid & \multicolumn{1}{c}{ dx1 } & \multicolumn{1}{c}{ dx2 } & dx3 & pr1 \\
\hline 84 & 4414 & 99811 & 14275 & 3834 \\
105 & 25013 & 3572 & 2506 & \\
255 & 51909 & 1489 & V146 & \\
651 & 9678 & E8528 & 8 & \\
696 & V271 & 64421 & 16564 & 7359 \\
\hline
\end{tabular}

Now that we have replaced the characters we know will be a problem, we can icd9 check the diagnosis variables. We add the generate() option so that we can identify any observations with invalid codes.
```

. icd9 check dx1, generate(prob1)
(dx1 contains defined ICD-9-CM codes; no missing values)
. icd9 check dx2, generate(prob2)
(dx2 contains defined ICD-9-CM codes; 179 missing values)
. icd9 check dx3, generate(prob3)
(dx3 contains 277 missing values)
dx3 contains invalid codes:
1. Invalid placement of period 0
2. Too many periods 0
3. Code too short 79
4. Code too long 0
5. Invalid 1st char (not 0-9, E, or V) 0
6. Invalid 2nd char (not 0-9) }12
7. Invalid 3rd char (not 0-9) 0
8. Invalid 4th char (not 0-9) 0
9. Invalid 5th char (not 0-9) 0
10. Code not defined 793
Total 1,000

```

We see that all codes in dx1 are valid and all discharges have a primary diagnosis recorded. Likewise, all codes in dx2 are defined, and we see that 179 observations did not have a second diagnosis.

However, icd9 check reports that 1,000 of the 2,210 observations on dx3 have some sort of problem: 79 codes are too short, 128 have an invalid second character, and 793 are undefined. After some investigation, we discover that when we imported the data, we started reading from the wrong position in the file. Hereafter, we use the correctly imported variable, dx3corr.
```

. icd9 check dx3corr
(dx3corr contains defined ICD-9-CM codes; 356 missing values)

```

Rather than typing the icd9 check command once for each variable, we could have checked all three simultaneously. See Working with multiple codes in [D] icd.

\section*{> Example 2: Standardizing the format of codes}

If we plan to do any reporting with these codes later, we may want to make them more readable. Suppose we want to report the primary diagnosis and procedure for each discharge. We can use icd9 clean with the dots and pad options to add the period between the category code and any subsequent digits and to align the periods.
```

. icd9 clean dx1, dots pad
(2210 changes made)

```

To standardize the procedure codes, we simply use the icd9p analogue to icd9.
```

. icd9p clean pr1, dots pad
(821 changes made)
. list recid dx1 pr1 in 1/5

```
\begin{tabular}{|rll|}
\hline recid & dx1 & pr1 \\
\hline 84 & 441.4 & 38.34 \\
105 & 250.13 & \\
255 & 519.09 & \\
651 & 967.8 & \\
696 & V 27.1 & 73.59 \\
\hline
\end{tabular}

Using icd9[p] clean with undefined codes will not result in an error message. So if you are using codes from a country other than the United States, the clean subcommand can still be used to standardize the format of your codes and check for correct placement of the period.

\section*{Interactive utilities}
icd9[p] search looks for relevant ICD-9-CM codes from the description given on the command line, and icd9[p] lookup lists the descriptions of codes given on the command line. The two commands complement each other.

\section*{> Example 3: Finding diagnosis codes}

Suppose that we want to identify the observations for which the primary diagnosis is congestive heart failure (CHF). As part of a quick exploratory analysis, we can use icd9 search to find ICD-9-CM codes that we may want to use to define our study population. We use the terms "heart failure" and "chf". We enclose "heart failure" in quotation marks and use option or so that icd9 search looks for either term.
```

. icd9 search "heart failure" chf, or
5 matches found:
398.91 rheumatic heart failure
4 2 8 ~ h e a r t ~ f a i l u r e * ~
428.0 chf nos
428.1 left heart failure
428.9 heart failure nos

```

Because the descriptions are abbreviated, we are concerned that some of the 428 codes may be left out. So, we use icd9 lookup to look up a range of codes.
```

. icd9 lookup 428*
19 matches found:
428 heart failure*
428.0 chf nos
428.1 left heart failure
428.2 *
428.20 systolic hrt failure nos
428.21 ac systolic hrt failure
428.22 chr systolic hrt failure
428.23 ac on chr syst hrt fail
428.3 *
428.30 diastolc hrt failure nos
428.31 ac diastolic hrt failure
428.32 chr diastolic hrt fail
428.33 ac on chr diast hrt fail
428.4 *
428.40 syst/diast hrt fail nos
428.41 ac syst/diastol hrt fail
428.42 chr syst/diastl hrt fail
428.43 ac/chr syst/dia hrt fail
428.9 heart failure nos

```

The same result could be found by typing
```

. icd9 lookup 428/4289

```
if we knew that 428.9 was the last code in the 428 category.

\section*{Creating new variables}
icd9[p] generate produces new variables based on existing variables containing (cleaned or uncleaned) ICD-9-CM codes. icd9[p] generate, category creates newvar containing the category code that corresponds to the code in the existing variable. icd9[p] generate, description creates newvar containing the abbreviated textual description of the ICD-9-CM code. icd9[p] generate, range() produces numeric newvar containing 1 if varname records an ICD-9-CM code in the range listed and containing 0 otherwise.
\(>\) Example 4: Creating an indicator variable
We review the list of codes we found in example 3 and decide that we will use 398.91 and all of the 428 codes in our definition of a CHF diagnosis. Now we can use icd9 generate with the range() option to create an indicator variable.
```

. icd9 generate chf = dx1, range(398.91 428*)
. tabulate chf [fweight=wgt]

chf	Freq.	Percent	Cum.
0	563,048	97.88	97.88
1	12,192	2.12	100.00
Total	575,240	100.00	

```

After tabulating the results, we see that about \(2.1 \%\) of all same-day discharges were for CHF in 2010.
> Example 5: Adding descriptions to codes
Continuing example 4, we may wish to know what procedures were performed for patients with CHF. We check the procedure codes in pr1 and then generate a new variable with their descriptions. We include option long so that we can see the ICD-9-CM procedure code as well.

We see that the majority of same-day discharges (58.9\%) did not involve any procedure. When a procedure was performed, the most common was left heart cardiac catheterization (15.6\%).

\section*{Technical note}

The dataset that supports icd9 and icd9p includes all codes that were added or deleted between V16 and the current version (V32). However, the descriptions are updated with each new version. If you are using icd9[p] generate with option description for codes other than the current version, please review the icd9[p] query log for any changes to descriptions between the version you are using and the current version.

\section*{> Example 6: Combining commands for reporting}

The icd9[p] generate commands are useful in isolation, but their real power comes when they are combined. For example, suppose that we want to make a graph showing the number of discharges in each diagnosis category for ICD-9-CM chapter 4, "Diseases of Blood and Blood Forming Organs". We could use several generate commands and string functions, but icd9 generate greatly reduces our work.

First, we extract the category code from the detailed diagnosis code. Then, because the icd9[p] commands work equally well with complete codes or category codes, we can use icd9 generate with the range (280/289) option to create an indicator variable for whether the discharge had a primary diagnosis in chapter 4.
```

. icd9 generate dx1cat = dx1, main
. icd9 generate ch4 = dx1cat, range(280/289)

```

Next, we create a variable with the descriptions of the category codes in chapter 4.
```

. icd9 generate ch4des = dx1cat if ch4==1, description long

```

Finally, we use graph hbar to make a horizontal bar graph showing the frequencies of same-day discharges by diagnosis category.
```

. graph hbar (count) [fweight=wgt], over(ch4des) ytitle(Discharges)
> title(Diseases of Blood and Blood Forming Organs, span)
> subtitle(Same-day Discharges (2010), span)

```


See [G-2] graph bar for information about customizing the graph above. For more information about graphing results, see [G-2] graph.

\section*{Stored results}
icd9[p] check stores the following in \(r()\) :
Scalars
r(e\#) number of errors of type \#
\(r\) (esum) total number of errors
icd9[p] clean stores the following in \(r()\) :
Scalars
\(r(N) \quad\) number of changes
icd9[p] lookup stores the following in \(r()\) :
Scalars
\(r(N) \quad\) number of codes found

\section*{References}

Centers for Disease Control and Prevention. 2013. International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM). http://www.cdc.gov/nchs/icd/icd9cm.htm.

Gould, W. W. 2000. dm76: ICD-9 diagnostic and procedure codes. Stata Technical Bulletin 54: 8-16. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 77-87. College Station, TX: Stata Press.
National Center for Health Statistics. 2011. International Classification of Diseases, Ninth Revision, Clinical Modification. ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Publications/ICD9-CM/2011/.
2012. National Hospital Discharge Survey: 2010 Public Use Data File Documentation.
ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/NHDS/NHDS_2010_Documentation.pdf.

\section*{Also see}
[D] icd - Introduction to ICD commands

\section*{Title}
icd10 - ICD-10 diagnosis codes
\begin{tabular}{llll}
Description & Quick start & Menu & Syntax \\
Options & Remarks and examples & Stored results & Acknowledgments \\
References & Also see & &
\end{tabular}

\section*{Description}

The icd10 commands are a suite of commands for working with ICD-10 codes from the second edition (2003) and later. To see the current version of the ICD-10 diagnosis codes and any changes that have been applied, type icd10 query.
icd10 check, icd10 clean, and icd10 generate are data management commands. icd10 check verifies that a variable contains defined ICD-10 diagnosis codes and provides a summary of any problems encountered. icd10 clean standardizes the format of the codes. icd10 generate can create a binary indicator variable for whether the code is in a specified set of codes, a variable containing a corresponding higher-level code, or a variable containing the description of the code.
icd10 lookup and icd10 search are interactive utilities. icd10 lookup displays descriptions of the diagnosis codes specified on the command line. icd10 search looks for relevant ICD-10 diagnosis codes from key words given on the command line.

\section*{Quick start}

Determine if ICD-10 diagnosis codes in diag1 are invalid and store reasons in invalid icd10 check diag1, generate(invalid)

Standardize display of codes in diag2 to add a period and left-align codes icd10 clean diag2, dots

Generate descr3 as descriptions of the diagnosis codes in diag3
icd10 generate descr3 = diag3, description
Create binary indicator for malignant or benign neoplasm, as indicated by an ICD-10 code beginning with C or D in diag4
icd10 generate cancer = diag4, range(C* D*)
Look up current descriptions for ICD-10 diagnosis codes W70 through W79
icd10 lookup W70/W79
Look up codes where the description contains the words "delivery" or "birth"
icd10 search delivery birth, or

\section*{Menu}

Data \(>\) ICD codes \(>\) ICD-10

\section*{Syntax}

Verify that variable contains defined codes
icd10 check varname \([\) if \(][\) in \(]\) [, checkopts]

Clean variable and verify formatting
```

icd10 clean varname [if] [in], {generate(newvar)|replace [cleanopts]}

```

Generate new variable from existing variable
```

icd10 generate newvar = varname [if] [in], {category|short} [check]
icd10 generate newvar = varname [if] [in], description [genopts]
icd10 generate newvar = varname [if] [in], range(codelist) [check]

```

Display code descriptions
```

icd10 lookup codelist [, version(\#)]

```

Search for codes from descriptions
icd10 search ["] text["] [["]text["]...] [, or version(\#)]
Display ICD-10 version
icd10 query
codelist is one of the following or any combination thereof:
\begin{tabular}{ll}
icd10code & (the particular code) \\
icd10code \(*\) & (all codes starting with) \\
icd10code \(/\) icd10code & (the code range)
\end{tabular}
or any combination of the above, such as A27.0 G40* Y60/Y69.9.
checkopts Description
\begin{tabular}{ll}
\begin{tabular}{l}
fmtonly \\
summary
\end{tabular} & \begin{tabular}{l}
check only format of the codes \\
frequency of each invalid or undefined code; may not be combined \\
with list
\end{tabular} \\
& \begin{tabular}{l}
list observations with invalid or undefined ICD-10 codes
\end{tabular} \\
list & \begin{tabular}{l}
create new variable marking invalid codes
\end{tabular} \\
\(\underline{\text { generate(newvar) }}\)\begin{tabular}{ll}
version(\#) & year to check codes against; default is version(2016)
\end{tabular}
\end{tabular}
cleanopts
check
dots
pad

Description
check that variable contains ICD-10 codes before cleaning format codes with a period add space to the right of three-character codes
addcode(begin \(\mid\) end)
pad
nodots
check
version(\#)
add code to the beginning or end of the description add spaces to the right of the code; must specify addcode(begin) format codes without a period; must specify addcode() check that variable contains ICD-10 codes before generating new variable select description from year \#; default is version(2016)

\section*{Options}

Options are presented under the following headings:
Options for icd10 check
Options for icd10 clean
Options for icd10 generate
Option for icd10 lookup
Options for icd10 search
Warning: The option descriptions are brief and use jargon. Please read Introduction to ICD coding in [D] icd before using the icd10 command.

\section*{Options for icd10 check}
fmtonly tells icd10 check to verify that the codes fit the format of ICD-10 codes but not to check whether the codes are defined.
summary specifies that icd10 check should report the frequency of each invalid or undefined code that was found in the data. To see a list of observations with invalid or undefined codes instead of the frequency for each code, use the list option. summary may not be combined with list.
list specifies that icd10 check list the observation number, the invalid or undefined ICD-10 code, and the reason the code is invalid or if it is undefined code. To see the frequency with which each code occurs rather than a list of observations, use the summary option. list may not be specified with summary.
generate (newvar) specifies that icd10 check create a new variable containing, for each observation, 0 if the observation contains a defined code or is missing. Otherwise, it contains a number from 1 to 8 if the code is invalid or 99 if the code is undefined. The positive numbers indicate the kind of problem and correspond to the listing produced by icd10 check. The values are labeled with the Stata-defined value label __icd_10.
version(\#) specifies the version of the codes that icd10 check should reference when determining whether a code is defined. \# may be any value between 2003, which is the second edition of ICD-10 without any updates applied, and 2016, which is the fifth edition of ICD-10. The appropriate value of \# should be determined from the data source. The default is version(2016).

Warning: The default value of version() will change over time so that the most recent codes are used. Using the default value rather than specifying a specific version may change results after a new version of the codes is introduced.

\section*{Options for icd10 clean}
generate (newvar) specifies that a new variable should be created that will contain the formatted version of the codes in varname. You must specify either generate() or replace, and the two options may not be specified together.
replace specifies that the existing values of varname be replaced with the formatted values. You must specify either generate() or replace, and the two options may not be specified together.
check specifies that icd10 clean should first check that varname contains codes that fit the format of ICD-10 codes. Specifying the check option will slow down the clean subcommand.
dots specifies that the period be included in the final format. If dots is not specified, then all periods are removed.
pad specifies that spaces be added to the end of the codes to make the (implied) dots align vertically in listings. Specifying pad makes the resulting codes look better when used with most other Stata commands. The default is to left-align codes without adding spaces.

\section*{Options for icd10 generate}
category, short, description, and range (codelist) specify the contents of the new variable that icd10 generate is to create. You do not need to icd10 clean varname before using icd10 generate; it will accept any ICD-10 format or combination of formats.
category and short generate a new variable that also contains ICD-10 codes. The resulting variable may be used with the other icd10 subcommands.
category specifies to extract the three-character category code from the ICD-10 code.
short is designed for users who have data with greater specificity than the standard fourcharacter ICD-10 codes. short will reduce five- and six-character codes to four characters. Three- and four-character codes are left as they are.
description creates newvar containing descriptions of the ICD-10 codes.
range (codelist) creates a new indicator variable equal to 1 when the ICD-10 code is in the range specified and equal to 0 otherwise.
addcode(begin \(\mid\) end), pad, nodots, check, and version(\#) are additional options that are only allowed if description is also specified.
addcode () specifies that the code should be included with the text describing the code. Specifying addcode(begin) will prepend the code to the text. Specifying addcode(end) will append the code to the text.
pad specifies that the code that is to be added to the description should be padded spaces to the right of the code so that the start of description text is aligned for all codes. pad may only be specified with addcode (begin).
nodots specifies that the code that is added to the description should be formatted without a period. nodots may only be specified if addcode() is also specified.
check specifies that icd10 generate should first check that varname contains codes that fit the format of ICD-10 codes. Specifying the check option will slow down the generate subcommand.
version(\#) specifies the version of the codes that icd10 generate should reference when selecting the description of a code. \# may be any value between 2003, which is the second edition of ICD-10 without any updates applied, and 2016, which is the fifth edition of ICD-10. The default is version(2016).

Warning: The default value of version() will change over time so that the most recent codes are used. Using the default value rather than specifying a specific version may change results after a new version of the codes is introduced.

\section*{Option for icd10 lookup}
version(\#) specifies the version of the codes that icd10 lookup should reference when searching for the description of the specified code. \# may be any value between 2003, which is the second edition of ICD-10 without any updates applied, and 2016, which is the fifth edition of ICD-10. The default is version(2016).

Warning: The default value of version() will change over time so that the most recent codes are used. Using the default value rather than specifying a specific version may change results after a new version of the codes is introduced.

\section*{Options for icd10 search}
or specifies that ICD-10 codes be searched for descriptions that contain any word specified with icd10 search. The default is to list only descriptions that contain all the words specified.
version(\#) specifies the version of the codes that icd10 search should reference when searching the text of the specified code or codes. \# may be any value between 2003, which is the second edition of ICD-10 without any updates applied, and 2016, which is the fifth edition of ICD-10.
By default, descriptions for all versions are searched, meaning that codes that changed descriptions and that have descriptions in multiple versions that contain the search terms will be duplicated. To ensure a list of unique code values, specify the version number.

\section*{Remarks and examples}

Remarks are presented under the following headings:

> Using icd10
> Managing datasets with ICD-10 codes
> Creating new variables

If you have not yet read Introduction to ICD coding in [D] icd before using the icd10 command.

\section*{Using icd10}

The general format of an ICD-10 diagnosis code is
\[
\{A-Z\}\{0-9\}\{0-9\}[\cdot][0-9]
\]

The code begins with a single letter followed by two digits. It may have an additional third digit after the period.

For example, in the ICD-10 coding system, E11.0 (Type 2 diabetes mellitus: With coma) and C56 (Malignant neoplasm of ovary) are diagnosis codes, although some datasets record (and some people write) E110 rather than E11.0. The icd10 commands understand both ways of recording codes. The commands are also insensitive to codes recorded with or without leading and trailing blanks and are case-insensitive.

All the following codes are acceptable formats to record codes in Stata.
```

N94.0
M32
K12
F102
x40

```

The list of defined codes and their associated descriptions is provided under license from the World Health Organization (WHO); see [R] copyright icd10. To view the current license and a log of changes that WHO has made to the list of ICD-10 codes since the icd10 commands were implemented in Stata, type
```

. icd10 query
ICD-10 Version and Change Log
License agreement
ICD-10 codes used by permission of the World Health Organization (WHO),
from: International Statistical Classification of Diseases and
Related Health Problems, Tenth Revision (ICD-10) 2010 Edition. Vols.
1-3. Geneva, World Health Organization, 2011.
See copyright icd10 for the ICD-10 copyright notification.
Edition }201
The ICD-10 data were obtained from WHO on 05feb2015.
All updates scheduled for implementation through 01jan2016 have been
applied. This was verified using the Cumulative Official Updates to
ICD-10 which may be found at
http://www.who.int/classifications/icd/icd10updates/en/index.html and
then clicking the "Official WHO Updates combined 1996-2014 Volume 3"
link.
Between 2015 and 2016:
13 codes added, 4 codes deleted, 0 code descriptions changed.
(output omitted)

```

\section*{Technical note}

It is possible for codes to have up to two more digits to form five- and six-character codes. Supplemental subdivisions of ICD-10 codes may occur at the fifth and sixth characters. These supplemental subdivisions are primarily used to indicate anatomical site and additional information about the diagnosis, for example, whether a fracture was open or closed (World Health Organization 2011). However, these codes are not part of the standard four-character system codified by WHO for international morbidity and mortality reporting and are not considered valid by icd10.

If your data contain these longer codes, you can use icd10 generate with option short to shorten your codes to the relevant four-character subcategory code. Any existing three- and four-character codes in the data are left as they were originally.

\section*{Managing datasets with ICD-10 codes}

The icd10 suite of commands has three data-management commands. icd10 check verifies that the ICD-10 codes in varname are valid. icd10 clean standardizes the format of ICD-10 codes in varname. And icd10 generate produces a new variable from an existing variable containing ICD-10 codes. It will create a variable containing the associated category code, a description of the code, or a binary indicator for whether the code is in a specified set of codes.

\section*{> Example 1: Checking the validity of a variable}

Although not necessary, a good place to start is with icd10 check. The commands in the icd10 suite will return an error message if the codes in your data are not valid. Running icd10 check is a good way to avoid error messages later.

The australia10 dataset contains total deaths in 2010 for males and females from Australia, taken from WHO's mortality data. Below, we list the first 10 observations.
```

. use http://www.stata-press.com/data/r14/australia10
(Australian mortality data, 2010)
. list in 1/10, sepby(cause) noobs

cause	sex	deaths
A020	Male   A020   Female	1   4
A021	Male   A021	3   Female
A047	Male   A047	Female
A048	Female	4
A049	Male	1
A049	Female	1
A063	Male	1

```

We will specify the generate() option to create a new variable called prob that will indicate that the code in cause is valid (prob \(=0\)) or will indicate a value of 1 through 8 for the reason the code is not valid. icd10 check also creates a value of 99 , which indicates that the code is not defined but otherwise conforms to the formatting requirements for ICD-10 codes.
```

. icd10 check cause, generate(prob)
(cause contains no missing values)
cause contains undefined codes:
1. Invalid placement of period 0
2. Too many periods 0
3. Code too short 0
4. Code too long 0
5. Invalid 1st char (not A-Z) 0
6. Invalid 2nd char (not 0-9) 0
7. Invalid 3rd char (not 0-9) 0
8. Invalid 4th char (not 0-9) 0
99. Code not defined 6
Total
6

```
icd10 check reports that there are three observations with undefined codes. In this case, this is because we failed to specify that the data were reported using the ICD-10 codes from 2010.
```

. drop prob
. icd10 check cause, generate(prob) year(2010)
(cause contains defined codes; no missing values)

```

We see now that there are no errors in our dataset.

\section*{> Example 2: Standardizing the format of codes}

If we plan to do any reporting with these codes later, we may want to make them more readable, so we use icd10 clean with the dots option.

When we listed our data before, it was sorted by cause of death and showed very few deaths assigned to the first several codes. It might be more interesting to see the most frequent causes of death. So before we list the data this time, we sort them in descending order with gsort.
```

. icd10 clean cause, dots replace
. gsort -deaths
. list cause sex deaths in 1/10, sepby(cause)

	cause	sex	deaths
1.	I21.9	Male	5,057
2.	I21.9	Female	4,885
3.	C34.9	Male	4,859
4.	I25.9	Male	3,805
5.	I25.9	Female	3,636
6.	F03	Female	3,517
7.	C61	Male	3,236
8.	I64	Female	3,204
9.	C34.9	Female	3,130
10.	C50.9	Female	2,842

```

Now it is clear that we have a mix of three- and four-character codes. icd10 clean will automatically change the display format of the diagnosis variable so that it is left-aligned, as shown above.

\section*{> Example 3: Looking up a single code}

In example 2, we see that the highest number of reported deaths for men and women is for code I21.9. If we were curious about what this code is, we could type
```

. icd10 lookup I21.9
I21.9 Acute myocardial infarction, unspecified

```
and we would see that these are deaths from acute myocardial infarction, commonly known as heart attacks. Because the icd10 commands are case-insensitive and do not care whether we use the dot, we could have typed i21.9, I219, or i219, and Stata would have returned the same results.

\section*{Creating new variables}

We now proceed to create new variables for later use.
\(>\) Example 4: Creating an indicator variable
Suppose that after watching several high-action nature shows on television, we now believe that death due to shark attack is common in Australia. It did not show up in our top-ten list above, but we would like to see how many we have in our data. We can look up the code using WHO's interactive web utility (http://apps.who.int/classifications/icd10/browse/2010) and then use icd10 generate with the range () option to create an indicator for whether death occurred by shark bite (shark).
. icd10 generate shark=cause, range(W56)
. tabulate shark
[fweight=deaths]
shark

Reality was not nearly as exciting as television-there was only one death with a code relating to shark bite in Australia in 2010.

If we wanted to study something less sensational, we could expand the icd10rangelist to a more complex list of codes. For example, perhaps we want to study the number of deaths from myocardial infarction (MI) and complications that occurred afterward. We might pick codes I21.0 through I21.9, I22.0 through I22.9, and I23.0 through I23.8. We could create the variable mi by typing
```

. icd10 generate mi=cause, range(I210/I219 I220/I229 I230/I238)
. tabulate mi [fweight=deaths]

```
\begin{tabular}{r|rrr}
mi & Freq. & Percent & Cum. \\
\hline 0 & 133,522 & 93.06 & 93.06 \\
1 & 9,951 & 6.94 & 100.00 \\
\hline Total & 143,473 & 100.00 &
\end{tabular}

We see that 9,951 deaths were from MI or complications thereof, which equates to about \(6.9 \%\) of all deaths in Australia in 2010. It appears that hearts are far more dangerous than sharks.

\section*{Technical note}

WHO reserves codes in categories U00 through U49 for the provisional assignment of new diseases and designates codes U50 through U99 for research purposes (World Health Organization 2011).

In general, codes in categories U50 through U99 are treated as undefined. This means that you do not need to take any special steps as long as your codes fit within the accepted four-character format. However, if you wish to exclude \(U\) codes from the commands, you can use the if qualifier.

With the exception of icd10 generate with the description option, the icd10 commands will continue to work as normal with undefined \(U\) codes. As a rule, icd10 generate with the description option will return missing values for codes U50 through U99. Note that some of these codes, however, are defined and considered valid by icd10 because WHO has distributed descriptions for them. For these codes, icd10 generate with option description will return results. The affected codes vary by year.

\section*{Stored results}
icd10 check stores the following in \(r()\) :
Scalars
r(e\#) number of errors of type \#
\(r\) (esum) total number of errors
\(r\) (miss) number of missing values
icd10 clean stores the following in \(r()\) :
Scalars
\(r(N) \quad\) number of changes
icd10 lookup stores the following in \(r()\) :
Scalars
\(r(N) \quad\) number of codes found

\section*{Acknowledgments}

We thank the World Health Organization for making ICD-10 codes available to Stata users. See [R] copyright icd10 for allowed usage.

We thank Joe Canner of the Johns Hopkins University School of Medicine, who wrote mycd10 and mycd10p, which provide many utilities for ICD-10 diagnosis and procedure codes. The commands rely on a user-supplied ICD-10 lookup dataset for diagnosis codes and ICD-10-PCS codes from the U.S. Centers for Medicare and Medicaid Services for procedure codes.

\section*{References}
de Kraker, M. E. A., M. Wolkewitz, P. G. Davey, H. Grundmann, and Burden Study Group. 2011. Clinical impact of antimicrobial resistance in European hospitals: Excess mortality and length of hospital stay related to methicillin-resistant staphylococcus aureus bloodstream infections. Antimicrobial Agents and Chemotherapy 55: 1598-1605.

Klevens, R. M., M. A. Morrison, J. Nadle, S. Petit, K. Gershman, S. Ray, L. H. Harrison, R. Lynfield, G. Dumyati, J. M. Townes, A. S. Craig, E. R. Zell, G. E. Fosheim, L. K. McDougal, R. B. Carey, and S. K. Fridkin. 2007. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. Journal of the American Medical Association 298: 1763-1771.

World Health Organization. 2011. International Statistical Classification of Diseases and Related Health Problems, Vol. 2: 2016 Edition. Instruction manual.
http://apps.who.int/classifications/icd10/browse/Content/statichtml/ICD10Volume2_en_2016.pdf.
World Health Organization Mortality Data Base (Cause of Death Query online; accessed December 11, 2014). http://apps.who.int/healthinfo/statistics/mortality/causeofdeath_query/.

\section*{Also see}
[D] icd - Introduction to ICD commands

\section*{Title}
import - Overview of importing data into Stata
Description Remarks and examples Reference Also see

\section*{Description}

This entry provides a quick reference for determining which method to use for reading non-Stata data into memory. See [U] 21 Entering and importing data for more details.

\section*{Remarks and examples}

Remarks are presented under the following headings:
```

Summary of the different methods
import excel
import delimited
odbc
infile (free format)—infile without a dictionary
infix (fixed format)
infile (fixed format)—infile with a dictionary
import sasxport
import haver (Windows only)
xmluse
Examples
Video example

```

\section*{Summary of the different methods}

\section*{import excel}
- import excel reads worksheets from Microsoft Excel (.xls and .xlsx) files.
- Entire worksheets can be read, or custom cell ranges can be read.
- See [D] import excel.

\section*{import delimited}
- import delimited reads text-delimited files.
- The data can be tab-separated or comma-separated. A custom delimiter may also be specified.
- An observation must be on only one line.
- The first line in the file can optionally contain the names of the variables.
- See [D] import delimited.

\section*{odbc}
- ODBC, an acronym for Open DataBase Connectivity, is a standard for exchanging data between programs. Stata supports the ODBC standard for importing data via the odbc command and can read from any ODBC data source on your computer.
- See [D] odbc.

\section*{infile (free format)—infile without a dictionary}
- The data can be space-separated, tab-separated, or comma-separated.
- Strings with embedded spaces or commas must be enclosed in quotes (even if tab- or commaseparated).
- An observation can be on more than one line, or there can even be multiple observations per line.
- See [D] infile (free format).

\section*{infix (fixed format)}
- The data must be in fixed-column format.
- An observation can be on more than one line.
- infix has simpler syntax than infile (fixed format).
- See [D] infix (fixed format).

\section*{infile (fixed format)—infile with a dictionary}
- The data may be in fixed-column format.
- An observation can be on more than one line.
- ASCII or EBCDIC data can be read.
- infile (fixed format) has the most capabilities for reading data.
- See [D] infile (fixed format).

\section*{import sasxport}
- import sasxport reads SAS XPORT Transport format files.
- import sasxport will also read value label information from a formats.xpf XPORT file, if available.
- See [D] import sasxport.

\section*{import haver (Windows only)}
- import haver reads Haver Analytics (http://www.haver.com/) database files.
- See [D] import haver.

\section*{xmluse}
- xmluse reads extensible markup language (XML) files—highly adaptable text-format files derived from the standard generalized markup language (SGML).
- xmluse can read either an Excel-format XML or a Stata-format XML file into Stata.
- See [D] xmlsave.

\section*{Examples}
> Example 1: Tab-separated data
\begin{tabular}{lllll}
\hline 1 & 0 & 1 & John Smith & m \\
0 & 0 & 1 & Paul Lin & m \\
0 & 1 & 0 & Jan Doe \(f\) & \\
0 & 0 & \(\cdot\) & Julie McDonald & \(f\)
\end{tabular}
contains tab-separated data. The type command with the showtabs option shows the tabs:
```

. type example1.raw, showtabs
1<T>0<T>1<T>John Smith<T>m
0<T>0<T>1<T>Paul Lin<T>m
0<T>1<T>0<T>Jan Doe<T>f
0<T>0<T>.<T>Julie McDonald<T>f

```

It could be read in by
. import delimited a b c name gender using example1

\section*{Example 2: Comma-separated data}
\begin{tabular}{ll}
\hline a,b, c,name, gender \\
1,0,1,John Smith,m \\
\(0,0,1\), Paul Lin,m \\
\(0,1,0\), Jan Doe,f \\
0,0, Julie McDonald,f & begin example2.raw - \\
\hline
\end{tabular}
could be read in by
```

. import delimited using example2

```
> Example 3: Tab-separated data with double-quoted strings
\begin{tabular}{llllll}
\hline 1 & 0 & 1 & "John Smith" & m & \\
0 & 0 & 1 & "Paul Lin" & m & \\
0 & 1 & 0 & "Jan Doe" & f & \\
0 & 0 & \(\cdot\) & "Julie McDonald" & f \\
\hline
\end{tabular}
contains tab-separated data with strings in double quotes.
```

. type example3.raw, showtabs
1<T>0<T>1<T>"John Smith"<T>m
0<T>0<T>1<T>"Paul Lin"<T>m
0<T>1<T>0<T>"Jan Doe"<T>f
0<T>O<T>.<T>"Julie McDonald"<T>f

```

It could be read in by
```

. infile byte (a b c) str15 name str1 gender using example3

```
or
```

. import delimited a b c name gender using example3

```
or
```

. infile using dict3

```
where the dictionary dict3.dct contains
```

infile dictionary using example3 {
byte a
byte b
byte c
str15 name
str1 gender
}

```
> Example 4: Space-separated data with double-quoted strings

could be read in by
. infile byte (ab c) str15 name str gender using example 4
or
. infile using dict
where the dictionary dict 4 .dst contains
\begin{tabular}{ll}
\hline infill \begin{tabular}{l}
dictionary using example 4 \\
byte \\
byte \(\quad\) a \\
byte
\end{tabular} & c \\
str15 & name \\
str & gender
\end{tabular}
> Example 5: Fixed-column format
101mJohn Smith
001mPaul Lin
010fJan Doe
00 fJulie McDonald
end example5.raw
could be read in by
```

. infix a 1 b 2 c 3 str gender 4 str name 5-19 using example5

```
or
. infix using dict5a
where dict5a.dct contains
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{infix dictionary using example5 \{} \\
\hline & & & 1 \\
\hline & & & 2 \\
\hline & & c & 3 \\
\hline & str & gender & 4 \\
\hline & str & name & 5-19 \\
\hline \} & & & \\
\hline
\end{tabular}
or
. infile using dict5b
where dict5b.dct contains
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{infile dictionary using example5 \{} \\
\hline & byte & a & \%1f \\
\hline & byte & b & \%1f \\
\hline & byte & c & \(\% 1\) f \\
\hline & str1 & gender & \%1s \\
\hline & str15 & name & \%15s \\
\hline \} & & & \\
\hline
\end{tabular}

\section*{Example 6: Fixed-column format with headings}
line \(1:\) a heading
There are a total of 4
The next line contains a useful heading.
ling:
1
0
could be read in by
where dict6a.dct contains
```

```
infile dictionary using example6 {
```

```
infile dictionary using example6 {
_firstline(5)
_firstline(5)
 byte a
 byte a
 byte b
 byte b
_column(17) byte c %1f
_column(17) byte c %1f
_column(33)}\begin{array}{lll}{\mathrm{ str1 }}&{\mathrm{ gender (r15 name %15s}}&{\mathrm{ sta}}
_column(33)}\begin{array}{lll}{\mathrm{ str1 }}&{\mathrm{ gender (r15 name %15s}}&{\mathrm{ sta}}
}
```

}

```
\begin{tabular}{lll}
byte & a & \\
byte & b & \\
byte & c & \(\% 1 \mathrm{f}\) \\
str1 & gender & \\
str15 & name & \(\% 15 \mathrm{~s}\)
\end{tabular}
```

$\qquad$
or could be read in by

```
. infix 5 first a 1 b 9 c 17 str gender 25 str name 33-46 using example6
```

or could be read in by

```
. infix using dict6b
```

where dict6b.dct contains

infix dictionary using example6 5 first			
		a	1
		b	9
		c	17
	str	gender	25
	str	name	33-46
\}			

## Example 7: Fixed-column format with observations spanning multiple lines

a b c gender name	
101	
m	
John Smith	
001	
m	
Paul Lin	
010	
f	
Jan Doe	
00	
f	
Julie McDonald	

could be read in by
. infile using dict7a
where dict7a.dct contains

```
infile dictionary using example7 {
_firstline(2)
 byte a
 byte b
 byte c
_line(2)
 str1 gender
_line(3)
 str15 name %15s
}
```

or, if we wanted to include variable labels,

```
. infile using dict7b
```

where dict7b.dct contains
 - end dict7b.dct
infix could also read these data,
. infix 2 first 3 lines a 1 b 3 c 5 str gender 2:1 str name 3:1-15 using example7 or the data could be read in by
. infix using dict7c
where dict7c.dct contains

infix dictionary using example7 \{ 2 first			
		a	1
		b	3
		c	5
	str	gender	2:1
	str	name	3:1-15
\}			

or the data could be read in by

```
. infix using dict7d
```

where dict7d.dct contains

```
infix dictionary using example7 {
2 first
 a 1
 b 3
 c 5
/
 str gender 1
/
 str name 1-15
}
```


## Video example

Copy/paste data from Excel into Stata

## Reference

Dicle, M. F., and J. Levendis. 2011. Importing financial data. Stata Journal 11: 620-626.

Also see<br>[D] edit - Browse or edit data with Data Editor<br>[D] import delimited - Import delimited text data<br>[D] import excel - Import and export Excel files<br>[D] import haver - Import data from Haver Analytics databases<br>[D] import sasxport - Import and export datasets in SAS XPORT format<br>[D] infile (fixed format) - Read text data in fixed format with a dictionary<br>[D] infile (free format) - Read unformatted text data<br>[D] infix (fixed format) - Read text data in fixed format<br>[D] input - Enter data from keyboard<br>[D] odbc - Load, write, or view data from ODBC sources<br>[D] xmlsave - Export or import dataset in XML format<br>[D] export - Overview of exporting data from Stata<br>[U] 21 Entering and importing data

## Title

import delimited - Import delimited text data

Description
Syntax
Remarks and examples

## Quick start

Options for import delimited Also see

## Menu

Options for export delimited

## Description

import delimited reads into memory a text file in which there is one observation per line and the values are separated by commas, tabs, or some other delimiter. The two most common types of text data to import are comma-separated values (.csv) text files and tab-separated text files, often .txt files. Similarly, export delimited writes Stata's data to a text file.

Stata has other commands for importing data. If you are not sure that import delimited will do what you are looking for, see [D] import and [U] 21 Entering and importing data.

## Quick start

Load comma-delimited mydata.csv with 2 variables to be named v1 and v2 import delimited v1 v2 using mydata

As above, but with variable names on the first row import delimited mydata

As above, but with variable names in row 5 and an ignorable header in the first 4 rows import delimited mydata, varnames(5)

Load only columns 2 to 300 and the first 1,000 rows with variable names in row 1 import delimited mydata, colrange(2:300) rowrange(:1000)

Load tab-delimited data from mydata.txt import delimited mydata.txt, delimiters(tab)

Load semicolon-delimited data from mydata.txt import delimited mydata.txt, delimiters(";")

Force columns 2 to 6 to be read as string to preserve leading zeros import delimited mydata, stringcols(2/6)

Export data in memory to mydata.csv
export delimited mydata
As above, but export only v1 and v2
export delimited v1 v2 using mydata
As above, but output numeric values for variables with value labels export delimited v1 v2 using mydata, nolabel

## Menu

## import delimited

File $>$ Import $>$ Text data (delimited, $\left.{ }^{*} . c s v, ~ . ..\right) ~$

## export delimited

File $>$ Export $>$ Text data (delimited, $\left.{ }^{*} . c s v, ~ . ..\right) ~$

## Syntax

Load a delimited text file
import delimited [using] filename [, import_delimited_options]
Rename specified variables from a delimited text file
import delimited extvarlist using filename [, import_delimited_options]
Save data in memory to a delimited text file export delimited [using] filename [if] [in] [, export_delimited_options]

Save subset of variables in memory to a delimited text file export delimited [varlist] using filename [if] [in] [, export_delimited_options]

If filename is specified without an extension, .csv is assumed for both import delimited and export delimited. If filename contains embedded spaces, enclose it in double quotes. extvarlist specifies variable names of imported columns.
import_delimited_options
delimiters("chars"[, collapse|asstring]) use chars as delimiters rowrange ([start $][$ :end $]$ ) row range of data to load
colrange ([start $][$ : end $])$
varnames (\#|nonames)
case (preserve |lower|upper)
asdouble
asfloat
clear
bindquotes(loose|strict|nobind)
stripquotes(yes|no|default)
numericcols(numlist $\mid$ _all)
stringcols(numlist |_all)
encoding("encoding")

Description
column range of data to load
treat row \# of data as variable names or the
data do not have variable names
preserve the case or read variable names as lowercase (the default) or uppercase import all floating-point data as doubles import all floating-point data as floats replace data in memory specify how to handle double quotes in data remove or keep double quotes in data force specified columns to be numeric force specified columns to be string specify the encoding of the text file being imported
export_delimited_options
Description
Main

delimiter ("char" $\mid$ tab $)$
$\underline{\text { novarnames }}$
nolabel

datafmt
$\underline{\text { quote }}$
replace
use char as delimiter
do not write variable names on the first line output numeric values (not labels) of labeled variables
use the variables' display format upon export always enclose strings in double quotes overwrite existing filename

## Options for import delimited

delimiters("chars" [, collapse|asstring]) allows you to specify other separation characters. For instance, if values in the file are separated by a semicolon, specify delimiters(";"). By default, import delimited will check if the file is delimited by tabs or commas based on the first line of data. Specify delimiters("\t") to use a tab character, or specify delimiters("whitespace") to use whitespace as a delimiter. collapse forces import delimited to treat multiple consecutive delimiters as just one delimiter. asstring forces import delimited to treat chars as one delimiter. By default, each character in chars is treated as an individual delimiter.
rowrange ( $[$ start $][$ :end $]$ ) specifies a range of rows within the data to load. start and end are integer row numbers.
colrange ( $[$ start $][$ :end $]$ ) specifies a range of variables within the data to load. start and end are integer column numbers.
varnames (\#|nonames) specifies where or whether variable names are in the data. By default, import delimited tries to determine whether the file includes variable names. import delimited translates the names in the file to valid Stata variable names. The original names from the file are stored unmodified as variable labels.
varnames (\#) specifies that the variable names are in row \# of the data; any data before row \# should not be imported.
varnames (nonames) specifies that the variable names are not in the data.
case (preserve|lower|upper) specifies the case of the variable names after import. The default is case(lowercase).
asdouble imports floating-point data as type double. The default storage type of the imported variables is determined by set type.
asfloat imports floating-point data as type float. The default storage type of the imported variables is determined by set type.
clear specifies that it is okay to replace the data in memory, even though the current data have not been saved to disk.
bindquotes(loose|strict|nobind) specifies how import delimited handles double quotes in data. Specifying loose (the default) tells import delimited that it must have a matching open and closed double quote on the same line of data. strict tells import delimited that once it finds one double quote on a line of data, it should keep searching through the data for
the matching double quote even if that double quote is on another line. Specifying nobind tells import delimited to ignore double quotes for binding.
stripquotes (yes $\mid$ no $\mid$ default) tells import delimited how to handle double quotes. yes causes all double quotes to be stripped. no leaves double quotes in the data unchanged. default automatically strips quotes that can be identified as binding quotes. default also will identify two adjacent double quotes as a single double quote because some software encodes double quotes that way.
numericcols (numlist $\mid$ _all) forces the data type of the column numbers in numlist to be numeric. Specifying _all will import all data as numeric.
stringcols(numlist $\mid$ _all) forces the data type of the column numbers in numlist to be string. Specifying _all will import all data as strings.
encoding("encoding") specifies the encoding of the text file to be read. The default is encoding("latin1"). Specify encoding("utf-8") for the files to be encoded in UTF-8. import delimited uses Java encoding. A list of available encodings can be found at http://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html.
Option charset () is a synonym for encoding().

## Options for export delimited

delimiter ("char"|tab) allows you to specify other separation characters. For instance, if you want the values in the file to be separated by a semicolon, specify delimiter(";"). The default delimiter is a comma.
delimiter (tab) specifies that a tab character be used as the delimiter.
novarnames specifies that variable names not be written in the first line of the file; the file is to contain data values only.
nolabel specifies that the numeric values of labeled variables be written into the file rather than the label associated with each value.
datafmt specifies that all variables be exported using their display format. For example, the number 1000 with a display format of $\% 4.2 \mathrm{f}$ would export as 1000.00 , not 1000 . The default is to use the raw, unformatted value when exporting.
quote specifies that string variables always be enclosed in double quotes. The default is to only double quote strings that contain spaces or the delimiter.
replace specifies that filename be replaced if it already exists.

## Remarks and examples

Remarks are presented under the following headings:

[^6]
## Introduction

import delimited reads into memory a text file in which there is one observation per line and the values are separated by commas, tabs, or some other delimiter. The two most common types of text data to import are comma-separated values (.csv) text files and tab-separated text files, often .txt files. import delimited will automatically detect either a comma or a tab as the delimiter.

Similarly, export delimited writes Stata data to a text file. By default, export delimited uses a comma as the delimiter, but you may specify another delimiter.

Imported string data containing ASCII or UTF-8 will always display correctly in the Data Editor and Results window. Imported string data containing extended ASCII may not display correctly unless you specify the character encoding using the encoding() option to convert the extended ASCII to UTF-8.

Exported text files are UTF-8 encoded.
If you are not sure that import delimited will do what you are looking for, see [D] import and [U] 21 Entering and importing data for information about Stata's other commands for importing data.

## Importing a text file

Suppose we have a . csv data file such as the following auto.csv, which contains variable names and data for different cars.

```
. copy http://www.stata.com/examples/auto.csv auto.csv
. type auto.csv
make,price,mpg,rep78,foreign
"AMC Concord",4099,22,3,"Domestic"
"AMC Pacer",4749,17,3,"Domestic"
"AMC Spirit",3799,22,,"Domestic"
"Buick Century",4816,20,3,"Domestic"
"Buick Electra",7827,15,4,"Domestic"
"Buick LeSabre",5788,18,3,"Domestic"
"Buick Opel",4453,26,,"Domestic"
"Buick Regal",5189,20,3,"Domestic"
"Buick Riviera",10372,16,3,"Domestic"
"Buick Skylark",4082,19,3,"Domestic"
```

We would like to import these data into Stata for subsequent analysis.
> Example 1: Importing all data
To import the complete dataset, we need to specify only the filename. import delimited assumes an extension of .csv. If our data were stored in a .txt file instead, we would need to specify the file extension. Here we enclose auto in double quotes (" "). We do this to remind you to use quotes for filenames with spaces, but it is not necessary here.

```
. import delimited "auto"
(5 vars, 10 obs)
```

We can verify that our data loaded correctly by using list or browse.

	make	price	mpg	rep78	foreign
1.	AMC Concord	4099	22	3	Domestic
2.	AMC Pacer	4749	17	3	Domestic
3.	AMC Spirit	3799	22	.	Domestic
4.	Buick Century	4816	20	3	Domestic
5.	Buick Electra	7827	15	4	Domestic
6.	Buick LeSabre	5788	18	3	Domestic
7.	Buick Opel	4453	26	.	Domestic
8.	Buick Regal	5189	20	3	Domestic
9.	Buick Riviera	10372	16	3	Domestic
10.	Buick Skylark	4082	19	3	Domestic

Notice that import delimited automatically assigned the variable names such as make and price based on the first row of the data. If the variable names were located on, for example, line 3 , we would have specified varnames (3), and import delimited would have ignored the first two rows. If our file did not contain any variable names, we would have specified varnames (nonames).

## > Example 2: Importing a subset of the data

import delimited also allows you to import a subset of the text data by using the rowrange() and colrange() options. Use rowrange() to specify which observations you want to import and colrange() to specify which variables you want to import.

Suppose that we want only cars that were manufactured by AMC. We can use the drop command to drop the cars manufactured by Buick after we import the data. If we know the rows in which AMC cars are located, we can also restrict our import to just those rows. Because foreign is constant, we also want to skip the last column.

To import rows 1 through 3 of the data in auto.csv, we need to specify rowrange ( $2: 4$ ) because the first row of the file contains the variable names. To import the first four columns, we need to also specify colrange (1:4).

```
. clear
. import delimited "auto", rowrange(2:4) colrange(1:4)
(4 vars, 3 obs)
```

. list

	make	price	mpg	rep78
	AMC Concord	4099	22	3
2.	AMC Pacer	4749	17	3
3.	AMC Spirit	3799	22	$\cdot$

import delimited still used the first line of the file to obtain the variable names even though we did not start our rowrange() specification with 1 . rowrange() controls only which rows are read as data to be imported into Stata.

## Using other delimiters

Many delimited files use commas or tabs; other common delimiters are semicolons and whitespace. import delimited detects commas and tabs by default but can handle other characters. Suppose that you had the auto.txt file, which contains the following data.

"AMC Concord"	4099	22	3	"Domestic"
"AMC Pacer"	4749	17	3	"Domestic"
"AMC Spirit"	3799	22	NA	"Domestic"
"Buick Century"	4816	20	3	"Domestic"
"Buick Electra"	7827	15	4	"Domestic"
"Buick LeSabre"	5788	18	3	"Domestic"
"Buick Opel"	4453	26	NA	"Domestic"
"Buick Regal"	5189	20	3	"Domestic"
"Buick Riviera"	10372	16	3	"Domestic"
"Buick Skylark"	4082	19	3	"Domestic"

These data are whitespace delimited. If you use import delimited without any options, you will not get the results you expect.

```
. clear
. import delimited "auto.txt"
(1 var, 10 obs)
```

When import delimited tries to read data that have no tabs or commas, it is fooled into thinking that the data contain just one variable.

## > Example 3: Changing the delimiter

We can use the delimiters () option to import the data correctly. delimiters (" ") tells import delimited to use spaces (" ") as the delimiter. Adding the collapse suboption will treat multiple consecutive space delimiters as one delimiter.

```
. clear
. import delimited "auto.txt", delimiters(" ", collapse)
(5 vars, 10 obs)
. describe
Contains data
 obs: 10
 vars: 5
 size: 260
```

variable name	storage   type	display   format	value   label	variable label
v1	str13	$\% 13 \mathrm{~s}$		
v2	int	$\% 8.0 \mathrm{~g}$		
v3	byte	$\% 8.0 \mathrm{~g}$		
v4	str2	$\% 9 \mathrm{~s}$		
v5	str8	$\% 9 \mathrm{~s}$		

Sorted by:
Note: Dataset has changed since last saved.
The data that were imported now contain the correct number of variables and observations.

Because import delimited did not find variable names in the first row of auto.txt, Stata assigned default names of v \# to the imported variables. If we wanted to specify our own names, we could have instead submitted

```
. clear
. import delimited make price mpg rep78 foreign using auto.txt,
> delimiters(" ", collapse)
(5 vars, 10 obs)
```


## Specifying variable types

The data in a file may contain a combination of string and numeric variables. import delimited will generally determine the correct data type for each variable. However, you may want to force a different data type by using the numericcols() or stringcols() option. For example, string values may be used to indicate missing values in a numeric variable, or you may want to import numeric values as strings to preserve leading zeros.

Another common case where you want to control the import type is when your data contain identifiers or other large numeric values. In this case, you should specify the asdouble option to avoid introducing duplicate values or losing values after the import.
$>$ Example 4: Specify the storage type
Continuing with example 3, we know that the fourth variable, rep78, should be a numeric variable. But it was imported as a string because the value NA was used for missing values.
. list

make	price	mpg	rep78	foreign
AMC Concord	4099	22	3	Domestic
AMC Pacer	4749	17	3	Domestic
AMC Spirit	3799	22	NA	Domestic
Buick Century	4816	20	3	Domestic
Buick Electra	7827	15	4	Domestic
Buick LeSabre	5788	18	3	Domestic
Buick Opel	4453	26	NA	Domestic
Buick Regal	5189	20	3	Domestic
Buick Riviera	10372	16	3	Domestic
Buick Skylark	4082	19	3	Domestic

To force rep78 to have a numeric storage type, we can use the numericcols(4) option.

```
. clear
. import delimited make price mpg rep78 foreign using "auto.txt",
> delimiters(" ", collapse) numericcols(4)
(5 vars, 10 obs)
. describe
Contains data
 obs: 10
 vars: 5
 size: 250
```

variable name	storage   type	display   format	value   label	variable label
make	str13	$\% 13 \mathrm{~s}$		
price	int	$\% 8.0 \mathrm{~g}$		
mpg	byte	$\% 8.0 \mathrm{~g}$		
rep78	byte	$\% 8.0 \mathrm{~g}$		
foreign	str8	$\% 9 \mathrm{~s}$		

Sorted by:
Note: Dataset has changed since last saved.
. list

	make	price	mpg	rep78	foreign
1.	AMC Concord	4099	22	3	Domestic
2.	AMC Pacer	4749	17	3	Domestic
3.	AMC Spirit	3799	22	.	Domestic
4.	Buick Century	4816	20	3	Domestic
5.	Buick Electra	7827	15	4	Domestic
6.	Buick LeSabre	5788	18	3	Domestic
7.	Buick Opel	4453	26	.	Domestic
8.	Buick Regal	5189	20	3	Domestic
9.	Buick Riviera	10372	16	3	Domestic
10.	Buick Skylark	4082	19	3	Domestic

rep78 is now stored as a byte variable, and the NA values are replaced by ., the system missing value for numeric variables.

## Exporting to a text file

export delimited creates text files from the Stata dataset in memory. A comma-separated .csv file is created by default, but you can change the delimiter by specifying the delimiter() option and the file extension by specifying it with the filename.

## > Example 5: Export all data

We want to export the data from example 4 to myauto.csv. We can use the type command to see the contents of the file.

```
. export delimited "myauto"
file myauto.csv saved
. type "myauto.csv"
make,price,mpg,rep78,foreign
AMC Concord,4099,22,3,Domestic
AMC Pacer,4749,17,3,Domestic
AMC Spirit,3799,22,,Domestic
Buick Century,4816,20,3,Domestic
Buick Electra,7827,15,4,Domestic
Buick LeSabre,5788,18,3,Domestic
Buick Opel,4453,26,,Domestic
Buick Regal,5189,20,3,Domestic
Buick Riviera,10372,16,3,Domestic
Buick Skylark,4082,19,3,Domestic
```


## Example 6: Export a subset of the data

You can also export a subset of the data in memory by typing a variable list, specifying an if condition, specifying a range with an in condition, or a combination of the three. For example, here we export only the first 5 observations of the make, mpg, and rep78 variables.

```
. export delimited make mpg rep78 in 1/5 using "myauto", replace
file myauto.csv saved
```

If you open myauto.csv, you will see that only the 5 observations shown in example 5 appear in the file. We specified the replace option because we previously exported data to myauto.csv. If we had not specified replace, we would have received an error message.

## Video example

Importing delimited data

## Also see

[D] export - Overview of exporting data from Stata
[D] import - Overview of importing data into Stata

## Title

import excel - Import and export Excel files

Description
Syntax
Remarks and examples
Also see

Quick start
Options for import excel Stored results

Menu
Options for export excel References

## Description

import excel loads an Excel file, also known as a workbook, into Stata. import excel filename, describe lists available sheets and ranges of an Excel file. export excel saves data in memory to an Excel file. Excel 1997/2003 (.xls) files and Excel 2007/2010 (.xlsx) files can be imported, exported, and described using import excel, export excel, and import excel, describe.
import excel and export excel are supported on Windows, Mac, and Linux.
import excel and export excel look at the file extension, .xls or . $x l s x$, to determine which Excel format to read or write.

For performance, import excel imposes a size limit of 40 MB for Excel 2007/2010 (.xlsx) files. Be warned that importing large .xlsx files can severely affect your machine's performance.
import excel auto first looks for auto.xls and then looks for auto.xlsx if auto.xls is not found in the current directory.

The default file extension for export excel is. xl s if a file extension is not specified.

## Quick start

Check the contents of Excel file mydata.xls before importing import excel mydata, describe

As above, but for mydata. xlsx
import excel mydata.xlsx, describe
Load data from mydata.xls
import excel mydata
As above, but load data from cells A1:G10 of mysheet
import excel mydata, cellrange(A1:G10) sheet (mysheet)
Read first row as lowercase variable names
import excel mydata, firstrow case(lower)
Import only v1 and v2
import excel v1 v2 using mydata
Save data in memory to mydata.xls
export excel mydata
As above, but export variables v1, v2, and v3
export excel v1 v2 v3 using mydata

## Menu

## import excel

File $>$ Import $>$ Excel spreadsheet (*.xls;*..xlsx)
export excel
File $>$ Export $>$ Data to Excel spreadsheet ( ${ }^{*} . x \mid \mathrm{x}$;*..xlsx)

## Syntax

Load an Excel file
import excel [using] filename [, import_excel_options]

Load subset of variables from an Excel file import excel extvarlist using filename [, import_excel_options]

Describe contents of an Excel file import excel [using] filename, describe

Save data in memory to an Excel file export excel [using] filename [if] [in] [, export_excel_options]

Save subset of variables in memory to an Excel file export excel [varlist] using filename [if] [in] [, export_excel_options]

## import_excel_options

## sheet ("sheetname")

cellrange ([start $][$ :end $]$ )
firstrow
case (preserve | lower |upper)
allstring
clear
locale("locale")

Description
Excel worksheet to load Excel cell range to load treat first row of Excel data as variable names preserve the case (the default) or read variable names as lowercase or uppercase when using firstrow import all Excel data as strings replace data in memory
specify the locale used by the workbook; has no effect on Microsoft Windows
locale() does not appear in the dialog box.
export_excel_options
Description

## Main

sheet ("sheetname")
cell(start)
sheetmodify
sheetreplace
firstrow(variables $\mid$ varlabels)
nolabel
replace
Advanced
datestring("datetime_format")
missing("repval")
locale("locale")
save to Excel worksheet
start (upper-left) cell in Excel to begin saving to modify Excel worksheet
replace Excel worksheet
save variable names or variable labels to first row
export values instead of value labels
overwrite Excel file
save dates as strings with a datetime_format save missing values as repval
specify the locale used by the workbook; has no effect on Microsoft Windows
locale() does not appear in the dialog box.
extvarlist specifies variable names of imported columns. An extvarlist is one or more of any of the following:

## varname <br> varname=columnname

Example: import excel make mpg weight price using auto.xlsx, clear imports columns A, B, C, and D from the Excel file auto.xlsx.

Example: import excel make=A mpg=B price=D using auto.xlsx, clear imports columns A, B, and D from the Excel file auto.xlsx. Column C and any columns after D are skipped.

## Options for import excel

sheet("sheetname") imports the worksheet named sheetname in the workbook. The default is to import the first worksheet.
cellrange ( $[$ start $][:$ end $]$ ) specifies a range of cells within the worksheet to load. start and end are specified using standard Excel cell notation, for example, A1, BC2000, and C23.
firstrow specifies that the first row of data in the Excel worksheet consists of variable names. This option cannot be used with extvarlist. firstrow uses the first row of the cell range for variable names if cellrange() is specified. import excel translates the names in the first row to valid Stata variable names. The original names in the first row are stored unmodified as variable labels.
case (preserve|lower|upper) specifies the case of the variable names read when using the firstrow option. The default is case(preserve), meaning to preserve the variable name case. Only ASCII letters in names are changed to uppercase or lowercase. Unicode characters beyond ASCII range are not changed.
allstring forces import excel to import all Excel data as string data.
clear clears data in memory before loading data from the Excel workbook.

The following option is available with import excel but is not shown in the dialog box:
locale("locale") specifies the locale used by the workbook. You might need this option when working with extended ASCII character sets. This option has no effect on Microsoft Windows. The default locale is UTF-8.

## Options for export excel

$\qquad$ Main
sheet("sheetname") saves to the worksheet named sheetname. If there is no worksheet named sheetname in the workbook, a new sheet named sheetname is created. If this option is not specified, the first worksheet of the workbook is used.
cell (start) specifies the start (upper-left) cell in the Excel worksheet to begin saving to. By default, export excel saves starting in the first row and first column of the worksheet.
sheetmodify exports data to the worksheet without changing the cells outside the exported range. sheetmodify cannot be combined with sheetreplace or replace.
sheetreplace clears the worksheet before the data are exported to it. sheetreplace cannot be combined with sheetmodify or replace.
firstrow (variables |varlabels) specifies that the variable names or the variable labels be saved in the first row in the Excel worksheet. The variable name is used if there is no variable label for a given variable.
nolabel exports the underlying numeric values instead of the value labels.
replace overwrites an existing Excel workbook. replace cannot be combined with sheetmodify or sheetreplace.

Advanced
datestring("datetime_format") exports all datetime variables as strings formatted by datetime_format. See [D] datetime display formats.
missing("repval") exports missing values as repval. repval can be either string or numeric. Without specifying this option, export excel exports the missing values as empty cells.

The following option is available with export excel but is not shown in the dialog box:
locale("locale") specifies the locale used by the workbook. You might need this option when working with extended ASCII character sets. The default locale is UTF-8.

## Remarks and examples

To demonstrate the use of import excel and export excel, we will first load auto.dta and export it as an Excel file named auto.xls:

```
. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)
. export excel auto, firstrow(variables)
file auto.xls saved
```

Now we can import from the auto.xls file we just created, telling Stata to clear the current data from memory and to treat the first row of the worksheet in the Excel file as variable names:

```
. import excel auto.xls, firstrow clear
. describe
Contains data
 obs: 74
 vars: 12
 size: 3,922
```

variable name	storage   type	display   format	value   label	variable label
make	str17	$\% 17 \mathrm{~s}$		make
price	int	$\% 10.0 \mathrm{~g}$		price
mpg	byte	$\% 10.0 \mathrm{~g}$		mpg
rep78	byte	$\% 10.0 \mathrm{~g}$		rep78
headroom	double	$\% 10.0 \mathrm{~g}$	headroom	
trunk	byte	$\% 10.0 \mathrm{~g}$	trunk	
weight	int	$\% 10.0 \mathrm{~g}$	weight	
length	int	$\% 10.0 \mathrm{~g}$	length	
turn	byte	$\% 10.0 \mathrm{~g}$	turn	
displacement	int	$\% 10.0 \mathrm{~g}$	displacement	
gear_ratio	double	$\% 10.0 \mathrm{~g}$		gear_ratio
foreign	str8	$\% 9 \mathrm{~s}$	foreign	

Sorted by:
Note: Dataset has changed since last saved.
We can also import a subrange of the cells in the Excel file:

```
. import excel auto.xls, cellrange(:D70) firstrow clear
. describe
Contains data
\begin{tabular}{rr}
obs: & 69 \\
vars: & 4 \\
size: & 1,449
\end{tabular}
```

	storage   type	display   format	value   label	variable label
make	str17	$\% 17 \mathrm{~s}$		make
price	int	$\% 10.0 \mathrm{~g}$		price
mpg	byte	$\% 10.0 \mathrm{~g}$		mpg
rep78	byte	$\% 10.0 \mathrm{~g}$		rep78

Sorted by:
Note: Dataset has changed since last saved.
Both .xls and .xlsx files are supported by import excel and export excel. If a file extension is not specified with export excel, .xls is assumed, because this format is more common and is compatible with more applications that also can read from Excel files. To save the data in memory as a .xlsx file, specify the extension:

```
. use http://www.stata-press.com/data/r14/auto, clear
(1978 Automobile Data)
. export excel auto.xlsx
file auto.xlsx saved
```

To export a subset of variables and overwrite the existing auto.xls Excel file, specify a variable list and the replace option:

```
. export excel make mpg weight using auto, replace
file auto.xls saved
```

- Technical note: Excel data size limits

For an Excel .xls-type workbook, the worksheet size limits are 65,536 rows by 256 columns. The string size limit is 255 characters.

For an Excel .xlsx-type workbook, the worksheet size limits are $1,048,576$ rows by 16,384 columns. The string size limit is 32,767 characters.

## - Technical note: Dates and times

Excel has two different date systems, the "1900 Date System" and the "1904 Date System". Excel stores a date and time as an integer representing the number of days since a start date plus a fraction of a 24 -hour day.

In the 1900 Date System, the start date is 00Jan 1900; in the 1904 Date System, the start date is 01Jan1904. In the 1900 Date System, there is another artificial date, 29feb1900, besides 00Jan 1900. import excel translates 29 feb 1900 to 28 feb 1900 and 00Jan1900 to 31 dec 1899.

See Using dates and times from other software in [D] datetime for a discussion of the relationship between Stata datetimes and Excel datetimes.

## - Technical note: Mixed data types

Because Excel's data type is cell based, import excel may encounter a column of cells with mixed data types. In such a case, the following rules are used to determine the variable type in Stata of the imported column.

- If the column contains at least one cell with nonnumerical text, the entire column is imported as a string variable.
- If an all-numerical column contains at least one cell formatted as a date or time, the entire column is imported as a Stata date or datetime variable. import excel imports the column as a Stata date if all date cells in Excel are dates only; otherwise, a datetime is used.


## Video example

Import Excel data into Stata

## Stored results

import excel filename, describe stores the following in r() :
Macros
$r$ (N_worksheet) number of worksheets in the Excel workbook
$r$ (worksheet_\#) name of worksheet \# in the Excel workbook
r(range_\#) available cell range for worksheet \# in the Excel workbook

## References

Crow, K. 2012. Using import excel with real world data. The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2012/06/25/using-import-excel-with-real-world-data/.
Jeanty, P. W. 2013. Dealing with identifier variables in data management and analysis. Stata Journal 13: 699-718.

## Also see

[D] datetime - Date and time values and variables
[D] export - Overview of exporting data from Stata
[D] import - Overview of importing data into Stata
[M-5] _docx*() — Generate Office Open XML (.docx) file
[M-5] xl() - Excel file I/O class
[P] putexcel - Export results to an Excel file

## Title

import haver - Import data from Haver Analytics databases

Description	Quick start	Menu
Syntax	Options for import haver	Options for import haver, describe
Option for set haverdir	Remarks and examples	Stored results
Acknowledgment	Also see	

## Description

Haver Analytics (http://www.haver.com) provides economic and financial databases to which you can purchase access. The import haver command allows you to use those databases with Stata. The import haver command is provided only with Stata for Windows.
import haver seriesdblist loads data from one or more Haver databases into Stata's memory. import haver seriesdblist, describe describes the contents of one or more Haver databases. If a database is specified without a suffix, then the suffix . dat is assumed.

## Quick start

Describe available time span, frequency of measurement, and source of series E for net fixed assets and consumer durables from the Haver Analytics CAPSTOCK database
import haver E@CAPSTOCK, describe
Load all available observations for quarterly series ASACX and ASAHS from the US1PLUS database import haver (ASACX ASAHS)@US1PLUS

As above, but restrict data to the first quarter of 2000 through the fourth quarter of 2010 import haver (ASACX ASAHS)@US1PLUS, fin(2000q1,2010q4)

## Menu

File $>$ Import $>$ Haver Analytics database

## Syntax

Load Haver data

```
import haver seriesdblist [, import_haver_options]
```

Load Haver data using a dataset that is loaded in memory import haver, frommemory [import_haver_options]

Describe contents of Haver database
import haver seriesdblist, describe [import_haver_describe_options]

Specify the directory where the Haver databases are stored

```
set haverdir "path" [, permanently]
```

import_haver_options
$\underline{\text { fin }}([$ datestring $],[$ datestring $])$ load data within specified date range
$\underline{\text { fwithin( }}[$ datestring $],[$ datestring $])$
tvar (varname)
case(lower |upper)
hmissing(misval)
aggmethod(strict|relaxed|force)
frommemory
clear

Description same as $f$ in() but exclude the end points of range create time variable varname read variable names as lowercase or uppercase record missing values as misval
set how temporal aggregation calculations deal with missing data
load data using file in memory clear data in memory before loading Haver database
frommemory and clear do not appear in the dialog box.
import_haver_describe_options Description

* describe
detail
saving(filename [, verbose replace])
describe contents of seriesdblist
list full series information table for each series
save series information to filename.dta
*describe is required.
seriesdblist is one or more of the following:

$$
\begin{aligned}
& \text { dbfile } \\
& \text { series@dbfile } \\
& \text { (series series ...) @dbfile }
\end{aligned}
$$

where dbfile is the name of a Haver Analytics database and series contains a Haver Analytics series. Wildcards ? and $*$ are allowed in series. series and dbfile are not case sensitive.
Example: import haver gdp@usecon
Import series GDP from the USECON database.
Example: import haver gdp@usecon c1*@ifs
Import series GDP from the USECON database, and import any series that starts with c 1 from the IFS database.
Note: You must specify a path to the database if you did not use the set haverdir command.
Example: import haver gdp@"C:\data\usecon" c1*@"C:\data\ifs"
If you do not specify a path to the database and you did not set haverdir, then import haver will look in the current working directory for the database.

## Options for import haver

fin([datestring $]$, [datestring]) specifies the date range of the data to be loaded. datestring must adhere to the Stata default for the different frequencies. See [D] datetime display formats. Examples are 23 mar 2012 (daily and weekly), 2000m1 (monthly), 2003q4 (quarterly), and 1998 (annual). fin(1jan1999, 31dec1999) would mean from and including 1 January 1999 through 31 December 1999. Note that weekly data must be specified as daily data because Haver-week data are conceptually different than Stata-week data.
fin() also determines the aggregation frequency. If you want to retrieve data in a frequency that is lower than the one in which the data are stored, specify the dates in option fin() accordingly. For example, to retrieve series that are stored in quarterly frequency into an annual dataset, you can type fin $(1980,2010)$.
fwithin([datestring], [datestring]) functions the same as fin() except that the endpoints of the range will be excluded in the loaded data.
tvar (varname) specifies the name of the time variable Stata will create. The default is tvar (time). The tvar() variable is the name of the variable that you would use to tsset the data after loading, although doing so is unnecessary because import haver automatically tssets the data for you.
case(lower |upper) specifies the case of the variable names after import. The default is case(lower).
hmissing (misval) specifies which of Stata's 27 missing values (., .a, ..., .z) to record when there are missing values in the Haver database.

Two kinds of missing values occur in Haver databases. The first occurs when nothing is recorded because the data do not span the entire range; these missing values are always stored as . by Stata. The second occurs when Haver has recorded a Haver missing value; by default, these are stored as . by Stata, but you can use hmissing() to specify that a different extended missing-value code be used.
aggmethod (strict $\mid$ relaxed $\mid$ force) specifies a method of temporal aggregation in the presence of missing observations. aggmethod (strict) is the default aggregation method.
Most Haver series of higher than annual frequency has an aggregation type that determines how data can be aggregated. The three aggregation types are average (AVG), sum (SUM), and end of period (EOP). Each aggregation method behaves differently for each aggregation type.

An aggregated span is a time period expressed in the original frequency. The goal is to aggregate the data in an aggregation span to a single observation in the (lower) target frequency. For example, $1973 \mathrm{~m} 1-1973 \mathrm{~m} 3$ is an aggregated span for quarterly aggregation to 1973 q 1 .
strict aggregation method:

1) (Average) The aggregated value is the average value if no observation in the aggregated span is missing; otherwise, the aggregated value is missing.
2) (Sum) The aggregated value is the sum if no observation in the aggregated span is missing; otherwise, the aggregated value is missing.
3) (End of period) The aggregated value is the series value in the last period in the aggregated span, be it missing or not.
relaxed aggregation method:
4) (Average) The aggregated value is the average value as long as there is one nonmissing data point in the aggregated span; otherwise, the aggregated value is missing.
5) (Sum) The aggregated value is the sum if no observation in the aggregated span is missing; otherwise, the aggregated value is missing.
6) (End of period) The aggregated value is the last available nonmissing data point in the aggregated span; otherwise, the aggregated value is missing.
force aggregation method:
7) (Average) The aggregated value is the average value as long as there is one nonmissing data point in the aggregated span; otherwise, the aggregated value is missing.
8) (Sum) The aggregated value is the sum if there is at least one nonmissing data point in the aggregated span; otherwise, the aggregated value is missing.
9) (End of period) The aggregated value is the last available nonmissing data point in the aggregated span; otherwise, the aggregated value is missing.

The following options are available with import haver but are not shown in the dialog box:
frommemory specifies that each observation of the dataset in memory specifies the information for a Haver series to be imported. The dataset in memory must contain variables named path, file, and series. The observations in path specify paths to Haver databases, the observations in file specify Haver databases, and the observations in series specify the series to import.
clear clears the data in memory before loading the Haver database.

## Options for import haver, describe

describe describes the contents of one or more Haver databases.
detail specifies that a detailed report of all the information available on the variables be presented. saving(filename [, verbose replace]) saves the series meta-information to a Stata dataset. By default, the series meta-information is not displayed to the Results window, but you can use the verbose option to display it.
saving() saves a Stata dataset that can subsequently be used with the frommemory option.

## Option for set haverdir

permanently specifies that in addition to making the change right now, the haverdir setting be remembered and become the default setting when you invoke Stata.

## Remarks and examples

Remarks are presented under the following headings:

Installation<br>Setting the path to Haver databases<br>Download example Haver databases<br>Determining the contents of a Haver database<br>Loading a Haver database<br>Loading a Haver database from a describe file<br>Temporal aggregation<br>Daily data<br>Weekly data

## Installation

Haver Analytics (http://www.haver.com) provides more than 200 economic and financial databases in the form of . dat files to which you can purchase access. The import haver command provides easy access to those databases from Stata. import haver is provided only with Stata for Windows.

## Setting the path to Haver databases

If you want to retrieve data from Haver Analytics databases, you must discover the directory in which the databases are stored. This will most likely be a network location. If you do not know the directory, contact your technical support staff or Haver Analytics (http://www.haver.com). Once you have determined the directory location-for example, H : \haver_files-you can save it by using the command

```
. set haverdir "H:\haver_files\", permanently
```

Using the permanently option will preserve the Haver directory information between Stata sessions. Once the Haver directory is set, you can start retrieving data. For example, if you are subscribing to the USECON database, you can type

```
. import haver gdp@usecon
```

to load the GDP series into Stata. If you did not use set haverdir, you would type

```
. import haver gdp@"H:\haver_files\usecon"
```

The directory path passed to set haverdir is saved in the creturn value c(haverdir). You can view it by typing

```
. display "'c(haverdir)'"
```


## Download example Haver databases

There are three example Haver databases you can download to your working directory. Run the copy commands below to download HAVERD, HAVERW, and HAVERMQA.
. copy http://www.stata.com/haver/HAVERD.DAT haverd.dat
. copy http://www.stata.com/haver/HAVERD.IDX haverd.idx
. copy http://www.stata.com/haver/HAVERW.DAT haverw.dat
. copy http://www.stata.com/haver/HAVERW.IDX haverw.idx
. copy http://www.stata.com/haver/HAVERMQA.DAT havermqa.dat
. copy http://www.stata.com/haver/HAVERMQA.IDX havermqa.idx
To use these files, you need to make sure your Haver directory is not set:

```
. set haverdir ""
```


## Determining the contents of a Haver database

import haver seriesdblist, describe displays the contents of a Haver database. If no series is specified, then all series are described.

```
. import haver haverd, describe
```

Dataset: haverd

Variable	Description	Time span	Frequency Source	
FXTWB	Nominal Broad Trade-W. .	03jan2005-02mar2012	Daily	FRB
FXTWM	Nominal Trade-Weighte.	03jan2005-02mar2012	Daily	FRB
FXTWOTP	Nominal Trade-Weighte.	03jan2005-02mar2012	Daily	FRB

Summary

```
number of series described: 3
 series not found: 0
```

Above we describe the Haver database haverd. dat, which we already have on our computer and in our current directory.

By default, each line of the output corresponds to one Haver series. Specifying detail displays more information about each series, and specifying seriesname@ allows us to restrict the output to the series that interests us:
. import haver FXTWB@haverd, describe detail

FXTWB	Nominal Broad Trade-Weighted Exchange Value of the $\mathbf{~ U S} \$(\mathbf{1 / 9 7 = 1 0 0 )}$
Frequency: Daily	Time span: 03jan2005-02mar2012
Number of Observations: $\mathbf{1 8 7 0}$	Date Modified: 07mar2012 11:27:33
Aggregation Type: AVG	Decimal Precision: 4
Difference Type: 0	Magnitude: 0
Data Type: INDEX	Group: R03
Primary Geography Code: $\mathbf{1 1 1}$	Secondary Geography Code:
Source: FRB	Source Description: Federal Reserv..

Summary
number of series described: 1
series not found: 0

You can describe multiple Haver databases with one command:

```
. import haver haverd haverw, describe
 (output omitted)
```

To restrict the output to the series that interest us for each database, you could type

```
. import haver (FXTWB FXTWOTP)@haverd FARVSN@haverw, describe
(output omitted)
```


## Loading a Haver database

import haver seriesdblist loads Haver databases. If no series is specified, then all series are loaded.

```
. import haver haverd, clear
```

Summary

```
 Haver data retrieval: 10 Dec 2014 11:41:18
 # of series requested: 3
 # of database(s) used: 1 (HAVERD)
 All series have been successfully retrieved
Frequency
```

    highest Haver frequency: Daily
    lowest Haver frequency: Daily
    frequency of Stata dataset: Daily

The table produced by import haver seriesdblist displays a summary of the loaded data, frequency information about the loaded data, series that could not be loaded because of errors, and notes about the data.

The dataset now contains a time variable and three variables retrieved from the HAVERD database:


Haver databases include the following meta-information about each variable:

HaverDB	database name   Series
series name	
DateTimeMod	date/time the series was last modified
Frequency	frequency of series (from daily to annual) as it is stored in the Haver database
Magnitude	magnitude of the data
DecPrecision	number of decimals to which the variable is recorded
DifType	relevant within Haver software only: if =1, percentage calculations are not allowed
AggType	temporal aggregation type (one of AVG, SUM, EOP)
DataType	type of data (e.g., ratio, index, US\$, \%)
Group	Haver series group to which the variable belongs
Geography1	primary geography code
Geography2	secondary geography code
data start date	
EndDate	data end date

When a variable is loaded, this meta-information is stored in variable characteristics (see [P] char). Those characteristics can be viewed using char list:

```
. char list fxtwb_haverd[]
fxtwb_haverd[HaverDB]: HAVERD
fxtwb_haverd[Series]: FXTWB
fxtwb_haverd[DateTimeMod]: 07mar2012 11:27:33
fxtwb_haverd[Frequency]: Daily
fxtwb_haverd[Magnitude]: 0
fxtwb_haverd[DecPrecision]: 4
fxtwb_haverd[DifType]: 0
fxtwb_haverd[AggType]: AVG
fxtwb_haverd[DataType]: INDEX
fxtwb_haverd[Group]: R03
fxtwb_haverd[Geography1]: 111
fxtwb_haverd[StartDate]: 03jan2005
fxtwb_haverd[EndDate]: 02mar2012
fxtwb_haverd[Source]: FRB
fxtwb_haverd[SourceDescription]:
 Federal Reserve Board
```

You can load multiple Haver databases/series with one command. To load the series FXTWB and FXTWOTP from the HAVERD database and all series that start with V from the HAVERMQA database, you would type

```
. import haver (FXTWB FXTWOTP) @haverd V © @havermqa, clear (output omitted)
```

import haver automatically tssets the data for you.

## Loading a Haver database from a describe file

You often need to search through the series information of a Haver database(s) to see which series you would like to load. You can do this by saving the output of import haver, describe to a Stata dataset with the saving (filename) option. The dataset created can be used by import haver, frommemory to load data from the described Haver database(s). For example, here we search through the series information of database HAVERMQA.

```
. import haver havermqa, describe saving(my_desc_file)
 (output omitted)
. use my_desc_file, clear
. describe
Contains data from my_desc_file.dta
 obs: 161
 vars: 8 10 Dec 2014 11:41
 size: 19,642
```

variable name	storage type	display   format	value   label	variable label
path	str1	\%9s		Path to Haver File
file	str8	\%9s		Haver File Name
series	str7	\%9s		Series Name
description	str80	\%80s		Series Description
startdate	str7	\%9s		Start Date
enddate	str7	\%9s		End Date
frequency	str9	\%9s		Frequency
source	str3	\%9s		Source

Sorted by:
The resulting dataset contains information on the 164 series in HAVERMQA. Suppose that we want to retrieve all monthly series whose description includes the word "Yield". We need to keep only the observations from our dataset where the frequency variable equals "Monthly" and where the description variable contains "Yield".

```
. keep if frequency=="Monthly" & strpos(description,"Yield")
(152 observations deleted)
```

To load the selected series into Stata, we type

```
. import haver, frommemory clear
```

Note: We must clear the described data in memory to load the selected series. If you do not want to lose the changes you made to the description dataset, you must save it before using import haver, frommemory.

## Temporal aggregation

If you request series with different frequencies, the higher frequency data will be aggregated to the lowest frequency. For example, if you request a monthly and a quarterly series, the monthly series will be aggregated. In rare cases, a series cannot be aggregated to a lower frequency and so will not be retrieved. A list of these series will be stored in $r$ (noaggtype).

The options fin() and fwithin() are useful for aggregating series by hand.

## Daily data

Haver's daily frequency corresponds to Stata's daily frequency. Haver's daily data series are business series for which business calendars are useful. See [D] datetime business calendars for more information on business calendars.

## Weekly data

Haver's weekly data are also retrieved to Stata's daily frequency. See [D] datetime business calendars for more information on business calendars.

## Stored results

import haver stores the following in r() :
Scalars
$r$ (k_requested) number of series requested
$r$ (k_noaggtype) number of series dropped because of invalid aggregation type
$r$ (k_nodisagg) number of series dropped because their frequency is lower than that of the output dataset
$r$ (k_notindata) number of series dropped because data were out of the date range specified in fwithin() or fin()
$r$ (k_notfound) number of series not found in the database
Macros
$r$ (noaggtype) list of series dropped because of invalid aggregation type
$r$ (nodisagg) list of series dropped because their frequency is lower than that of the output dataset
$r$ (notindata) list of series dropped because data were out of the date range specified in fwithin() or fin()
$r$ (notfound) list of series not found in the database
import haver, describe stores the following in $r()$ :
Scalars
$r$ (k_described) number of series described
$r$ ( $k$ _notfound) number of series not found in the database
Macros
$r$ (notfound) list of series not found in the database

## Acknowledgment

import haver was written with the help of Daniel C. Schneider of the House of Finance at Goethe University, Frankfurt, Germany.

## Also see

[D] import - Overview of importing data into Stata
[D] import delimited - Import delimited text data
[D] odbc - Load, write, or view data from ODBC sources
[TS] tsset - Declare data to be time-series data

## Title

import sasxport - Import and export datasets in SAS XPORT format

## Description

Menu
Options for import sasxport
Options for export sasxport
Stored results
Also see

Quick start<br>Syntax<br>Option for import sasxport, describe<br>Remarks and examples<br>Technical appendix

## Description

import sasxport and export sasxport convert datasets from and to SAS XPORT Transport format. The U.S. Food and Drug Administration uses SAS XPORT Transport format as the format for datasets submitted with new drug and new device applications (NDAs).

To save the data in memory as a SAS XPORT Transport file, type

- export sasxport filename
although sometimes you will want to type
. export sasxport filename, rename
It never hurts to specify the rename option. In any case, Stata will create filename. xpt as an XPORT file containing the data and, if needed, will also create formats.xpf-an additional XPORT file-containing the value-label definitions. These files can be easily read into SAS.

To read a SAS XPORT Transport file into Stata, type

- import sasxport filename

Stata will read into memory the XPORT file filename.xpt containing the data and, if available, will also read the value-label definitions stored in formats.xpf or FORMATS.xpf.
import sasxport, describe describes the contents of a SAS XPORT Transport file. The display is similar to that produced by describe. To describe a SAS XPORT Transport file, type
. import sasxport filename, describe
If filename is specified without an extension, . xpt is assumed.

## Quick start

Describe the contents of SAS XPORT Transport file mydata.xpt import sasxport mydata, describe

Load the contents of mydata.xpt into memory import sasxport mydata

As above, and ignore the accompanying SAS formats file formats.xpf import sasxport mydata, novallabels

Save data in memory to mydata. xpt
export sasxport mydata

As above, but rename variables to meet SAS XPORT restrictions export sasxport mydata, rename

As above, and do not save value labels
export sasxport mydata, rename replace vallabfile(none)
Save v1, v2, and v3 to mydata. xpt where time variable tvar is equal to 2010 export sasxport v1 v2 v3 using mydata if tvar==2010

## Menu

import sasxport
File $>$ Import $>$ SAS XPORT

## export sasxport

File $>$ Export $>$ SAS XPORT

## Syntax

Import SAS XPORT Transport file into Stata
import sasxport filename [, import_options]

Describe contents of SAS XPORT Transport file

```
import sasxport filename, describe [\underline{member(mbrname)]}
```

Export data in memory to a SAS XPORT Transport file

```
export sasxport filename [if] [in] [, export_options]
export sasxport varlist using filename [if] [in] [, export_options]
```

import_options Description

Main

clear	replace data in memory
novallabels	ignore accompanying formats.xpf file if it exists
member (mbrname)	member to use; seldom used

export_options
Main
rename
replace
vallabfile(xpf)
vallabfile(sascode)
vallabfile(both)
vallabfile(none)
rename variables and value labels to meet SAS XPORT restrictions overwrite files if they already exist
save value labels in formats. xpf
save value labels in SAS command file
save value labels in formats.xpf and in a SAS command file do not save value labels

## Options for import sasxport

clear permits the data to be loaded, even if there is a dataset already in memory and even if that dataset has changed since the data were last saved.
novallabels specifies that value-label definitions stored in formats.xpf or FORMATS.xpf not be looked for or loaded. By default, if variables are labeled in filename.xpt, then import sasxport looks for formats.xpf to obtain and load the value-label definitions. If the file is not found, Stata looks for FORMATS.xpf. If that file is not found, a warning message is issued.
import sasxport can use only a formats.xpf or FORMATS.xpf file to obtain value-label definitions. import sasxport cannot understand value-label definitions from a SAS command file.
member (mbrname) is a rarely specified option indicating which member of the .xpt file is to be loaded. It is not used much anymore, but the original XPORT definition allowed multiple datasets to be placed in one file. The member () option allows you to read these old files. You can obtain a list of member names using import sasxport, describe. If member () is not specified-and it usually is not-import sasxport reads the first (and usually only) member.

## Option for import sasxport, describe


#### Abstract

Main member (mbrname) is a rarely specified option indicating which member of the .xpt file is to be described. See the description of the member () option for import sasxport directly above. If member () is not specified, all members are described, one after the other. It is rare for an XPORT file to have more than one member.


## Options for export sasxport

Main
rename specifies that export sasxport may rename variables and value labels to attempt to meet the SAS XPORT restrictions, which are that names be no more than eight bytes long and that there be no distinction between uppercase and lowercase letters. Note that rename does not remove characters beyond the normal ASCII range, such as most Unicode characters and all extended ASCII characters. SAS may or may not support such characters in variable labels and value labels.

We recommend specifying the rename option. If this option is specified, any name violating the restrictions is changed to a different but related name in the file. The name changes are listed. The new names are used only in the file; the names of the variables and value labels in memory remain unchanged.

If rename is not specified and one or more names violate the XPORT restrictions, an error message will be issued and no file will be saved. The alternative to the rename option is that you can rename variables yourself with the rename command:
. rename mylongvariablename myname
See [D] rename. Renaming value labels yourself is more difficult. The easiest way to rename value labels is to use label save, edit the resulting file to change the name, execute the file by using do, and reassign the new value label to the appropriate variables by using label values:
. label save mylongvaluelabel using myfile.do
. doedit myfile.do (change mylongvaluelabel to, say, mlvlab)
. do myfile.do
. label values myvar mlvlab
See [D] label and [R] do for more information about renaming value labels.
replace permits export sasxport to overwrite existing filename.xpt, formats.xpf, and filename.sas files.
vallabfile (xpf $\mid$ sascode $\mid$ both $\mid$ none) specifies whether and how value labels are to be stored. SAS XPORT Transport files do not really have value labels. Value-label definitions can be preserved in one of two ways:

1. In an additional SAS XPORT Transport file whose data contain the value-label definitions
2. In a SAS command file that will create the value labels
export sasxport can create either or both of these files.
vallabfile (xpf), the default, specifies that value labels be written into a separate SAS XPORT Transport file named formats.xpf. Thus export sasxport creates two files: filename.xpt, containing the data, and formats.xpf, containing the value labels. No formats.xpf file is created if there are no value labels.

SAS users can easily use the resulting . xpt and .xpf XPORT files.
See http://www.sas.com/govedu/fda/macro.html for SAS-provided macros for reading the XPORT files. The SAS macro fromexp() reads the XPORT files into SAS. The SAS macro toexp() creates XPORT files. When obtaining the macros, remember to save the macros at SAS's webpage as a plain-text file and to remove the examples at the bottom.
If the SAS macro file is saved as C:\project\macros.mac and the files mydat.xpt and formats.xpf created by export sasxport are in C: \project $\backslash$, the following SAS commands would create the corresponding SAS dataset and format library and list the data:

```
 SAS commands
\%include "C:\project\macros.mac" ;
\%fromexp (C:\project, C:\project) ;
libname library 'C:\project' ;
data _null_ ; set library.mydat ; put _all_ ; run ;
proc print data \(=\) library.mydat ;
quit ;
```

vallabfile(sascode) specifies that the value labels be written into a SAS command file, filename.sas, containing SAS proc format and related commands. Thus export sasxport creates two files: filename.xpt, containing the data, and filename.sas, containing the value labels. SAS users may wish to edit the resulting filename.sas file to change the "libname datapath" and "libname xptfile xport" lines at the top to correspond to the location that they desire. export sasxport sets the location to the current working directory at the time export sasxport was issued. No .sas file will be created if there are no value labels.
vallabfile (both) specifies that both the actions described above be taken and that three files be created: filename.xpt, containing the data; formats.xpf, containing the value labels in XPORT format; and filename.sas, containing the value labels in SAS command-file format.
vallabfile(none) specifies that value-label definitions not be saved. Only one file is created: filename. xpt, which contains the data.

## Remarks and examples

All users, of course, may use these commands to transfer data between SAS and Stata, but there are limitations in the SAS XPORT Transport format, such as the eight-character limit on the names of variables (specifying export sasxport's rename option works around that). For a complete listing of limitations and issues concerning the SAS XPORT Transport format, and an explanation of how export sasxport and import sasxport work around these limitations, see Technical appendix below.

Remarks are presented under the following headings:
Saving XPORT files for transferring to SAS
Determining the contents of XPORT files received from SAS
Using XPORT files received from SAS

## Saving XPORT files for transferring to SAS

> Example 1
To save the current dataset in mydata. xpt and the value labels in formats.xpf, type
. export sasxport mydata
To save the data as above but automatically rename variable names and value labels that are too long or are case sensitive, type
. export sasxport mydata, rename
To allow the replacement of any preexisting files, type

```
. export sasxport mydata, rename replace
```

To save the current dataset in mydata. xpt and the value labels in SAS command file mydata.sas and to automatically rename variable names and value labels, type

```
. export sasxport mydata, rename vallab(sas)
```

To save the data as above but save the value labels in both formats.xpf and mydata.sas, type . export sasxport mydata, rename vallab(both)

To not save the value labels at all, thus creating only mydata. xpt, type

```
. export sasxport mydata, rename vallab(none)
```


## Determining the contents of XPORT files received from SAS

> Example 2
To determine the contents of testdata. xpt, you might type
. import sasxport testdata, describe

## Using XPORT files received from SAS

> Example 3
To read data from testdata. xpt and obtain value labels from formats.xpf (or FORMATS.xpf), if the file exists, you would type

To read the data as above and discard any data in memory, type

```
. import sasxport testdata, clear
```


## Stored results

import sasxport, describe stores the following in $r()$ :
Scalars
$r(N) \quad$ number of observations $\quad r$ size $)$ size of data
$r(k) \quad$ number of variables
$r$ ( $n \_$members) number of members
Macros
$r$ (members) names of members

## Technical appendix

Technical details concerning the SAS XPORT Transport format and how export sasxport and import sasxport handle issues regarding the format are presented under the following headings:

A1. Overview of SAS XPORT Transport format
A2. Implications for writing XPORT datasets from Stata
A3. Implications for reading XPORT datasets into Stata

## A1. Overview of SAS XPORT Transport format

A SAS XPORT Transport file may contain one or more separate datasets, known as members. It is rare for a SAS XPORT Transport file to contain more than one member. See http://support.sas.com/techsup/technote/ts140.pdf for the SAS technical document describing the layout of the SAS XPORT Transport file.

A SAS XPORT dataset (member) is subject to certain restrictions:

1. The dataset may contain only 9,999 variables.
2. The names of the variables and value labels may not be longer than eight characters and are case insensitive; for example, myvar, Myvar, MyVar, and MYVAR are all the same name.
3. Variable labels may not be longer than 40 characters.
4. The contents of a variable may be numeric or string:
a. Numeric variables may be integer or floating but may not be smaller than 5.398e79 or greater than $9.046 \mathrm{e}+74$, absolutely. Numeric variables may contain missing, which may be ., ._, .a, .b, ..., .z.
b. String variables may not exceed 200 characters. String variables are recorded in a "padded" format, meaning that, when variables are read, it cannot be determined whether the variable had trailing blanks.
5. Value labels are not written in the XPORT dataset. Suppose that you have variable sex in the data with values 0 and 1 , and the values are labeled for gender ( $0=$ male, and $1=$ female ). When the dataset is written in SAS XPORT Transport format, you can record that the variable label gender is associated with the sex variable, but you cannot record the association with the value labels male and female.
Value-label definitions are typically stored in a second XPORT dataset or in a text file containing SAS commands. You can use the vallabfile() option of export sasxport to produce these datasets or files.

Value labels and formats are recorded in the same position in an XPORT file, meaning that names corresponding to formats used in SAS cannot be used. Thus value labels may not be named
best, binary, comma, commax, d, date, datetime, dateampm, day, ddmmyy, dollar, dollarx, downame, e, eurdfdd, eurdfde, eurdfdn, eurdfdt, eurdfdwn, eurdfmn, eurdfmy, eurdfwdx, eurdfwkx, float, fract, hex, hhmm, hour, ib, ibr, ieee, julday, julian, percent, minguo, mmddyy, mmss, mmy, monname, month, monyy, negparen, nengo, numx, octal, pd, pdjulg, pdjuli, pib, pibr, pk, pvalue, qtr, qtrr, rb, roman, s370ff, s370fib, s370fibu, s370fpd, s370fpdu, s370fpib, s370frb, s370fzd, s370fzdl, s370fzds, s370fzdt, s370fzdu, ssn, time, timeampm, tod, weekdate, weekdatx, weekday, worddate, worddatx, wordf, words, year, yen, yymm, yymmdd, yymon, yyq, yyqr, z, zd, or any uppercase variation of these.
We refer to this as the "Known Reserved Word List" in this documentation. Other words may also be reserved by SAS; the technical documentation for the SAS XPORT Transport format provides no guidelines. This list was created by examining the formats defined in SAS Language Reference: Dictionary, Version 8. If SAS adds new formats, the list will grow.
6. A flaw in the XPORT design can make it impossible, in rare instances, to determine the exact number of observations in a dataset. This problem can occur only if 1) all variables in the dataset are string and 2) the sum of the lengths of all the string variables is less than 80. Actually, the above is the restriction, assuming that the code for reading the dataset is written well. If it is not, the flaw could occur if 1) the last variable or variables in the dataset are string and 2) the sum of the lengths of all variables is less than 80.
To prevent stumbling over this flaw, make sure that the last variable in the dataset is not a string variable. This is always sufficient to avoid the problem.
7. There is no provision for saving the Stata concepts notes and characteristics.

## A2. Implications for writing XPORT datasets from Stata

Stata datasets for the most part fit well into the SAS XPORT Transport format. With the same numbering scheme as above,

1. Stata refuses to write the dataset if it contains more than 9,999 variables.
2. Stata issues an error message if any variable or label name violates the naming restrictions, or if the rename option is specified, Stata fixes any names that violate the restrictions.
Whether or not rename is specified, names will be recorded case insensitively: you do not have to name all your variables with all lowercase or all uppercase letters. Stata verifies that ignoring case does not lead to problems, complaining or, if option rename is specified, fixing them.
3. Stata truncates variable labels to 40 characters to fit within the XPORT limit.
4. Stata treats variable contents as follows:
a. If a numeric variable records a value greater than $9.046 \mathrm{e}+74$ in absolute value, Stata issues an error message. If a variable records a value less than 5.398e-79 in absolute value, 0 is written.
b. If you have string variables longer than 200 characters, Stata issues an error message. Also, if any string variable has trailing blanks, Stata issues an error message. To remove trailing blanks from string variable s, you can type
```
. replace s = rtrim(s)
```

To remove leading and trailing blanks, type

```
. replace s = trim(s)
```

5. Value-label names are written in the XPORT dataset. The contents of the value label are not written in the same XPORT dataset. By default, formats.xpf, a second XPORT dataset, is created containing the value-label definitions.

SAS recommends creating a formats.xpf file containing the value-label definitions (what SAS calls format definitions). They have provided SAS macros, making the reading of . xpt and formats.xpf files easy. See http://www.sas.com/govedu/fda/macro.html for details.
Alternatively, a SAS command file containing the value-label definitions can be produced. The vallabfile() option of export sasxport is used to indicate which, if any, of the formats to use for recording the value-label definitions.

If a value-label name matches a name on the Known Reserved Word List, and the rename option is not specified, Stata issues an error message.
If a variable has no value label, the following format information is recorded:

Stata format	SAS format
$\%$ td. .	MMDDYY10.
$\%$-td. .	MMDDYY10.
$\%$ \#s	\$CHAR\#.
$\%$-\#s	\$CHAR\#.
$\%$ \#s	\$CHAR\#.
all other	BEST12.

6. If you have a dataset that could provoke the XPORT design flaw, a warning message is issued. Remember, the best way to avoid this flaw is to ensure that the last variable in the dataset is numeric. This is easily done. You could, for instance, type
```
. generate ignoreme = 0
. export sasxport ...
```

7. Because the XPORT file format does not support notes and characteristics, Stata ignores them when it creates the XPORT file. You may wish to incorporate important notes into the documentation that you provide to the user of your XPORT file.

## A3. Implications for reading XPORT datasets into Stata

Reading SAS XPORT Transport format files into Stata is easy, but sometimes there are issues to consider:

1. If there are too many variables, Stata issues an error message. If you are using Stata/MP or Stata/SE, you can increase the maximum number of variables with the set maxvar command; see [D] memory.
2. The XPORT format variable naming restrictions are more restrictive than those of Stata, so no problems should arise. However, Stata reserves the following names:
```
_all, _b, byte, _coef, _cons, double, float, if, in, int, long, _n, _N, _pi,
_pred, _rc, _skip, str#, strL, using, with
```

If the XPORT file contains variables with any of these names, Stata issues an error message. Also, the error message

```
. import sasxport ...
-----_ already defined
r(110);
```

indicates that the XPORT file was incorrectly prepared by some other software and that two or more variables share the same name.
3. The XPORT variable-label-length limit is more restrictive than that of Stata, so no problems can arise.
4. Variable contents may cause problems:
a. The range of numeric variables in an XPORT dataset is a subset of that allowed by Stata, so no problems can arise. All variables are brought back as doubles; we recommend that you run compress after loading the dataset:
. import sasxport ...

- compress

See [D] compress.
Stata has no missing-value code corresponding to . . . If any value records .., then . $u$ is stored.
b. String variables are brought back as recorded but with all trailing blanks stripped.
5. Value-label names are read directly from the XPORT dataset. Any value-label definitions are obtained from a separate XPORT dataset, if available. If a value-label name matches any in the Known Reserved Word List, no value-label name is recorded, and instead, the variable display format is set to $\% 9.0 \mathrm{~g}, \% 10.0 \mathrm{~g}$, or $\% \mathrm{td}$.
The \%td Stata format is used when the following SAS formats are encountered:
DATE, EURDFDN, JULDAY, MONTH, QTRR, YEAR, DAY, EURDFDWN, JULIAN, MONYY, WEEKDATE, YYMM, DDMMYY, EURDFMN, MINGUO, NENGO, WEEKDATX, YYMMDD, DOWNAME, EURDFMY, MMDDYY, PDJULG, WEEKDAY, YYMON, EURDFDD, EURDFWDX, MMYY, PDJULI, WORDDATE, YYQ, EURDFDE, EURDFWKX, MONNAME, QTR, WORDDATX, YYQR
If the XPORT file indicates that one or more variables have value labels, import sasxport looks for the value-label definitions in formats.xpf, another XPORT file. If it does not find this file, it looks for FORMATS.xpf. If this file is not found, import sasxport issues a warning message unless the novallabels option is specified.

Stata does not allow value-label ranges or string variables with value labels. If the .xpt file or formats.xpf file contains any of these, an error message is issued. The novallabels option allows you to read the data, ignoring all value labels.
6. If a dataset is read that provokes the all-strings XPORT design flaw, the dataset with the minimum number of possible observations is returned, and a warning message is issued. This duplicates the behavior of SAS.
7. SAS XPORT format does not allow notes or characteristics, so no issues can arise.

## Also see <br> [D] export - Overview of exporting data from Stata <br> [D] import - Overview of importing data into Stata

## Title

infile (fixed format) - Read text data in fixed format with a dictionary

Description	Quick start	Menu	Syntax
Options	Remarks and examples	References	Also see

## Description

infile using reads a dataset that is stored in text form. infile using does this by first reading dfilename-a "dictionary" that describes the format of the data file-and then reads the file containing the data. The dictionary is a file you create with the Do-file Editor or an editor outside Stata.

Strings containing plain ASCII or UTF-8 are imported correctly. Strings containing extended ASCII will not be imported (that is, displayed) correctly; you can use Stata's replace command with the ustrfrom() function to convert extended ASCII to UTF-8. If ebcdic is specified, the data will be converted from EBCDIC to ASCII as they are imported. The dictionary in all cases must be ASCII.

If using filename is not specified, the data are assumed to begin on the line following the closing brace. If using filename is specified, the data are assumed to be located in filename.

The data may be in the same file as the dictionary or in another file. infile with a dictionary can import both numeric and string data. Individual strings may be up to 100,000 bytes long. Strings longer than 2,045 bytes are imported as strLs (see [U] 12.4.8 strL).

Another variation on infile omits the intermediate dictionary; see [D] infile (free format). This variation is easier to use but will not read fixed-format files. On the other hand, although infile with a dictionary will read free-format files, infile without a dictionary is even better at it.

An alternative to infile using for reading fixed-format files is infix; see [D] infix (fixed format). infix provides fewer features than infile using but is easier to use.

Stata has other commands for reading data. If you are not certain that infile using will do what you are looking for, see [D] import and [U] 21 Entering and importing data.

## Quick start

For dictionary file mydata.dct that reads int-type v1 and str10-type v2

```
dictionary {
 int v1
 str10 v2
}
```

Import data from mydata. raw with instructions for reading the data contained in dictionary file mydata.dct

```
infile using mydata.dct, using(mydata.raw)
```

Same as above
infile using mydata, using(mydata)
As above, but import data from mydata.txt

```
infile using mydata, using(mydata.txt)
```

As above, but read only the first 10 observations
infile using mydata in $1 / 10$, using(mydata.txt)
Read only observations where catvar is equal to 4 or 5
infile using mydata if catvar==4 | catvar==5, using(mydata.txt)

## Menu

File $>$ Import $>$ Text data in fixed format with a dictionary

## Syntax

infile using dfilename $[$ if $][$ in] [, options $]$

If dfilename is specified without an extension, .dct is assumed. If dfilename contains embedded spaces, remember to enclose it in double quotes.
options
Main
using(filename) text dataset filename
clear replace data in memory
Options
automatic
ebcdic

Description
create value labels from nonnumeric data treat text dataset as EBCDIC

A dictionary is a text file that is created with the Do-file Editor or an editor outside Stata. This file specifies how Stata should read fixed-format data from a text file. The syntax for a dictionary is

where $\%$ infint is $\{\%[\#[. \#]]\{\mathrm{f}|\mathrm{g}| \mathrm{e}\}|\%[\#] \mathrm{s}| \%[\#] \mathrm{S}\}$

## Options

## Main

using(filename) specifies the name of a file containing the data. If using() is not specified, the data are assumed to follow the dictionary in dfilename, or if the dictionary specifies the name of some other file, that file is assumed to contain the data. If using(filename) is specified, filename is used to obtain the data, even if the dictionary says otherwise. If filename is specified without an extension, .raw is assumed.
If filename contains embedded spaces, remember to enclose it in double quotes.
clear specifies that it is okay for the new data to replace what is currently in memory. To ensure that you do not lose something important, infile using will refuse to read new data if other data are already in memory. clear allows infile using to replace the data in memory. You can also drop the data yourself by typing drop _all before reading new data.

## Options

automatic causes Stata to create value labels from the nonnumeric data it reads. It also automatically widens the display format to fit the longest label.
ebcdic specifies that the data be stored using EBCDIC character encoding rather than the default ASCII encoding and that the data be converted from EBCDIC to ASCII as they are imported.

## Dictionary directives

* marks comment lines. Wherever you wish to place a comment, begin the line with a *. Comments can appear many times in the same dictionary.
_lrecl(\#) is used only for reading datasets that do not have end-of-line delimiters (carriage return, line feed, or some combination of these). Such files are often produced by mainframe computers and are either coded in EBCDIC or have been translated from EBCDIC into ASCII. _lrecl() specifies the logical record length. _lrecl() requests that infile act as if a line ends every \# bytes.
_lrecl() appears only once, and typically not at all, in a dictionary.
_firstlineoffile(\#) (abbreviation _first()) is also rarely specified. It states the line of the file where the data begin. You do not need to specify _first() when the data follow the dictionary; Stata can figure that out for itself. However, you might specify _first() when reading data from another file in which the first line does not contain data because of headers or other markers.
_first() appears only once, and typically not at all, in a dictionary.
_lines(\#) states the number of lines per observation in the file. Simple datasets typically have _lines(1). Large datasets often have many lines (sometimes called records) per observation. _lines() is optional, even when there is more than one line per observation because infile can sometimes figure it out for itself. Still, if _lines(1) is not right for your data, it is best to specify the correct number through _lines(\#).
_lines() appears only once in a dictionary.
_line(\#) tells infile to jump to line \# of the observation. _line() is not the same as _lines(). Consider a file with _lines (4), meaning four lines per observation. _line(2) says to jump to the second line of the observation. _line (4) says to jump to the fourth line of the observation. You may jump forward or backward. infile does not care, and there is no inefficiency in going forward to _line(3), reading a few variables, jumping back to _line(1), reading another variable, and jumping forward again to _line(3).

You need not ensure that, at the end of your dictionary, you are on the last line of the observation. infile knows how to get to the next observation because it knows where you are and it knows _lines(), the total number of lines per observation.
_line() may appear many times in a dictionary.
_newline[(\#)] is an alternative to _line(). _newline(1), which may be abbreviated _newline, goes forward one line. _newline(2) goes forward two lines. We do not recommend using _newline () because _line() is better. If you are currently on line 2 of an observation and want to get to line 6 , you could type _newline (4), but your meaning is clearer if you type _line(6).
_newline() may appear many times in a dictionary.
_column (\#) jumps to column \# (in bytes) of the current line. You may jump forward or backward within a line. _column() may appear many times in a dictionary.
_skip[(\#)] jumps forward \# columns on the current line. _skip() is just an alternative to _column(). _skip() may appear many times in a dictionary.
[type] varname [:lblname] [\% infmt] ["variable label"] instructs infile to read a variable. The simplest form of this instruction is the variable name itself: varname.

At all times, infile is on some column of some line of an observation. infile starts on column 1 of line 1 , so pretend that is where we are. Given the simplest directive, 'varname', infile goes through the following logic:

If the current column is blank, it skips forward until there is a nonblank column (or until the end of the line). If it just skipped all the way to the end of the line, it stores a missing value in varname. If it skipped to a nonblank column, it begins collecting what is there until it comes to a blank column or the end of the line. These are the data for varname. Then it sets the current column to wherever it is.

The logic is a bit more complicated. For instance, when skipping forward to find the data, infile might encounter a quote. If so, it then collects the characters for the data by skipping forward until it finds the matching quote. If you specified a $\%$ infmt, then infile skips the skipping-forward step and simply collects the specified number of bytes. If you specified a \%Sinfmt, then infile does not skip leading or trailing blanks. Nevertheless, the general logic is (optionally) skip, collect, and reset.

## Remarks and examples

Remarks are presented under the following headings:

[^7]
## Introduction

infile using follows a two-step process to read your data. You type something like infile using descript, and

1. infile using reads the file descript.dct, which tells infile about the format of the data; and
2. infile using then reads the data according to the instructions recorded in descript.dct. descript.dct (the file could be named anything) is called a dictionary, and descript.dct is just a text file that you create with the Do-file Editor or an editor outside Stata.

As for the data, they can be in the same file as the dictionary or in a different file. It does not matter.

## Reading free-format files

Another variation of infile for reading free-format files is described in [D] infile (free format). We will refer to this variation as infile without a dictionary. The distinction between the two variations is in the treatment of line breaks. infile without a dictionary does not consider them significant. infile with a dictionary does.

A line, also known as a record, physical record, or physical line (as opposed to observations, logical records, or logical lines), is a string of characters followed by the line terminator. If you were to type the file, a line is what would appear on your screen if your screen were infinitely wide. Your screen would have to be infinitely wide so that there would be no possibility that one line could take more than one line of your screen, thus fooling you into thinking that there are multiple lines when there is only one.

A logical line, on the other hand, is a sequence of one or more physical lines that represent one observation of your data. infile with a dictionary does not spontaneously go to new physical lines; it goes to a new line only between observations and when you tell it to. infile without a dictionary, on the other hand, goes to a new line whenever it needs to, which can be right in the middle of an observation. Thus consider the following little bit of data, which is for three variables:

```
54
193
2
```

How do you interpret these data?
Here is one interpretation: There are 3 observations. The first is 5,4 , and missing. The second is 1,9 , and 3 . The third is 2 , missing, and missing. That is the interpretation that infile with a dictionary makes.

Here is another interpretation: There are 2 observations. The first is 5,4 , and 1 . The second is 9 , 3 , and 2 . That is the interpretation that infile without a dictionary makes.

Which is right? You would have to ask the person who entered these data. The question is, are the line breaks significant? Do they mean anything? If the line breaks are significant, you use infile with a dictionary. If the line breaks are not significant, you use infile without a dictionary.

The other distinction between the two infiles is that infile with a dictionary does not process comma-separated-value format. If your data are comma-separated, tab-separated, or otherwise delimited, see [D] import delimited or [D] infile (free format).

## > Example 1: A simple dictionary with data

Outside Stata, we have typed into the file highway.dct information on the accident rate per million vehicle miles along a stretch of highway, the speed limit on that highway, and the number of access points (on-ramps and off-ramps) per mile. Our file contains

```
infile dictionary {
 acc_rate spdlimit acc_pts
}
4.58 55 4.6
2.86 60 4.4
1.61 . 2.2
3.02 60 4.7
```

This file can be read by typing the commands below. Stata displays the dictionary and reads the data:

```
. infile using highway
infile dictionary {
 acc_rate spdlimit acc_pts
}
(4 observations read)
```

. list

	acc_rate	spdlimit	acc_pts
1.	4.58	55	4.6
2.	2.86	60	4.4
3.	1.61	.	2.2
4.	3.02	60	4.7

## > Example 2: Specifying variable labels

We can include variable labels in a dictionary so that after we infile the data, the data will be fully labeled. We could change highway.dct to read

```
infile dictionary {
* This is a comment and will be ignored by Stata
* You might type the source of the data here.
 acc_rate "Acc. Rate/Million Miles"
 spdlimit "Speed Limit (mph)"
 acc_pts "Access Pts/Mile"
}
4.58 55 4.6
2.86 60 4.4
1.61 . 2.2
3.02604.7
```

Now when we type infile using highway, Stata not only reads the data but also labels the variables.

## > Example 3: Specifying variable storage types

We can indicate the variable types in the dictionary. For instance, if we wanted to store acc_rate as a double and spdlimit as a byte, we could change highway.dct to read

```
infile dictionary {
* This is a comment and will be ignored by Stata
* You might type the source of the data here.
 double acc_rate "Acc. Rate/Million Miles"
 byte spdlimit "Speed Limit (mph)"
 acc_pts "Access Pts/Mile"
}
4.58 55 4.6
2.86 60 4.4
1.61 . 2.2
3.02 60 4.7
```

Because we do not indicate the variable type for acc_pts, it is given the default variable type float (or the type specified by the set type command).
> Example 4: Reading string variables
By specifying the types, we can read string variables as well as numeric variables. For instance,

```
infile dictionary {
* data on employees
 str20 name "Name"
 age "Age"
 int sex "Sex coded 0 male 1 female"
}
"Lisa Gilmore" 25 1
Branton 32 1
 'Bill Ross' 27 0
```

The strings can be delimited by single or double quotes, and quotes may be omitted altogether if the string contains no blanks or other special characters.

## Example 5: Specifying value labels

You may attach value labels to variables in the dictionary by using the colon notation:

```
infile dictionary {
* data on name, sex, and age
 str16 name "Name"
 sex:sexlbl "Sex"
 int age "Age"
}
"Arthur Doyle" Male 22
"Mary Hope" Female 37
"Guy Fawkes" Male 48
"Karen Cain" Female 25
```

If you want the value labels to be created automatically, you must specify the automatic option on the infile command. These data could be read by typing infile using emp2, automatic, assuming the dictionary and data are stored in the file emp2.dct.

## > Example 6: Separate the dictionary and data files

The data need not be in the same file as the dictionary. We might leave the highway data in highway.raw and write a dictionary called highway.dct describing the data:

```
infile dictionary using highway {
* This dictionary reads the file highway.raw. If the
* file were called highway.txt, the first line would
* read "dictionary using highway.txt"
 acc_rate "Acc. Rate/Million Miles"
 spdlimit "Speed Limit (mph)"
 acc_pts "Access Pts/Mile"
}
```


## > Example 7: Ignoring the top of a file

The firstlineoffile() directive allows us to ignore lines at the top of the file. Consider the following raw dataset:

```
The following data was entered by Marsha Martinez. It was checked by
Helen Troy.
id income educ sex age
1024 25000 HS Male 28
1025 27000 C Female 24
```

Our dictionary might read
infile dictionary using mydata \{
_first(4)
int id "Identification Number"
income "Annual income"
str2 educ "Highest educ level"
str6 sex
byte age

## > Example 8: Data spread across multiple lines

The _line() and _lines() directives tell Stata how to read our data when there are multiple records per observation. We have the following in mydata2.raw:
$\qquad$
id income educ sex age
102425000 HS
Male
28
102527000 C
Female
24
103526000 HS
Male
32
103625000 C
Female
25

We can read this with a dictionary mydata2.dct, which we will just let Stata list as it simultaneously reads the data:

```
. infile using mydata2, clear
infile dictionary using mydata2 {
 _first(2) * Begin reading on line 2
 _lines(3) * Each observation takes 3 lines.
 int id "Identification Number" * Since _line is not specified, Stata
 income "Annual income" * assumes that it is 1.
 str2 educ "Highest educ level"
 _line(2) * Go to line 2 of the observation.
 str6 sex * (values for sex are located on line 2)
 _line(3) * Go to line 3 of the observation.
 int age * (values for age are located on line 3)
}
(4 observations read)
. list
```

	id	income	educ	sex	age
1.	1024	25000	HS	Male	28
2.	1025	27000	C	Female	24
3.	1035	26000	HS	Male	32
4.	1036	25000	C	Female	25

Here is the really good part: we read these variables in order, but that was not necessary. We could just as well have used the dictionary:

```
infile dictionary using mydata2 {
 _first(2)
 _lines(3)
 _line(1) int id "Identification number"
 income "Annual income"
 str2 educ "Highest educ level"
 _line(3) int age
 _line(2) str6 sex
}
```

We would have obtained the same results just as quickly, the only difference being that our variables in the final dataset would be in the order specified: id, income, educ, age, and sex.

## Technical note

You can use _newline to specify where breaks occur, if you prefer:

```
infile dictionary {
 acc_rate "Acc. Rate/Million Miles"
 spdlimit "Speed Limit (mph)"
_newline acc_pts "Access Pts/Mile"
}
4.5855
4 . 6
2.86 60
 4.4
1.61.
2.2
3.0260
 4.7
```

The line reading ' 1.61 .' could have been read 1.61 (without the period), and the results would have been unchanged. Because dictionaries do not go to new lines automatically, a missing value is assumed for all values not found in the record.

## Reading fixed-format files

Values in formatted data are sometimes packed one against the other with no intervening blanks. For instance, the highway data might appear as

```
4.58554.6
2.86604.4
1.61 2.2
3.02604.7
```

The first four columns of each record represent the accident rate; the next two columns, the speed limit; and the last three columns, the number of access points per mile.

To read these data, you must specify the \%infmt in the dictionary. Numeric \%infints are denoted by a leading percent sign (\%) followed optionally by a string of the form $w$ or $w . d$, where $w$ and $d$ stand for two integers. The first integer, $w$, specifies the width of the format. The second integer, $d$, specifies the number of digits that are to follow the decimal point. $d$ must be less than or equal to $w$. Finally, a character denoting the format type (f,g, or e) is appended. For example, $\% 9.2 \mathrm{f}$ specifies an $f$ format that is nine characters wide and has two digits following the decimal point.

## Numeric formats

The $f$ format indicates that infile is to attempt to read the data as a number. When you do not specify the \%infmt in the dictionary, infile assumes the \%f format. The width, $w$, being missing means that infile is to attempt to read the data in free format.

As it starts reading each observation, infile reads a record into its buffer and sets a column pointer to 1 , indicating that it is currently on the first column. When infile processes a $\% \mathrm{f}$ format, it moves the column pointer forward through white space. It then collects the characters up to the next occurrence of white space and attempts to interpret those characters as a number. The column pointer is left at the first occurrence of white space following those characters. If the next variable is also free format, the logic repeats.

When you explicitly specify the field width $w$, as in $\% w f$, infile does not skip leading white space. Instead, it collects the next $w$ characters starting at the column pointer and attempts to interpret the result as a number. The column pointer is left at the old value of the column pointer plus $w$, that is, on the first character following the specified field.
> Example 9: Specifying the width of fields
If the data above were stored in highway.raw, we could create the following dictionary to read the data:

infile dictionary using highway \{		
acc_rate	$\% 4 \mathrm{f}$	"Acc. Rate/Million Miles"
spdlimit	$\% 2 \mathrm{f}$	"Speed Limit (mph)"
acc_pts	$\% 3 f$	"Access Pts/Mile
\}		

When we explicitly indicate the field width, infile does not skip intervening characters. The first four columns are used for the variable acc_rate, the next two for spdlimit, and the last three for acc_pts.

## Technical note

The $d$ specification in the $\% w . d \mathbf{f}$ indicates the number of implied decimal places in the data. For instance, the string 212 read in a $\% 3.2$ format represents the number 2.12. Do not specify $d$ unless your data have elements of this form. The $w$ alone is sufficient to tell infile how to read data in which the decimal point is explicitly indicated.

When you specify $d$, Stata takes it only as a suggestion. If the decimal point is explicitly indicated in the data, that decimal point always overrides the $d$ specification. Decimal points are also not implied if the data contain an E, e, D, or d, indicating scientific notation.

Fields are right-justified before implying decimal points. Thus ' 2 ', ' 2 ', and ' 2 ' are all read as 0.2 by the $\% 3.1 \mathrm{f}$ format.

## - Technical note

The $g$ and $e$ formats are the same as the $f$ format. You can specify any of these letters interchangeably. The letters $g$ and $e$ are included as a convenience to those familiar with Fortran, in which the e format indicates scientific notation. For example, the number 250 could be indicated as $2.5 \mathrm{E}+02$ or $2.5 \mathrm{D}+02$. Fortran programmers would refer to this as an E7.5 format, and in Stata, this format would be indicated as $\% 7.5 \mathrm{e}$. In Stata, however, you need specify only the field width $w$, so you could read this number by using $\% 7 \mathrm{f}, \% 7 \mathrm{~g}$, or $\% 7$ e.

The $g$ format is really a Fortran output format that indicates a freer format than $f$. In Stata, the two formats are identical.

Throughout this section, you may freely substitute the $g$ or e formats for the $f$ format.

## Technical note

Be careful to distinguish between \% fmts and \% infmts. \% fmts are also known as display formats-they describe how a variable is to look when it is displayed; see [U] 12.5 Formats: Controlling how data are displayed. \%infints are also known as input formats-they describe how a variable looks when you input it. For instance, there is an output date format, \%td, but there is no corresponding input format. (See [U] 24 Working with dates and times for recommendations on how to read dates.) For the other formats, we have attempted to make the input and output definitions as similar as possible. Thus we include g , e, and $\mathrm{f} \%$ infints, even though they all mean the same thing, because g , e, and f are also $\%$ fmts.

## String formats

The $\mathbf{s}$ and S formats are used for reading strings. The syntax is $\% w$ s or $\% w \mathbf{S}$, where the $w$ is optional. If you do not specify the field width, your strings must either be enclosed in quotes (single or double) or not contain any characters other than letters, numbers, and "-".

This may surprise you, but the $s$ format can be used for reading numeric variables, and the $f$ format can be used for reading string variables! When you specify the field width, $w$, in the $\% w f$ format, all embedded blanks in the field are removed before the result is interpreted. They are not removed by the $\% w$ s format.

For instance, the $\% 3 f$ format would read "- $2 "$ " " -2 ", or " -2 " as the number -2 . The $\% 3$ s format would not be able to read "- 2 " as a number, because the sign is separated from the digit, but it could read " -2 " or " -2 ". The $\% w$ f format removes blanks; datasets written by some Fortran programs separate the sign from the number.

There are, however, some side effects of this practice. The string " 22 " will be read as 22 by a $\% 3 f$ format. Most Fortran compilers would read this number as 202 . The $\% 3$ s format would issue a warning and store a missing value.

Now consider reading the string "a b" into a string variable. Using a \%3s format, Stata will store it as it appears: a b. Using a $\% 3 \mathrm{f}$ format, however, it will be stored as ab-the middle blank will be removed.
$\% w \mathrm{~s}$ is a special case of $\% w$ s. A string read with $\% w$ s will have leading and trailing blanks removed, but a string read with $\% w \mathrm{~S}$ will not have them removed.

Examples using the \%s format are provided below, after we discuss specifying column and line numbers.

## Specifying column and line numbers

_column() jumps to the specified column. For instance, the documentation of some dataset indicates that the variable age is recorded as a two-digit number in column 47. You could read this by coding

```
_column(47) age %2f
```

After typing this, you are now at column 49, so if immediately following age there were a one-digit number recording sex as 0 or 1 , you could code

$$
\begin{array}{ll}
\text { _column (47) age } \% 2 f \\
\text { sex } \% 1 f
\end{array}
$$

or, if you wanted to be explicit about it, you could instead code

```
_column(47) age %2f
_column(49) sex %1f
```

It makes no difference. If at column 50 there were a one-digit code for race and you wanted to read it but skip reading the sex code, you could code

```
_column(47) age %2f
_column(50) race %1f
```

You could equivalently skip forward using _skip():

```
_column(47) age %2f
_skip(1) race %1f
```

One advantage of column() over _skip is that it lets you jump forward or backward in a record. If you wanted to read race and then age, you could code

```
_column(50) race %1f
_column(47) age %2f
```

If the data you are reading have multiple lines per observation (sometimes said as multiple records per observation), you can tell infile how many lines per record there are by using _lines():

```
_lines(4)
```

_lines() appears only once in a dictionary. Good style says that it should be placed near the top of the dictionary, but Stata does not care.

When you want to go to a particular line, include the _line() directive. In our example, let's assume that race, sex, and age are recorded on the second line of each observation:

```
_lines(4)
_line(2)
 _column(47) age %2f
 _column(50) race %1f
```

Let's assume that id is recorded on line 1.

```
_lines(4)
_line(1)
 _column(1) id %4f
_line(2)
 _column(47) age %2f
 _column(50) race %1f
```

_line() works like _column() in that you can jump forward or backward, so these data could just as well be read by

```
_lines(4)
_line(2)
 _column(47) age %2f
 _column(50) race %1f
_line(1)
 _column(1) id %4f
```

Remember that this dataset has four lines per observation, and yet we have never referred to line (3) or line (4). That is okay. Also, at the end of our dictionary, we are on line 1, not line 4. That is okay, too. infile will still get to the next observation correctly.

## Technical note

Another way to move between records is _newline(). _newline() is to _line() as _skip() is to _column(), which is to say, _newline() can only go forward. There is one difference: _skip() has its uses, whereas _newline() is useful only for backward capability with older versions of Stata.
_skip() has its uses because sometimes we think in columns and sometimes we think in widths. Some data documentation might include the sentence, "At column 54 are recorded the answers to the 25 questions, with one column allotted to each." If we want to read the answers to questions 1 and 5 , it would indeed be natural to code

```
_column(54) q1 %1f
_skip(3)
 q5 %1f
```

Nobody has ever read data documentation with the statement, "Demographics are recorded on record 2, and two records after that are the income values." The documentation would instead say, "Record 2 contains the demographic information and record 4, income." The _newline() way of thinking is based on what is convenient for the computer, which does, after all, have to move past a certain number of records. That, however, is no reason for making you think that way.

Before that thought occurred to us, Stata users specified newline() to go forward a number of records. They still can, so their old dictionaries will work. When you use _newline() and do not specify _lines(), you must move past the correct number of records so that, at the end of the dictionary, you are on the last record. In this mode, when Stata reexecutes the dictionary to process the next observation, it goes forward one record.

## Examples of reading fixed-format files

> Example 10: A file with two lines per observation
In this example, each observation occupies two lines. The first 2 observations in the dataset are

```
John Dunbar
1 0 0 0 1 1 0 1 ~ N o r t h ~ 4 2 n d ~ S t r e e t
1010111111
Sam K. Newey Jr. 10002 15663 Roustabout Boulevard
0 1 0 1 0 0 0 0 0 0
```

The first observation tells us that the name of the respondent is John Dunbar; that his ID is 10001 ; that his address is 101 North 42nd Street; and that his answers to questions $1-10$ were yes, no, yes, no, yes, yes, yes, yes, yes, and yes.

The second observation tells us that the name of the respondent is Sam K. Newey Jr.; that his ID is 10002 ; that his address is 15663 Roustabout Boulevard; and that his answers to questions $1-10$ were no, yes, no, yes, no, no, no, no, no, and no.

To see the layout within the file, we can temporarily add two rulers to show the appropriate columns:


Each observation in the data appears in two physical lines within our text file. We had to check in our editor to be sure that there really were new-line characters (for example, "hard returns") after the address. This is important because some programs will wrap output for you so that one line may appear as many lines. The two seemingly identical files will differ in that one has a hard return and the other has a soft return added only for display purposes.

In our data, the name occupies columns 1-32; a person identifier occupies columns 33-37; and the address occupies columns 40-80. Our worksheet revealed that the widest address ended in column 80.

The text file containing these data is called fname.txt. Our dictionary file looks like this:

```
infile dictionary using fname.txt {
*
* Example reading in data where observations extend across more
* than one line. The next line tells infile there are 2 lines/obs:
*
_lines(2)
\begin{tabular}{lllll}
& str50 & name & \(\%\) 32s & "Name of respondent" \\
_column(33) & \begin{tabular}{lll}
long & id & \(\% 5 f\)
\end{tabular} & \begin{tabular}{l}
"Person id"
\end{tabular} \\
_skip(2) & str50 & addr & \(\% 41 \mathrm{~s}\) & "Address" \\
_line(2) & & & & \\
_column(1) & byte & q1 & \(\% 1 \mathrm{f}\) & "Question 1" \\
& byte & q2 & \(\% 1 \mathrm{f}\) & "Question 2" \\
& byte & q3 & \(\% 1 \mathrm{f}\) & "Question 3" \\
& byte & q4 & \(\% 1 \mathrm{f}\) & "Question 4" \\
& byte & q5 & \(\% 1 \mathrm{f}\) & "Question 5" \\
& byte & q6 & \(\% 1 \mathrm{f}\) & "Question 6" \\
& byte & q7 & \(\% 1 \mathrm{f}\) & "Question 7" \\
& byte & q8 & \(\% 1 \mathrm{f}\) & "Question 8" \\
& byte & q9 & \(\% 1 \mathrm{f}\) & "Question 9" \\
& byte & q10 & \(\% 1 \mathrm{f}\) & "Question 10"
\end{tabular}
```

Up to five pieces of information may be supplied in the dictionary for each variable: the location of the data, the storage type of the variable, the name of the variable, the input format, and the variable label.

Thus the str50 line says that the first variable is to be given a storage type of str50, called name, and is to have the variable label "Name of respondent". The $\% 32 \mathrm{~s}$ is the input format, which
tells Stata how to read the data. The s tells Stata not to remove any embedded blanks; the 32 tells Stata to go across 32 columns when reading the data.

The next line says that the second variable is to be assigned a storage type of long, named id, and be labeled "Person id". Stata should start reading the information for this variable in column 33. The $f$ tells Stata to remove any embedded blanks, and the 5 says to read across five columns.

The third variable is to be given a storage type of str50, called addr, and be labeled "Address". The _skip (2) directs Stata to skip two columns before beginning to read the data for this variable, and the $\% 41$ s instructs Stata to read across 41 columns and not to remove embedded blanks.
line(2) instructs Stata to go to line 2 of the observation.
The remainder of the data is $0 / 1$ coded, indicating the answers to the questions. It would be convenient if we could use a shorthand to specify this portion of the dictionary, but we must supply explicit directives.

## - Technical note

In the preceding example, there were two pieces of information about location: where the data begin for each variable (the _column(), _skip(), _line()) and how many columns the data span (the $\% 32 \mathrm{~s}, \% 5 \mathrm{f}, \% 41 \mathrm{~s}, \% 1 \mathrm{f}$ ). In our dictionary, some of this information was redundant. After reading name, Stata had finished with 32 columns of information. Unless instructed otherwise, Stata would proceed to the next column-column 33-to begin reading information about id. The _column (33) was unnecessary.

The _skip(2) was necessary, however. Stata had read 37 columns of information and was ready to look at column 38. Although the address information does not begin until column 40, columns 38 and 39 contain blanks. Because these are leading blanks instead of embedded blanks, Stata would just ignore them without any trouble. The problem is with the $\% 41 \mathrm{~s}$. If Stata begins reading the address information from column 38 and reads 41 columns, Stata would stop reading in column 78 ( $78-41+1=38$ ), but the widest address ends in column 80 . We could have omitted the _skip (2) if we had specified an input format of $\% 43 \mathrm{~s}$.

The _line(2) was necessary, although we could have read the second line by coding newline instead.

The _column (1) could have been omitted. After the _line(), Stata begins in column 1.
See the next example for a dataset in which both pieces of location information are required.
> Example 11: Manipulating the column pointer
The following file contains six variables in a variety of formats. In the dictionary, we read the variables fifth and sixth out of order by forcing the column pointer.

infile dictionary \{	
	first \%3f
double	second \%2.1f
	third \%6f
_skip(2) str4	fourth \% 4 s
_column(21)	sixth \% 4.1 f
_column(18)	fifth \%2f
\}	
$1.2125 .7 \mathrm{e}+252 \mathrm{abcd} 1.232$	
1.3135 .7 52efgh2	
1.41457 52abcd 3100.	
1.5155.7D+252efgh04 1.7	
1616.57 52abcd 51.7	

Assuming that the above is stored in a file called example.dct, we can infile and list it by typing

```
. infile using example
infile dictionary {
 first %3f
 double second %2.1f
 third %6f
 _skip(2) str4 fourth %4s
 _column(21) sixth %4.1f
 _column(18) fifth %2f
}
(5 observations read)
. list
```


## Reading fixed-block files

## - Technical note

The _lrecl (\#) directive is used for reading datasets that do not have end-of-line delimiters (carriage return, line feed, or some combination of these). Such datasets are typical of IBM mainframes, where they are known as fixed block, or FB. The abbreviation LRECL is IBM mainframe jargon for logical record length.

In a fixed-block dataset, each \# characters are to be interpreted as a record. For instance, consider the data

```
121
242
363
```

In fixed-block format, these data might be recorded as

121242363	begin mydata.ibm - end mydata.ibm -

and you would be told, on the side, that the LRECL is 4 . If you then pass along that information to infile, it can read the data:


When you do not specify the _lrecl(\#) directive, infile assumes that each line ends with the standard text EOL delimiter (which can be a line feed, a carriage return, a line feed followed by a carriage return, or a carriage return followed by a line feed). When you specify _lrecl(\#), infile reads the data in blocks of \# characters and then acts as if that is a line.

A common mistake in processing fixed-block datasets is to use an incorrect LRECL value, such as 160 when it is really 80 . To understand what can happen, pretend that you thought the LRECL in your data was 6 rather than 4 . Taking the characters in groups of 6 , the data appear as

1212
42363

Stata cannot verify that you have specified the correct LRECL, so if the data appear incorrect, verify that you have the correct number.

The maximum LRECL infile allows is 524,275.

## Reading EBCDIC files

In the previous section, we discussed the _lrecl(\#) directive that is often necessary for files that originated on mainframes and do not have end-of-line delimiters.

Such files sometimes are not even plain-text files. Sometimes, these files have an alternate character encoding known as extended binary coded decimal interchange code (EBCDIC). The EBCDIC encoding was created in the 1960s by IBM for its mainframes.

Because EBCDIC is a different character encoding, we cannot even show you a printed example; it would be unreadable. Nevertheless, Stata can convert EBCDIC files to ASCII (see [D] filefilter) and can read data from EBCDIC files.

If you have a data file encoded with EBCDIC, you undoubtedly also have a description of it from which you can create a dictionary that includes the LRECL of the file (EBCDIC files do not typically have end-of-line delimiters) and the character positions of the fields in the file. You create a dictionary for an EBCDIC file just as you would for a plain-text file, using the Do-file Editor or another text editor, and being sure to use the _lrecl() directive in the dictionary to specify the LRECL. You then simply specify the ebcdic option for infile, and Stata will convert the characters in the file from EBCDIC to ASCII on the fly:
. infile using mydict, ebcdic

## References

Gleason, J. R. 1998. dm54: Capturing comments from data dictionaries. Stata Technical Bulletin 42: 3-4. Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 55-57. College Station, TX: Stata Press.

Gould, W. W. 1992. dm10: Infiling data: Automatic dictionary creation. Stata Technical Bulletin 9: 4-8. Reprinted in Stata Technical Bulletin Reprints, vol. 2, pp. 28-34. College Station, TX: Stata Press.
Nash, J. D. 1994. dm19: Merging raw data and dictionary files. Stata Technical Bulletin 20: 3-5. Reprinted in Stata Technical Bulletin Reprints, vol. 4, pp. 22-25. College Station, TX: Stata Press.

## Also see

[D] infile (free format) - Read unformatted text data
[D] infix (fixed format) - Read text data in fixed format
[D] export - Overview of exporting data from Stata
[D] import - Overview of importing data into Stata
[U] 21 Entering and importing data

## Title

infile (free format) — Read unformatted text data

Description	Quick start	Menu
Syntax	Options	Remarks and examples
Also see		

## Description

infile reads into memory from a disk a dataset that is not in Stata format.
Here we discuss using infile to read free-format data, meaning datasets in which Stata does not need to know the formatting information. Another variation on infile allows reading fixed-format data; see [D] infile (fixed format). Yet another alternative is import delimited, which is easier to use if your data are tab- or comma-separated and contain 1 observation per line. Stata has other commands for reading data, too. If you are not certain that infile will do what you are looking for, see [D] import and [U] 21 Entering and importing data.

After the data are read into Stata, they can be saved in a Stata-format dataset; see [D] save.

## Quick start

Import unformatted text data from mydata1.raw and name the imported float variables $\mathrm{v} 1, \mathrm{v} 2$, and v3

```
infile v1 v2 v3 using mydata1
```

As above, but skip 1 variable in the original file between v1 and v2
infile v1 _skip(1) v2 v3 using mydata1
As above, and indicate that v1 is a byte variable, v2 is a string variable of length 30 , and v3 is a double variable

```
infile byte v1 _skip(1) str30 v2 double v3 using mydata1
```

Also read v4 as a double
infile byte v1 _skip(1) str30 v2 double(v3 v4) using mydata1
Import unformatted text data from mydata2.raw where 74 observations on v1, v2, and v3 are stored in rows instead of columns
infile v1 v2 v3 using mydata2, byvariable(74)
As above, but import mydata2.csv
infile v1 v2 v3 using mydata2.csv, byvariable(74)

## Menu

File $>$ Import $>$ Unformatted text data

## Syntax

infile varlist $[\operatorname{skip}[(\#)][\operatorname{varlist}[\operatorname{skip}[(\#)] \ldots]]]$ using filename $[$ if $][$ in $]$ [, options]

If filename is specified without an extension, .raw is assumed. If filename contains embedded spaces, remember to enclose it in double quotes.
options
Description
Main
clear replace data in memory
Options
automatic create value labels from nonnumeric data
byvariable(\#) organize external file by variables; \# is number of observations

## Options

$\qquad$ Main
clear specifies that it is okay for the new data to replace the data that are currently in memory. To ensure that you do not lose something important, infile will refuse to read new data if data are already in memory. clear allows infile to replace the data in memory. You can also drop the data yourself by typing drop _all before reading new data.

Options
automatic causes Stata to create value labels from the nonnumeric data it reads. It also automatically widens the display format to fit the longest label.
byvariable(\#) specifies that the external data file is organized by variables rather than by observations. All the observations on the first variable appear, followed by all the observations on the second variable, and so on. Time-series datasets sometimes come in this format.

## Remarks and examples

This section describes infile features for reading data in free or comma-separated-value format.
Remarks are presented under the following headings:

```
Reading free-format data
Reading comma-separated data
Specifying variable types
Reading string variables
Skipping variables
Skipping observations
Reading time-series data
```


## Reading free-format data

In free format, data are separated by one or more white-space characters-blanks, tabs, or new lines (carriage return, line feed, or carriage-return/line feed combinations). Thus one observation may span any number of lines.

Numeric missing values are indicated by single periods (".").

## > Example 1

In the file highway.raw, we have information on the accident rate per million vehicle miles along a stretch of highway, the speed limit on that highway, and the number of access points (on-ramps and off-ramps) per mile. Our file contains
$\qquad$

```
4.58 55 4.6
2.86 60 4.4
1.61 . 2.2
3.0260
4 . 7
```

We can read these data by typing

```
. infile acc_rate spdlimit acc_pts using highway
(4 observations read)
. list
```

1. 

acc_rate	spdlimit	acc_pts
4.58	55	4.6
2.86	60	4.4
1.61	.	2.2
3.02	60	4.7

The spacing of the numbers in the original file is irrelevant.

## - Technical note

Missing values need not be indicated by one period. The third observation on the speed limit is missing in example 1. The raw data file indicates this by recording one period. Let's assume, instead, that the missing value was indicated by the word unknown. Thus the raw data file appears as
$4.58554 .6 \quad$ begin highway.raw, example $2-$

```
4.58 55 4.6
2.86 60 4.4
1.61 unknown 2.2
3.0260
4.7
```

Here is the result of infiling these data:

```
. infile acc_rate spdlimit acc_pts using highway
'unknown' cannot be read as a number for spdlimit[3]
(4 observations read)
```

infile warned us that it could not read the word unknown, stored a missing, and then continued to read the rest of the dataset. Thus aside from the warning message, results are unchanged.

Because not all packages indicate missing data in the same way, this feature can be useful when reading data. Whenever infile sees something that it does not understand, it warns you, records a missing, and continues. If, on the other hand, the missing values were recorded not as unknown but as, say, 99, Stata would have had no difficulty reading the number, but it would also have stored 99 rather than missing. To convert such coded missing values to true missing values, see [D] mvencode.

## Reading comma-separated data

In comma-separated-value format, data are separated by commas. You may mix comma-separatedvalue and free formats. Missing values are indicated either by single periods or by multiple commas that serve as placeholders, or both. As with free format, 1 observation may span any number of input lines.

## > Example 2

We can modify the format of highway. raw used in example 1 without affecting infile's ability to read it. The dataset can be read with the same command, and the results would be the same if the file instead contained

```
4.58,55 4.6
2.86, 60,4.4
1.61,,2.2
3.02,60
4.7
```


## Specifying variable types

The variable names you type after the word infile are new variables. The syntax for a new variable is

$$
\text { [type] new_varname }[: \text { :label_name }]
$$

A full discussion of this syntax can be found in [U] 11.4 varlists. As a quick review, new variables are, by default, of type float. This default can be overridden by preceding the variable name with a storage type (byte, int, long, float, double, or str\#) or by using the set type command. A list of variables placed in parentheses will be given the same type. For example,
double (first_var second_var . . . last_var)
causes first_var second_var . . . last_var to all be of type double.
There is also a shorthand syntax for variable names with numeric suffixes. The varlist var1-var4 is equivalent to specifying var1 var2 var3 var4.

## > Example 3

In the highway example, we could infile the data acc_rate, spdlimit, and acc_pts and force the variable spdlimit to be of type int by typing

```
. infile acc_rate int spdlimit acc_pts using highway, clear
(4 observations read)
```

We could force all variables to be of type double by typing

```
. infile double(acc_rate spdlimit acc_pts) using highway, clear
(4 observations read)
```

We could call the three variables v1, v2, and v3 and make them all of type double by typing

```
. infile double(v1-v3) using highway, clear
(4 observations read)
```


## Reading string variables

By explicitly specifying the types, you can read string variables, as well as numeric variables.

## Example 4

Typing infile str20 name age sex using myfile would read
begin myfile.raw

```
"Sherri Holliday" 25 1
Branton 32 1
"Bill Ross" 27,0
```

or even
, Cherri Holl begin myfile.raw, variation 2 - 25
'Sherri Holliday' 25,1 "Branton" 32
1,'Bill Ross', 27,0

The spacing is irrelevant, and either single or double quotes may be used to delimit strings. The quotes do not count when calculating the length of strings. Quotes may be omitted altogether if the string contains no blanks or other special characters (anything other than letters, numbers, or underscores).

Typing
. infile str20 name age sex using myfile, clear
(3 observations read)
makes name a str20 and age and sex floats. We might have typed
. infile str20 name age int sex using myfile, clear
(3 observations read)
to make sex an int or
. infile str20 name int(age sex) using myfile, clear
(3 observations read)
to make both age and sex ints.

- Technical note
infile can also handle nonnumeric data by using value labels. We will briefly review value labels, but you should see [U] 12.6.3 Value labels for a complete description.

A value label is a mapping from the set of integers to words. For instance, if we had a variable called sex in our data that represented the sex of the individual, we might code 0 for male and 1 for female. We could then just remember that every time we see a value of 0 for sex, that observation refers to a male, whereas 1 refers to a female.

Even better, we could inform Stata that 0 represents males and 1 represents females by typing

```
. label define sexfmt 0 "Male" 1 "Female"
```

Then we must tell Stata that this coding scheme is to be associated with the variable sex. This is typically done by typing

```
. label values sex sexfmt
```

Thereafter, Stata will print Male rather than 0 and Female rather than 1 for this variable.
Stata has the ability to turn a value label around. Not only can it go from numeric codes to words such as "Male" and "Female", it can also go from the words to the numeric code. We tell infile the value label that goes with each variable by placing a colon (:) after the variable name and typing the name of the value label. Before we do that, we use the label define command to inform Stata of the coding.

Let's assume that we wish to infile a dataset containing the words Male and Female and that we wish to store numeric codes rather than the strings themselves. This will result in considerable data compression, especially if we store the numeric code as a byte. We have a dataset named persons.raw that contains name, sex, and age:

```
"Arthur Doyle" Male 22
"Mary Hope" Female 37
"Guy Fawkes" Male 48
"Carrie House" Female 25
```

Here is how we read and encode it at the same time:

```
. label define sexfmt 0 "Male" 1 "Female"
. infile str16 name sex:sexfmt age using persons
(4 observations read)
. list
```

name	sex	age
Arthur Doyle	Male	22
Mary Hope	Female	37
Guy Fawkes	Male	48
Carrie House	Female	25

The str16 in the infile command applies only to the name variable; sex is a numeric variable, which we can prove by typing

```
. list, nolabel
```

name	sex	age
Arthur Doyle	0	22
Mary Hope	1	37
Guy Fawkes	0	48
Carrie House	1	25

## Technical note

When infile is directed to use a value label and it finds an entry in the file that does not match any of the codings recorded in the label, it prints a warning message and stores missing for the observation. By specifying the automatic option, you can instead have infile automatically add new entries to the value label.

Say that we have a dataset containing three variables. The first, region of the country, is a character string; the remaining two variables, which we will just call var1 and var2, contain numbers. We have stored the data in a file called geog.raw:

"NE"	31.23	87.78
'NCntrl'	29.52	98.92
South	29.62	114.69
West	28.28	218.92
NE	17.50	44.33
NCntrl	22.51	55.21

The easiest way to read this dataset is to type

```
. infile str6 region var1 var2 using geog
```

making region a string variable. We do not want to do this, however, because we are practicing for reading a dataset like this containing 20,000 observations. If region were numerically encoded and stored as a byte, there would be a 5-byte saving per observation, reducing the size of the data by 100,000 bytes. We also do not want to bother with first creating the value label. Using the automatic option, infile creates the value label automatically as it encounters new regions.

```
. infile byte region:regfmt var1 var2 using geog, automatic clear
(6 observations read)
. list, sep(0)
```

region	var1	var2
NE	31.23	87.78
NCntrl	29.52	98.92
South	29.62	114.69
West	28.28	218.92
NE	17.5	44.33
NCntrl	22.51	55.21

infile automatically created and defined a new value label called regfmt. We can use the label list command to view its contents:

```
. label list regfmt
regfmt:
 1 NE
 2 NCntrl
 3 South
 4 \text { West}
```

The value label need not be undefined before we use infile with the automatic option. If the value label regfmt had been previously defined as

```
. label define regfmt 2 "West"
```

the result of label list after the infile would have been

```
regfmt:
 2 West
 3 NE
 4 ~ N C n t r l
 5 South
```

The automatic option is convenient, but there is one reason for using it. Suppose that we had a dataset containing, among other things, information about an individual's sex. We know that the sex variable is supposed to be coded male and female. If we read the data by using the automatic option and if one of the records contains fmlae, then infile will blindly create a third sex rather than print a warning.

## Skipping variables

Specifying _skip instead of a variable name directs infile to ignore the variable in that location. This feature makes it possible to extract manageable subsets from large disk datasets. A number of contiguous variables can be skipped by specifying _skip(\#), where \# is the number of variables to ignore.

## Example 5

In the highway example from example 1, the data file contained three variables: acc_rate, spdlimit, and acc_pts. We can read the first two variables by typing

```
. infile acc_rate spdlimit _skip using highway
(4 observations read)
```

We can read the first and last variables by typing

```
. infile acc_rate _skip acc_pts using highway, clear
```

(4 observations read)

We can read the first variable by typing

```
. infile acc_rate _skip(2) using highway, clear
(4 observations read)
```

_skip may be specified more than once. If we had a dataset containing four variables-say, a, b, c, and d—and we wanted to read just a and c, we could type infile a _skip c _skip using filename.

## Skipping observations

Subsets of observations can be extracted by specifying if exp, which also makes it possible to extract manageable subsets from large disk datasets. Do not, however, use the _variable $\_\mathrm{N}$ in exp. Use the in range qualifier to refer to observation numbers within the disk dataset.

## > Example 6

Again referring to the highway example, if we type

```
. infile acc_rate spdlimit acc_pts if acc_rate>3 using highway, clear
(2 observations read)
```

only observations for which acc_rate is greater than 3 will be infiled. We can type

```
. infile acc_rate spdlimit acc_pts in 2/4 using highway, clear
(eof not at end of obs)
(3 observations read)
```

to read only the second, third, and fourth observations.

## Reading time-series data

If you are dealing with time-series data, you may receive datasets organized by variables rather than by observations. All the observations on the first variable appear, followed by all the observations on the second variable, and so on. The byvariable(\#) option specifies that the external data file is organized in this way. You specify the number of observations in the parentheses, because infile needs to know that number to read the data properly. You can also mark the end of one variable's data and the beginning of another's data by placing a semicolon (";") in the raw data file. You may then specify a number larger than the number of observations in the dataset and leave it to infile to determine the actual number of observations. This method can also be used to read unbalanced data.
$\rangle$ Example 7
We have time-series data on 4 years recorded in the file time.raw. The dataset contains information on year, amount, and cost, and is organized by variable:

```
19801981 1982 1983
14 17 25 30
120}13515
180
```

We can read these data by typing

```
. infile year amount cost using time, byvariable(4) clear
(4 observations read)
. list
```

year	amount	cost
1980	14	120
1981	17	135
1982	25	150
1983	30	180

If the data instead contained semicolons marking the end of each series and had no information for amount in 1983, the raw data might appear as

```
1980 1981 1982 1983 ;
14 17 25 ;
120 135 150
180;
```

We could read these data by typing

```
. infile year amount cost using time, byvariable(100) clear
(4 observations read)
list
\begin{tabular}{l|rrr|}
\cline { 2 - 4 } & year & amount & cost \\
\cline { 2 - 4 } 1. & 1980 & 14 & 120 \\
2. & 1981 & 17 & 135 \\
3. & 1982 & 25 & 150 \\
4. & 1983 & \(\cdot\) & 180 \\
\hline
\end{tabular}
```


## Also see

[D] infile (fixed format) - Read text data in fixed format with a dictionary
[D] export - Overview of exporting data from Stata
[D] import - Overview of importing data into Stata
[U] 21 Entering and importing data

## Title

infix (fixed format) - Read text data in fixed format

Description	Quick start	Menu	Syntax	Options
Remarks and examples	Also see			

## Description

infix reads into memory from a disk dataset that is not in Stata format. infix requires that the data be in fixed-column format. Note that the column is byte based. The number of columns means the number of bytes in the file. The text file filename is treated as a stream of bytes, no encoding is assumed. If string data is encoded as ASCII or UTF-8, it will be imported correctly.

In the first syntax, if using filename ${ }_{2}$ is not specified on the command line and using filename is not specified in the dictionary, the data are assumed to begin on the line following the closing brace. infix reads the data in a two-step process. You first create a disk file describing how the data are recorded. You tell infix to read that file-called a dictionary - and from there, infix reads the data. The data can be in the same file as the dictionary or in a different file.

In its second syntax, you tell infix how to read the data right on the command line with no intermediate file.
infile and import delimited are alternatives to infix. infile can also read data in fixed format-see [D] infile (fixed format) - and it can read data in free format-see [D] infile (free format). Most people think that infix is easier to use for reading fixed-format data, but infile has more features. If your data are not fixed format, you can use import delimited; see [D] import delimited. import delimited allows you to specify the source file's encoding and then performs a conversion to UTF-8 encoding during import. If you are not certain that infix will do what you are looking for, see [D] import and [U] 21 Entering and importing data.

## Quick start

Read v1 from columns 1 to 6 and v2 from column 7 using mydata.raw infix v1 1-6 v2 7 using mydata

As above, but read v1 as a string variable
infix str v1 1-6 v2 7 using mydata
As above, but for 2 -line records with v2 in column 1 of the second line infix 2 lines 1: v1 1-6 2: v2 1 using mydata

As above, but for mydata.txt

```
infix 2 lines 1: v1 1-6 2: v2 1 using mydata.txt
```

As above, but with data beginning on line 3

```
infix 3 firstlineoffile 2 lines 1: v1 1-6 2: v2 1 using mydata.txt
```

As above, but with instructions for reading the data contained in dictionary file mydata.dct infix using mydata, using(mydata.txt)

## Menu

File $>$ Import $>$ Text data in fixed format with a dictionary

## Syntax

infix using dfilename [if] [in] [, using(filename ${ }_{2}$ ) clear]
infix specifications using filename [if] [in] [, clear]
If dfilename is specified without an extension, .dct is assumed. If dfilename contains embedded spaces, remember to enclose it in double quotes. dfilename, if it exists, contains

```
infix dictionary [using flename] {
 * comments preceded by asterisk may appear freely
 specifications
}
(your data might appear here)

If filename is specified without an extension, .raw is assumed. If filename contains embedded spaces, remember to enclose it in double quotes.
specifications is
\# firstlineoffile
\# lines
\#:
/
[byte | int \(\mid\) float \(\mid\) long \(\mid\) double \(\mid\) str \(]\) varlist \([\#:] \#[-\#]\)

\section*{Options}

\footnotetext{
Main
using (filename \(_{2}\)) specifies the name of a file containing the data. If using () is not specified, the data are assumed to follow the dictionary in dfilename, or if the dictionary specifies the name of some other file, that file is assumed to contain the data. If using (filename \(_{2}\)) is specified, filename \({ }_{2}\) is used to obtain the data, even if the dictionary says otherwise. If filename \({ }_{2}\) is specified without an extension, .raw is assumed. If filename \({ }_{2}\) contains embedded spaces, remember to enclose it in double quotes.
clear specifies that it is okay for the new data to replace what is currently in memory. To ensure that you do not lose something important, infix will refuse to read new data if data are already in memory. clear allows infix to replace the data in memory. You can also drop the data yourself by typing drop _all before reading new data.
}

\section*{Specifications}
\# firstlineoffile (abbreviation first) is rarely specified. It states the line of the file at which the data begin. You need not specify first when the data follow the dictionary; infix can figure that out for itself. You can specify first when only the data appear in a file and the first few lines of that file contain headers or other markers.
first appears only once in the specifications.
\# lines states the number of lines per observation in the file. Simple datasets typically have " 1 lines". Large datasets often have many lines (sometimes called records) per observation. lines is optional, even when there is more than one line per observation, because infix can sometimes figure it out for itself. Still, if 1 lines is not right for your data, it is best to specify the appropriate number of lines.
lines appears only once in the specifications.
\#: tells infix to jump to line \# of the observation. Consider a file with 4 lines, meaning four lines per observation. 2: says to jump to the second line of the observation. 4: says to jump to the fourth line of the observation. You may jump forward or backward: infix does not care, and there is no inefficiency in going forward to \(3:\), reading a few variables, jumping back to \(1:\), reading another variable, and jumping back again to 3 : .
You need not ensure that, at the end of your specification, you are on the last line of the observation. infix knows how to get to the next observation because it knows where you are and it knows lines, the total number of lines per observation.
\#: may appear many times in the specifications.
/ is an alternative to \#: / goes forward one line. // goes forward two lines. We do not recommend using / because \#: is better. If you are currently on line 2 of an observation and want to get to line 6 , you could type ////, but your meaning is clearer if you type 6:.
/ may appear many times in the specifications.
[byte | int \(\mid\) float \(\mid\) long \(\mid\) double \(\mid\) str] varlist [\#:]\#[-\#] instructs infix to read a variable or, sometimes, more than one.

The simplest form of this is varname \#, such as sex 20. That says that variable varname be read from column \# of the current line; that variable sex be read from column 20; and that here, sex is a one-digit number.
varname \#-\#, such as age 21-23, says that varname be read from the column range specified; that age be read from columns 21 through 23; and that here, age is a three-digit number.

You can prefix the variable with a storage type. str name 25-44 means to read the string variable name from columns 25 through 44 . Note that the string variable name consists of \(44-25+1=20\) bytes. If you do not specify str, the variable is assumed to be numeric. You can specify the numeric subtype if you wish. If you specify str, infix will automatically assign the appropriate string variable type, str\# or strL. Imported strings may be up to 100,000 bytes.

You can specify more than one variable, with or without a type. byte q1-q5 51-55 means read variables \(\mathrm{q} 1, \mathrm{q} 2, \mathrm{q} 3, \mathrm{q} 4\), and q 5 from columns 51 through 55 and store the five variables as bytes.
Finally, you can specify the line on which the variable(s) appear. age 2:21-23 says that age is to be obtained from the second line, columns 21 through 23 . Another way to do this is to put together the \#: directive with the input-variable directive: 2: age 21-23. There is a difference, but not with respect to reading the variable age. Let's consider two alternatives:
\begin{tabular}{llllll}
1: & str name \(25-44\) & & age \(2: 21-23\) & q1-q5 & \(51-55\) \\
\(1:\) & str name \(25-44\) & \(2:\) & age \(21-23\) & q1-q5 & \(51-55\)
\end{tabular}

The difference is that the first directive says that variables q 1 through q 5 are on line 1 , whereas the second says that they are on line 2 .
When the colon is put in front, it indicates the line on which variables are to be found when we do not explicitly say otherwise. When the colon is put inside, it applies only to the variable under consideration.

\section*{Remarks and examples}

Remarks are presented under the following headings:
```

Two ways to use infix
Reading string variables
Reading data with multiple lines per observation
Reading subsets of observations

```

\section*{Two ways to use infix}

There are two ways to use infix. One is to type the specifications that describe how to read the fixed-format data on the command line:
```

. infix acc_rate 1-4 spdlimit 6-7 acc_pts 9-11 using highway.raw

```

The other is to type the specifications into a file,
```

infix dictionary using highway.raw {
acc_rate 1-4
spdlimit 6-7
acc_pts 9-11
}

```
and then, in Stata, type
. infix using highway.dct
The method you use makes no difference to Stata. The first method is more convenient if there are only a few variables, and the second method is less prone to error if you are reading a big, complicated file.

The second method allows two variations, the one we just showed-where the data are in another file-and one where the data are in the same file as the dictionary:
```

infix dictionary {
acc_rate 1-4
spdlimit 6-7
acc_pts 9-11
}
4.58 55 . 46
2.86 60 4.4
1.61 2.2
3.02 60 4.7

```

Note that in the first example, the top line of the file read infix dictionary using highway.raw, whereas in the second, the line reads simply infix dictionary. When you do not say where the data are, Stata assumes that the data follow the dictionary.

\section*{> Example 1}

So, let's complete the example we started. We have a dataset on the accident rate per million vehicle miles along a stretch of highway, the speed limit on that highway, and the number of access points per mile. We have created the dictionary file, highway.dct, which contains the dictionary and the data:
```

infix dictionary {
acc_rate 1-4
spdlimit 6-7
acc_pts 9-11
}
4.58 55 . 46
2.86 60 4.4
1.61 2.2
3.02 60 4.7

```

We created this file outside Stata by using an editor or word processor. In Stata, we now read the data. infix lists the dictionary so that we will know the directives it follows:
```

. infix using highway
infix dictionary {
acc_rate 1-4
spdlimit 6-7
acc_pts 9-11
}
(4 observations read)
. list

```
\begin{tabular}{|rrr|}
\hline acc_rate & spdlimit & acc_pts \\
\hline 4.58 & 55 & .46 \\
2.86 & 60 & 4.4 \\
1.61 & 60 & 2.2 \\
3.02 & 4.7 \\
\hline
\end{tabular}

We simply typed infix using highway rather than infix using highway.dct. When we do not specify the file extension, infix assumes that we mean .dct.

\section*{Reading string variables}

When you do not say otherwise in your specification-either in the command line or in the dictionary-infix assumes that variables are numeric. You specify that a variable is a string by placing str in front of its name:
```

. infix id 1-6 str name 7-36 age 38-39 str sex 41 using employee.raw

```
or

\section*{Reading data with multiple lines per observation}

When a dataset has multiple lines per observation-sometimes called multiple records per observation-you specify the number of lines per observation by using lines, and you specify the line on which the elements appear by using \#:. For example,
```

. infix 2 lines 1: id 1-6 str name 7-36 2: age 1-2 str sex 4 using emp2.raw

```
or
```

infix dictionary using emp2.raw {
2 lines
1:
id 1-6
str name 7-36
2:
age 1-2
str sex 4
}

```

There are many different ways to do the same thing.

\section*{Example 2}

Consider the following raw data:

This dataset has three lines per observation, and the first line is just a comment. One possible method for reading these data is
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{infix dictionary using mydata
2 f
first} \\
\hline \multicolumn{3}{|c|}{3 lines} \\
\hline \multirow[t]{3}{*}{1:} & id & 1-4 \\
\hline & income & 6-10 \\
\hline & str educ & 12-13 \\
\hline \multirow[t]{2}{*}{2:} & str sex & 6-11 \\
\hline & int age & 13-14 \\
\hline \multirow[t]{2}{*}{3:} & rcode & 6 \\
\hline & q1-q5 & 7-16 \\
\hline \} & & \\
\hline
\end{tabular}
although we prefer
\begin{tabular}{cl}
\hline infix dictionary using mydata \(\{\) \\
2 first \\
3 lines & \\
id & \(1: 1-4\) \\
income & \(1: 6-10\) \\
str educ \(1: 12-13\) \\
str sex & \(2: 6-11\) \\
age & \(2: 13-14\) \\
rcode & \(3: 6\) \\
& q1-q5 \\
& \(3: 7-16\)
\end{tabular}

Either method will read these data, so we will use the first and then explain why we prefer the second.
```

. infix using mydata1
infix dictionary using mydata {
2 first
3 lines
1: id 1-4
income 6-10
str educ 12-13
2: str sex 6-11
int age 13-14
3: rcode 6
q1-q5 7-16
}
(4 observations read)
. list in 1/2

```
\begin{tabular}{|rrrrrrrrrrr|}
\hline id & income & educ & sex & age & rcode & q1 & q2 & q3 & q4 & q5 \\
\hline 1024 & 25000 & HS & Male & 28 & 1 & 1 & 9 & 5 & 0 & 3 \\
1025 & 27000 & C & Female & 24 & 0 & 2 & 2 & 1 & 1 & 3 \\
\hline
\end{tabular}

What is better about the second is that the location of each variable is completely documented on each line-the line number and column. Because infix does not care about the order in which we read the variables, we could take the dictionary and jumble the lines, and it would still work. For instance,

will also read these data even though, for each observation, we start on line 2 , go forward to line 3 , jump back to line 1 , and end up on line 1 . It is not inefficient to do this because infix does not really jump to record 2 , then record 3 , then record 1 again, etc. infix takes what we say and organizes it efficiently. The order in which we say it makes no difference, except that the order of the variables in the resulting Stata dataset will be the order we specify.

Here the reordering is senseless, but in real datasets, reordering variables is often desirable. Moreover, we often construct dictionaries, realize that we omitted a variable, and then go back and modify them. By making each line complete, we can add new variables anywhere in the dictionary and not worry that, because of our addition, something that occurs later will no longer read correctly.

\section*{Reading subsets of observations}

If you wanted to read only the information about males from some raw data file, you might type
```

. infix id 1-6 str name 7-36 age 38-39 str sex 41 using employee.raw
> if sex=="M"

```

If your specification was instead recorded in a dictionary, you could type
. infix using employee.dct if sex=="M"
In another dataset, if you wanted to read just the first 100 observations, you could type
```

. infix 2 lines 1: id 1-6 str name 7-36 2: age 1-2 str sex 4 using emp2.raw

```
\(>\) in \(1 / 100\)
or if the specification was instead recorded in a dictionary and you wanted observations 101-573, you could type
```

. infix using emp2.dct in 101/573

```

\section*{Also see}
[D] infile (fixed format) - Read text data in fixed format with a dictionary
[D] export - Overview of exporting data from Stata
[D] import - Overview of importing data into Stata
[U] 21 Entering and importing data

\section*{Title}
input - Enter data from keyboard
\begin{tabular}{llll}
Description & Quick start & Syntax & Options \\
Remarks and examples & Reference & Also see &
\end{tabular}

\section*{Description}
input allows you to type data directly into the dataset in memory.
For most users, edit is a better way to add observations to the dataset because it automatically adjusts the storage type of variables, if required, to accommodate new values.

\section*{Quick start}

Create numeric v1, v2, and v3 and input data directly into Stata
input v1 v2 v3
As above, but create v1 and v2 as type int, v3 as type byte
input int (v1 v2) byte v3
Add data on string v4 of length 10
input str10 v4
Input data for all existing variables
input
As above, but add observations by typing strings associated with value labels of existing variables instead of numeric data
input, label

\section*{Syntax}
input \([\) varlist \(][\), automatic label]

\section*{Options}
automatic causes Stata to create value labels from the nonnumeric data it encounters. It also automatically widens the display format to fit the longest label. Specifying automatic implies label, even if you do not explicitly type the label option.
label allows you to type the labels (strings) instead of the numeric values for variables associated with value labels. New value labels are not automatically created unless automatic is specified.

\section*{Remarks and examples}

If no data are in memory, you must specify a varlist when you type input. Stata will then prompt you to enter the new observations until you type end.
> Example 1
We have data on the accident rate per million vehicle miles along a stretch of highway, along with the speed limit on that highway. We wish to type these data directly into Stata:
```

. input
nothing to input
r(104);

```

Typing input by itself does not provide enough information about our intentions. Stata needs to know the names of the variables we wish to create.
```

. input acc_rate spdlimit
acc_rate spdlimit

1. 4.58 55
2. 2.86 60
3. 1.61 .
4. end
```

We typed input acc_rate spdlimit, and Stata responded by repeating the variable names and prompting us for the first observation. We entered the values for the first two observations, pressing Return after each value was entered. For the third observation, we entered the accident rate (1.61), but we entered a period (.) for missing because we did not know the corresponding speed limit for the highway. After entering data for the fourth observation, we typed end to let Stata know that there were no more observations.

We can now list the data to verify that we have entered the data correctly:
. list
\begin{tabular}{l|rr|}
\cline { 2 - 3 } & acc_rate & spdlimit \\
\cline { 2 - 3 } 1. & 4.58 & 55 \\
2. & 2.86 & 60 \\
3. & 1.61 &. \\
\hline
\end{tabular}

If you have data in memory and type input without a varlist, you will be prompted to enter more information on all the variables. This continues until you type end.
> Example 2: Adding observations
We now have another observation that we wish to add to the dataset. Typing input by itself tells Stata that we wish to add new observations:
```

. input
acc_rate spdlimit
4. 3.02 60
5. end

```

Stata reminded us of the names of our variables and prompted us for the fourth observation. We entered the numbers 3.02 and 60 and pressed Return. Stata then prompted us for the fifth observation. We could add as many new observations as we wish. Because we needed to add only 1 observation, we typed end. Our dataset now has 4 observations.

You may add new variables to the data in memory by typing input followed by the names of the new variables. Stata will begin by prompting you for the first observation, then the second, and so on, until you type end or enter the last observation.

\section*{> Example 3: Adding variables}

In addition to the accident rate and speed limit, we now obtain data on the number of access points (on-ramps and off-ramps) per mile along each stretch of highway. We wish to enter the new data.
```

. input acc_pts
acc_pts

1. 4.6
2. 4.4
3. 2.2
4. 4.7
```

When we typed input acc_pts, Stata responded by prompting us for the first observation. There are 4.6 access points per mile for the first highway, so we entered 4.6. Stata then prompted us for the second observation, and so on. We entered each of the numbers. When we entered the final observation, Stata automatically stopped prompting us - we did not have to type end. Stata knows that there are 4 observations in memory, and because we are adding a new variable, it stops automatically.

We can, however, type end anytime we wish, and Stata fills the remaining observations on the new variables with missing. To illustrate this, we enter one more variable to our data and then list the result:
```

. input junk
junk
1. 1
2. 2
3. end
. list

	acc_rate	spdlimit	acc_pts	junk
1.	4.58	55	4.6	1
2.	2.86	60	4.4	2
3.	1.61	.	2.2	.
4.	3.02	60	4.7	.

```

You can input string variables by using input, but you must remember to indicate explicitly that the variables are strings by specifying the type of the variable before the variable's name.

\section*{> Example 4: Inputting string variables}

String variables are indicated by the types str\# or strL. For str\#, \# represents the storage length, or maximum length, in bytes of the variable. You can create variables up to str2045. You can create strL variables of arbitrary length.

For text with only plain ASCII characters, the length in bytes is equivalent to the number of characters displayed. For instance, a str4 variable has a maximum length of 4 , meaning that it can contain the strings \(a, a b, a b c\), and abcd, but not abcde. Unicode characters beyond the plain ASCII range take 2 , 3 , or 4 bytes each. Thus the same str 4 variable could contain the strings á, áb, and ábc, but not ábcd because á takes two bytes to store. If you are using input with strings containing Unicode characters, you should allow extra room in your str\# specification. See [U] 12.4.2 Handling Unicode strings.

Strings shorter than the maximum length can be stored in the variable, but strings longer than the maximum length cannot.

Although a str80 variable can store strings shorter than 80 characters, you should not make all your string variables str80 because Stata allocates space for strings on the basis of their maximum length. Thus doing so would waste the computer's memory.

Let's assume that we have no data in memory and wish to enter the following data:
```

. input str16 name age str6 sex
name age sex
1. "Arthur Doyle" 22 male
2. "Mary Hope" 37 "female"
3. Guy Fawkes }48\mathrm{ male
'Fawkes' cannot be read as a number
3. "Guy Fawkes" 48 male
4. "Kriste Yeager" 25 female
5. end

```

We first typed input str16 name age str6 sex, meaning that name is to be a str16 variable and sex a str6 variable. Because we did not specify anything about age, Stata made it a numeric variable.

Stata then prompted us to enter our data. On the first line, the name is Arthur Doyle, which we typed in double quotes. The double quotes are not really part of the string; they merely delimit the beginning and end of the string. We followed that with Mr. Doyle's age, 22, and his sex, male. We did not bother to type double quotes around the word male because it contained no blanks or special characters. For the second observation, we typed the double quotes around female; it changed nothing.

In the third observation, we omitted the double quotes around the name, and Stata informed us that Fawkes could not be read as a number and reprompted us for the observation. When we omitted the double quotes, Stata interpreted Guy as the name, Fawkes as the age, and 48 as the sex. This would have been okay with Stata, except for one problem: Fawkes looks nothing like a number, so Stata complained and gave us another chance. This time, we remembered to put the double quotes around the name.

Stata was satisfied, and we continued. We entered the fourth observation and typed end. Here is our dataset:
\begin{tabular}{|c|c|c|c|}
\hline & name & age & sex \\
\hline 1. & Arthur Doyle & 22 & male \\
\hline 2. & Mary Hope & 37 & female \\
\hline 3. & Guy Fawkes & 48 & male \\
\hline 4. & Kriste Yeager & 25 & female \\
\hline
\end{tabular}

\section*{> Example 5: Specifying numeric storage types}

Just as we indicated the string variables by placing a storage type in front of the variable name, we can indicate the storage type of our numeric variables as well. Stata has five numeric storage types: byte, int, long, float, and double. When you do not specify the storage type, Stata assumes that the variable is a float. See the definitions of numbers in [U] 12 Data.

There are two reasons for explicitly specifying the storage type: to induce more precision or to conserve memory. The default type float has plenty of precision for most circumstances because Stata performs all calculations in double precision, no matter how the data are stored. If you were storing nine-digit Social Security numbers, however, you would want to use a different storage type, or the last digit would be rounded. long would be the best choice; double would work equally well, but it would waste memory.

Sometimes you do not need to store a variable as float. If the variable contains only integers between \(-32,767\) and 32,740 , it can be stored as an int and would take only half the space. If a variable contains only integers between -127 and 100, it can be stored as a byte, which would take only half again as much space. For instance, in example 4 we entered data for age without explicitly specifying the storage type; hence, it was stored as a float. It would have been better to store it as a byte. To do that, we would have typed
```

. input str16 name byte age str6 sex

```
 name age sex
1. "Arthur Doyle" 22 male
2. "Mary Hope" 37 "female"
3. "Guy Fawkes" 48 male
4. "Kriste Yeager" 25 female
5. end

Stata understands several shorthands. For instance, typing
```

. input int(a b) c

```
allows you to input three variables-a, b, and c-and makes both a and bints and cafloat. Remember, typing
. input int a b c
would make a an int but both b and c floats. Typing
```

. input a long b double(c d) e

```
would make a a float, b a long, c and d doubles, and e a float.
Stata has a shorthand for variable names with numeric suffixes. Typing v1-v4 is equivalent to typing v1 v2 v3 v4. Thus typing
. input int(v1-v4)
inputs four variables and stores them as ints.

\section*{- Technical note}

The rest of this section deals with using input with value labels. If you are not familiar with value labels, see [U] 12.6.3 Value labels.

Value labels map numbers into words and vice versa. There are two aspects to the process. First, we must define the association between numbers and words. We might tell Stata that 0 corresponds to male and 1 corresponds to female by typing label define sexlbl 0 "male" 1 "female". The correspondences are named, and here we have named the \(0 \leftrightarrow\) male \(1 \leftrightarrow\) female correspondence sexlbl.

Next we must associate this value label with a variable. If we had already entered the data and the variable were called sex, we would do this by typing label values sex sexlbl. We would have entered the data by typing 0 s and 1 s , but at least now when we list the data, we would see the words rather than the underlying numbers.

We can do better than that. After defining the value label, we can associate the value label with the variable at the time we input the data and tell Stata to use the value label to interpret what we type:
```

. label define sexlbl 0 "male" 1 "female"
. input str16 name byte(age sex:sexlbl), label
name age sex
1. "Arthur Doyle" 22 male
2. "Mary Hope" 37 "female"
3. "Guy Fawkes" 48 male
4. "Kriste Yeager" 25 female
5. end

```

After defining the value label, we typed our input command. We added the label option at the end of the command, and we typed sex:sexlbl for the name of the sex variable. The byte(...) around age and sex:sexlbl was not really necessary; it merely forced both age and sex to be stored as bytes.

Let's first decipher sex:sexlbl. sex is the name of the variable we want to input. The :sexlbl part tells Stata that the new variable is to be associated with the value label named sexlbl. The label option tells Stata to look up any strings we type for labeled variables in their corresponding value label and substitute the number when it stores the data. Thus when we entered the first observation of our data, we typed male for Mr. Doyle's sex, even though the corresponding variable is numeric. Rather than complaining that ""male" could not be read as a number", Stata accepted what we typed, looked up the number corresponding to male, and stored that number in the data.

That Stata has actually stored a number rather than the words male or female is almost irrelevant. Whenever we list the data or make a table, Stata will use the words male and female just as if those words were actually stored in the dataset rather than their numeric codings:
. list
\begin{tabular}{l|rrr|}
\cline { 2 - 4 } & name & age & sex \\
\cline { 2 - 4 } 1. & Arthur Doyle & 22 & male \\
2. & Mary Hope & 37 & female \\
3. & Guy Fawkes & 48 & male \\
4. & Kriste Yeager & 25 & female \\
\cline { 2 - 4 } &
\end{tabular}
. tabulate sex
\begin{tabular}{r|rrr}
sex & Freq. & Percent & Cum. \\
\hline male & 2 & 50.00 & 50.00 \\
female & 2 & 50.00 & 100.00 \\
\hline Total & 4 & 100.00 &
\end{tabular}

It is only almost irrelevant because we can use the underlying numbers in statistical analyses. For instance, if we were to ask Stata to calculate the mean of sex by typing summarize sex, Stata would report 0.5 . We would interpret that to mean that one-half of our sample is female.

Value labels are permanently associated with variables, so once we associate a value label with a variable, we never have to do so again. If we wanted to add another observation to these data, we could type
```

. input, label
name age sex
5. "Mark Esman" 26 male
6. end

```

\section*{Technical note}

The automatic option automates the definition of the value label. In the previous example, we informed Stata that male corresponds to 0 and female corresponds to 1 by typing label define sexlbl 0 "male" 1 "female". It was not necessary to explicitly specify the mapping. Specifying the automatic option tells Stata to interpret what we type as follows:

First, see if the value is a number. If so, store that number and be done with it. If it is not a number, check the value label associated with the variable in an attempt to interpret it. If an interpretation exists, store the corresponding numeric code. If one does not exist, add a new numeric code corresponding to what was typed. Store that new number and update the value label so that the new correspondence is never forgotten.

We can use these features to reenter our age and sex data. Before reentering the data, we drop _all and label drop _all to prove that we have nothing up our sleeve:
```

. drop _all
. label drop _all
. input str16 name byte(age sex:sexlbl), automatic
name age sex

1. "Arthur Doyle" 22 male
2. "Mary Hope" 37 "female"
3. "Guy Fawkes" 48 male
4. "Kriste Yeager" 25 female
5. end
```

We previously defined the value label sexlbl so that male corresponded to 0 and female corresponded to 1 . The label that Stata automatically created is slightly different but is just as good:
```

. label list sexlbl
sexlbl:
1 male
2 female

```

\section*{Reference}

Kohler, U. 2005. Stata tip 16: Using input to generate variables. Stata Journal 5: 134.

\section*{Also see}
[D] edit - Browse or edit data with Data Editor
[D] import - Overview of importing data into Stata
[D] save - Save Stata dataset
[U] 21 Entering and importing data

\section*{Title}
insobs - Add or insert observations
\begin{tabular}{llll}
Description & Menu & Syntax & Options \\
Remarks and examples & Acknowledgment & Also see &
\end{tabular}

\section*{Description}
insobs inserts new observations into the dataset. The number of new observations to insert is specified by obs. This command is primarily used by the Data Editor and is of limited use in other contexts. A more popular alternative for programmers is set obs; see [D] obs.

If option before(inspos) or after(inspos) is specified, the new observations are inserted into the middle of the dataset, and the insert position is controlled by inspos. Note that inspos must be a positive integer between 1 and the total number of observations _N. If the dataset is empty, before() and after() may not be specified.

\section*{Menu}

Data \(>\) Create or change data \(>\) Add or insert observations

\section*{Syntax}

Add new observations at the end of the dataset insobs obs

Insert new observations into the middle of the dataset
insobs obs, \(\underline{\text { before }}\) (inspos) |after(inspos)

\section*{Options}
before (inspos) and after (inspos) inserts new observations before and after, respectively, inspos into the dataset. These options are primarily used by the Data Editor and are of limited use in other contexts. A more popular alternative for most users is order; see [D] order.

\section*{Remarks and examples}
\(>\) Example 1
insobs can be useful for creating artificial datasets. For instance, if we wanted to create a new dataset with 100 observations, we could type
```

. clear
. insobs }10
(100 observations added)

```

\section*{Example 2}

We are using auto.dta, but for our specific example, we need the dataset to have more observations than those provided in this dataset. To solve this problem, we could type
```

. sysuse auto, clear
(1978 Automobile Data)
. insobs 10
(10 observations added)

```

Typing insobs without an option adds the observations at the end of the dataset. Say that instead of the end, we wanted to add five new observations before observation 20. We would type
```

. sysuse auto, clear
(1978 Automobile Data)
. insobs 5, before(20)
(5 observations added)

```

\section*{Acknowledgment}

This command was inspired by insob, which was written by Bas Straathof, Eindhoven University of Technology, The Netherlands.

\section*{Also see}
[D] edit - Browse or edit data with Data Editor
[D] obs - Increase the number of observations in a dataset

\section*{Title}
inspect - Display simple summary of data's attributes
\begin{tabular}{llll}
Description & Quick start & Menu & Syntax \\
Remarks and examples & Stored results & Also see &
\end{tabular}

\section*{Description}

The inspect command provides a quick summary of a numeric variable that differs from the summary provided by summarize or tabulate. It reports the number of negative, zero, and positive values; the number of integers and nonintegers; the number of unique values; and the number of missing; and it produces a small histogram. Its purpose is not analytical but is to allow you to quickly gain familiarity with unknown data.

\section*{Quick start}

Summary of all numeric variables in the dataset
inspect
Summary of v1 for each level of catvar
bysort catvar: inspect v1
Summary of v1 if v2 is greater than 30
inspect v1 if v2 > 30

\section*{Menu}

Data \(>\) Describe data \(>\) Inspect variables

\section*{Syntax}
inspect [varlist] [if][in]
by is allowed; see [D] by.

\section*{Remarks and examples}

Typing inspect by itself produces an inspection for all the variables in the dataset. If you specify a varlist, an inspection of just those variables is presented.

\section*{> Example 1}
inspect is not a replacement or substitute for summarize and tabulate. It is instead a data management or information tool that lets us quickly gain insight into the values stored in a variable.

For instance, we receive data that purport to be on automobiles, and among the variables in the dataset is one called mpg. Its variable label is Mileage (mpg), which is surely suggestive. We inspect the variable,

and we discover that the variable is never missing; all 74 observations in the dataset have some value for mpg. Moreover, the values are all positive and are all integers, as well. Among those 74 observations are 21 unique (different) values. The variable ranges from 12 to 41 , and we are provided with a small histogram that suggests that the variable appears to be what it claims.

\section*{Example 2}

Bob, a coworker, presents us with some census data. Among the variables in the dataset is one called region, which is labeled Census region and is evidently a numeric variable. We inspect this variable:
```

. use http://www.stata-press.com/data/r14/bobsdata
(1980 Census data by state)
. inspect region
region: Census region

	Number of Observations		
	Total	Integers	Nonintegers
Negative	-	-	-
Zero	-	-	-
Positive	50	50	-
	50	50	-
Total	-		
	50		


			$\#$			
		$\#$	$\#$			
	$\#$	$\#$	$\#$			
	$\#$	$\#$	$\#$	$\#$		
$\#$	$\#$	$\#$	$\#$			
	$\#$	$\#$	$\#$	$\#$	$\cdot$	
						5

(5 unique values)
region is labeled but 1 value is NOT documented in the label.

```

In this dataset something may be wrong. region takes on five unique values. The variable has a value label, however, and one of the observed values is not documented in the label. Perhaps there is a typographical error.

\section*{Example 3}

There was indeed an error. Bob fixes it and returns the data to us. Here is what inspect produces now:
```

. use http://www.stata-press.com/data/r14/census
(1980 Census data by state)
. inspect region
region: Census region

	Number of Observations		
	Total	Integers	Nonintegers
Negative	-	-	-
Zero	-	-	-
Positive	50	50	-
	50	50	-
Missing	-		
	50		

    (4 unique values)
    region is labeled and all values are documented in the label.
    ```

\section*{Example 4}

We receive data on the climate in 956 U.S. cities. The variable tempjan records the Average January temperature in degrees Fahrenheit. The results of inspect are
```

. use http://www.stata-press.com/data/r14/citytemp
(City Temperature Data)
. inspect tempjan
tempjan: Average January temperature Number of Observations

|  |  |  |  |  |  | Total | Integers | Nonintegers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \# |  |  |  | Negative | - | - | - |
|  | \# |  |  |  | Zero | - | - | - |
|  | \# |  |  |  | Positive | 954 | 78 | 876 |
|  | \# | \# | \# |  |  |  |  |  |
|  | \# | \# | \# |  | Total | 954 | 78 | 876 |
| . | \# | \# | \# | - | Missing | 2 |  |  |
| 2.2 |  |  |  | 72.6 |  | 956 |  |  |
| More than 99 unique val |  |  |  |  |  |  |  |  |

```

In two of the 956 observations, tempjan is missing. Of the 954 cities that have a recorded tempjan, all are positive, and 78 of them are integer values. tempjan varies between 2.2 and 72.6. There are more than 99 unique values of tempjan in the dataset. (Stata stops counting unique values after 99.)

\section*{Stored results}
inspect stores the following in \(r()\) :
Scalars
\[
\begin{array}{ll}
r(N) & \text { number of observations } \\
r(N \text { Neneg }) & \text { number of negative observations } \\
r(N-0) & \text { number of observations equal to } 0 \\
r\left(N _p o s\right) & \text { number of positive observations } \\
r\left(N _n e g i n t\right) & \text { number of negative integer observations } \\
r(N-p o s i n t) & \text { number of positive integer observations } \\
r \text { (N_unique) } & \text { number of unique values or. if more than 99 } \\
r(\text { N_undoc) } & \text { number of undocumented values or . if not labeled }
\end{array}
\]

\section*{Also see}
[D] codebook - Describe data contents
[D] compare - Compare two variables
[D] describe - Describe data in memory or in file
[D] ds - List variables matching name patterns or other characteristics
[D] isid - Check for unique identifiers
[R] lv - Letter-value displays
[R] summarize - Summary statistics
[R] table - Flexible table of summary statistics
[R] tabulate oneway - One-way table of frequencies
[R] tabulate, summarize() - One- and two-way tables of summary statistics
[R] tabulate twoway - Two-way table of frequencies

\section*{Title}
ipolate - Linearly interpolate (extrapolate) values
\begin{tabular}{llll}
Description & Quick start & Menu & Syntax \\
Options & Remarks and examples & Methods and formulas & Reference \\
Also see & & &
\end{tabular}

\section*{Description}
ipolate creates in newvar a linear interpolation of yvar on xvar for missing values of yvar.
Because interpolation requires that yvar be a function of xvar, yvar is also interpolated for tied values of xvar. When yvar is not missing and xvar is neither missing nor repeated, the value of newvar is just yvar.

\section*{Quick start}

Create y2 containing a linear interpolation of y 1 on x for observations with missing values of y 1 or tied values of \(x\)
ipolate y 1 x , generate \((\mathrm{y} 2)\)
As above, but use interpolation and extrapolation
ipolate \(y 1 \mathrm{x}\), generate (y2) epolate
As above, but perform calculation separately for each level of catvar
by catvar: ipolate y1 x, generate(y2) epolate

\section*{Menu}

Data \(>\) Create or change data \(>\) Other variable-creation commands \(>\) Linearly interpolate/extrapolate values

\section*{Syntax}
```

ipolate yvar xvar [if] [in], generate(newvar) [epolate]

```
by is allowed; see [D] by.

\section*{Options}
generate (newvar) is required and specifies the name of the new variable to be created.
epolate specifies that values be both interpolated and extrapolated. Interpolation only is the default.

\section*{Remarks and examples}

\section*{> Example 1}

We have data points on \(y\) and \(x\), although sometimes the observations on y are missing. We believe that y is a function of x , justifying filling in the missing values by linear interpolation:
```

. use http://www.stata-press.com/data/r14/ipolxmpl1
. list, sep(0)

```
\begin{tabular}{l|rr|}
\cline { 2 - 3 } & & x \\
\hline & y \\
\cline { 2 - 3 } & 0 & 0 \\
2. & 1 & 3 \\
3. & 1.5 &. \\
4. & 2 & 6 \\
5. & 3 &. \\
6. & 3.5 &. \\
7. & 4 & 18 \\
\hline
\end{tabular}
```

. ipolate y x, gen(y1)
(1 missing value generated)

```
- ipolate y x, gen (y2) epolate
. list, \(\operatorname{sep}(0)\)
\begin{tabular}{l|rrrr|}
\cline { 2 - 5 } & x & y & y 1 & y 2 \\
\cline { 2 - 5 } 1. & 0 &. &. & 0 \\
2. & 1 & 3 & 3 & 3 \\
3. & 1.5 &. & 4.5 & 4.5 \\
4. & 2 & 6 & 6 & 6 \\
5. & 3 &. & 12 & 12 \\
6. & 3.5 &. & 15 & 15 \\
7. & 4 & 18 & 18 & 18 \\
\hline
\end{tabular}

\section*{> Example 2}

We have a dataset of circulations for 10 magazines from 1980 through 2003. The identity of the magazines is recorded in magazine, circulation is recorded in circ, and the year is recorded in year. In a few of the years, the circulation is not known, so we want to fill it in by linear interpolation.
```

. use http://www.stata-press.com/data/r14/ipolxmpl2, clear
. by magazine: ipolate circ year, gen(icirc)

```

When the by prefix is specified, interpolation is performed separately for each group.

\section*{Methods and formulas}

The value \(y\) at \(x\) is found by finding the closest points \(\left(x_{0}, y_{0}\right)\) and \(\left(x_{1}, y_{1}\right)\), such that \(x_{0}<x\) and \(x_{1}>x\) where \(y_{0}\) and \(y_{1}\) are observed, and calculating
\[
y=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}\left(x-x_{0}\right)+y_{0}
\]

If epolate is specified and if \(\left(x_{0}, y_{0}\right)\) and \(\left(x_{1}, y_{1}\right)\) cannot be found on both sides of \(x\), the two closest points on the same side of \(x\) are found, and the same formula is applied.

If there are multiple observations with the same value for \(x_{0}\), then \(y_{0}\) is taken as the average of the corresponding \(y\) values for those observations. (\(x_{1}, y_{1}\)) is handled in the same way.

\section*{Reference}

Meijering, E. 2002. A chronology of interpolation: From ancient astronomy to modern signal and image processing. Proceedings of the IEEE 90: 319-342.

\section*{Also see}
[MI] mi impute - Impute missing values

\section*{Title}
isid - Check for unique identifiers
\begin{tabular}{llll}
Description & Quick start & Menu & Syntax \\
Options & Remarks and examples & Also see &
\end{tabular}

\section*{Description}
isid checks whether the specified variables uniquely identify the observations.

\section*{Quick start}

Verify that idvar uniquely identifies observations
isid idvar
Verify that idvar uniquely identifies observations within panels identified by pvar isid idvar pvar

Same as above
isid pvar idvar
As above, and indicate that the data should be sorted by pvar and idvar isid pvar idvar, sort

Verify that idvar uniquely identifies observations in mydata.dta
isid idvar using mydata.dta

\section*{Menu}

Data \(>\) Data utilities \(>\) Check for unique identifiers

\section*{Syntax}
```

isid varlist [using filename] [, sort missok]

```

\section*{Options}
sort specifies that the dataset be sorted by varlist.
missok indicates that missing values are permitted in varlist.

\section*{Remarks and examples}

\section*{> Example 1}

Suppose that we want to check whether the mileage ratings (mpg) uniquely identify the observations in our auto dataset.
```

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)
. isid mpg
variable mpg does not uniquely identify the observations
r(459);

```
isid returns an error and reports that there are multiple observations with the same mileage rating. We can locate those observations manually:
```

. sort mpg

```
. by mpg: generate nobs = _N
. list make mpg if nobs \(>1\), sepby (mpg)
\begin{tabular}{l|lr|}
\cline { 2 - 3 } & make & mpg \\
\cline { 2 - 3 } 1. & Linc. Mark V \\
2. & Linc. Continental & 12 \\
\cline { 2 - 3 } & (output omitted) \\
\cline { 2 - 3 } \begin{tabular}{l}
68. \\
69.
\end{tabular} & Mazda GLC & Dodge Colt
\end{tabular}

\section*{Example 2}
isid is useful for checking a time-series panel dataset. For this type of dataset, we usually need two variables to identify the observations: one that labels the individual IDs and another that labels the periods. Before we set the data using tsset, we want to make sure that there are no duplicates with the same panel ID and time. Suppose that we have a dataset that records the yearly gross investment of 10 companies for 20 years. The panel and time variables are company and year.
```

. use http://www.stata-press.com/data/r14/grunfeld, clear

```
- isid company year
isid reports no error, so the two variables company and year uniquely identify the observations. Therefore, we should be able to tsset the data successfully:
```

. tsset company year
panel variable: company (strongly balanced)
time variable: year, 1935 to 1954
delta: 1 year

```
- Technical note

The sort option is a convenient shortcut, especially when combined with using. The command . isid patient_id date using newdata, sort
is equivalent to
- preserve
. use newdata, clear
. sort patient_id date
. isid patient_id date
. save, replace
. restore

\section*{Also see}
[D] describe - Describe data in memory or in file
[D] ds - List variables matching name patterns or other characteristics
[D] duplicates - Report, tag, or drop duplicate observations
[D] lookfor - Search for string in variable names and labels
[D] codebook - Describe data contents
[D] inspect - Display simple summary of data's attributes

\section*{Title}
joinby - Form all pairwise combinations within groups
\begin{tabular}{lll}
Description & Quick start & Menu \\
Syntax & Options & Remarks and examples \\
Acknowledgment & Reference & Also see
\end{tabular}

\section*{Description}
joinby joins, within groups formed by varlist, observations of the dataset in memory with filename, a Stata-format dataset. By join we mean to form all pairwise combinations. filename is required to be sorted by varlist. If filename is specified without an extension, .dta is assumed.

If varlist is not specified, joinby takes as varlist the set of variables common to the dataset in memory and in filename.

Observations unique to one or the other dataset are ignored unless unmatched() specifies differently. Whether you load one dataset and join the other or vice versa makes no difference in the number of resulting observations.

If there are common variables between the two datasets, however, the combined dataset will contain the values from the master data for those observations. This behavior can be modified with the update and replace options.

\section*{Quick start}

Form pairwise combinations of observations from mydata1.dta in memory with those from mydata2.dta using all common variables and drop unmatched observations joinby using mydata2

As above, but join on v1, v2, and v3
joinby v1 v2 v3 using mydata2
As above, but include unmatched observations only from mydata2.dta and add _merge indicating whether the variable was in both datasets or only the using dataset
joinby v1 v2 v3 using mydata2, unmatched(using)
As above, but include unmatched observations only from mydata1.dta
joinby v1 v2 v3 using mydata2, unmatched(master)
As above, but name the variable indicating the source of the observation newv
joinby v1 v2 v3 using mydata2, unmatched(master) _merge(newv)
Replace missing data in mydata1.dta with values from mydata2.dta
joinby v1 v2 v3 using mydata2, update
Replace missing and conflicting data in mydata1.dta with values from mydata2.dta
joinby v1 v2 v3 using mydata2, update replace

\section*{Menu}

Data \(>\) Combine datasets \(>\) Form all pairwise combinations within groups

\section*{Syntax}
joinby [varlist] using filename [, options]
options
Description
Options
When observations match:
update
replace
When observations do not match:
unmatched (none) ignore all; the default
unmatched (both) include from both datasets
unmatched(master) include from data in memory
unmatched (using) include from data in filename
nolabel
_merge (varname) varname marks source of resulting observation; default is merge
replace missing data in memory with values from filename replace all data in memory with values from filename
do not copy value-label definitions from filename
varlist may not contain strLs.

\section*{Options}
\(\qquad\) Options
update varies the action that joinby takes when an observation is matched. By default, values from the master data are retained when the same variables are found in both datasets. If update is specified, however, the values from the using dataset are retained where the master dataset contains missing.
replace, allowed with update only, specifies that nonmissing values in the master dataset be replaced with corresponding values from the using dataset. A nonmissing value, however, will never be replaced with a missing value.
unmatched (none \(\mid\) both \(\mid\) master |using) specifies whether observations unique to one of the datasets are to be kept, with the variables from the other dataset set to missing. Valid values are
\begin{tabular}{ll}
none & ignore all unmatched observations (default) \\
both & include unmatched observations from the master and using data \\
master & include unmatched observations from the master data \\
using & include unmatched observations from the using data
\end{tabular}
_merge (varname) specifies the name of the variable that will mark the source of the resulting observation. The default name is _merge (_merge). To preserve compatibility with earlier versions of joinby, merge is generated only if unmatched is specified.
nolabel prevents Stata from copying the value-label definitions from the dataset on disk into the dataset in memory. Even if you do not specify this option, label definitions from the disk dataset do not replace label definitions already in memory.

\section*{Remarks and examples}

The following, admittedly artificial, example illustrates joinby.

\section*{\(>\) Example 1}

We have two datasets: child.dta and parent.dta. Both contain a family_id variable, which identifies the people who belong to the same family.
```

. use http://www.stata-press.com/data/r14/child
(Data on Children)
. describe
Contains data from http://www.stata-press.com/data/r14/child.dta
obs: 5 Data on Children
vars: 4 11 Dec 2014 21:08
size: 30

```
\begin{tabular}{lllll}
\hline variable name & \begin{tabular}{c}
storage \\
type
\end{tabular} & \begin{tabular}{l}
display \\
format
\end{tabular} & \begin{tabular}{l}
value \\
label
\end{tabular} & variable label \\
\hline family_id & int & \(\% 8.0 \mathrm{~g}\) & & Family ID number \\
child_id & byte & \(\% 8.0 \mathrm{~g}\) & & Child ID number \\
x1 & byte & \(\% 8.0 \mathrm{~g}\) & & \\
x2 & int & \(\% 8.0 \mathrm{~g}\) & & \\
\hline
\end{tabular}

Sorted by: family_id
. list
\begin{tabular}{l|rrrr|}
\cline { 2 - 4 } & family \(\sim d\) & child_id & x1 & x2 \\
\hline 1. & 1025 & 3 & 11 & 320 \\
2. & 1025 & 1 & 12 & 300 \\
3. & 1025 & 4 & 10 & 275 \\
4. & 1026 & 2 & 13 & 280 \\
5. & 1027 & 5 & 15 & 210 \\
\hline
\end{tabular}
. use http://www.stata-press.com/data/r14/parent
(Data on Parents)
. describe
Contains data from http://www.stata-press.com/data/r14/parent.dta
\begin{tabular}{rrl}
obs: & 6 & Data on Parents \\
vars: & 4 & 11 Dec 2014 03:06 \\
size: & 84 &
\end{tabular}
size: 84
\begin{tabular}{lllll}
\hline & \begin{tabular}{c}
storage \\
type
\end{tabular} & \begin{tabular}{l}
display \\
format
\end{tabular} & \begin{tabular}{l}
value \\
label
\end{tabular} & variable label \\
\hline family_id & int & \(\% 8.0 \mathrm{~g}\) & & Family ID number \\
parent_id & float & \(\% 9.0 \mathrm{~g}\) & & Parent ID number \\
x1 & float & \(\% 9.0 \mathrm{~g}\) & & \\
x3 & float & \(\% 9.0 \mathrm{~g}\) & & \\
\hline
\end{tabular}

Sorted by:
. list, \(\operatorname{sep}(0)\)
\begin{tabular}{l|rrrc|}
\cline { 2 - 5 } & family~d & parent~d & x1 & x3 \\
\cline { 2 - 5 } 1. & 1030 & 10 & 39 & 600 \\
2. & 1025 & 11 & 20 & 643 \\
3. & 1025 & 12 & 27 & 721 \\
4. & 1026 & 13 & 30 & 760 \\
5. & 1026 & 14 & 26 & 668 \\
6. & 1030 & 15 & 32 & 684 \\
\hline
\end{tabular}

We want to join the information for the parents and their children. The data on parents are in memory, and the data on children are posted at http://www.stata-press.com. child.dta has been sorted by family_id, but parent.dta has not, so first we sort the parent data on family_id:
```

. sort family_id
. joinby family_id using http://www.stata-press.com/data/r14/child
. describe
Contains data
obs: 8 Data on Parents
vars: 6
size: 136

```
\begin{tabular}{llll}
\hline & \begin{tabular}{c}
storage \\
type
\end{tabular} & \begin{tabular}{l}
display \\
format
\end{tabular} & \begin{tabular}{l}
value \\
label
\end{tabular}
\end{tabular} variable label \begin{tabular}{lll}
variable name
\end{tabular}

Sorted by: family_id
Note: Dataset has changed since last saved.
. list, sepby(family_id) abbrev(12)
\begin{tabular}{l|rrrrrr|}
\cline { 2 - 7 } & family_id & parent_id & x1 & x3 & child_id & x2 \\
\cline { 2 - 7 } 1. & 1025 & 12 & 27 & 721 & 1 & 300 \\
2. & 1025 & 12 & 27 & 721 & 4 & 275 \\
3. & 1025 & 12 & 27 & 721 & 3 & 320 \\
4. & 1025 & 11 & 20 & 643 & 3 & 320 \\
5. & 1025 & 11 & 20 & 643 & 1 & 300 \\
6. & 1025 & 11 & 20 & 643 & 4 & 275 \\
\cline { 2 - 7 } & 1026 & 13 & 30 & 760 & 2 & 280 \\
7. & 1026 & 14 & 26 & 668 & 2 & 280 \\
\hline
\end{tabular}
1. family_id of 1027, which appears only in child.dta, and family_id of 1030 , which appears only in parent.dta, are not in the combined dataset. Observations for which the matching variables are not in both datasets are omitted.
2. The x 1 variable is in both datasets. Values for this variable in the joined dataset are the values from parent.dta-the dataset in memory when we issued the joinby command. If we had child.dta in memory and parent.dta on disk when we requested joinby, the values for x 1
would have been those from child.dta. Values from the dataset in memory take precedence over the dataset on disk.

\section*{Acknowledgment}
joinby was written by Jeroen Weesie of the Department of Sociology at Utrecht University, The Netherlands.

\section*{Reference}

Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press.

\section*{Also see}
[D] append - Append datasets
[D] cross - Form every pairwise combination of two datasets
[D] fillin - Rectangularize dataset
[D] merge - Merge datasets
[D] save - Save Stata dataset
[U] 22 Combining datasets

\section*{Title}
label - Manipulate labels
\begin{tabular}{llll}
Description & Quick start & Menu & Syntax \\
Options & Remarks and examples & Stored results & References
\end{tabular}

\section*{Description}
label data attaches a label (up to 80 characters) to the dataset in memory. Dataset labels are displayed when you use the dataset and when you describe it. If no label is specified, any existing label is removed.
label variable attaches a label (up to 80 characters) to a variable. If no label is specified, any existing variable label is removed.
label define defines a list of up to 65,536 (1,000 for Small Stata) associations of integers and text called value labels. Value labels are attached to variables by label values.
label values attaches a value label to varlist. If . is specified instead of lblname, any existing value label is detached from that varlist. The value label, however, is not deleted. The syntax label values varname (that is, nothing following the varname) acts the same as specifying the .. Value labels may be up to 32,000 characters long.
label dir lists the names of value labels stored in memory.
label list lists the names and contents of value labels stored in memory.
label copy makes a copy of an existing value label.
label drop eliminates value labels.
label save saves value labels in a do-file. This is particularly useful for value labels that are not attached to a variable because these labels are not saved with the data.

See [D] label language for information on the label language command.

\section*{Quick start}

Label the dataset "My data"
label data "My data"
Label v1 "First variable"
label variable v1 "First variable"
Define value label named mylabel1
label define mylabel1 1 "value 1" 2 "value 2"
Add value labels for 0 and 3 to mylabel1
label define mylabel1 0 "value 0" 3 "value 3", add
Copy mylabel1 to mylabel2
label copy mylabel1 mylabel2

Redefine value 0 in mylabel2 to mean "Null"
label define mylabel2 0 "Null", modify
Apply value label mylabel1 to v1
label values v1 mylabel1
Save all currently defined value labels to mylabels.do for use with other datasets
label save using mylabels.do
List names and contents of all value labels
label list
Drop all value labels
label drop _all

\section*{Menu}

\section*{label data}

Data \(>\) Data utilities \(>\) Label utilities \(>\) Label dataset

\section*{label variable}

Data \(>\) Variables Manager

\section*{label define}

Data \(>\) Variables Manager

\section*{label values}

Data \(>\) Variables Manager

\section*{label list}

Data \(>\) Data utilities \(>\) Label utilities \(>\) List value labels

\section*{label copy}

Data \(>\) Data utilities \(>\) Label utilities \(>\) Copy value labels

\section*{label drop}

Data \(>\) Variables Manager

\section*{label save}

Data \(>\) Data utilities \(>\) Label utilities \(>\) Save value labels as do-file

\section*{Syntax}

Label dataset
label data ["label"]

Label variable
label variable varname ["label"]

Define value label
label define lblname \# "label" [\# "label" ...] [, add modify replace nofix]

Assign value label to variables
label values varlist [lblname|.] [, nofix]

List names of value labels
label dir

List names and contents of value labels
label list [lblname [Iblname ...]]

Copy value labels
label copy lblname lblname [, replace]

Drop value labels
```

label drop {lblname [lblname ...]|_all }

```

Save value labels in do-file
label save [lblname [lblname ...]] using filename [, replace]

Labels for variables and values in multiple languages
label language...
where \# is an integer or an extended missing value (.a, .b, ..., .z).

\section*{Options}
add allows you to add \(\# \leftrightarrow\) label correspondences to lblname. If add is not specified, you may create only new lblnames. If add is specified, you may create new lblnames or add new entries to existing lblnames.
modify allows you to modify or delete existing \# \(\leftrightarrow\) label correspondences and add new correspondences. Specifying modify implies add, even if you do not type the add option.
replace, with label define, allows an existing value label to be redefined. replace, with label copy, allows an existing value label to be copied over. replace, with label save, allows filename to be replaced.
nofix prevents display formats from being widened according to the maximum length of the value label. Consider label values myvar mylab, and say that myvar has a \(\% 9.0 \mathrm{~g}\) display format right now. Say that the maximum length of the strings in mylab is 12 characters. label values would change the format of myvar from \(\% 9.0 \mathrm{~g}\) to \(\% 12.0 \mathrm{~g}\). nofix prevents this.
nofix is also allowed with label define, but it is relevant only when you are modifying an existing value label. Without the nofix option, label define finds all the variables that use this value label and considers widening their display formats. nofix prevents this.

\section*{Remarks and examples}

See [U] 12.6 Dataset, variable, and value labels for a complete description of labels. This entry deals only with details not covered there.
label dir lists the names of all defined value labels. label list displays the contents of a value label.
> Example 1
Although describe shows the names of the value labels, those value labels may not exist. Stata does not consider it an error to label the values of a variable with a nonexistent label. When this occurs, Stata still shows the association on describe but otherwise acts as if the variable's values are unlabeled. This way, you can associate a value label name with a variable before creating the corresponding label. Similarly, you can define labels that you have not yet used.
\begin{tabular}{|c|c|c|c|c|}
\hline ```
Contains data
 obs:
 vars:
 size:
``` & \[
\begin{gathered}
\text { from htt] } \\
1,130 \\
7 \\
19,210
\end{gathered}
\] & //www.s & a-press & \[
\begin{aligned}
& \text { /data/r14/hbp4.dta } \\
& 22 \text { Jan } 2014 \text { 11:12 }
\end{aligned}
\] \\
\hline variable name & storage type & \begin{tabular}{l}
display \\
format
\end{tabular} & \begin{tabular}{l}
value \\
label
\end{tabular} & variable label \\
\hline id & str10 & \%10s & & Record identification number \\
\hline city & byte & \%8.0g & & \\
\hline year & int & \%8.0g & & \\
\hline age_grp & byte & \%8.0g & & \\
\hline race & byte & \%8.0g & & \\
\hline hbp & byte & \%8.0g & & \\
\hline female & byte & \%8.0g & sexlbl & \\
\hline
\end{tabular}

Sorted by:
The dataset is using the value label sexlbl. Let's define the value label yesno:
```

. label define yesno 0 "no" 1 "yes"

```
label dir shows you the labels that you have actually defined:
```

. label dir
yesno
sexlbl

```

We have two value labels stored in memory: yesno and sexlbl.
We can display the contents of a value label with the label list command:
```

. label list yesno
yesno:
0 no
1 yes

```

The value label yesno labels the values 0 as no and 1 as yes.
If you do not specify the name of the value label on the label list command, Stata lists all the value labels:
```

. label list
yesno:
0 no
1 yes
sexlbl:
male
1 female

```
- Technical note

Because Stata can have more value labels stored in memory than are actually used in the dataset, you may wonder what happens when you save the dataset. Stata stores only those value labels actually associated with variables.

When you use a dataset, Stata eliminates all the value labels stored in memory before loading the dataset.

You can add new codings to an existing value label by using the add option with the label define command. You can modify existing codings by using the modify option. You can redefine a value label by specifying the replace option.
> Example 2
The label yesno codes 0 as no and 1 as yes. You might wish later to add a third coding: 2 as maybe. Typing label define with no options results in an error:
```

. label define yesno 2 maybe
label yesno already defined
r(110);

```

If you do not specify the add, modify, or replace options, label define can be used only to create new value labels. The add option lets you add codings to an existing label:
```

. label define yesno 2 maybe, add
. label list yesno
yesno:
0 no
1 yes
2 maybe

```

Perhaps you have accidentally mislabeled a value. For instance, 2 may not mean "maybe" but may instead mean "don't know". add does not allow you to change an existing label:
```

. label define yesno 2 "don't know", add
invalid attempt to modify label
r(180);

```

Instead, you would specify the modify option:
```

. label define yesno 2 "don't know", modify
. label list yesno
yesno:
O no
1 yes
2 don't know

```

In this way, Stata attempts to protect you from yourself. If you type label define with no options, you can only create a new value label-you cannot accidentally change an existing one. If you specify the add option, you can add new labels to a label, but you cannot accidentally change any existing label. If you specify the modify option, which you may not abbreviate, you can change any existing label.

You can even use the modify option to eliminate existing labels. To do this, you map the numeric code to a null string, that is, " ":
```

. label define yesno 2 "", modify
. label list yesno
yesno:
0 no
1 yes

```

You can eliminate entire value labels by using the label drop command.

\section*{> Example 3}

We currently have two value labels stored in memory-sexlbl and yesno-as shown by the label dir command:
```

. label dir
yesno
sexlbl

```

The dataset that we have in memory uses only one of the labels-sexlbl. describe reports that yesno is not being used:
\begin{tabular}{|c|c|c|c|c|}
\hline ```
Contains data
    obs:
    vars:
    size:
``` & \multicolumn{4}{|l|}{} \\
\hline variable name & storage type & \begin{tabular}{l}
display \\
format
\end{tabular} & \begin{tabular}{l}
value \\
label
\end{tabular} & variable label \\
\hline id & str10 & \%10s & & Record identification number \\
\hline city & byte & \%8.0g & & \\
\hline year & int & \%8.0g & & \\
\hline age_grp & byte & \%8.0g & & \\
\hline race & byte & \%8.0g & & \\
\hline hbp & byte & \%8.0g & & \\
\hline female & byte & \%8.0g & sexlbl & \\
\hline
\end{tabular}

Sorted by:
We can eliminate the yesno label by typing
```

. label drop yesno
. label dir
sexlbl

```

We could eliminate all the value labels in memory by typing
. label drop _all
. label dir
The value label sexlbl, which no longer exists, was associated with the variable female. Even after dropping the value label, sexlbl is still associated with the variable:
\begin{tabular}{|c|c|c|c|c|}
\hline ```
Contains data
 obs:
 vars:
 size:
``` & \multicolumn{4}{|l|}{} \\
\hline variable name & storage type & \begin{tabular}{l}
display \\
format
\end{tabular} & \begin{tabular}{l}
value \\
label
\end{tabular} & variable label \\
\hline id & str10 & \%10s & & Record identification number \\
\hline city & byte & \%8.0g & & \\
\hline year & int & \%8.0g & & \\
\hline age_grp & byte & \%8.0g & & \\
\hline race & byte & \%8.0g & & \\
\hline hbp & byte & \%8.0g & & \\
\hline female & byte & \%8.0g & sexlbl & \\
\hline
\end{tabular}

Sorted by:

Stata does not mind if a nonexistent value label is associated with a variable. When Stata uses such a variable, it simply acts as if the variable is not labeled:
```

. list in 1/4

```
\begin{tabular}{|rrrrrrr|}
\hline id & city & year & age_grp & race & hbp & female \\
\hline 8008238923 & 1 & 1993 & 2 & 2 & 0 & 1 \\
8007143470 & 1 & 1992 & 5 &. & 0 &. \\
8000468015 & 1 & 1988 & 4 & 2 & 0 & 0 \\
8006167153 & 1 & 1991 & 4 & 2 & 0 & 0 \\
\hline
\end{tabular}

The label save command creates a do-file containing label define commands for each label you specify. If you do not specify the lblnames, all value labels are stored in the file. If you do not specify the extension for filename, . do is assumed.

\section*{> Example 4}
label copy is useful when you want to create a new value label that is similar to an existing value label. For example, assume that we currently have the value label yesno in memory:
```

. label list yesno
yesno:
1 yes
2 no

```

Assume that we have some variables in our dataset coded with 1 and 2 for "yes" and "no" and that we have some other variables coded with 1 for "yes", 2 for "no", and 3 for "maybe".

We could make a copy of label yesno and then add the new coding to that copy:
```

. label copy yesno yesnomaybe
. label define yesnomaybe 3 "maybe", add
. label list
yesnomaybe:
1 yes
2 no
3 maybe
yesno:
1 yes
2 no

```

\section*{> Example 5}

Labels are automatically stored with your dataset when you save it. Conversely, the use command drops all labels before loading the new dataset. You may occasionally wish to move a value label from one dataset to another. The label save command allows you to do this.

For example, assume that we currently have the value label yesnomaybe in memory:
```

. label list yesnomaybe
yesnomaybe:
1 yes
2 no
3 maybe

```

We have a dataset stored on disk called survey.dta to which we wish to add this value label. We might use survey and then retype the label define yesnomaybe command. Retyping the label would not be too tedious here but if the value label in memory mapped, say, the 50 states of the United States, retyping it would be irksome. label save provides an alternative:
```

. label save yesnomaybe using ynfile
file ynfile.do saved

```

Typing label save yesnomaybe using ynfile caused Stata to create a do-file called ynfile.do containing the definition of the yesnomaybe label.

To see the contents of the file, we can use the type command:
```

. type ynfile.do
label define yesnomaybe 1 '"yes"', modify
label define yesnomaybe 2 '"no"', modify
label define yesnomaybe 3 '"maybe"', modify

```

We can now use our new dataset, survey.dta:
```

. use survey
(Household survey data)
. label dir

```

Using the new dataset causes Stata to eliminate all value labels stored in memory. The label yesnomaybe is now gone. Because we saved it in the file ynfile.do, however, we can get it back by typing either do ynfile or run ynfile. If we type do, we will see the commands in the file execute. If we type run, the file will execute silently:
```

. run ynfile
. label dir
yesnomaybe

```

The label is now restored just as if we had typed it from the keyboard.

\section*{Technical note}

You can also use the label save command to more easily edit value labels. You can save a label in a file, leave Stata and use your word processor or editor to edit the label, and then return to Stata. Using do or run, you can load the edited values.

\section*{Stored results}
label list stores the following in r() :
Scalars
\(r(k) \quad\) number of mapped values, including missings
\(r(\min ) \quad\) minimum nonmissing value label
\(r\) (max) maximum nonmissing value label
\(r\) (hasemiss) 1 if extended missing values labeled, 0 otherwise
label dir stores the following in \(r()\) :
Macros
\(r\) (names) names of value labels

\section*{References}

Gleason, J. R. 1998a. dm56: A labels editor for Windows and Macintosh. Stata Technical Bulletin 43: 3-6. Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 5-10. College Station, TX: Stata Press.
——. 1998b. dm56.1: Update to labedit. Stata Technical Bulletin 51: 2. Reprinted in Stata Technical Bulletin Reprints, vol. 9, p. 15. College Station, TX: Stata Press.
Long, J. S. 2009. The Workflow of Data Analysis Using Stata. College Station, TX: Stata Press.
Weesie, J. 1997. dm47: Verifying value label mappings. Stata Technical Bulletin 37: 7-8. Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 39-40. College Station, TX: Stata Press.
- 2005a. Value label utilities: labeldup and labelrename. Stata Journal 5: 154-161.
——. 2005b. Multilingual datasets. Stata Journal 5: 162-187.

\section*{Also see}
[D] label language - Labels for variables and values in multiple languages
[D] labelbook - Label utilities
[D] encode - Encode string into numeric and vice versa
[D] varmanage - Manage variable labels, formats, and other properties
[U] 12.6 Dataset, variable, and value labels

\section*{Title}
label language - Labels for variables and values in multiple languages
\begin{tabular}{llll} 
Description & Quick start & Menu & Syntax \\
Option & Remarks and examples & Stored results & Methods and formulas \\
References & Also see & &
\end{tabular}

\section*{Description}
label language lets you create and use datasets that contain different sets of data, variable, and value labels. A dataset might contain one set in English, another in German, and a third in Spanish. A dataset may contain up to 100 sets of labels.

We will write about the different sets as if they reflect different spoken languages, but you need not use the multiple sets in this way. You could create a dataset with one set of long labels and another set of shorter ones.

One set of labels is in use at any instant, but a dataset may contain multiple sets. You can choose among the sets by typing

\section*{. label language languagename}

When other Stata commands produce output (such as describe and tabulate), they use the currently set language. When you define or modify the labels by using the other label commands (see [D] label), you modify the current set.
label language (without arguments)
lists the available languages and the name of the current one. The current language refers to the labels you will see if you used, say, describe or tabulate. The available languages refer to the names of the other sets of previously created labels. For instance, you might currently be using the labels in en (English), but labels in de (German) and es (Spanish) may also be available.

\section*{label language languagename}
changes the labels to those of the specified language. For instance, if label language revealed that en, de, and es were available, typing label language de would change the current language to German.
label language languagename, new
allows you to create a new set of labels and collectively name them languagename. You may name the set as you please, as long as the name does not exceed 24 characters. If the labels correspond to spoken languages, we recommend that you use the language's ISO 639-1 two-letter code, such as en for English, de for German, and es for Spanish. A list of codes for popular languages is listed in the appendix below. For a complete list, see
http://lcweb.loc.gov/standards/iso639-2/iso639jac.html.
label language languagename, rename
changes the name of the label set currently in use. If the label set in use were named default and you now wanted to change that to en, you could type label language en, rename.

Our choice of the name default in the example was not accidental. If you have not yet used label language to create a new language, the dataset will have one language, named default.
label language languagename, delete deletes the specified label set. If languagename is also the current language, one of the other available languages becomes the current language.

\section*{Quick start}

Name unnamed default language en for English
label language en, rename
Create new set of labels in French named fr
label language fr, new
Change current label language from English to French
label language fr
List defined languages
label language
Delete English label set
label language en, delete

\section*{Menu}

Data \(>\) Data utilities \(>\) Label utilities \(>\) Set label language

\section*{Syntax}

List defined languages
label language

Change labels to specified language name
label language languagename

Create new set of labels with specified language name
label language languagename, new [copy]

Rename current label set
label language languagename, rename

Delete specified label set
label language languagename, delete

\section*{Option}
copy is used with label language, new and copies the labels from the current language to the new language.

\section*{Remarks and examples}

Remarks are presented under the following headings:
```

Creating labels in the first language
Creating labels in the second and subsequent languages
Creating labels from a clean slate
Creating labels from a previously existing language
Switching languages
Changing the name of a language
Deleting a language
Appendix: Selected ISO 639-1 two-letter codes

```

\section*{Creating labels in the first language}

You can begin by ignoring the label language command. You create the data, variable, and value labels just as you would ordinarily; see [D] label.
```

. label data "1978 Automobile Data"

```
. label variable foreign "Car type"
. label values foreign origin
. label define origin 0 "Domestic" 1 "Foreign"
At some point—at the beginning, the middle, or the end-rename the language appropriately. For instance, if the labels you defined were in English, type
. label language en, rename
label language, rename simply changes the name of the currently set language. You may change the name as often as you wish.

\section*{Creating labels in the second and subsequent languages}

After creating the first language, you can create a new language by typing
. label language newlanguagename, new
or by typing the two commands
. label language existinglanguagename
. label language newlanguagename, new copy
In the first case, you start with a clean slate: no data, variable, or value labels are defined. In the second case, you start with the labels from existinglanguagename, and you can make the changes from there.

\section*{Creating labels from a clean slate}

To create new labels in the language named de, type
```

. label language de, new

```

If you were now to type describe, you would find that there are no data, variable, or value labels. You can define new labels in the usual way:
. label data "1978 Automobil Daten"
. label variable foreign "Art Auto"
. label values foreign origin_de
. label define origin_de 0 "Innen" 1 "Ausländisch"

\section*{Creating labels from a previously existing language}

It is sometimes easier to start with the labels from a previously existing language, which you can then translate:
- label language en
. label language de, new copy
If you were now to type describe, you would see the English-language labels, even though the new language is named de. You can then work to translate the labels:
```

. label data "1978 Automobil Daten"
. label variable foreign "Art Auto"

```

Typing describe, you might also discover that the variable foreign has the value label origin. Do not change the contents of the value label. Instead, create a new value label:
```

. label define origin_de 0 "Innen" 1 "Ausländisch"
. label values foreign origin_de

```

Creating value labels with the copy option is no different from creating them from a clean slate, except that you start with an existing set of labels from another language. Using describe can make it easier to translate them.

\section*{Switching languages}

You can discover the names of the previously defined languages by typing
. label language
You can switch to a previously defined language-say, to en-by typing
. label language en

\section*{Changing the name of a language}

To change the name of a previously defined language make it the current language and then specify the rename option:
. label language de
. label language German, rename
You may rename a language as often as you wish:
. label language de, rename

\section*{Deleting a language}

To delete a previously defined language, such as de, type
```

. label language de, delete

```

The delete option deletes the specified language and, if the language was also the currently set language, resets the current language to one of the other languages or to default if there are none.

\section*{Appendix: Selected ISO 639-1 two-letter codes}

You may name languages as you please. You may name German labels Deutsch, German, Aleman, or whatever else appeals to you. For consistency across datasets, if the language you are creating is a spoken language, we suggest that you use the ISO 639-1 two-letter codes. Some of them are listed below, and the full list can be found at http://lcweb.loc.gov/standards/iso639-2/iso639jac.html.
\begin{tabular}{cl}
\begin{tabular}{c} 
Two-letter \\
code
\end{tabular} & \begin{tabular}{l} 
English name of \\
language
\end{tabular} \\
\hline ar & Arabic \\
cs & Czech \\
cy & Welsh \\
de & German \\
el & Greek \\
en & English \\
es & Spanish; Castillian \\
fa & Persian \\
fi & Finnish \\
fr & French \\
ga & Irish \\
he & Hebrew \\
hi & Hindi \\
is & Icelandic \\
it & Italian \\
ja & Japanese \\
kl & Kalaallisut; Greenlandic \\
lt & Lithuanian \\
lv & Latvian \\
nl & Dutch; Flemish \\
no & Norwegian \\
pl & Polish \\
pt & Portuguese \\
ro & Romanian; Moldavian \\
ru & Russian \\
sk & Slovak \\
sr & Serbian \\
sv & Swedish \\
tr & Turkish \\
uk & Ukrainian \\
uz & Uzbek \\
zh & Chinese \\
\hline &
\end{tabular}

\section*{Stored results}
label language without arguments stores the following in r() :
Scalars
\(r(k) \quad\) number of languages defined
Macros
\(r\) (languages) list of languages, listed one after the other
\(r\) (language) name of current language

\section*{Methods and formulas}

This section is included for programmers who wish to access or extend the services label language provides.

Language sets are implemented using \([\mathrm{P}]\) char. The names of the languages and the name of the current language are stored in
\[
\begin{array}{ll}
\text { _dta[_lang_list] } & \text { list of defined languages } \\
\text { _dta[_lang_c }] & \text { currently set language }
\end{array}
\]

If these characteristics are undefined, results are as if each contained the word "default". Do not change the contents of the above two macros except by using label language.

For each language languagename except the current language, data, variable, and value labels are stored in
\begin{tabular}{ll} 
_dta[_lang_v_languagename] & data label \\
varname[_lang_v_languagename] & variable label \\
varname[_lang_l_languagename] & value-label name
\end{tabular}

\section*{References}

Golbe, D. L. 2010. Stata tip 83: Merging multilingual datasets. Stata Journal 10: 152-156. Weesie, J. 2005. Multilingual datasets. Stata Journal 5: 162-187.

\section*{Also see}
[D] label - Manipulate labels
[D] labelbook - Label utilities
[D] codebook - Describe data contents

\section*{Title}
labelbook — Label utilities
\begin{tabular}{llll} 
Description & Quick start & Menu & Syntax \\
Options & Remarks and examples & Stored results & Acknowledgments \\
References & Also see & &
\end{tabular}

\section*{Description}
labelbook displays information for the value labels specified or, if no labels are specified, all the labels in the data.

For multilingual datasets (see [D] label language), labelbook lists the variables to which value labels are attached in all defined languages.
numlabel prefixes numeric values to value labels. For example, a value mapping of 2 -> "catholic" will be changed to 2 -> " 2 . catholic". See option mask() for the different formats. Stata commands that display the value labels also show the associated numeric values. Prefixes are removed with the remove option.
uselabel is a programmer's command that reads the value-label information from the currently loaded dataset or from an optionally specified filename.
uselabel creates a dataset in memory that contains only that value-label information. The new dataset has four variables named label, lname, value, and trunc; is sorted by lname value; and has 1 observation per mapping. Value labels can be longer than the maximum string length in Stata; see [ R\(]\) limits. The new variable trunc contains 1 if the value label is truncated to fit in a string variable in the dataset created by uselabel.
uselabel complements label, save, which produces a text file of the value labels in a format that allows easy editing of the value-label texts.

Specifying no list or _all is equivalent to specifying all value labels. Value-label names may not be abbreviated or specified with wildcards.

\section*{Quick start}

Codebook of all currently defined value labels labelbook

As above, but only include labels mylabel1, mylabel2, and mylabel3 labelbook mylabel1 mylabel2 mylabel3

As above, and check that value labels are unique to the first 8 characters labelbook mylabel1 mylabel2 mylabel3, length(8)

Prefix numeric values to mylabel1 with the number separated from the text by a hyphen numlabel mylabel1, add mask("\# - ")

Remove a prefixed numeric value from a value label when the "\# -" mask was used
numlabel mylabel1, remove mask("\# - ")

\section*{Menu}

\section*{labelbook}

Data \(>\) Data utilities \(>\) Label utilities \(>\) Produce codebook of value labels
numlabel
Data \(>\) Data utilities \(>\) Label utilities \(>\) Prepend values to value labels
uselabel
Data \(>\) Data utilities \(>\) Label utilities \(>\) Create dataset from value labels

\section*{Syntax}

Produce a codebook describing value labels
labelbook [lblname-list] [, labelbook_options]
Prefix numeric values to value labels


Make dataset containing value-label information
```

uselabel [lblname-list] [using filename] [, clear var]

```
labelbook_options Description
\begin{tabular}{ll} 
alpha & \begin{tabular}{l} 
alphabetize label mappings \\
check if value labels are unique to length \#; default is length(12)
\end{tabular} \\
\(\underline{\text { length(\#) }}\) & \begin{tabular}{l} 
list maximum of \# mappings; default is list (32000)
\end{tabular} \\
list(\#) & \begin{tabular}{l} 
describe potential problems in a summary report
\end{tabular} \\
problems & do not suppress detailed report on variables or value labels
\end{tabular}
numlabel_options Description
\begin{tabular}{ll}
\(*\) add & prefix numeric values to value labels \\
\(*\) & remove numeric values from value labels \\
mask \((\) str \()\) & mask for formatting numeric labels; default mask is "\#." \\
force & force adding or removing of numeric labels \\
detail & \begin{tabular}{l} 
provide details about value labels, where some labels are prefixed with \\
\\
\end{tabular}\(\quad\)\begin{tabular}{l} 
numbers and others are not
\end{tabular}
\end{tabular}

\footnotetext{
* Either add or remove must be specified.
}

\section*{Options}

Options are presented under the following headings:
Options for labelbook

\section*{Options for labelbook}
alpha specifies that the list of value-label mappings be sorted alphabetically on label. The default is to sort the list on value.
length(\#) specifies the minimum length that labelbook checks to determine whether shortened value labels are still unique. It defaults to 12, the width used by most Stata commands. labelbook also reports whether value labels are unique at their full length.
list (\#) specifies the maximum number of value-label mappings to be listed. If a value label defines more mappings, a random subset of \# mappings is displayed. By default, labelbook displays all mappings. list ( 0 ) suppresses the listing of the value-label definitions.
problems specifies that a summary report be produced describing potential problems that were diagnosed:
1. Value label has gaps in mapped values (for example, values 0 and 2 are labeled, while 1 is not)
2. Value label strings contain leading or trailing blanks
3. Value label contains duplicate labels, that is, there are different values that map into the same string
4. Value label contains duplicate labels at length 12
5. Value label contains numeric \(\rightarrow\) numeric mappings
6. Value label contains numeric \(\rightarrow\) null string mappings
7. Value label is not used by variables
detail may be specified only with problems. It specifies that the detailed report on the variables or value labels not be suppressed.

\section*{Options for numlabel}
add specifies that numeric values be prefixed to value labels. Value labels that are already numlabeled (using the same mask) are not modified.
remove specifies that numeric values be removed from the value labels. If you added numeric values by using a nondefault mask, you must specify the same mask to remove them. Value labels that are not numlabeled or are numlabeled using a different mask are not modified.
mask (str) specifies a mask for formatting the numeric labels. In the mask, \# is replaced by the numeric label. The default mask is "\#. " so that numeric value 3 is shown as "3. ". Spaces are relevant. For the mask "[\#] ", numeric value 3 would be shown as " [3]".
force specifies that adding or removing numeric labels be performed, even if some value labels are numlabeled using the mask and others are not. Here only labels that are not numlabeled will be modified.
detail specifies that details be provided about the value labels that are sometimes, but not always, numlabeled using the mask.

\section*{Options for uselabel}
clear permits the dataset to be created, even if the dataset already in memory has changed since it was last saved.
var specifies that the varlists using value label \(v l\) be returned in \(r(v l)\).

\section*{Remarks and examples}

Remarks are presented under the following headings:

\author{
labelbook \\ Diagnosing problems \\ numlabel \\ uselabel
}

\section*{labelbook}
labelbook produces a detailed report of the value labels in your data. You can restrict the report to a list of labels, meaning that no abbreviations or wildcards will be allowed. labelbook is a companion command to [D] codebook, which describes the data, focusing on the variables.

For multilingual datasets (see [D] label language), labelbook lists the variables to which value labels are attached in any of the languages.

\section*{> Example 1}

We request a labelbook report for value labels in a large dataset on the internal organization of households. We restrict output to three value labels: agree5 (used for five-point Likert-style items), divlabor (division of labor between husband and wife), and noyes for simple no-or-yes questions.
```

. use http://www.stata-press.com/data/r14/labelbook1
. labelbook agree5 divlabor noyes
value label agree5

```
values
range: [1,5]
N: 5
gaps: no
missing .*: 0

\section*{labels}
string length: [8,11]
unique at full length: yes
unique at length 12: yes
null string: no
leading/trailing blanks: no
numeric -> numeric: no
definition
\[
\begin{aligned}
& \text {-- disagree } \\
& \text { - disagree } \\
& \text { indifferent } \\
& \text { + agree } \\
& \text { ++ agree }
\end{aligned}
\]
variables: rs056 rs057 rs058 rs059 rs060 rs061 rs062 rs063 rs064 rs065 rs066 rs067 rs068 rs069 rs070 rs071 rs072 rs073 rs074 rs075 rs076 rs077 rs078 rs079 rs080 rs081


The report is largely self-explanatory. Extended missing values are denoted by ". *". In the definition of the mappings, the leading 12 characters of longer value labels are underlined to make it easier to check that the value labels still make sense after truncation. The following example emphasizes this feature. The option alpha specifies that the value-label mappings be sorted in alphabetical order by the label strings rather than by the mapped values.
```

. use http://www.stata-press.com/data/r14/labelbook2
. labelbook sports, alpha

```
value label sports
\begin{tabular}{rlrl} 
values & & \multicolumn{2}{c}{ labels } \\
range: & {\([1,5]\)} & string length: & [16,23] \\
\(\mathrm{N}:\) & 4 & unique at full length: & yes \\
gaps: yes & unique at length 12: & no \\
missing .*: & 0 & null string: & no \\
& & leading/trailing blanks: & no \\
& numeric \(->\) numeric: & no
\end{tabular}
definition
5 college baseball
4 college basketball
2 professional baseball
1 professional basketball
variables: active passive
The report includes information about potential problems in the data. These are discussed in greater detail in the next section.

\section*{Diagnosing problems}
labelbook can diagnose a series of potential problems in the value-label mappings. labelbook produces warning messages for a series of problems:
1. Gaps in the labeled values (for example, values 0 and 2 are labeled, whereas 1 is not) may occur when value labels of the intermediate values have not been defined.
2. Leading or trailing blanks in the value labels may distort Stata output.
3. Stata allows you to define blank labels, that is, the mapping of a number to the empty string. Below we give you an example of the unexpected output that may result. Blank labels are most often the result of a mistaken value-label definition, for instance, the expansion of a nonexisting macro in the definition of a value label.
4. Stata does not require that the labels within each value label consist of unique strings, that is, that different values be mapped into different strings. For instance, you might accidentally define the value label gender as
```

label define gender 1 female 2 female

```

You will probably catch most of the problems, but in more complicated value labels, it is easy to miss the error. labelbook finds such problems and displays a warning.
5. Stata allows long value labels ( 32,000 characters), so labels can be long. However, some commands may need to display truncated value labels, typically at length 12 . Consequently, even if the value labels are unique, the truncated value labels may not be, which can cause problems. labelbook warns you for value labels that are not unique at length 12 .
6. Stata allows value labels that can be interpreted as numbers. This is sometimes useful, but it can cause highly misleading output. Think about tabulating a variable for which the associated value label incorrectly maps 1 into " 2 ", 2 into " 3 ", and 3 into " 1 ". labelbook looks for such problematic labels and warns you if they are found.
7. In Stata, value labels are defined as separate objects that can be associated with more than one variable:
```

label define labname \# str \# str
label value varname1 labname
label value varname2 labname

```

If you forget to associate a variable label with a variable, Stata considers the label unused and drops its definition. labelbook reports unused value labels so that you may fix the problem.
The related command codebook reports on two other potential problems concerning value labels:
a. A variable is value labeled, but some values of the variable are not labeled. You may have forgotten to define a mapping for some values, or you generated a variable incorrectly; for example, your sex variable has an unlabeled value 3, and you are not working in experimental genetics!
b. A variable has been associated with an undefined value label.
labelbook can also be invoked with the problems option, specifying that only a report on potential problems be displayed without the standard detailed description of the value labels.

\section*{- Technical note}

The following two examples demonstrate some features of value labels that may be difficult to understand. In the first example, we encode a string variable with blank strings of various sizes; that is, we turn a string variable into a value-labeled numeric variable. Then we tabulate the generated variable.
```

. clear all
. set obs 5
number of observations (_N) was 0, now 5
. generate str10 horror = substr(" ", 1, _n)
. encode horror, gen(Ihorror)
. tabulate horror

horror	Freq.	Percent	Cum.
	1	20.00	20.00
	1	20.00	40.00
	1	20.00	60.00
	1	20.00	80.00
	1	20.00	100.00
Total	5	100.00	

```

It may look as if you have discovered a bug in Stata because there are no value labels in the first column of the table. This happened because we encoded a variable with only blank strings, so the associated value label maps integers into blank strings.
```

. label list Ihorror
Ihorror:

```
    1
    2
    3
    4
    5

In the first column of the table, tabulate displayed the value-label texts, just as it should. Because these texts are all blank, the first column is empty. As illustrated below, labelbook would have warned you about this odd value label.

Our second example illustrates what could go wrong with numeric values stored as string values. We want to turn this into a numeric variable, but we incorrectly encode the variable rather than using the appropriate command, destring.

labelbook skips the detailed descriptions of the value labels and reports only the potential problems in the value labels if the problems option is specified. This report would have alerted you to the problems with the value labels we just described.
```

. use http://www.stata-press.com/data/r14/data_in_trouble, clear
. labelbook, problem
Potential problems in dataset http://www.stata-press.com/data/r14/
> data_in_trouble.dta
potential problem value labels
numeric -> numeric Ihorror2
leading or trailing blanks Ihorror
numeric -> null str Ihorror

```

Running labelbook, problems and codebook, problems on new data might catch a series of annoying problems.

\section*{numlabel}

The numlabel command allows you to prefix numeric codes to value labels. The reason you might want to do this is best seen in an example using the automobile data. First, we create a value label for the variable rep78 (repair record in 1978),
```

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)
. label define repair 1 "very poor" 2 "poor" 3 "medium" 4 good 5 "very good"
. label values rep78 repair

```
and tabulate it.
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{array}{r}
\text { Repair } \\
\text { Record } 1978
\end{array}
\] & Freq. & Percent & Cum. \\
\hline very poor & 2 & 2.90 & 2.90 \\
\hline poor & 8 & 11.59 & 14.49 \\
\hline medium & 30 & 43.48 & 57.97 \\
\hline good & 18 & 26.09 & 84.06 \\
\hline very good & 11 & 15.94 & 100.00 \\
\hline Total & 69 & 100.00 & \\
\hline
\end{tabular}

Suppose that we want to recode the variable by joining the categories poor and very poor. To do this, we need the numerical codes of the categories, not the value labels. However, Stata does not display both the numeric codes and the value labels. We could redisplay the table with the nolabel option. The numlabel command provides a simple alternative: it modifies the value labels so that they also contain the numeric codes.
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{array}{r}
\text { Repair } \\
\text { Record } 1978
\end{array}
\] & Freq. & Percent & Cum. \\
\hline 1. very poor & 2 & 2.90 & 2.90 \\
\hline 2. poor & 8 & 11.59 & 14.49 \\
\hline 3. medium & 30 & 43.48 & 57.97 \\
\hline 4. good & 18 & 26.09 & 84.06 \\
\hline 5. very good & 11 & 15.94 & 100.00 \\
\hline Total & 69 & 100.00 & \\
\hline
\end{tabular}

If you do not like the way the numeric codes are formatted, you can use numlabel to change the formatting. First, we remove the numeric codes again:
```

. numlabel repair, remove

```

In this example, we specified the name of the label. If we had not typed it, numlabel would have removed the codes from all the value labels. We can include the numeric codes while specifying a mask:
\begin{tabular}{l}
. numlabel, add mask("[\#] ") \\
. tabulate rep78 \\
Repair Record \\
1978 \\
\\
\hline [1] very poor \\
[2] poor
\end{tabular}
numlabel prefixes rather than postfixes the value labels with numeric codes. Because value labels can be fairly long (up to 80 characters), Stata usually displays only the first 12 characters.

\section*{uselabel}
uselabel is of interest primarily to programmers. Here we briefly illustrate it with the auto dataset.

\section*{\(>\) Example 2}
```

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)
. uselabel
. describe
Contains data
obs: 2
vars: 4
size: 32

```
\begin{tabular}{lclll} 
variable name & \begin{tabular}{c} 
storage \\
type
\end{tabular} & \begin{tabular}{l} 
display \\
format
\end{tabular} & \begin{tabular}{l} 
value \\
label
\end{tabular} & variable label \\
\hline lname & str6 & \(\% 9 \mathrm{~s}\) & & \\
value & byte & \(\% 9.0 \mathrm{~g}\) & & \\
label & str8 & \(\% 9 \mathrm{~s}\) & & \\
trunc & byte & \(\% 8.0 \mathrm{~g}\) & & \\
\hline
\end{tabular}

Sorted by: lname value
            Note: Dataset has changed since last saved.
. list
\begin{tabular}{l|rrrr|}
\hline lname & value & label & trunc \\
\hline 1. & origin & 0 & Domestic & 0 \\
origin & 1 & Foreign & 0 \\
\hline
\end{tabular}
uselabel created a dataset containing the labels and values for the value label origin.
The maximum length of the text associated with a value label is 32,000 characters, whereas the maximum length of a string variable in a Stata dataset is 2,045 . uselabel uses only the first 2,045 characters of the label. The trunc variable will record a 1 if the text was truncated for this reason.

\section*{Stored results}
labelbook stores the following in \(r()\) :
Macros
```

r(names) lblname-list
r(gaps) gaps in mapped values
r(blanks) leading or trailing blanks
r(null) name of value label containing null strings
r(nuniq) duplicate labels
r(nuniq_sh) duplicate labels at length }1
r(ntruniq) duplicate labels at maximum string length
r(notused) not used by any of the variables
r(numeric) name of value label containing mappings to numbers

```
uselabel stores the following in r() :
Macros
\(r\) (lblname) list of variables that use value label lblname (only when var option is specified)

\section*{Acknowledgments}
labelbook and numlabel were written by Jeroen Weesie of the Department of Sociology at Utrecht University, The Netherlands. A command similar to numlabel was written by J. M. Lauritsen (2001) of Odense Universiteshospital, Denmark.

\section*{References}

Lauritsen, J. M. 2001. dm84: labjl: Adding numerical codes to value labels. Stata Technical Bulletin 59: 6-7. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 35-37. College Station, TX: Stata Press.
Weesie, J. 1997. dm47: Verifying value label mappings. Stata Technical Bulletin 37: 7-8. Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 39-40. College Station, TX: Stata Press.

\section*{Also see}
[D] codebook - Describe data contents
[D] describe - Describe data in memory or in file
[D] ds - List variables matching name patterns or other characteristics
[D] encode - Encode string into numeric and vice versa
[D] label - Manipulate labels
[U] 12.6 Dataset, variable, and value labels
[U] 15 Saving and printing output-log files

\section*{Title}
list — List values of variables
\begin{tabular}{llll} 
Description & Quick start & Menu & Syntax \\
Options & Remarks and examples & References & Also see
\end{tabular}

\section*{Description}
list displays the values of variables. If no varlist is specified, the values of all the variables are displayed. Also see browse in [D] edit.

\section*{Quick start}

List the data in memory
list
List only data in variables \(\mathrm{v} 1, \mathrm{v} 2\), and v 3
list v1 v2 v3
As above, but include only the first 10 observations and suppress numbering
list v1 v2 v3 in \(f / 10\), noobs
As above, but list the last 10 observations
list v1 v2 v3 in \(-10 / 1\), noobs
Draw separator line every 10 observations and repeat header row every 20 observations
list v1 v2 v3, separator(10) header (20)
As above, but draw separator line between values of v1 and do not show the header
list v1 v2 v3, sepby(v1) noheader
Add the mean and sum of the observations at the end of the table and suppress separator and divider lines
list v1 v2 v3, mean sum clean

\section*{Menu}

Data \(>\) Describe data \(>\) List data

\section*{Syntax}
list [varlist] [if] [in] [, options]
flist is equivalent to list with the fast option.
options
Main
compress
nocompress
fast
abbreviate(\#)
string (\#)
noobs
fvall
Options
table
display
header
noheader
header (\#)
clean
divider
separator (\#)
sepby (varlist \({ }_{2}\) )
nolabel
Summary
mean \(\left[\left(\right.\right.\) varlist \(\left.\left._{2}\right)\right]\)
\(\operatorname{sum}\left[\left(\right.\right.\) varlist \(\left.\left._{2}\right)\right]\)
\(\mathrm{N}\left[\left(\right.\right.\) varlist \(\left.\left._{2}\right)\right]\)
labvar (varname)
Advanced
constant \(\left[\left(\right.\right.\) varlist \(\left.\left._{2}\right)\right]\)
notrim
absolute
nodotz
subvarname
linesize(\#)

Description
compress width of columns in both table and display formats use display format of each variable
synonym for nocompress; no delay in output of large datasets abbreviate variable names to \# display columns; default is ab(8) truncate string variables to \# display columns
do not list observation numbers
display all levels of factor variables

\section*{force table format}
force display format
display variable header once; default is table mode
suppress variable header
display variable header every \# lines
force table format with no divider or separator lines
draw divider lines between columns
draw a separator line every \# lines; default is separator (5)
draw a separator line whenever varlist \(_{2}\) values change
display numeric codes rather than label values
add line reporting the mean for the (specified) variables
add line reporting the sum for the (specified) variables
add line reporting the number of nonmissing values for the (specified) variables
substitute Mean, Sum, or N for value of varname in last row of table
separate and list variables that are constant only once
suppress string trimming
display overall observation numbers when using by varlist:
display numerical values equal to.\(z\) as field of blanks
substitute characteristic for variable name in header
columns per line; default is linesize(79)
varlist may contain factor variables; see [U] 11.4.3 Factor variables.
varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by is allowed with list; see [D] by.

\section*{Options}

\section*{Main}
compress and nocompress change the width of the columns in both table and display formats. By default, list examines the data and allocates the needed width to each variable. For instance, a variable might be a string with a \(\% 18\) s format, and yet the longest string will be only 12 characters long. Or a numeric variable might have a \(\% 9.0 \mathrm{~g}\) format, and yet, given the values actually present, the widest number needs only four columns.
nocompress prevents list from examining the data. Widths will be set according to the display format of each variable. Output generally looks better when nocompress is not specified, but for very large datasets (say, \(1,000,000\) observations or more), nocompress can speed up the execution of list.
compress allows list to engage in a little more compression than it otherwise would by telling list to abbreviate variable names to fewer than eight characters.
fast is a synonym for nocompress. fast may be of interest to those with very large datasets who wish to see output appear without delay.
abbreviate (\#) is an alternative to compress that allows you to specify the minimum abbreviation of variable names to be considered. For example, you could specify abbreviate (16) if you never wanted variables abbreviated to less than 16 display columns. For most users, the number of display columns is equal to the number of characters. However, some languages, such as Chinese, Japanese, and Korean (CJK) require two display columns per character.
string(\#) specifies that when string variables are listed, they be truncated to \# display columns in the output. Any value that is truncated will be appended with ". ." to indicate the truncation. string () is useful for displaying just a part of long strings.
noobs suppresses the listing of the observation numbers.
fvall specifies that the entire dataset be used to determine how many levels are in any factor variables specified in varlist. The default is to determine the number of levels by using only the observations in the if and in qualifiers.

\section*{Options}
table and display determine the style of output. By default, list determines whether to use table or display on the basis of the width of your screen and the linesize() option, if you specify it.
table forces table format. Forcing table format when list would have chosen otherwise generally produces impossible-to-read output because of the linewraps. However, if you are logging output in SMCL format and plan to print the output on wide paper later, specifying table can be a reasonable thing to do.
display forces display format.
header, noheader, and header (\#) specify how the variable header is to be displayed.
header is the default in table mode and displays the variable header once, at the top of the table. noheader suppresses the header altogether.
header (\#) redisplays the variable header every \# observations. For example, header (10) would display a new header every 10 observations.

The default in display mode is to display the variable names interweaved with the data:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
make \\
AMC Concord
\end{tabular} & \[
\begin{aligned}
& \text { price } \\
& 4,099
\end{aligned}
\] & \[
\begin{array}{r}
\mathrm{mpg} \\
22
\end{array}
\] & \[
\begin{array}{r}
\text { rep78 } \\
3
\end{array}
\] & headroom
\[
2.5
\] & \[
\begin{array}{r}
\text { trunk } \\
11
\end{array}
\] & \[
\begin{array}{r}
\text { weight } \\
2,930
\end{array}
\] & \[
\begin{array}{r}
\text { length } \\
186
\end{array}
\] \\
\hline \[
\begin{array}{r}
\text { turn } \\
40
\end{array}
\] & \multicolumn{3}{|c|}{displa~t} & \multicolumn{2}{|l|}{\[
\begin{array}{r}
\text { gear_r~o } \\
3.58
\end{array}
\]} & \multicolumn{2}{|l|}{\begin{tabular}{l}
foreign \\
Domestic
\end{tabular}} \\
\hline
\end{tabular}

However, if you specify header, the header is displayed once, at the top of the table:
\begin{tabular}{l}
\begin{tabular}{|l|r|c|c|c|c|c|c|}
\hline make & price & mpg & rep78 & headroom & trunk & weight & length \\
\hline turn & \multicolumn{2}{|c|}{ displa~t } & \multicolumn{2}{c|}{ gear_r~o } & foreign \\
\hline AMC Concord & 4,099 & 22 & 3 & 2.5 & 11 & 2,930 & 186 \\
\hline 40 & 121 & 3.58 & Domestic \\
\hline
\end{tabular} \\
\hline
\end{tabular}
clean is a better alternative to table when you want to force table format and your goal is to produce more readable output on the screen. clean implies table, and it removes all dividing and separating lines, which is what makes wrapped table output nearly impossible to read.
divider, separator(\#), and sepby (varlist \({ }_{2}\) ) specify how dividers and separator lines should be displayed. These three options affect only table format.
divider specifies that divider lines be drawn between columns. The default is nodivider.
separator (\#) and sepby (varlist \({ }_{2}\) ) indicate when separator lines should be drawn between rows.
separator(\#) specifies how often separator lines should be drawn between rows. The default is separator(5), meaning every 5 observations. You may specify separator (0) to suppress separators altogether.
sepby (varlist \({ }_{2}\) ) specifies that a separator line be drawn whenever any of the variables in sepby (varlist \(t_{2}\) ) change their values; up to 10 variables may be specified. You need not make sure the data were sorted on sepby ( varlist \(_{2}\) ) before issuing the list command. The variables in sepby (varlist \({ }_{2}\) ) also need not be among the variables being listed.
nolabel specifies that numeric codes be displayed rather than the label values.
mean, sum, N , mean( varlist \(_{2}\) ), sum( varlist \(_{2}\) ), and \(\mathrm{N}\left(\right.\) varlist \(\left._{2}\right)\) all specify that lines be added to the output reporting the mean, sum, or number of nonmissing values for the (specified) variables. If you do not specify the variables, all numeric variables in the varlist following list are used.
labvar (varname) is for use with mean \([()]\), sum \([()]\), and \(N[()]\). list displays Mean, Sum, or \(N\) where the observation number would usually appear to indicate the end of the table-where a row represents the calculated mean, sum, or number of observations.
labvar (varname) changes that. Instead, Mean, Sum, or N is displayed where the value for varname would be displayed. For instance, you might type
. list group costs profits, sum(costs profits) labvar (group)
\begin{tabular}{l|rrr|}
\cline { 2 - 3 } & group & costs & profits \\
\hline 1. & 1 & 47 & 5 \\
2. & 2 & 123 & 10 \\
3. & 3 & 22 & 2 \\
\cline { 2 - 3 } & Sum & 192 & 17 \\
\hline
\end{tabular}
and then also specify the noobs option to suppress the observation numbers.

Advanced
constant and constant (varlist \({ }_{2}\) ) specify that variables that do not vary observation by observation be separated out and listed only once.
constant specifies that list determine for itself which variables are constant.
constant ( varlist \(_{2}\) ) allows you to specify which of the constant variables you want listed separately. list verifies that the variables you specify really are constant and issues an error message if they are not.
constant and constant() respect if exp and in range. If you type
```

. list if group==3

```
variable x might be constant in the selected observations, even though the variable varies in the entire dataset.
notrim affects how string variables are listed. The default is to trim strings at the width implied by the widest possible column given your screen width (or linesize(), if you specified that). notrim specifies that strings not be trimmed. notrim implies clean (see above) and, in fact, is equivalent to the clean option, so specifying either makes no difference.
absolute affects output only when list is prefixed with by varlist:. Observation numbers are displayed, but the overall observation numbers are used rather than the observation numbers within each by-group. For example, if the first group had 4 observations and the second had 2, by default the observations would be numbered \(1,2,3,4\) and 1,2 . If absolute is specified, the observations will be numbered \(1,2,3,4\) and 5, 6 .
nodotz is a programmer's option that specifies that numerical values equal to.\(z\) be listed as a field of blanks rather than as . \(\mathbf{z}\).
subvarname is a programmer's option. If a variable has the characteristic var [varname] set, then the contents of that characteristic will be used in place of the variable's name in the headers.
linesize(\#) specifies the width of the page to be used for determining whether table or display format should be used and for formatting the resulting table. Specifying a value of linesize() that is wider than your screen width can produce truly ugly output on the screen, but that output can nevertheless be useful if you are logging output and plan to print the log later on a wide printer.

\section*{Remarks and examples}
list, typed by itself, lists all the observations and variables in the dataset. If you specify varlist, only those variables are listed. Specifying one or both of in range and if exp limits the observations listed.
list respects line size. That is, if you resize the Results window (in windowed versions of Stata) before running list, it will take advantage of the available horizontal space. Stata for Unix(console) users can instead use the set linesize command to take advantage of this feature; see \([R] \log\).
list may not display all the large strings. You have two choices: 1) you can specify the clean option, which makes a different, less attractive listing, or 2) you can increase line size, as discussed above.

\section*{\(>\) Example 1}
list has two output formats, known as table and display. The table format is suitable for listing a few variables, whereas the display format is suitable for listing an unlimited number of variables. Stata chooses automatically between those two formats:
```

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)
. list in 1/2

```
1.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
make \\
AMC Concord
\end{tabular} & \begin{tabular}{l}
price \\
4,099
\end{tabular} & \[
\begin{array}{r}
\mathrm{mpg} \\
22
\end{array}
\] & \begin{tabular}{l}
rep78 \\
3
\end{tabular} & \[
\begin{array}{r}
\text { headroom } \\
2.5
\end{array}
\] & trunk 11 & \[
\begin{array}{r}
\text { weight } \\
2,930
\end{array}
\] & \[
\begin{array}{r}
\text { length } \\
186
\end{array}
\] \\
\hline turn & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{displa~t 121}} & \multicolumn{2}{|l|}{gear_r~o} & \multicolumn{2}{|l|}{foreign} \\
\hline 40 & & & & \multicolumn{2}{|l|}{3.58} & \multicolumn{2}{|l|}{Domestic} \\
\hline
\end{tabular}
2.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
make \\
AMC Pacer
\end{tabular} & \begin{tabular}{l}
price \\
4,749
\end{tabular} & \[
\begin{array}{r}
\mathrm{mpg} \\
17
\end{array}
\] & rep78
\[
3
\] & \[
\begin{array}{r}
\text { headroom } \\
3.0
\end{array}
\] & trunk 11 & \[
\begin{array}{r}
\text { weight } \\
3,350
\end{array}
\] & \[
\begin{array}{r}
\text { length } \\
173
\end{array}
\] \\
\hline turn & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{\[
\begin{array}{r}
\text { displa~t } \\
258
\end{array}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{r}
\text { gear_r~o } \\
2.53
\end{array}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
foreign \\
Domestic
\end{tabular}}} \\
\hline 40 & & & & & & & \\
\hline
\end{tabular}
. list make mpg weight displ rep78 in \(1 / 5\)
\begin{tabular}{|lrrrr|}
\hline make & mpg & weight & displa~t & rep78 \\
\hline AMC Concord & 22 & 2,930 & 121 & 3 \\
AMC Pacer & 17 & 3,350 & 258 & 3 \\
AMC Spirit & 22 & 2,640 & 121 &. \\
Buick Century & 20 & 3,250 & 196 & 3 \\
Buick Electra & 15 & 4,080 & 350 & 4 \\
\hline
\end{tabular}

The first case is an example of display format; the second is an example of table format. The table format is more readable and takes less space, but it is effective only if the variables can fit on one line across the screen. Stata chose to list all 12 variables in display format, but when the varlist was restricted to five variables, Stata chose table format.

If you are dissatisfied with Stata's choice, you can decide for yourself. You can specify the display option to force display format and the nodisplay option to force table format.

\section*{- Technical note}

If you have long string variables in your data-say, str75 or longer-by default, list displays only the first 70 or so characters of each; the exact number is determined by the width of your Results window. The first 70 or so characters will be shown followed by "...". If you need to see the entire contents of the string, you can
1. specify the clean option, which makes a different (and uglier) style of list, or
2. make your Results window wider [Stata for Unix(console) users: increase set linesize].

\section*{- Technical note}

Among the things that determine the widths of the columns, the variable names play a role. Left to itself, list will never abbreviate variable names to fewer than eight characters. You can use the compress option to abbreviate variable names to fewer characters than that.

\section*{Technical note}

When Stata lists a string variable in table output format, the variable is displayed right-justified by default.

When Stata lists a string variable in display output format, it decides whether to display the variable right-justified or left-justified according to the display format for the string variable; see [U] 12.5 Formats: Controlling how data are displayed. In our previous example, make has a display format of \(\%-18 \mathrm{~s}\).
```

. describe make

```
\begin{tabular}{lclll} 
variable name \begin{tabular}{c} 
storage \\
type
\end{tabular} & \begin{tabular}{l} 
display \\
format
\end{tabular} & \begin{tabular}{l} 
value \\
label
\end{tabular} & variable label \\
\hline make & str18 & \(\%-18 \mathrm{~s}\) & & Make and Model
\end{tabular}

The negative sign in the \(\%-18\) s instructs Stata to left-justify this variable. If the display format had been \(\% 18 \mathrm{~s}\), Stata would have right-justified the variable.

The foreign variable appears to be string, but if we describe it, we see that it is not:
. describe foreign
\begin{tabular}{lllll} 
variable name & \begin{tabular}{c} 
storage \\
type
\end{tabular} & \begin{tabular}{l} 
display \\
format
\end{tabular} & \begin{tabular}{l} 
value \\
label
\end{tabular} & variable label \\
\hline foreign & byte & \(\% 8.0 g\) & origin & Car type
\end{tabular}
foreign is stored as a byte, but it has an associated value label named origin; see [U] 12.6.3 Value labels. Stata decides whether to right-justify or left-justify a numeric variable with an associated value label by using the same rule used for string variables: it looks at the display format of the variable. Here the display format of \(\% 8.0 \mathrm{~g}\) tells Stata to right-justify the variable. If the display format had been \(\%-8.0 \mathrm{~g}\), Stata would have left-justified this variable.

\section*{- Technical note}

You can list the variables in any order. When you specify the varlist, list displays the variables in the order you specify. You may also include variables more than once in the varlist.

\section*{> Example 2}

Sometimes you may wish to suppress the observation numbers. You do this by specifying the noobs option:
- list make mpg weight displ foreign in \(46 / 55\), noobs
\begin{tabular}{|lrrrr|}
\hline make & mpg & weight & displa~t & foreign \\
\hline Plym. Volare & 18 & 3,330 & 225 & Domestic \\
Pont. Catalina & 18 & 3,700 & 231 & Domestic \\
Pont. Firebird & 18 & 3,470 & 231 & Domestic \\
Pont. Grand Prix & 19 & 3,210 & 231 & Domestic \\
Pont. Le Mans & 19 & 3,200 & 231 & Domestic \\
\hline Pont. Phoenix & 19 & 3,420 & 231 & Domestic \\
Pont. Sunbird & 24 & 2,690 & 151 & Domestic \\
Audi 5000 & 17 & 2,830 & 131 & Foreign \\
Audi Fox & 23 & 2,070 & 97 & Foreign \\
BMW 320i & 25 & 2,650 & 121 & Foreign \\
\hline
\end{tabular}

After seeing the table, we decide that we want to separate the "Domestic" observations from the "Foreign" observations, so we specify sepby (foreign).
```

. list make mpg weight displ foreign in 46/55, noobs sepby(foreign)

```
\begin{tabular}{|lrrrr|}
\hline make & mpg & weight & displa~t & foreign \\
\hline Plym. Volare & 18 & 3,330 & 225 & Domestic \\
Pont. Catalina & 18 & 3,700 & 231 & Domestic \\
Pont. Firebird & 18 & 3,470 & 231 & Domestic \\
Pont. Grand Prix & 19 & 3,210 & 231 & Domestic \\
Pont. Le Mans & 19 & 3,200 & 231 & Domestic \\
Pont. Phoenix & 19 & 3,420 & 231 & Domestic \\
Pont. Sunbird & 24 & 2,690 & 151 & Domestic \\
\hline Audi 5000 & 17 & 2,830 & 131 & Foreign \\
Audi Fox & 23 & 2,070 & 97 & Foreign \\
BMW 320i & 25 & 2,650 & 121 & Foreign \\
\hline
\end{tabular}

\section*{- Example 3}

We want to add vertical lines in the table to separate the variables, so we specify the divider option. We also want to draw a horizontal line after every 2 observations, so we specify separator (2).
```

. list make mpg weight displ foreign in 46/55, divider separator(2)

```
\begin{tabular}{l|l|r|r|r|r|}
\hline make & mpg & weight & displa~t & foreign \\
\hline 46. & Plym. Volare & 18 & 3,330 & 225 & \begin{tabular}{l} 
Domestic \\
47. \\
Pomestic
\end{tabular} \\
48. Catalina & 18 & 3,700 & 231 & Pont. Firebird & 18 \\
49. & Pont. Grand Prix & 19 & 3,470 & 231 & \begin{tabular}{l} 
Domestic \\
Domestic
\end{tabular} \\
\cline { 2 - 6 } & 50. & Pont. Le Mans & 19 & 3,200 & 231 \\
51. & Pont. Phoenix & 19 & 3,420 & 231 & \begin{tabular}{l} 
Domestic \\
Domestic
\end{tabular} \\
52. & Pont. Sunbird & 24 & 2,690 & 151 & Domestic \\
53. & Audi 5000 & 17 & 2,830 & 131 & Foreign \\
54. & Audi Fox & 23 & 2,070 & 97 & Foreign \\
55. & BMW 320i & 25 & 2,650 & 121 & Foreign \\
\hline
\end{tabular}

After seeing the table, we decide that we do not want to abbreviate displacement, so we specify abbreviate(12).
. list make mpg weight displ foreign in \(46 / 55\), divider sep(2) abbreviate(12)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & make & mpg & weight & displacement & foreign \\
\hline 46. & Plym. Volare & 18 & 3,330 & 225 & Domestic \\
\hline 47. & Pont. Catalina & 18 & 3,700 & 231 & Domestic \\
\hline 48. & Pont. Firebird & 18 & 3,470 & 231 & Domestic \\
\hline 49. & Pont. Grand Prix & 19 & 3,210 & 231 & Domestic \\
\hline 50. & Pont. Le Mans & 19 & 3,200 & 231 & Domestic \\
\hline 51. & Pont. Phoenix & 19 & 3,420 & 231 & Domestic \\
\hline 52. & Pont. Sunbird & 24 & 2,690 & 151 & Domestic \\
\hline 53. & Audi 5000 & 17 & 2,830 & 131 & Foreign \\
\hline 54. & Audi Fox & 23 & 2,070 & 97 & Foreign \\
\hline 55. & BMW 320i & 25 & 2,650 & 121 & Foreign \\
\hline
\end{tabular}

\section*{- Technical note}

You can suppress the use of value labels by specifying the nolabel option. For instance, the foreign variable in the examples above really contains numeric codes, with 0 meaning Domestic and 1 meaning Foreign. When we list the variable, however, we see the corresponding value labels rather than the underlying numeric code:
. list foreign in \(51 / 55\)
\begin{tabular}{l|r|}
\cline { 2 - 3 } & foreign \\
\cline { 2 - 3 } 51. & Domestic \\
52. & Domestic \\
53. & Foreign \\
54. & Foreign \\
55. & Foreign \\
\hline
\end{tabular}

Specifying the nolabel option displays the underlying numeric codes:
```

. list foreign in 51/55, nolabel

```
\begin{tabular}{l|r|}
\cline { 2 - 3 } & foreign \\
\cline { 2 - 2 } & for| \\
52. & 0 \\
53. & 0 \\
54. & 1 \\
55. & 1 \\
& \\
\hline
\end{tabular}

\section*{References}

Harrison, D. A. 2006. Stata tip 34: Tabulation by listing. Stata Journal 6: 425-427.
Lauritsen, J. M. 2001. dm84: labjl: Adding numerical codes to value labels. Stata Technical Bulletin 59: 6-7. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 35-37. College Station, TX: Stata Press.

Riley, A. R. 1993. dm15: Interactively list values of variables. Stata Technical Bulletin 16: 2-6. Reprinted in Stata Technical Bulletin Reprints, vol. 3, pp. 37-41. College Station, TX: Stata Press.

Royston, P., and P. D. Sasieni. 1994. dm16: Compact listing of a single variable. Stata Technical Bulletin 17: 7-8. Reprinted in Stata Technical Bulletin Reprints, vol. 3, pp. 41-43. College Station, TX: Stata Press.

Weesie, J. 1999. dm68: Display of variables in blocks. Stata Technical Bulletin 50: 3-4. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 27-29. College Station, TX: Stata Press.

\section*{Also see}
[D] edit - Browse or edit data with Data Editor
[P] display - Display strings and values of scalar expressions
[P] tabdisp - Display tables
[R] table - Flexible table of summary statistics

\section*{Title}
lookfor - Search for string in variable names and labels
\begin{tabular}{llll} 
Description & Quick start & Syntax & Remarks and examples \\
Stored results & References & Also see &
\end{tabular}

\section*{Description}
lookfor helps you find variables by searching for string among all variable names and labels. If multiple strings are specified, lookfor will search for each of them separately. You may search for a phrase by enclosing string in double quotes.

\section*{Quick start}

Search variable names and variable labels for the phrase "my text" regardless of case lookfor "my text"

Search for "word1" or "word2"
lookfor word1 word2

\section*{Syntax}
lookfor string [string [...]]

\section*{Remarks and examples}

\section*{Example 1}
lookfor finds variables by searching for string, ignoring case, among the variable names and labels.


Three variable names contain the word code.
. lookfor married
\begin{tabular}{lllll} 
variable name & \begin{tabular}{c} 
storage \\
type
\end{tabular} & \begin{tabular}{l} 
display \\
format
\end{tabular} & \begin{tabular}{c} 
value \\
label
\end{tabular} & variable label \\
\hline msp & byte & \(\% 8.0 \mathrm{~g}\) & & \begin{tabular}{l}
1 if married, spouse present \\
nev_mar
\end{tabular} \\
byte & \(\% 8.0 \mathrm{~g}\)
\end{tabular}\(\quad . \quad\)\begin{tabular}{l}
1 if never married
\end{tabular}

Two variable labels contain the word married.
. lookfor gnp
\begin{tabular}{lllll} 
variable name & \begin{tabular}{c} 
storage \\
type
\end{tabular} & \begin{tabular}{l} 
display \\
format
\end{tabular} & \begin{tabular}{l} 
value \\
label
\end{tabular} & variable label \\
\hline ln_wage & float & \(\% 9.0 \mathrm{~g}\) & & \(\ln\) (wage/GNP deflator)
\end{tabular}
lookfor ignores case, so lookfor gnp found GNP in a variable label.

\section*{Example 2}

If multiple strings are specified, all variable names or labels containing any of the strings are listed. . lookfor code married
\begin{tabular}{lllll} 
variable name & \begin{tabular}{c} 
storage \\
type
\end{tabular} & \begin{tabular}{l} 
display \\
format
\end{tabular} & \begin{tabular}{c} 
value \\
label
\end{tabular} & variable label \\
\hline idcode & int & \(\% 8.0 \mathrm{~g}\) & & NLS ID \\
msp & byte & \(\% 8.0 \mathrm{~g}\) & & 1 if married, spouse present \\
nev_mar & byte & \(\% 8.0 \mathrm{~g}\) & & 1 if never married \\
ind_code & byte & \(\% 8.0 \mathrm{~g}\) & & industry of employment \\
occ_code & byte & \(\% 8.0 \mathrm{~g}\) & & occupation
\end{tabular}

To search for a phrase, enclose string in double quotes.
. lookfor "never married"
\begin{tabular}{lllll} 
variable name & \begin{tabular}{c} 
storage \\
type
\end{tabular} & \begin{tabular}{l} 
display \\
format
\end{tabular} & \begin{tabular}{l} 
value \\
label
\end{tabular} & variable label \\
\hline nev_mar & byte & \(\% 8.0 \mathrm{~g}\) & & 1 if never married
\end{tabular}

\section*{Stored results}
lookfor stores the following in \(r()\) :
Macros
\(r\) (varlist) the varlist of found variables

\section*{References}

Cox, N. J. 2010a. Speaking Stata: Finding variables. Stata Journal 10: 281-296.
——. 2010b. Software Updates: Finding variables. Stata Journal 10: 691-692.
——. 2012. Software Updates: Finding variables. Stata Journal 12: 167.

\section*{Also see}
[D] describe - Describe data in memory or in file
[D] ds - List variables matching name patterns or other characteristics

\section*{Title}
memory - Memory management
\begin{tabular}{llll} 
Description & Quick start & Syntax & Options \\
Remarks and examples & Stored results & Reference & Also see
\end{tabular}

\section*{Description}

Memory usage and settings are described here.
memory displays a report on Stata's current memory usage.
query memory displays the current values of Stata's memory settings.
set maxvar, set niceness, set min_memory, set max_memory, and set segmentsize change the values of the memory settings.

If you are a Unix user, see Serious bug in Linux OS under Remarks and examples below.

\section*{Quick start}

Display memory usage report

> memory

Display memory settings
query memory
Increase the maximum number of variables to 8,000 in Stata/MP or Stata/SE
set maxvar 8000
Set maximum memory allocation to avoid potential memory allocation bug in Linux set max_memory 16 g , permanently

\section*{Syntax}

Display memory usage report
```

memory

```

Display memory settings
```

query memory

```

\section*{Modify memory settings}
```

set maxvar \# [, permanently]
set niceness \# [, permanently]
set min_memory amt [, permanently]
set max_memory amt [, permanently]
set segmentsize amt [, permanently]

```
where amt is \# \([\mathrm{b}|\mathrm{k}| \mathrm{m} \mid \mathrm{g}]\), and the default unit is b .
\begin{tabular}{|c|c|c|c|c|}
\hline Parameter & Default & Minimum & Maximum & \multirow[b]{4}{*}{\begin{tabular}{l}
(MP and SE) \\
(IC) \\
(Small)
\end{tabular}} \\
\hline \multirow[t]{3}{*}{maxvar} & 5000 & 2048 & 32767 & \\
\hline & 2047 & 2047 & 2047 & \\
\hline & 99 & 99 & 99 & \\
\hline niceness & 5 & 0 & 10 & \\
\hline min_memory & 0 & 0 & max_memory & \\
\hline max_memory & & \(2 \times\) segmentsize & & \\
\hline segmentsize & 32m & 1 m & 32g & (64-bit) \\
\hline & 16 m & 1 m & 1 g & (32-bit) \\
\hline
\end{tabular}

Notes:
1. The maximum number of variables in your dataset is limited to maxvar. The default value of maxvar is 5,000 for Stata/MP and Stata/SE, 2,047 for Stata/IC, and 99 for Small Stata. With Stata/MP and Stata/SE, this default value may be increased by using set maxvar. The default value is fixed for both Stata/IC and Small Stata.
2. Most users do not need to read beyond this point. Stata's memory management is completely automatic. If, however, you are using the Linux operating system, see Serious bug in Linux OS under Remarks and examples below.
3. The maximum number of observations is fixed at \(281,474,976,710,655\) for Stata/MP and is fixed at \(2,147,483,647\) for Stata/SE and Stata/IC regardless of computer size or memory settings. Depending on the amount of memory on your computer, you may face a lower practical limit. See help obs_advice.
4. max_memory specifies the maximum amount of memory Stata can use to store your data. The default of missing (.) means all the memory the operating system is willing to supply. There are three reasons to change the value from missing to a finite number.
1. You are a Linux user; see Serious bug in Linux OS under Remarks and examples below.
2. You wish to reduce the chances of accidents, such as typing expand 100000 with a large dataset in memory and actually having Stata do it. You would rather see an insufficient-memory error message. Set max_memory to the amount of physical memory on your computer or more than that if you are willing to use virtual memory.
3. You are a system administrator; see Notes for system administrators under Remarks and examples below.
5. The remaining memory parameters—niceness, min_memory, and segment_size—affect efficiency only; they do not affect the size of datasets you can analyze.
6. Memory amounts for min_memory, max_memory, and segmentsize may be specified in bytes, kilobytes, megabytes, or gigabytes; suffix \(\mathrm{b}, \mathrm{k}, \mathrm{m}\), or g to the end of the number. The following are equivalent ways of specifying 1 gigabyte:
\[
\begin{array}{r}
1073741824 \\
1048576 \mathrm{k} \\
1024 \mathrm{~m} \\
1 \mathrm{~g}
\end{array}
\]

Suffix k is defined as (multiply by) 1024, m is defined as \(1024^{2}\), and g is defined as \(1024^{3}\).
7. 64-bit computers can theoretically provide up to \(18,446,744,073,709,551,616\) bytes of memory, equivalent to \(17,179,869,184\) gigabytes, \(16,777,216\) terabytes, 16,384 petabytes, 16 exabytes. Real computers have less.
8. 32-bit computers can theoretically provide up to \(4,294,967,296\) bytes of memory, equivalent to \(4,194,304\) kilobytes, 4,096 megabytes, or 4 gigabytes. Most 32 -bit operating systems limit Stata to half that.
9. Stata allocates memory for data in units of segmentsize. Smaller values of segmentsize can result in more efficient use of available memory but require Stata to jump around more. The default provides a good balance. We recommend resetting segmentsize only if your computer has large amounts of memory.
10. If you have large amounts of memory and you use it to process large datasets, you may wish to increase segmentsize. Suggested values are
\begin{tabular}{rr} 
memory & segmentsize \\
\hline 32 g & 64 m \\
64 g & 128 m \\
128 g & 256 m \\
256 g & 512 m \\
512 g & 1 g \\
1024 g & 2 g
\end{tabular}
11. niceness affects how soon Stata gives back unused segments to the operating system. If Stata releases them too soon, it often needs to turn around and get them right back. If Stata waits too long, Stata is consuming memory that it is not using. One reason to give memory
back is to be nice to other users on multiuser systems or to be nice to yourself if you are running other processes.
The default value of 5 is defined to provide good performance. Waiting times are currently defined as
\begin{tabular}{rr} 
niceness & waiting time (m:s) \\
\hline 10 & \(0: 00.000\) \\
9 & \(0: 00.125\) \\
8 & \(0: 00.500\) \\
7 & \(0: 01\) \\
6 & \(0: 30\) \\
5 & \(1: 00\) \\
4 & \(5: 00\) \\
3 & \(10: 00\) \\
2 & \(15: 00\) \\
1 & \(20: 00\) \\
0 & \(30: 00\) \\
\hline
\end{tabular}

Niceness 10 corresponds to being totally nice. Niceness 0 corresponds to being an inconsiderate, self-centered, totally selfish jerk.
12. min_memory specifies an amount of memory Stata will not fall below. For instance, you have a long do-file. You know that late in the do-file, you will need 8 gigabytes. You want to ensure that the memory will be available later. At the start of your do-file, you set min_memory 8 g .
13. Concerning min_memory and max_memory, be aware that Stata allocates memory in segmentsize blocks. Both min_memory and max_memory are rounded down. Thus the actual minimum memory Stata will reserve will be
```

segmentsize*trunc(min_memory/segmentsize)

```

The effective maximum memory is calculated similarly. (Stata does not round up min_memory because some users set min_memory equal to max_memory.)

\section*{Options}
permanently specifies that, in addition to making the change right now, the new limit be remembered and become the default setting when you invoke Stata.
once is not shown in the syntax diagram but is allowed with set niceness, set min_memory, set max_memory, and set segmentsize. It is for use by system administrators; see Notes for system administrators under Remarks and examples below.

\section*{Remarks and examples}

Remarks are presented under the following headings:

\footnotetext{
Examples
Serious bug in Linux OS
Notes for system administrators
}

\section*{Examples}

Here is our memory-usage report after we load auto.dta that comes with Stata using Stata/MP:
```

. sysuse auto
(1978 Automobile Data)
. memory
Memory usage

```
\begin{tabular}{lrr}
\hline & used & allocated \\
\hline data & 3,182 & \(67,108,864\) \\
strLs & 0 & 0 \\
\hline data \& strLs & 3,182 & \(67,108,864\) \\
\hline data \& strLs & 3,182 & \(67,108,864\) \\
var. names, \%fmts, \(\ldots\) & 4,151 & 67,421 \\
overhead & 8 & 800 \\
Stata matrices & 0 & 0 \\
ado-files & 5,400 & 5,400 \\
stored results & 0 & 0 \\
Mata matrices & 0 & 0 \\
Mata functions & 0 & 0 \\
set maxvar usage & \(5,271,736\) & \(5,271,736\) \\
other & 3,691 & 3,691 \\
\hline grand total & \(5,284,248\) & \(72,457,912\)
\end{tabular}

We could then obtain the current memory-settings report by typing . query memory
\begin{tabular}{lll} 
Memory settings & & \\
set maxvar & 5000 & \(2048-32767 ;\) max. vars allowed \\
set matsize & 400 & \(10-11000 ;\) max. \# vars in models \\
set niceness & 5 & \(0-10\) \\
set min_memory & 0 & \(0-1600 \mathrm{~g}\) \\
set max_memory &. & \(32 \mathrm{~m}-1600 \mathrm{~g}\) or. \\
set segmentsize & 32 m & \(1 \mathrm{~m}-32 \mathrm{~g}\)
\end{tabular}

\section*{Serious bug in Linux OS}

If you use Linux OS, we strongly suggest that you set max_memory. Here's why:
"By default, Linux follows an optimistic memory allocation strategy. This means that when malloc() returns non-NULL there is no guarantee that the memory really is available. This is a really bad bug. In case it turns out that the system is out of memory, one or more processes will be killed by the infamous OOM killer. In case Linux is employed under circumstances where it would be less desirable to suddenly lose some randomly picked processes, and moreover the kernel version is sufficiently recent, one can switch off this overcommitting behavior using [...]"
- Output from Unix command man malloc.

What this means is that Stata requests memory from Linux, Linux says yes, and then later when Stata uses that memory, the memory might not be available and Linux crashes Stata, or worse. The Linux documentation writer exercised admirable restraint. This bug can cause Linux itself to crash. It is easy.

The proponents of this behavior call it "optimistic memory allocation". We will, like the documentation writer, refer to it as a bug.

The bug is fixable. Type man malloc at the Unix prompt for instructions. Note that man malloc is an instruction of Unix, not Stata. If the bug is not mentioned, perhaps it has been fixed. Before assuming that, we suggest using a search engine to search for "linux optimistic memory allocation".

Alternatively, Stata can live with the bug if you set max_memory. Find out how much physical memory is on your computer and set max_memory to that. If you want to use virtual memory, you might set it larger, just make sure your Linux system can provide the requested memory. Specify the option permanently so you only need to do this once. For example,
. set max_memory 16 g , permanently
Doing this does not guarantee that the bug does not bite, but it makes it unlikely.

\section*{Notes for system administrators}

System administrators can set max_memory, min_memory, and niceness so that Stata users cannot change them. You may want to do this on shared computers to prevent individual users from hogging resources.

There is no reason you would want to do this on users' personal computers.
You can also set segmentsize, but there is no reason to do this even on shared systems.
The instructions are to create (or edit) the text file sysprofile.do in the directory where the Stata executable resides. Add the lines
```

set min_memory 0, once
set max_memory 16g, once
set niceness 5, once

```

The file must be plain text, and there must be end-of-line characters at the end of each line, including the last line. Blank lines at the end are recommended.

The 16 g on set max_memory is merely for example. Choose an appropriate number.
The values of 0 for min_memory and 5 for niceness are recommended.

\section*{Stored results}
memory stores all reported numbers in \(r()\). StataCorp may change what memory reports, and you should not expect the same \(r()\) results to exist in future versions of Stata. To see the stored results from memory, type return list, all.

\section*{Reference}

Sasieni, P. D. 1997. ip20: Checking for sufficient memory to add variables. Stata Technical Bulletin 40: 13. Reprinted in Stata Technical Bulletin Reprints, vol. 7, p. 86. College Station, TX: Stata Press.

\footnotetext{
Also see
[P] creturn - Return c-class values
[R] matsize - Set the maximum number of variables in a model
[R] query - Display system parameters
[U] 6 Managing memory
}

\section*{Title}
merge - Merge datasets
\begin{tabular}{llll} 
Description & Quick start & Menu & Syntax \\
Options & Remarks and examples & References & Also see
\end{tabular}

\section*{Description}
merge joins corresponding observations from the dataset currently in memory (called the master dataset) with those from filename.dta (called the using dataset), matching on one or more key variables. merge can perform match merges (one-to-one, one-to-many, many-to-one, and many-tomany), which are often called joins by database people. merge can also perform sequential merges, which have no equivalent in the relational database world.
merge is for adding new variables from a second dataset to existing observations. You use merge, for instance, when combining hospital patient and discharge datasets. If you wish to add new observations to existing variables, then see [D] append. You use append, for instance, when adding current discharges to past discharges.

By default, merge creates a new variable, merge, containing numeric codes concerning the source and the contents of each observation in the merged dataset. These codes are explained below in the match results table.

Key variables cannot be strLs.
If filename is specified without an extension, then .dta is assumed.

\section*{Quick start}

One-to-one merge of mydata1.dta in memory with mydata2.dta on v1 merge \(1: 1\) v1 using mydata2

As above, and also treat v2 as a key variable and name the new variable indicating the merge result for each observation newv
```

merge 1:1 v1 v2 using mydata2, generate(newv)

```

As above, but keep only v3 from mydata2.dta and use default merge result variable _merge merge \(1: 1\) v1 v2 using mydata2, keepusing(v3)

As above, but keep only observations in both datasets
```

merge 1:1 v1 v2 using mydata2, keepusing(v3) keep(match)

```

Same as above
```

merge 1:1 v1 v2 using mydata2, keepusing(v3) keep(3)

```

As above, but assert that all observations should match or return an error otherwise
```

merge 1:1 v1 v2 using mydata2, keepusing(v3) assert(3)

```

Replace missing data in mydata1.dta with values from mydata2.dta merge 1:1 v1 v2 using mydata2, update

Replace missing and conflicting data in mydata1.dta with values from mydata2.dta merge 1:1 v1 v2 using mydata2, update replace

Many-to-one merge on v1 and v2
merge m:1 v1 v2 using mydata2
One-to-many merge on v1 and v2
merge \(1: m\) v1 v2 using mydata2

\section*{Menu}

Data \(>\) Combine datasets \(>\) Merge two datasets

\section*{Syntax}

One-to-one merge on specified key variables
merge 1:1 varlist using filename [, options]

Many-to-one merge on specified key variables
merge m:1 varlist using filename [, options]

One-to-many merge on specified key variables
```

merge 1:m varlist using filename [, options]

```

Many-to-many merge on specified key variables
```

merge m:m varlist using filename [, options]

```

One-to-one merge by observation
```

merge 1:1 _n using filename [, options]

```
options
Description
Options
keepusing (varlist)
generate(newvar)
nogenerate
nolabel
nonotes
update
replace
noreport
force
Results
assert (results)
keep (results)
sorted do not sort; dataset already sorted
sorted does not appear in the dialog box.

\section*{Options}

\footnotetext{
keepusing (varlist) specifies the variables from the using dataset that are kept in the merged dataset. By default, all variables are kept. For example, if your using dataset contains 2,000 demographic characteristics but you want only sex and age, then type merge ..., keepusing (sex age) ....
}
generate (newvar) specifies that the variable containing match results information should be named newvar rather than merge.
nogenerate specifies that merge not be created. This would be useful if you also specified keep (match), because keep (match) ensures that all values of merge would be 3 .
nolabel specifies that value-label definitions from the using file be ignored. This option should be rare, because definitions from the master are already used.
nonotes specifies that notes in the using dataset not be added to the merged dataset; see [D] notes.
update and replace both perform an update merge rather than a standard merge. In a standard merge, the data in the master are the authority and inviolable. For example, if the master and using datasets both contain a variable age, then matched observations will contain values from the master dataset, while unmatched observations will contain values from their respective datasets.

If update is specified, then matched observations will update missing values from the master dataset with values from the using dataset. Nonmissing values in the master dataset will be unchanged.

If replace is specified, then matched observations will contain values from the using dataset, unless the value in the using dataset is missing.

Specifying either update or replace affects the meanings of the match codes. See Treatment of overlapping variables for details.
noreport specifies that merge not present its summary table of match results.
force allows string/numeric variable type mismatches, resulting in missing values from the using dataset. If omitted, merge issues an error; if specified, merge issues a warning.

Results
assert (results) specifies the required match results. The possible results are
\begin{tabular}{cll}
\begin{tabular}{c} 
Numeric \\
code
\end{tabular} & \begin{tabular}{l} 
Equivalent \\
word (results)
\end{tabular} & Description \\
\hline 1 & \(\underline{\text { master }}\) & \begin{tabular}{l} 
observation appeared in master only \\
2
\end{tabular} \\
3 & \(\underline{\text { using }}\) & \begin{tabular}{l} 
observation appeared in using only \\
observation appeared in both
\end{tabular} \\
4 & match_update & \begin{tabular}{l} 
observation appeared in both, missing values updated \\
observation appeared in both, conflicting nonmissing \\
values
\end{tabular} \\
5 & \(\underline{\text { match_conflict }}\) & \begin{tabular}{c} 
nat
\end{tabular} \\
\hline
\end{tabular}

Codes 4 and 5 can arise only if the update option is specified. If codes of both 4 and 5 could pertain to an observation, then 5 is used.

Numeric codes and words are equivalent when used in the assert() or keep() options.
The following synonyms are allowed: masters for master, usings for using, matches and matched for match, match_updates for match_update, and match_conflicts for match_conflict.

Using assert (match master) specifies that the merged file is required to include only matched master or using observations and unmatched master observations, and may not include unmatched using observations. Specifying assert() results in merge issuing an error if there are match results among those observations you allowed.

The order of the words or codes is not important, so all the following assert () specifications would be the same:
```

assert(match master)
assert(master matches)
assert(1 3)

```

When the match results contain codes other than those allowed, return code 9 is returned, and the merged dataset with the unanticipated results is left in memory to allow you to investigate.
keep (results) specifies which observations are to be kept from the merged dataset. Using keep (match master) specifies keeping only matched observations and unmatched master observations after merging.
keep() differs from assert () because it selects observations from the merged dataset rather than enforcing requirements. keep() is used to pare the merged dataset to a given set of observations when you do not care if there are other observations in the merged dataset. assert () is used to verify that only a given set of observations is in the merged dataset.
You can specify both assert () and keep(). If you require matched observations and unmatched master observations but you want only the matched observations, then you could specify assert (match master) keep(match).
assert() and keep() are convenience options whose functionality can be duplicated using _merge directly.
. merge ..., assert(match master) keep(match)
is identical to
. merge ...
. assert _merge==1 | _merge==3
. keep if _merge==3
The following option is available with merge but is not shown in the dialog box:
sorted specifies that the master and using datasets are already sorted by varlist. If the datasets are already sorted, then merge runs a little more quickly; the difference is hardly detectable, so this option is of interest only where speed is of the utmost importance.

\section*{Remarks and examples}

Remarks are presented under the following headings:

\section*{Overview}

Basic description
1:1 merges
m:1 merges
1:m merges
m:m merges
Sequential merges
Treatment of overlapping variables
Sort order
Troubleshooting m:m merges
Examples

\section*{Overview}
merge 1:1 varlist \(\ldots\) specifies a one-to-one match merge. varlist specifies variables common to both datasets that together uniquely identify single observations in both datasets. For instance, suppose you have a dataset of customer information, called customer.dta, and have a second dataset of other information about roughly the same customers, called other.dta. Suppose further that both datasets identify individuals by using the pid variable, and there is only one observation per individual in each dataset. You would merge the two datasets by typing
. use customer
. merge 1:1 pid using other
Reversing the roles of the two files would be fine. Choosing which dataset is the master and which is the using matters only if there are overlapping variable names. 1:1 merges are less common than \(1: m\) and \(m: 1\) merges.
merge 1:m and merge m:1 specify one-to-many and many-to-one match merges, respectively. To illustrate the two choices, suppose you have a dataset containing information about individual hospitals, called hospitals.dta. In this dataset, each observation contains information about one hospital, which is uniquely identified by the hospitalid variable. You have a second dataset called discharges.dta, which contains information on individual hospital stays by many different patients. discharges.dta also identifies hospitals by using the hospitalid variable. You would like to join all the information in both datasets. There are two ways you could do this.
merge \(1: \mathrm{m}\) varlist \(\ldots\) specifies a one-to-many match merge.
```

. use hospitals
. merge 1:m hospitalid using discharges

```
would join the discharge data to the hospital data. This is a \(1: m\) merge because hospitalid uniquely identifies individual observations in the dataset in memory (hospitals), but could correspond to many observations in the using dataset.
merge m:1 varlist \(\ldots\) specifies a many-to-one match merge.
. use discharges
. merge m:1 hospitalid using hospitals
would join the hospital data to the discharge data. This is an m:1 merge because hospitalid can correspond to many observations in the master dataset, but uniquely identifies individual observations in the using dataset.
merge \(\mathrm{m}: \mathrm{m}\) varlist \(\ldots\) specifies a many-to-many match merge. This is allowed for completeness, but it is difficult to imagine an example of when it would be useful. For an \(\mathrm{m}: \mathrm{m}\) merge, varlist does not uniquely identify the observations in either dataset. Matching is performed by combining observations with equal values of varlist; within matching values, the first observation in the master dataset is matched with the first matching observation in the using dataset; the second, with the second; and so on. If there is an unequal number of observations within a group, then the last observation of the shorter group is used repeatedly to match with subsequent observations of the longer group. Use of merge \(\mathrm{m}: \mathrm{m}\) is not encouraged.
merge 1:1 _n performs a sequential merge. _n is not a variable name; it is Stata syntax for observation number. A sequential merge performs a one-to-one merge on observation number. The first observation of the master dataset is matched with the first observation of the using dataset; the second, with the second; and so on. If there is an unequal number of observations, the remaining observations are unmatched. Sequential merges are dangerous, because they require you to rely on sort order to know that observations belong together. Use this merge at your own risk.

\section*{Basic description}

Think of merge as being master \(+u\) sing \(=\) merged result.
Call the dataset in memory the master dataset, and the dataset on disk the using dataset. This way we have general names that are not dependent on individual datasets.

Suppose we have two datasets,
\begin{tabular}{cr|} 
master in memory & on disk in file filen \\
\begin{tabular}{|cr|}
\hline id & age \\
\hline 1 & 22 \\
2 & 56 \\
5 & 17 \\
\hline
\end{tabular} & \begin{tabular}{|cc|}
\hline id & wgt \\
\hline 1 & 130 \\
2 & 180 \\
4 & 110 \\
\hline
\end{tabular}
\end{tabular}

We would like to join together the age and weight information. We notice that the id variable identifies unique observations in both datasets: if you tell me the id number, then I can tell you the one observation that contains information about that id. This is true for both the master and the using datasets.

Because id uniquely identifies observations in both datasets, this is a \(1: 1\) merge. We can bring in the dataset from disk by typing


The original data in memory are called the master data. The data in filename.dta are called the using data. After merge, the merged result is left in memory. The id variable is called the key variable. Stata jargon is that the datasets were merged on id.

Observations for id==1 existed in both the master and using datasets and so were combined in the merged result. The same occurred for \(i d==2\). For \(i d==5\) and \(i d==4\), however, no matches were found and thus each became a separate observation in the merged result. Thus each observation in the merged result came from one of three possible sources:
\begin{tabular}{cll}
\begin{tabular}{c} 
Numeric \\
code
\end{tabular} & \begin{tabular}{l} 
Equivalent \\
word
\end{tabular} & Description \\
\hline 1 & \(\underline{\text { master }}\) & \begin{tabular}{l} 
originally appeared in master only \\
originally appeared in using only
\end{tabular} \\
2 & \(\underline{\text { using }}\) & \begin{tabular}{l} 
originally appeared in both
\end{tabular} \\
\hline
\end{tabular}
merge encodes this information into new variable _merge, which merge adds to the merged result:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline in memory master & + & filename. using & = & \multicolumn{4}{|c|}{merged result} \\
\hline id age & & id wgt & & id & age & wgt & _merge \\
\hline 122 & & 1130 & & & 22 & 130 & 3 \\
\hline 256 & & 2180 & & 2 & 56 & 180 & 3 \\
\hline 517 & & 4110 & & 5 & 17 & & 1 \\
\hline & & & & & . & 110 & 2 \\
\hline
\end{tabular}

Note: Above we show the master and using data sorted by id before merging; this was for illustrative purposes. The dataset resulting from a 1:1 merge will have the same data, regardless of the sort order of the master and using datasets.

The formal definition for merge behavior is the following: Start with the first observation of the master. Find the corresponding observation in the using data, if there is one. Record the matched or unmatched result. Proceed to the next observation in the master dataset. When you finish working through the master dataset, work through unused observations from the using data. By default, unmatched observations are kept in the merged data, whether they come from the master dataset or the using dataset.

Remember this formal definition. It will serve you well.

\section*{1:1 merges}

The example shown above is called a \(1: 1\) merge, because the key variable uniquely identified each observation in each of the datasets.

A variable or variable list uniquely identifies the observations if each distinct value of the variable(s) corresponds to one observation in the dataset.

In some datasets, multiple variables are required to identify the observations. Imagine data obtained by observing patients at specific points in time so that variables pid and time, taken together, identify the observations. Below we have two such datasets and run a \(1: 1\) merge on pid and time,
. merge 1:1 pid time using filename
\begin{tabular}{c} 
master \\
\multicolumn{1}{c}{\begin{tabular}{c} 
using
\end{tabular}\(=\)\begin{tabular}{|rrr|}
\hline pid & time & x 1 \\
\hline 14 & 1 & 0 \\
14 & 2 & 0 \\
14 & 4 & 0 \\
16 & 1 & 1 \\
16 & 2 & 1 \\
17 & 1 & 0 \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{|rrrrrr|}
\hline 14 & 1 & 7 \\
14 & 2 & 9 \\
16 & 1 & 2 \\
16 & 2 & 3 \\
17 & 1 & 5 \\
17 & 2 & 2 \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{|rrrrr|}
\hline 14 & 1 & 0 & 7 & 3 \\
14 & 2 & 0 & 9 & 3 \\
14 & 4 & 0 &. & 1 \\
16 & 1 & 1 & 2 & 3 \\
16 & 2 & 1 & 3 & 3 \\
17 & 1 & 0 & 5 & 3 \\
17 & 2 &. & 2 & 2 \\
\hline
\end{tabular}}
\end{tabular}

This is a \(1: 1\) merge because the combination of the values of pid and time uniquely identifies observations in both datasets.

By default, there is nothing about a 1:1 merge that implies that all, or even any of, the observations match. Above five observations matched, one observation was only in the master (subject 14 at time \(4)\), and another was only in the using (subject 17 at time 2 ).

\section*{m:1 merges}

In an m:1 merge, the key variable or variables uniquely identify the observations in the using data, but not necessarily in the master data. Suppose you had person-level data within regions and you wished to bring in regional data. Here is an example:
. merge m:1 region using filename


To bring in the regional information, we need to merge on region. The values of region identify individual observations in the using data, but it is not an identifier in the master data.

We show the merged dataset sorted by id because this makes it easier to see how the merged dataset was constructed. For each observation in the master data, merge finds the corresponding observation in the using data. merge combines the values of the variables in the using dataset to the observations in the master dataset.

\section*{1:m merges}
\(1: m\) merges are similar to \(m: 1\), except that now the key variables identify unique observations in the master dataset. Any datasets that can be merged using an m:1 merge may be merged using a \(1: m\) merge by reversing the roles of the master and using datasets. Here is the same example as used previously, with the master and using datasets reversed:
. merge \(1: m\) region using filename
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline master & + & \multicolumn{3}{|c|}{using} & \(=\) & \multicolumn{5}{|c|}{merged result} \\
\hline region x & & id & region & & & region & x & id & a & _merge \\
\hline 115 & & 1 & 2 & 26 & & 1 & 15 & 2 & 29 & 3 \\
\hline 213 & & 2 & 1 & 29 & & 1 & 15 & 5 & 24 & 3 \\
\hline 312 & & 3 & 2 & 22 & & 2 & 13 & 1 & 26 & 3 \\
\hline 411 & & 4 & 3 & & & 2 & 13 & 3 & 22 & 3 \\
\hline & & 5 & 1 & 24 & & 3 & 12 & 4 & 21 & 3 \\
\hline & & 6 & 5 & 20 & & 4 & 11 & . & . & 1 \\
\hline & & & & & & 5 & & 6 & 20 & 2 \\
\hline
\end{tabular}

This merged result is identical to the merged result in the previous section, except for the sort order and the contents of _merge. This time, we show the merged result sorted by region rather than id. Reversing the roles of the files causes a reversal in the 1 s and 2 s for _merge: where merge was previously 1 , it is now 2 , and vice versa. These exchanged _merge values reflect the reversed roles of the master and using data.

For each observation in the master data, merge found the corresponding observation(s) in the using data and then wrote down the matched or unmatched result. Once the master observations were exhausted, merge wrote down any observations from the using data that were never used.

\section*{m:m merges}
\(\mathrm{m}: \mathrm{m}\) specifies a many-to-many merge and is a bad idea. In an \(m: m\) merge, observations are matched within equal values of the key variable(s), with the first observation being matched to the first; the second, to the second; and so on. If the master and using have an unequal number of observations within the group, then the last observation of the shorter group is used repeatedly to match with subsequent observations of the longer group. Thus \(\mathrm{m}: \mathrm{m}\) merges are dependent on the current sort order-something which should never happen.

Because \(m: m\) merges are such a bad idea, we are not going to show you an example. If you think that you need an m:m merge, then you probably need to work with your data so that you can use a 1:m or m:1 merge. Tips for this are given in Troubleshooting m:m merges below.

\section*{Sequential merges}

In a sequential merge, there are no key variables. Observations are matched solely on their observation number:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline master & + & using & = & \multicolumn{3}{|r|}{merged result} \\
\hline x 1 & & x 2 & & x 1 & x2 & _merge \\
\hline 10 & & 7 & & 10 & 7 & 3 \\
\hline 30 & & 2 & & 30 & 2 & 3 \\
\hline 20 & & 1 & & 20 & 1 & 3 \\
\hline 5 & & 9 & & 5 & 9 & 3 \\
\hline & & 3 & & & 3 & 2 \\
\hline
\end{tabular}

In the example above, the using data are longer than the master, but that could be reversed. In most cases where sequential merges are appropriate, the datasets are expected to be of equal length, and you should type
```

. merge 1:1 _n using filename, assert(match) nogenerate

```

Sequential merges, like m:m merges, are dangerous. Both depend on the current sort order of the data.

\section*{Treatment of overlapping variables}

When performing merges of any type, the master and using datasets may have variables in common other than the key variables. We will call such variables overlapping variables. For instance, if the variables in the master and using datasets are
```

master: id, region, sex, age, race
using: id, sex, bp, race

```
and id is the key variable, then the overlapping variables are sex and race.
By default, merge treats values from the master as inviolable. When observations match, it is the master's values of the overlapping variables that are recorded in the merged result.

If you specify the update option, however, then all missing values of overlapping variables in matched observations are replaced with values from the using data. Because of this new behavior, the merge codes change somewhat. Codes 1 and 2 keep their old meaning. Code 3 splits into codes 3 , 4 , and 5 . Codes 3,4 , and 5 are filtered according to the following rules; the first applicable rule is used.

5 corresponds to matched observations where at least one overlapping variable had conflicting nonmissing values.
4 corresponds to matched observations where at least one missing value was updated, but there were no conflicting nonmissing values.
3 means observations matched, and there were neither updated missing values nor conflicting nonmissing values.

If you specify both the update and replace options, then the merge \(==5\) cases are updated with values from the using data.

\section*{Sort order}

As we have mentioned, in the \(1: 1,1: \mathrm{m}\), and \(\mathrm{m}: 1\) match merges, the sort orders of the master and using datasets do not affect the data in the merged dataset. This is not the case of \(m: m\), which we recommend you never use.

Sorting is used by merge internally for efficiency, so the merged result can be produced most quickly when the master and using datasets are already sorted by the key variable(s) before merging. You are not required to have the dataset sorted before using merge, however, because merge will sort behind the scenes, if necessary. If the using dataset is not sorted, then a temporary copy is made and sorted to ensure that the current sort order on disk is not affected.

All of this is to reassure you that 1) your datasets on disk will not be modified by merge and 2) despite the fact that our discussion has ignored sort issues, merge is, in fact, efficient behind the scenes.

It hardly makes any difference in run times, but if you know that the master and using data are already sorted by the key variable(s), then you can specify the sorted option. All that will be saved is the time merge would spend discovering that fact for itself.

The merged result produced by merge orders the variables and observations in a special and sometimes useful way. If you think of datasets as tables, then the columns for the new variables appear to the right of what was the master. If the master data originally had \(k\) variables, then the new variables will be the \((k+1)\) st, \((k+2)\) nd, and so on. The new observations are similarly ordered so that they all appear at the end of what was the master. If the master originally had \(N\) observations, then the new observations, if any, are the \((N+1)\) st, \((N+2)\) nd, and so on. Thus the original master data can be found from the merged result by extracting the first \(k\) variables and first \(N\) observations. If merge with the update option was specified, however, then be aware that the extracted master may have some updated values.

The merged result is unsorted except for a 1:1 merge, where there are only matched observations. Here the dataset is sorted by the key variables.

\section*{Troubleshooting m:m merges}

First, if you think you need to perform an m:m merge, then we suspect you are wrong. If you would like to match every observation in the master to every observation in the using with the same values of the key variable(s), then you should be using joinby; see [D] joinby.

If you still want to use merge, then it is likely that you have forgotten one or more key variables that could be used to identify observations within groups. Perhaps you have panel data with 4 observations on each subject, and you are thinking that what you need to do is
```

. merge m:m subjectid using filename

```

Ask yourself if you have a variable that identifies observation within panel, such as a sequence number or a time. If you have, say, a time variable, then you probably should try something like
```

. merge 1:m subjectid time using filename

```
(You might need a \(1: 1\) or \(\mathrm{m}: 1\) merge; \(1: \mathrm{m}\) was arbitrarily chosen for the example.)
If you do not have a time or time-like variable, then ask yourself if there is a meaning to matching the first observations within subject, the second observations within subject, and so on. If so, then there is a concept of sequence within subject.

Suppose you do indeed have a sequence concept, but in your dataset it is recorded via the ordering of the observations. Here you are in a dangerous situation because any kind of sorting would lose the identity of the first, second, and \(n\)th observation within subject. Your first goal should be to fix this problem by creating an explicit sequence variable from the current ordering-your merge can come later.

Start with your master data. Type
```

. sort subjectid, stable
. by subjectid: generate seqnum = _n

```

Do not omit sort's stable option. That is what will keep the observations in the same order within subject. Save the data. Perform these same three steps on your using data.

After fixing the datasets, you can now type
```

. merge 1:m subjectid seqnum using filename

```

If you do not think there is a meaning to being the first, second, and \(n\)th observation within subject, then you need to ask yourself what it means to match the first observations within subjectid, the second observations within subjectid, and so on. Would it make equal sense to match the first with the third, the second with the fourth, or any other haphazard matching? If so, then there is no real ordering, so there is no real meaning to merging. You are about to obtain a haphazard result; you need to rethink your merge.

\section*{Examples}
> Example 1: A 1:1 merge
We have two datasets, one of which has information about the size of old automobiles, and the other of which has information about their expense:
```

. use http://www.stata-press.com/data/r14/autosize
(1978 Automobile Data)
. list

```
\begin{tabular}{l|lrr|}
\cline { 2 - 4 } & make & weight & length \\
\cline { 2 - 4 } 1. & Toyota Celica & 2,410 & 174 \\
2. & BMW 320i & 2,650 & 177 \\
3. & Cad. Seville & 4,290 & 204 \\
4. & Pont. Grand Prix & 3,210 & 201 \\
5. & Datsun 210 & 2,020 & 165 \\
\cline { 2 - 4 } 6. & Plym. Arrow & 3,260 & 170 \\
\hline
\end{tabular}
. use http://www.stata-press.com/data/r14/autoexpense (1978 Automobile Data)
. list
\begin{tabular}{|lrr|}
\hline make & price & mpg \\
\hline Toyota Celica & 5,899 & 18 \\
BMW 320i & 9,735 & 25 \\
Cad. Seville & 15,906 & 21 \\
Pont. Grand Prix & 5,222 & 19 \\
Datsun 210 & 4,589 & 35 \\
\hline
\end{tabular}

We can see that these datasets contain different information about nearly the same cars-the autosize file has one more car. We would like to get all the information about all the cars into one dataset.

Because we are adding new variables to old variables, this is a job for the merge command. We need only to decide what type of match merge we need.

Looking carefully at the datasets, we see that the make variable, which identifies the cars in each of the two datasets, also identifies individual observations within the datasets. What this means is that if you tell me the make of car, I can tell you the one observation that corresponds to that car. Because this is true for both datasets, we should use a 1:1 merge.

We will start with a clean slate to show the full process:
```

. use http://www.stata-press.com/data/r14/autosize
(1978 Automobile Data)
. merge 1:1 make using http://www.stata-press.com/data/r14/autoexpense
Result \# of obs.
not matched 1
from master 1 (_merge==1)
from using 0 (_merge==2)
matched 5 (_merge==3)
. list

```
\begin{tabular}{l|lrrrrr|}
\cline { 2 - 6 } & make & weight & length & price & mpg & _merge \\
\hline 1. & BMW 320i & 2,650 & 177 & 9,735 & 25 & matched (3) \\
2. & Cad. Seville & 4,290 & 204 & 15,906 & 21 & matched (3) \\
3. & Datsun 210 & 2,020 & 165 & 4,589 & 35 & matched (3) \\
4. & Plym. Arrow & 3,260 & 170 &. &. & master only (1) \\
5. & Pont. Grand Prix & 3,210 & 201 & 5,222 & 19 & matched (3) \\
\cline { 2 - 7 } & 6. & Toyota Celica & 2,410 & 174 & 5,899 & 18 \\
\cline { 2 - 7 } & & & & matched (3) \\
\hline
\end{tabular}

The merge is successful-all the data are present in the combined dataset, even that from the one car that has only size information. If we wanted only those makes for which all information is present, it would be up to us to drop the observations for which _merge \(<3\).

\section*{Example 2: Requiring matches}

Suppose we had the same setup as in the previous example, but we erroneously think that we have all the information on all the cars. We could tell merge that we expect only matches by using the assert option.
```

. use http://www.stata-press.com/data/r14/autosize, clear
(1978 Automobile Data)
. merge 1:1 make using http://www.stata-press.com/data/r14/autoexpense,
> assert(match)
merge: after merge, not all observations matched
(merged result left in memory)
r(9);

```
merge tells us that there is a problem with our assumption. To see how many mismatches there were, we can tabulate -merge:
. tabulate _merge
\begin{tabular}{r|rrr} 
_merge & Freq. & Percent & Cum. \\
\hline master only (1) & 1 & 16.67 & 16.67 \\
matched (3) & 5 & 83.33 & 100.00 \\
\hline Total & 6 & 100.00 &
\end{tabular}

If we would like to list the problem observation, we can type
. list if _merge < 3
4.
\begin{tabular}{|lrrrrr|}
\hline make & weight & length & price & mpg & _merge \\
\hline Plym. Arrow & 3,260 & 170 &. &. & master only (1) \\
\hline
\end{tabular}

If we were convinced that all data should be complete in the two datasets, we would have to rectify the mismatch in the original datasets.

\section*{Example 3: Keeping just the matches}

Once again, suppose that we had the same datasets as before, but this time we want the final dataset to have only those observations for which there is a match. We do not care if there are mismatches-all that is important are the complete observations. By using the keep (match) option, we will guarantee that this happens. Because we are keeping only those observations for which the key variable matches, there is no need to generate the -merge variable. We could do the following:
```

. use http://www.stata-press.com/data/r14/autosize, clear
(1978 Automobile Data)
. merge 1:1 make using http://www.stata-press.com/data/r14/autoexpense,
> keep(match) nogenerate
Result \# of obs.
not matched 0
matched 5
. list

```
\begin{tabular}{|lrrrr|}
\hline make & weight & length & price & mpg \\
\hline BMW 320i & 2,650 & 177 & 9,735 & 25 \\
Cad. Seville & 4,290 & 204 & 15,906 & 21 \\
Datsun 210 & 2,020 & 165 & 4,589 & 35 \\
Pont. Grand Prix & 3,210 & 201 & 5,222 & 19 \\
Toyota Celica & 2,410 & 174 & 5,899 & 18 \\
\hline
\end{tabular}

\section*{> Example 4: Many-to-one matches}

We have two datasets: one has salespeople in regions and the other has regional data about sales. We would like to put all the information into one dataset. Here are the datasets:
```

. use http://www.stata-press.com/data/r14/sforce, clear
(Sales Force)
. list

```
\begin{tabular}{|c|c|c|}
\hline & region & name \\
\hline 1. & N Cntrl & Krantz \\
\hline 2. & N Cntrl & Phipps \\
\hline 3. & N Cntrl & Willis \\
\hline 4. & NE & Ecklund \\
\hline 5. & NE & Franks \\
\hline 6. & South & Anderson \\
\hline 7. & South & Dubnoff \\
\hline 8. & South & Lee \\
\hline 9. & South & McNeil \\
\hline 10. & West & Charles \\
\hline 11. & West & Cobb \\
\hline 12. & West & Grant \\
\hline
\end{tabular}
```

. use http://www.stata-press.com/data/r14/dollars
(Regional Sales \& Costs)
. list

```
\begin{tabular}{l|lrr|}
\cline { 2 - 4 } & region & sales & cost \\
\hline 1. & N Cntrl & 419,472 & 227,677 \\
2. & NE & 360,523 & 138,097 \\
3. & South & 532,399 & 330,499 \\
4. & West & 310,565 & 165,348 \\
\cline { 2 - 4 } & &
\end{tabular}

We can see that the region would be used to match observations in the two datasets, and this time we see that region identifies individual observations in the dollars dataset but not in the sforce dataset. This means we will have to use either an m:1 or a \(1: m\) merge. Here we will open the sforce dataset and then merge the dollars dataset. This will be an m:1 merge, because region does not identify individual observations in the dataset in memory but does identify them in the using dataset. Here is the command and its result:
```

. use http://www.stata-press.com/data/r14/sforce
(Sales Force)
. merge m:1 region using http://www.stata-press.com/data/r14/dollars
(label region already defined)

Result	\# of obs
not matched	0
matched	12

 matched 12 (_merge==3)
    ```
. list
\begin{tabular}{l|lrrrr|}
\cline { 2 - 6 } & region & name & sales & cost & _merge \\
\cline { 2 - 6 } & 1. & N Cntrl & Krantz & 419,472 & 227,677 \\
2. & N Cntrl & Phipps & 419,472 & 227,677 & matched (3) \\
3. & N Cntrl & Willis & 419,472 & 227,677 & matched (3) \\
4. & NE & Ecklund & 360,523 & 138,097 & matched (3) \\
5. & NE & Franks & 360,523 & 138,097 & matched (3) \\
\cline { 2 - 6 } & & South & Anderson & 532,399 & 330,499 \\
matched (3) \\
7. & South & Dubnoff & 532,399 & 330,499 & matched (3) \\
8. & South & Lee & 532,399 & 330,499 & matched (3) \\
9. & South & McNeil & 532,399 & 330,499 & matched (3) \\
10. & West & Charles & 310,565 & 165,348 & matched (3) \\
11. & West & Cobb & 310,565 & 165,348 & matched (3) \\
12. & West & Grant & 310,565 & 165,348 & matched (3) \\
\hline
\end{tabular}

We can see from the result that all the values of region were matched in both datasets. This is a rare occurrence in practice!

Had we had the dollars dataset in memory and merged in the sforce dataset, we would have done a \(1: \mathrm{m}\) merge.

We would now like to use a series of examples that shows how merge treats nonkey variables, which have the same names in the two datasets. We will call these "overlapping" variables.

\section*{Example 5: Overlapping variables}

Here are two datasets whose only purpose is for this illustration:
```

. use http://www.stata-press.com/data/r14/overlap1, clear
. list, sepby(id)

```
\begin{tabular}{|c|c|c|c|c|}
\hline & id & seq & x1 & x 2 \\
\hline 1. & 1 & 1 & 1 & 1 \\
\hline 2. & 1 & 2 & 1 & . \\
\hline 3. & 1 & 3 & 1 & 2 \\
\hline 4. & 1 & 4 & . & 2 \\
\hline 5. & 2 & 1 & . & 1 \\
\hline 6. & 2 & 2 & . & 2 \\
\hline 7. & 2 & 3 & 1 & 1 \\
\hline 8. & 2 & 4 & 1 & 2 \\
\hline 9. & 2 & 5 & .a & 1 \\
\hline 10. & 2 & 6 & . a & 2 \\
\hline 11. & 3 & 1 & . & .a \\
\hline 12. & 3 & 2 & . & 1 \\
\hline 13. & 3 & 3 & . & . \\
\hline 14. & 3 & 4 & . a & . a \\
\hline 15. & 10 & 1 & 5 & 8 \\
\hline
\end{tabular}
. list
\begin{tabular}{l|rrrr|}
\cline { 2 - 4 } & id & bar & x1 & x2 \\
\cline { 2 - 4 } 1. & 1 & 11 & 1 & 1 \\
2. & 2 & 12 &. & 1 \\
3. & 3 & 14 &. &.\(a\) \\
4. & 20 & 18 & 1 & 1 \\
\cline { 2 - 4 } & & & &
\end{tabular}

We can see that id can be used as the key variable for putting the two datasets together. We can also see that there are two overlapping variables: x 1 and x 2 .

We will start with a simple m:1 merge:
```

. use http://www.stata-press.com/data/r14/overlap1
. merge m:1 id using http://www.stata-press.com/data/r14/overlap2
Result \# of obs.

```

. list, sepby(id)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & id & seq & x1 & x2 & bar & _merge \\
\hline 1. & 1 & 1 & 1 & 1 & 11 & matched (3) \\
\hline 2. & 1 & 2 & 1 & & 11 & matched (3) \\
\hline 3. & 1 & 3 & 1 & 2 & 11 & matched (3) \\
\hline 4. & 1 & 4 & . & 2 & 11 & matched (3) \\
\hline 5. & 2 & 1 & . & 1 & 12 & matched (3) \\
\hline 6. & 2 & 2 & . & 2 & 12 & matched (3) \\
\hline 7. & 2 & 3 & 1 & 1 & 12 & matched (3) \\
\hline 8. & 2 & 4 & 1 & 2 & 12 & matched (3) \\
\hline 9. & 2 & 5 & . a & 1 & 12 & matched (3) \\
\hline 10. & 2 & 6 & . a & 2 & 12 & matched (3) \\
\hline 11. & 3 & 1 & . & . a & 14 & matched (3) \\
\hline 12. & 3 & 2 & . & 1 & 14 & matched (3) \\
\hline 13. & 3 & 3 & . & . & 14 & matched (3) \\
\hline 14. & 3 & 4 & . a & .a & 14 & matched (3) \\
\hline 15. & 10 & 1 & 5 & 8 & & master only (1) \\
\hline 16. & 20 & . & 1 & 1 & 18 & using only (2) \\
\hline
\end{tabular}

Careful inspection shows that for the matched id, the values of \(x 1\) and \(x 2\) are still the values that were originally in the overlap1 dataset. This is the default behavior of merge-the data in the master dataset is the authority and is kept intact.

\section*{> Example 6: Updating missing data}

Now we would like to investigate the update option. Used by itself, it will replace missing values in the master dataset with values from the using dataset:
```

. use http://www.stata-press.com/data/r14/overlap1, clear
. merge m:1 id using http://www.stata-press.com/data/r14/overlap2, update
Result \# of obs.
not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)
matched 14
not updated
missing updated
(_merge==3)
(_merge==4)
nonmissing conflict
(_merge==5)
. list, sepby(id)

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & id & seq & x1 & x2 & bar & _merge \\
\hline 1. & 1 & 1 & 1 & 1 & 11 & matched (3) \\
\hline 2. & 1 & 2 & 1 & 1 & 11 & missing updated (4) \\
\hline 3. & 1 & 3 & 1 & 2 & 11 & nonmissing conflict (5) \\
\hline 4. & 1 & 4 & 1 & 2 & 11 & nonmissing conflict (5) \\
\hline 5. & 2 & 1 & . & 1 & 12 & matched (3) \\
\hline 6. & 2 & 2 & . & 2 & 12 & nonmissing conflict (5) \\
\hline 7. & 2 & 3 & 1 & 1 & 12 & matched (3) \\
\hline 8. & 2 & 4 & 1 & 2 & 12 & nonmissing conflict (5) \\
\hline 9. & 2 & 5 & & 1 & 12 & missing updated (4) \\
\hline 10. & 2 & 6 & - & 2 & 12 & nonmissing conflict (5) \\
\hline 11. & 3 & 1 & . & . a & 14 & matched (3) \\
\hline 12. & 3 & 2 & & 1 & 14 & matched (3) \\
\hline 13. & 3 & 3 & & . a & 14 & missing updated (4) \\
\hline 14. & 3 & 4 & . & . a & 14 & missing updated (4) \\
\hline 15. & 10 & 1 & 5 & 8 & . & master only (1) \\
\hline 16. & 20 & & 1 & 1 & 18 & using only (2) \\
\hline
\end{tabular}

Looking through the resulting dataset observation by observation, we can see both what the update option updated as well as how the -merge variable gets its values.

The following is a listing that shows what is happening, where \(\mathrm{x} 1 \_\mathrm{m}\) and x 2 m come from the master dataset (overlap1), x1_u and x2_u come from the using dataset (overlap2), and x1 and x 2 are the values that appear when using merge with the update option.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & id & x1_m & x1_u & x 1 & x2_m & x2_u & x2 & _merge \\
\hline 1. & 1 & 1 & 1 & 1 & 1 & 1 & 1 & matched (3) \\
\hline 2. & 1 & 1 & 1 & 1 & & 1 & 1 & missing updated (4) \\
\hline 3. & 1 & 1 & 1 & 1 & 2 & 1 & 2 & nonmissing conflict (5) \\
\hline 4. & 1 & . & 1 & 1 & 2 & 1 & 2 & nonmissing conflict (5) \\
\hline 5. & 2 & & . & . & 1 & 1 & 1 & matched (3) \\
\hline 6. & 2 & & . & . & 2 & 1 & 2 & nonmissing conflict (5) \\
\hline 7. & 2 & 1 & . & 1 & 1 & 1 & 1 & matched (3) \\
\hline 8. & 2 & 1 & - & 1 & 2 & 1 & 2 & nonmissing conflict (5) \\
\hline 9. & 2 & . a & . & . & 1 & 1 & 1 & missing updated (4) \\
\hline 10. & 2 & . a & . & . & 2 & 1 & 2 & nonmissing conflict (5) \\
\hline 11. & 3 & . & . & . & . a & . a & . a & matched (3) \\
\hline 12. & 3 & & - & - & 1 & . a & 1 & matched (3) \\
\hline 13. & 3 & & - & - & & . a & . a & missing updated (4) \\
\hline 14. & 3 & . a & . & . & . a & . a & . a & missing updated (4) \\
\hline 15. & 10 & 5 & . & 5 & 8 & . & 8 & master only (1) \\
\hline 16. & 20 & - & 1 & 1 & . & 1 & 1 & using only (2) \\
\hline
\end{tabular}

From this, we can see two important facts: if there are both a conflict and an updated value, the value of _merge will reflect that there was a conflict, and missing values in the master dataset are updated by missing values in the using dataset.

\section*{Example 7: Updating all common observations}

We would like to see what happens if the update and replace options are specified. The replace option extends the action of update to use nonmissing values of the using dataset to replace values in the master dataset. The values of merge are unaffected by using both update and replace.
. use http://www.stata-press.com/data/r14/overlap1, clear
. merge m:1 id using http://www.stata-press.com/data/r14/overlap2, update replace
Result \# of obs.
not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)
matched 14
not updated 5 (_merge==3)
missing updated 4 (_merge==4)
nonmissing conflict 5 (_merge==5)
. list, sepby(id)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & id & seq & x 1 & x2 & bar & _merge \\
\hline 1. & 1 & 1 & 1 & 1 & 11 & matched (3) \\
\hline 2. & 1 & 2 & 1 & 1 & 11 & missing updated (4) \\
\hline 3. & 1 & 3 & 1 & 1 & 11 & nonmissing conflict (5) \\
\hline 4. & 1 & 4 & 1 & 1 & 11 & nonmissing conflict (5) \\
\hline 5. & 2 & 1 & . & 1 & 12 & matched (3) \\
\hline 6. & 2 & 2 & . & 1 & 12 & nonmissing conflict (5) \\
\hline 7. & 2 & 3 & 1 & 1 & 12 & matched (3) \\
\hline 8. & 2 & 4 & 1 & 1 & 12 & nonmissing conflict (5) \\
\hline 9. & 2 & 5 & & 1 & 12 & missing updated (4) \\
\hline 10. & 2 & 6 & . & 1 & 12 & nonmissing conflict (5) \\
\hline 11. & 3 & 1 & . & . a & 14 & matched (3) \\
\hline 12. & 3 & 2 & & 1 & 14 & matched (3) \\
\hline 13. & 3 & 3 & & . a & 14 & missing updated (4) \\
\hline 14. & 3 & 4 & - & . a & 14 & missing updated (4) \\
\hline 15. & 10 & 1 & 5 & 8 & - & master only (1) \\
\hline 16. & 20 & & 1 & 1 & 18 & using only (2) \\
\hline
\end{tabular}

\section*{Example 8: More on the keep() option}

Suppose we would like to use the update option, as we did above, but we would like to keep only those observations for which the value of the key variable, id, was found in both datasets. This will be more complicated than in our earlier example, because the update option splits the matches into matches, match_updates, and match_conflicts. We must either use all of these code words in the keep option or use their numerical equivalents, 3, 4, and 5 . Here the latter is simpler.
```

. use http://www.stata-press.com/data/r14/overlap1, clear
. merge m:1 id using http://www.stata-press.com/data/r14/overlap2, update
> keep(3 4 5)
Result \# of obs.
not matched 0
matched 14
not updated 5 (_merge==3)
missing updated 4 (_merge==4)
nonmissing conflict 5 (_merge==5)

```
. list, sepby(id)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & id & seq & x1 & x 2 & bar & _merge \\
\hline 1. & 1 & 1 & 1 & 1 & 11 & matched (3) \\
\hline 2. & 1 & 2 & 1 & 1 & 11 & missing updated (4) \\
\hline 3. & 1 & 3 & 1 & 2 & 11 & nonmissing conflict (5) \\
\hline 4. & 1 & 4 & 1 & 2 & 11 & nonmissing conflict (5) \\
\hline 5. & 2 & 1 & . & 1 & 12 & matched (3) \\
\hline 6. & 2 & 2 & . & 2 & 12 & nonmissing conflict (5) \\
\hline 7. & 2 & 3 & 1 & 1 & 12 & matched (3) \\
\hline 8. & 2 & 4 & 1 & 2 & 12 & nonmissing conflict (5) \\
\hline 9. & 2 & 5 & - & 1 & 12 & missing updated (4) \\
\hline 10. & 2 & 6 & . & 2 & 12 & nonmissing conflict (5) \\
\hline 11. & 3 & 1 & . & . a & 14 & matched (3) \\
\hline 12. & 3 & 2 & - & 1 & 14 & matched (3) \\
\hline 13. & 3 & 3 & . & . a & 14 & missing updated (4) \\
\hline 14. & 3 & 4 & - & . a & 14 & missing updated (4) \\
\hline
\end{tabular}

\section*{Example 9: A one-to-many merge}

As a final example, we would like show one example of a \(1: m\) merge. There is nothing conceptually different here; what is interesting is the order of the observations in the final dataset:
```

. use http://www.stata-press.com/data/r14/overlap2, clear
. merge 1:m id using http://www.stata-press.com/data/r14/overlap1
Result \# of obs.
not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)
matched 14
(_merge==1)

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & id & bar & x 1 & x 2 & seq & _merge \\
\hline 1. & 1 & 11 & 1 & 1 & 1 & matched (3) \\
\hline 2. & 2 & 12 & . & 1 & 1 & matched (3) \\
\hline 3. & 3 & 14 & - & . a & 1 & matched (3) \\
\hline 4. & 20 & 18 & 1 & 1 & - & master only (1) \\
\hline 5. & 1 & 11 & 1 & 1 & 2 & matched (3) \\
\hline 6. & 1 & 11 & 1 & 1 & 3 & matched (3) \\
\hline 7. & 1 & 11 & 1 & 1 & 4 & matched (3) \\
\hline 8. & 2 & 12 & . & 1 & 2 & matched (3) \\
\hline 9. & 2 & 12 & . & 1 & 3 & matched (3) \\
\hline 10. & 2 & 12 & . & 1 & 4 & matched (3) \\
\hline 11. & 2 & 12 & . & 1 & 5 & matched (3) \\
\hline 12. & 2 & 12 & - & 1 & 6 & matched (3) \\
\hline 13. & 3 & 14 & . & . \({ }^{\text {a }}\) & 2 & matched (3) \\
\hline 14. & 3 & 14 & . & .a & 3 & matched (3) \\
\hline 15. & 3 & 14 & - & . a & 4 & matched (3) \\
\hline 16. & 10 & . & 5 & 8 & 1 & using only (2) \\
\hline
\end{tabular}

We can see here that the first four observations come from the master dataset, and all additional observations, whether matched or unmatched, come below these observations. This illustrates that the master dataset is always in the upper-left corner of the merged dataset.

\section*{References}

Chatfield, M. D. 2015. precombine: A command to examine \(n_{c}=2\) datasets before combining. Stata Journal 15: 607-626.

Golbe, D. L. 2010. Stata tip 83: Merging multilingual datasets. Stata Journal 10: 152-156.
Gould, W. W. 2011a. Merging data, part 1: Merges gone bad. The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2011/04/18/merging-data-part-1-merges-gone-bad/.
——. 2011b. Merging data, part 2: Multiple-key merges. The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2011/05/27/merging-data-part-2-multiple-key-merges/.

Nash, J. D. 1994. dm19: Merging raw data and dictionary files. Stata Technical Bulletin 20: 3-5. Reprinted in Stata Technical Bulletin Reprints, vol. 4, pp. 22-25. College Station, TX: Stata Press.

Weesie, J. 2000. dm75: Safe and easy matched merging. Stata Technical Bulletin 53: 6-17. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 62-77. College Station, TX: Stata Press.

\section*{Also see}
[D] append - Append datasets
[D] cross - Form every pairwise combination of two datasets
[D] joinby - Form all pairwise combinations within groups
[D] save - Save Stata dataset
[D] sort - Sort data
[U] 22 Combining datasets

\section*{Title}
missing values - Quick reference for missing values
Description Remarks and examples Reference Also see

\section*{Description}

This entry provides a quick reference for Stata's missing values.

\section*{Remarks and examples}

Stata has 27 numeric missing values:
., the default, which is called the system missing value or sysmiss and
\(. \mathrm{a}, . \mathrm{b}, . \mathrm{c}, \ldots, . \mathrm{z}\), which are called the extended missing values.
Numeric missing values are represented by large positive values. The ordering is
\[
\text { all nonmissing numbers }<.<. \mathrm{a}<. \mathrm{b}<\cdots<. \mathrm{z}
\]

Thus the expression
\[
\text { age }>60
\]
is true if variable age is greater than 60 or missing.
To exclude missing values, ask whether the value is less than '. '.
. list if age > 60 \& age < .
To specify missing values, ask whether the value is greater than or equal to '. ' For instance, list if age >=.

Stata has one string missing value, which is denoted by "" (blank).

\section*{Reference}

Cox, N. J. 2010. Stata tip 84: Summing missings. Stata Journal 10: 157-159.

\section*{Also see}
[U] 12.2.1 Missing values

\section*{Title}
mkdir - Create directory

Description Quick start Syntax Option Remarks and examples Also see

\section*{Description}
mkdir creates a new directory (folder).

\section*{Quick start}

Create mysubdir in the current working directory mkdir mysubdir

As above, but make mysubdir readable by everyone regardless of default permissions
mkdir mysubdir, public
Create mysubdir in C: \mydir using Stata for Windows
mkdir c:\mydir\mysubdir
Create mysubdir in \(\sim /\) mydir using Stata for Mac or Unix
mkdir ~/mydir/mysubdir
Create my folder in C: \my dir using Stata for Windows
mkdir "c:\my dir\my folder"

\section*{Syntax}
mkdir directoryname [, public]
Double quotes may be used to enclose directoryname, and the quotes must be used if directoryname contains embedded spaces.

\section*{Option}
public specifies that directoryname be readable by everyone; otherwise, the directory will be created according to the default permissions of your operating system.

\section*{Remarks and examples}

Examples:
Windows
. mkdir myproj
. mkdir c:\projects\myproj
. mkdir "c:\My Projects\Project 1"
Mac and Unix
. mkdir myproj
. mkdir ~/projects/myproj

\section*{Also see}
[D] cd - Change directory
[D] copy - Copy file from disk or URL
[D] dir - Display filenames
[D] erase - Erase a disk file
[D] rmdir - Remove directory
[D] shell - Temporarily invoke operating system
[D] type - Display contents of a file
[U] 11.6 Filenaming conventions

\section*{Title}
mvencode - Change missing values to numeric values and vice versa
\begin{tabular}{llll} 
Description & Quick start & Menu & Syntax \\
Options & Remarks and examples & Acknowledgment & Also see
\end{tabular}

\section*{Description}
mvencode changes missing values in the specified varlist to numeric values.
mvdecode changes occurrences of a numlist in the specified varlist to a missing-value code.
Missing-value codes may be sysmiss (.) and the extended missing-value codes .a, .b, ..., .z. String variables in varlist are ignored.

\section*{Quick start}

Replace all missing values in v1 with 99
mvencode \(\mathrm{v} 1, \operatorname{mv}(99)\)
Replace extended missing value .a with 888 and .b with 999 in v2
mvencode \(v 2\), \(\mathrm{mv}(. a=888\) \ . \(\mathrm{b}=999\) )
Replace .a with 888 , .b with 999 , and other missing values with 99 in numeric variables mvencode _all, mv(.a=888 \ .b=999 \ else=99)

As above, but only for observations where catvar equals 1
mvencode _all if catvar==1, \(\operatorname{mv}(. a=888 \backslash . b=999\) \else=99)
Replace 888 and 999 with system missing . in all numeric variables
mvdecode _all, mv(888 999)
As above, but replace 888 with .a and 999 with .b
mvdecode _all, mv(888=.a \999=.b)

\section*{Menu}

\section*{mvencode}

Data \(>\) Create or change data \(>\) Other variable-transformation commands \(>\) Change missing values to numeric
mvdecode
Data \(>\) Create or change data \(>\) Other variable-transformation commands \(>\) Change numeric values to missing

\section*{Syntax}

Change missing values to numeric values
mvencode varlist [if][in], \(\mathrm{mv}(\# \mid m v c=\#[\backslash m v c=\# \ldots][\backslash\) else \(=\#]\) ] [override]

Change numeric values to missing values mvdecode varlist \([\) if \(][\) in \(], \operatorname{mv}(\) numlist \(\mid\) numlist \(=m v c[\backslash\) numlist \(=m v c \ldots])\)
where \(m v c\) is one of \(.|\cdot \mathrm{a}| . \mathrm{b}|\ldots| \cdot \mathrm{z}\)

\section*{Options}

Main
\(\operatorname{mv}(\# \mid m v c=\#[\backslash m v c=\# \ldots][\backslash \mathrm{else}=\#])\) is required and specifies the numeric values to which the missing values are to be changed.
mv (\#) specifies that all types of missing values be changed to \#.
\(m v(m v c=\#)\) specifies that occurrences of missing-value code \(m v c\) be changed to \#. Multiple transformation rules may be specified, separated by a backward slash ( \(\backslash\) ). The list may be terminated by the special rule else=\#, specifying that all types of missing values not yet transformed be set to \#.

Examples: mv (9) \(\mathrm{mv}(.=99 \backslash . \mathrm{a}=98 \backslash . \mathrm{b}=97\) ) \(\mathrm{mv}(.=99 \backslash \mathrm{else}=98)\)
\(\operatorname{mv}(\) numlist \(\mid\) numlist \(=m v c[\backslash\) numlist \(=m v c \ldots]\) ) is required and specifies the numeric values that are to be changed to missing values.
mv (numlist=mvc) specifies that the values in numlist be changed to missing-value code \(m v c\). Multiple transformation rules may be specified, separated by a backward slash ( \(\backslash\) ). See [P] numlist for the syntax of a numlist.
Examples: mv (9) , mv (99=. \(\backslash 98=. a \backslash 97=. \mathrm{b}), \mathrm{mv}(99=. \backslash 100 / 999=. a)\)
override specifies that the protection provided by mvencode be overridden. Without this option, mvencode refuses to make the requested change if any of the numeric values are already used in the data.

\section*{Remarks and examples}

You may occasionally read data in which missing (for example, a respondent failed to answer a survey question or the data were not collected) is coded with a special numeric value. Popular codings are \(9,99,-9,-99\), and the like. If missing were encoded as -99 , then
```

. mvdecode _all, mv(-99)

```
would translate the special code to the Stata missing value ".". Use this command cautiously because, even if -99 were not a special code, all -99 s in the data would be changed to missing.

Sometimes different codes are used to represent different reasons for missing values. For instance, 98 may be used for "refused to answer" and 99 for "not applicable". Extended missing values (.a, .b, and so on) may be used to code these differences.
```

. mvdecode _all, mv(98=.a\ 99=.b)

```

Conversely, you might need to export data to software that does not understand that "." indicates a missing value, so you might code missing with a special numeric value. To change all missings to -99 , you could type
```

. mvencode _all, mv(-99)

```

To change extended missing values back to numeric values, type
```

. mvencode _all, mv(.a=98\ .b=99)

```

This would leave sysmiss and all other extended missing values unchanged. To encode in addition sysmiss . to 999 and all other extended missing values to 97 , you might type
```

. mvencode _all, mv(.=999\ .a=98\ .b=99\ else=97)

```
mvencode will automatically recast variables upward, if necessary, so even if a variable is stored as a byte, its missing values can be recoded to, say, 999 . Also mvencode refuses to make the change if \# ( -99 here) is already used in the data, so you can be certain that your coding is unique. You can override this feature by including the override option.

Be aware of another potential problem with encoding and decoding missing values: value labels are not automatically adapted to the changed codings. You have to do this yourself. For example, the value label divlabor maps the value 99 to the string "not applicable". You used mvdecode to recode 99 to .a for all variables that are associated with this label. To fix the value label, clear the mapping for 99 and define it again for .a.
```

. label define divlabor 99 "", modify
. label define divlabor .a "not applicable", add

```

\section*{> Example 1}

Our automobile dataset contains 74 observations and 12 variables. Let's first attempt to translate the missing values in the data to 1 :
```

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)
. mvencode _all, mv(1)
make: string variable ignored
rep78: already 1 in 2 observations
foreign: already 1 in 22 observations
no action taken
r(9);

```

Our attempt failed. mvencode first informed us that make is a string variable-this is not a problem but is reported merely for our information. String variables are ignored by mvencode. It next informed us that rep78 was already coded 1 in 2 observations and that foreign was already coded 1 in 22 observations. Thus 1 would be a poor choice for encoding missing values because, after encoding, we could not tell a real 1 from a coded missing value 1 .

We could force mvencode to encode the data with 1, anyway, by typing mvencode _all, mv (1) override. That would be appropriate if the 1 s in our data already represented missing data. They do not, however, so we code missing as 999:
```

. mvencode _all, mv(999)
make: string variable ignored
rep78: 5 missing values

```

This worked, and we are informed that the only changes necessary were to 5 observations of rep78.

\section*{> Example 2}

Let's now pretend that we just read in the automobile data from some raw dataset in which all the missing values were coded 999 . We can convert the 999 s to real missings by typing
```

. mvdecode _all, mv(999)
make: string variable ignored
rep78: 5 missing values

```

We are informed that make is a string variable, so it was ignored, and that rep78 contained 5 observations with 999 . Those observations have now been changed to contain missing.

\section*{Acknowledgment}

These versions of mvencode and mvdecode were written by Jeroen Weesie of the Department of Sociology at Utrecht University, The Netherlands.

\section*{Also see}
[D] generate - Create or change contents of variable
[D] recode - Recode categorical variables

\section*{Title}
notes - Place notes in data
\begin{tabular}{llll} 
Description & Quick start & Menu & Syntax \\
Remarks and examples & References & Also see &
\end{tabular}

\section*{Description}
notes attaches notes to the dataset in memory. These notes become a part of the dataset and are saved when the dataset is saved and retrieved when the dataset is used; see [D] save and [D] use. notes can be attached generically to the dataset or specifically to a variable within the dataset.

\section*{Quick start}

Attach "My note about data" to current dataset
notes: My note about data
Add note "There is one note for v 1 " to v1
notes v1: There is one note for v1
Add note "A note was added to v 2 on" and a time stamp for the note notes v2: A note was added to v 2 on TS

Add note "Data have changed" to the dataset
notes: Data have changed
Remove the first note from the dataset
notes drop _dta in 1
Renumber notes after removing a note from the dataset
notes renumber _dta
As above, but for a variable
notes renumber v1
List all notes
notes
List notes for the dataset but omit notes applied to variables
```

notes _dta

```

List only notes for variables
notes *
Search all notes for the word "check"
notes search check

\section*{Menu}
notes (add)
Data \(>\) Variables Manager

\section*{notes list and notes search}

Data \(>\) Data utilities \(>\) Notes utilities \(>\) List or search notes

\section*{notes replace}

Data > Variables Manager

\section*{notes drop}

Data \(>\) Variables Manager

\section*{notes renumber}

Data \(>\) Data utilities \(>\) Notes utilities \(>\) Renumber notes

\section*{Syntax}

Attach notes to dataset
notes [evarname]: text

List all notes
notes

List specific notes
```

notes [list] evarlist [in \#[/\#]]

```

Search for a text string across all notes in all variables and _dta
```

notes search [sometext]

```

Replace a note
```

notes replace evarname in \#: text

```

Drop notes
```

notes drop evarlist [in \#[/\#]]

```

Renumber notes
notes renumber evarname
where evarname is _dta or a varname, evarlist is a varlist that may contain the _dta, and \# is a number or the letter 1.

If text includes the letters TS surrounded by blanks, the TS is removed, and a time stamp is substituted in its place.

\section*{Remarks and examples}

Remarks are presented under the following headings:

\footnotetext{
How notes are numbered Attaching and listing notes Selectively listing notes Searching and replacing notes Deleting notes Warnings
}

\section*{How notes are numbered}

Notes are numbered sequentially, with the first note being 1. Say the myvar variable has four notes numbered \(1,2,3\), and 4 . If you type notes drop myvar in 3 , the remaining notes will be numbered 1,2 , and 4 . If you now add another note, it will be numbered 5 . That is, notes are not renumbered and new notes are added immediately after the highest numbered note. Thus, if you now dropped notes 4 and 5, the next note added would be 3 .

You can renumber notes by using notes renumber. Going back to when myvar had notes numbered 1, 2, and 4 after dropping note 3 , if you typed notes renumber myvar, the notes would be renumbered 1,2 , and 3 . If you added a new note after that, it would be numbered 4.

\section*{Attaching and listing notes}

A note is nothing formal; it is merely a string of text reminding you to do something, cautioning you against something, or saying anything else you might feel like jotting down. People who work with real data invariably end up with paper notes plastered around their terminal saying things like, "Send the new sales data to Bob", "Check the income variable in salary95; I don't believe it", or "The gender dummy was significant!" It would be better if these notes were attached to the dataset.

Adding a note to your dataset requires typing note or notes (they are synonyms), a colon (:), and whatever you want to remember. The note is added to the dataset currently in memory.
```

. note: Send copy to Bob once verified.

```

You can replay your notes by typing notes (or note) by itself.
```

. notes
_dta:
1. Send copy to Bob once verified.

```

Once you resave your data, you can replay the note in the future, too. You add more notes just as you did the first:
```

. note: Mary wants a copy, too.
. notes
_dta:
1. Send copy to Bob once verified.
2. Mary wants a copy, too.

```

You can place time stamps on your notes by placing the word TS (in capitals) in the text of your note:
```

. note: TS merged updates from JJ\&F
. notes
_dta:
1. Send copy to Bob once verified.
2. Mary wants a copy, too.
3. 19 Apr 2014 15:38 merged updates from JJ\&F

```

Notes may contain SMCL directives:
```

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)
. note: check reason for missing values in \{cmd:rep78\}
. notes
_dta:
1. from Consumer Reports with permission
2. check reason for missing values in rep78

```

The notes we have added so far are attached to the dataset generically, which is why Stata prefixes them with _dta when it lists them. You can attach notes to variables:
```

. note mpg: is the 44 a mistake? Ask Bob.
. note mpg: what about the two missing values?
. notes
_dta:
1. Send copy to Bob once verified.
2. Mary wants a copy, too.
3. 19 Apr 2014 15:38 merged updates from JJ\&F
mpg:
1. is the 44 a mistake? Ask Bob.
2. what about the two missing values?

```

Up to 9,999 generic notes can be attached to _dta, and another 9,999 notes can be attached to each variable.

\section*{Selectively listing notes}

Typing notes by itself lists all the notes. In full syntax, notes is equivalent to typing notes _all in 1/l. Here are some variations:
\begin{tabular}{ll} 
notes _dta & list all generic notes \\
notes mpg & list all notes for variable mpg \\
notes _dta mpg & list all generic notes and mpg notes \\
notes_dta in 3 & list generic note 3 \\
notes_dta in \(3 / 5\) & list generic notes 3-5 \\
notes mpg in \(3 / 5\) & list mpg notes 3-5 \\
notes_dta in 3/1 & list generic notes 3 through last
\end{tabular}

\section*{Searching and replacing notes}

You had a bad day yesterday, and you want to recheck the notes that you added to your dataset. Fortunately, you always put a time stamp on your notes.
```

. notes search "29 Jan"
_dta:
2. 29 Jan 2014 13:40 check reason for missing values in foreign

```

Good thing you checked. It is rep78 that has missing values.
```

. notes replace _dta in 2: TS check reason for missing values in rep78
(note 2 for _dta replaced)
. notes
_dta:
1. from Consumer Reports with permission
2. 30 Jan 2014 12:32 check reason for missing values in rep78

```

\section*{Deleting notes}
notes drop works much like listing notes, except that typing notes drop by itself does not delete all notes; you must type notes drop _all. Here are some variations:
```

notes drop _dta delete all generic notes
notes drop _dta in 3 delete generic note 3
notes drop _dta in 3/5 delete generic notes 3-5
notes drop _dta in 3/1 delete generic notes 3 through last
notes drop mpg in 4 delete mpg note 4

```

\section*{Warnings}
- Notes are stored with the data, and as with other updates you make to the data, the additions and deletions are not permanent until you save the data; see [D] save.
- The maximum length of one note is 67,784 characters for Stata/MP, Stata/SE, and Stata/IC; it is 13,400 characters for Small Stata.

\section*{References}

Gleason, J. R. 1998. dm57: A notes editor for Windows and Macintosh. Stata Technical Bulletin 43: 6-9. Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 10-13. College Station, TX: Stata Press.

Long, J. S. 2009. The Workflow of Data Analysis Using Stata. College Station, TX: Stata Press.

\section*{Also see}
[D] codebook - Describe data contents
[D] describe - Describe data in memory or in file
[D] ds - List variables matching name patterns or other characteristics
[D] save - Save Stata dataset
[D] varmanage - Manage variable labels, formats, and other properties
[U] 12.8 Characteristics

\section*{Title}
obs - Increase the number of observations in a dataset

\author{
Description Quick start Syntax Remarks and examples \\ Also see
}

\section*{Description}
set obs changes the number of observations in the current dataset. \# must be at least as large as the current number of observations. If there are variables in memory, the values of all new observations are set to missing.

\section*{Quick start}

Add 100 observations with no observations currently in memory set obs 100

Add 100 observations with 100 observations currently in memory set obs 200

\section*{Syntax}
```

set obs \#

```

\section*{Remarks and examples}

\section*{Example 1}
set obs can be useful for creating artificial datasets. For instance, if we wanted to graph the function \(y=x^{2}\) over the range \(1-100\), we could type
. drop _all
. set obs 100
number of observations (_N) was 0, now 100
- generate \(\mathrm{x}=\) _n
. generate \(\mathrm{y}=\mathrm{x}^{\wedge} 2\)
. scatter y x
(graph not shown)

\section*{> Example 2}

If we want to add an extra data point in a program, we could type
. local np1 = _N + 1
. set obs 'np1'
or
. set obs '=_N + 1'

\section*{Also see}
[D] describe - Describe data in memory or in file
[D] insobs - Add or insert observations

\section*{Title}
odbc - Load, write, or view data from ODBC sources
\begin{tabular}{llll} 
Description & Quick start & Menu & Syntax \\
Options & Remarks and examples & Also see &
\end{tabular}

\section*{Description}
odbc allows you to load, write, and view data from Open DataBase Connectivity (ODBC) sources into Stata. ODBC is a standardized set of function calls for accessing data stored in both relational and nonrelational database-management systems. By default on Unix platforms, iODBC is the ODBC driver manager Stata uses, but you can use unixODBC by using the command set odbcmgr unixodbc.

ODBC's architecture consists of four major components (or layers): the client interface, the ODBC driver manager, the ODBC drivers, and the data sources. Stata provides odbc as the client interface. The system is illustrated as follows:

odbc list produces a list of ODBC data source names to which Stata can connect.
odbc query retrieves a list of table names available from a specified data source's system catalog. odbc describe lists column names and types associated with a specified table.
odbc load reads an ODBC table into memory. You can load an ODBC table specified in the table() option or load an ODBC table generated by an SQL SELECT statement specified in the exec() option. In both cases, you can choose which columns and rows of the ODBC table to read by specifying extvarlist and if and in conditions. extvarlist specifies the columns to be read and allows you to rename variables. For example,
. odbc load id=ID name="Last Name", table(Employees) dsn(Northwind)
reads two columns, ID and Last Name, from the Employees table of the Northwind data source. It will also rename variable ID to id and variable Last Name to name.
odbc insert writes data from memory to an ODBC table. The data can be appended to an existing table or replace an existing table.
odbc exec allows for most SQL statements to be issued directly to any ODBC data source. Statements that produce output, such as SELECT, have their output neatly displayed. By using Stata's ado language, you can also generate SQL commands on the fly to do positional updates or whatever the situation requires.
odbc sqlfile provides a "batch job" alternative to the odbc exec command. A file is specified that contains any number of any length SQL commands. Every SQL command in this file should be delimited by a semicolon and must be constructed as pure SQL. Stata macros and ado-language syntax
are not permitted. The advantage in using this command, as opposed to odbc exec, is that only one connection is established for multiple SQL statements. A similar sequence of SQL commands used via odbc exec would require constructing an ado-file that issued a command and, thus, a connection for every SQL command. Another slight difference is that any output that might be generated from an SQL command is suppressed by default. A loud option is provided to toggle output back on.
set odbcdriver unicode specifies that the ODBC driver is a Unicode driver (the default). set odbcdriver ansi specifies that the ODBC driver is an ANSI driver. You must restart Stata for the setting to take effect.
set odbcmgr iodbc specifies that the ODBC driver manager is iODBC (the default). set odbcmgr unixodbc specifies that the ODBC driver manager is unixODBC.

\section*{Quick start}

List all defined data source names (DSNs) to which Stata can connect odbc list

List available table names in MyDSN
odbc query "MyDSN"
Describe the column names and data types in table MyTable from MyDSN
odbc describe "MyTable", dsn("MyDSN")
Load MyTable into memory from MyDSN
odbc load, table("MyTable") dsn("MyDSN")

\section*{Menu}
odbc load
File \(>\) Import \(>\) ODBC data source

\section*{odbc insert}

File \(>\) Export \(>\) ODBC data source

\section*{Syntax}

List ODBC sources to which Stata can connect
odbc list

Retrieve available names from specified data source odbc query ["DataSourceName", verbose schema connect_options]

List column names and types associated with specified table
odbc describe ["TableName", connect_options]

Import data from an ODBC data source
```

odbc load [extvarlist] [if] [in], {t_table("TableName")| exec("SqlStmt")}
[load_options connect_options]

```

Export data to an ODBC data source
```

odbc insert [varlist] [if] [in], table("TableName")
{dsn("DataSourceName")| connectionstring("ConnectStr")}
[insert_options connect_options]

```

Allow SQL statements to be issued directly to ODBC data source
```

odbc exec("SqlStmt"),
{dsn("DataSourceName")| connectionstring("ConnectStr")}
[connect_options]

```

Batch job alternative to odbc exec
```

odbc sqlfile("filename"),
{dsn("DataSourceName")| connectionstring("ConnectStr")}
[loud connect_options]

```

Specify ODBC driver type
set odbcdriver \(\{\) unicode|ansi \(\}\) [, permanently]

Specify ODBC driver manager (Mac and Unix only)
set odbcmgr \(\{\) iodbc|unixodbc \(\}\) [, permanently]

DataSourceName is the name of the ODBC source (database, spreadsheet, etc.)
ConnectStr is a valid ODBC connection string
TableName is the name of a table within the ODBC data source
SqlStmt is an SQL SELECT statement
filename is pure SQL commands separated by semicolons
extvarlist contains

\section*{sqlvarname}
varname \(=\) sqlvarname
connect_options

\section*{Description}
\begin{tabular}{ll}
\(\underline{\text { user (UserID) }}\) & \begin{tabular}{l} 
user ID of user establishing connection \\
password(Password)
\end{tabular} \\
\(\underline{\text { dialog(noprompt) }}\) & \begin{tabular}{l} 
password of user establishing connection \\
do not display ODBC connection-information dialog, and \\
do not prompt user for connection information
\end{tabular} \\
\(\underline{\text { dialog(prompt) }}\) & \begin{tabular}{l} 
display ODBC connection-information dialog \\
dialog(complete)
\end{tabular} \\
display ODBC connection-information dialog only if there \\
is not enough information
\end{tabular}
*dsn("DataSourceName") is not allowed with odbc query. You may not specify both DataSourceName and connectionstring() with odbc query. Either dsn() or connectionstring() is required with odbc insert, odbc exec, and odbc sqlfile.
load_options Description
*table("TableName") name of table stored in data source
* exec ("SqlStmt") SQL SELECT statement to generate a table to be read into Stata
clear load dataset even if there is one in memory
noquote alter Stata's internal use of SQL commands; seldom used
lowercase
read variable names as lowercase
sqlshow show all SQL commands issued
allstring
datestring
multistatement
bigintasdouble

\section*{read all variables as strings}
read date-formatted variables as strings
allow multiple SQL statements delimited by ; when using exec ()
store BIGINT columns as Stata doubles on 64-bit operating systems

\footnotetext{
*Either table("TableName") or exec("SqlStmt") must be specified with odbc load.
}
insert_options
Description
*table("TableName")
overwrite
insert
quoted
sqlshow
as("varlist")
block
name of table stored in data source
clear data in ODBC table before data in memory is written to the table default mode of operation for the odbc insert command quote all values with single quotes as they are inserted in ODBC table show all SQL commands issued
ODBC variables on the data source that correspond to the variables in Stata's memory
use block inserts
*table("TableName") is required for odbc insert.

\section*{Options}
user (UserID) specifies the user ID of the user attempting to establish the connection to the data source. By default, Stata assumes that the user ID is the same as the one specified in the previous odbc command or is empty if user () has never been specified in the current session of Stata.
password (Password) specifies the password of the user attempting to establish the connection to the data source. By default, Stata assumes that the password is the same as the one previously specified or is empty if the password has not been used during the current session of Stata. Typically, the password() option will not be specified apart from the user() option.
dialog (noprompt | prompt \(\mid\) complete \(\mid\) required) specifies the mode the ODBC Driver Manager uses to display the ODBC connection-information dialog to prompt for more connection information.
noprompt is the default value. The ODBC connection-information dialog is not displayed, and you are not prompted for connection information. If there is not enough information to establish a connection to the specified data source, an error is returned.
prompt causes the ODBC connection-information dialog to be displayed.
complete causes the ODBC connection-information dialog to be displayed only if there is not enough information, even if the information is not mandatory.
required causes the ODBC connection-information dialog to be displayed only if there is not enough mandatory information provided to establish a connection to the specified data source. You are prompted only for mandatory information; controls for information that is not required to connect to the specified data source are disabled.
dsn("DataSourceName") specifies the name of a data source, as listed by the odbc list command. If a name contains spaces, it must be enclosed in double quotes. By default, Stata assumes that the data source name is the same as the one specified in the previous odbc command. This option is not allowed with odbc query. Either the dsn() option or the connectionstring() option may be specified with odbc describe and odbc load, and one of these options must be specified with odbc insert, odbc exec, and odbc sqlfile.
connectionstring("ConnectStr") specifies a connection string rather than the name of a data source. Stata does not assume that the connection string is the same as the one specified in the previous odbc command. Either DataSourceName or the connectionstring() option may be specified with odbc query; either the dsn() option or the connectionstring() option can be specified with odbc describe and odbc load, and one of these options must be specified with odbc insert, odbc exec, and odbc sqlfile.
table("TableName") specifies the name of an ODBC table stored in a specified data source's system catalog, as listed by the odbc query command. If a table name contains spaces, it must be enclosed in double quotes. Either the table() option or the exec () option-but not both—is required with the odbc load command.
exec ("SqlStmt") allows you to issue an SQL SELECT statement to generate a table to be read into Stata. An error message is returned if the SELECT statement is an invalid SQL statement. The statement must be enclosed in double quotes. Either the table() option or the exec () option-but not both-is required with the odbc load command.
clear permits the data to be loaded, even if there is a dataset already in memory, and even if that dataset has changed since the data were last saved.
noquote alters Stata's internal use of SQL commands, specifically those relating to quoted table names, to better accommodate various drivers. This option has been particularly helpful for DB2 drivers.
lowercase causes all the variable names to be read as lowercase.
sqlshow is a useful option for showing all SQL commands issued to the ODBC data source from the odbc insert or odbc load command. This can help you debug any issues related to inserting or loading.
allstring causes all variables to be read as string data types.
datestring causes all date- and time-formatted variables to be read as string data types.
multistatement specifies that multiple SQL statements delimited by ; be allowed when using the exec () option. Some drivers do not support multiple SQL statements.
bigintasdouble specifies that data stored in 64-bit integer (BIGINT) database columns be converted to Stata doubles. If any integer value is larger than \(9,007,199,254,740,965\) or less than \(-9,007,199,254,740,992\), this conversion is not possible, and odbc load will issue an error message.
overwrite allows data to be cleared from an ODBC table before the data in memory are written to the table. All data from the ODBC table are erased, not just the data from the variable columns that will be replaced.
insert appends data to an existing ODBC table and is the default mode of operation for the odbc insert command.
quoted is useful for ODBC data sources that require all inserted values to be quoted. This option specifies that all values be quoted with single quotes as they are inserted into an ODBC table.
as("varlist") allows you to specify the ODBC variables on the data source that correspond to the variables in Stata's memory. If this option is specified, the number of variables must equal the number of variables being inserted, even if some names are identical.
loud specifies that output be displayed for SQL commands.
verbose specifies that odbc query list any data source alias, nickname, typed table, typed view, and view along with tables so that you can load data from these table types.
schema specifies that odbc query return schema names with the table names from a data source. Note: The schema names returned from odbc query will also be used with the odbc describe and odbc load commands. When using odbc load with a schema name, you might also need to specify the noquote option because some drivers do not accept quotes around table or schema names.
block specifies that odbc insert use block inserts to speed up data-writing performance. Some drivers do not support block inserts.
permanently (set odbcdriver and set odbcmgr only) specifies that, in addition to making the change right now, the setting be remembered and become the default setting when you invoke Stata.

\section*{Remarks and examples}

When possible, the examples in this manual entry are developed using the Northwind sample database that is automatically installed with Microsoft Access. If you do not have Access, you can still use odbc, but you will need to consult the documentation for your other ODBC sources to determine how to set them up.

Remarks are presented under the following headings:
```

Unicode and ODBC
Setting up the data sources
Listing ODBC data source names
Listing available table names from a specified data source's system catalog
Describing a specified table
Loading data from ODBC sources

```

\section*{Unicode and ODBC}

Stata supports accessing databases with Unicode data through Unicode ODBC drivers on the following platforms:
- Microsoft Windows through ODBC driver manager (version 3.5 or higher).
- Unix through unixODBC driver manager with ODBC drivers compiled for unixODBC. Stata does not support Unicode drivers when using iODBC as your driver manager. Stata requires that the driver support UTF-8.
- Mac OS X through unixODBC driver manager with ODBC drivers compiled for unixODBC. Stata does not support Unicode drivers when using iODBC as your driver manager. Stata requires that the driver support UTF-8.
Stata supports non-Unicode databases through ASCII drivers with all driver managers.

\section*{Setting up the data sources}

Before using Stata's ODBC commands, you must register your ODBC database with the ODBC Data Source Administrator. This process varies depending on platform, but the following example shows the steps necessary for Windows.

Using Windows 7 or Vista, follow these steps to create an ODBC User Data Source for the Northwind sample database:
1. From the Start Menu, select the Control Panel.
2. In the Control Panel window, click on System and Security \(>\) Administrative Tools.
3. In the Data Sources (ODBC) dialog box,
a. click on the User DSN tab;
b. click on Add...;
c. choose Microsoft Access Driver (*.mdb, *. accdb) on the Create New Data Source dialog box; and
d. click on Finish.
4. In the ODBC Microsoft Access Setup dialog box, type Northwind in the Data Source Name field and click on Select.... Locate the Northwind.mdb database and click on OK to finish creating the data source.
- Technical note

In earlier versions of Windows, the exact location of the Data Source (ODBC) dialog varies, but it is always somewhere within the Control Panel.

\section*{Listing ODBC data source names}
odbc list is used to produce a list of data source names to which Stata can connect. For a specific data source name to be shown in the list, the data source has to be registered with the ODBC Data Source Administrator. See Setting up the data sources for information on how to do this.
> Example 1
```

. odbc list
Data Source Name Driver
dBASE Files Microsoft Access dBASE Driver (*.dbf, *.ndx
Excel Files Microsoft Excel Driver (*.xls, *.xlsx, *.xl
MS Access Database Microsoft Access Driver (*.mdb, *.accdb)
Northwind Microsoft Access Driver (*.mdb, *.accdb)

```

In the above list, Northwind is one of the sample Microsoft Access databases that Access installs by default.

\section*{Listing available table names from a specified data source's system catalog}
odbc query is used to list table names available from a specified data source.
> Example 2
```

. odbc query "Northwind"
DataSource: Northwind
Path : C:\Program Files\Microsoft Office\Office\Samples\Northwind.accdb
Customers
Employee Privileges
Employees
Inventory Transaction Types
Inventory Transactions
Invoices
Order Details
Order Details Status
Orders
Orders Status
Orders Tax Status
Privileges
Products
Purchase Order Details
Purchase Order Status
Purchase Orders
Sales Reports
Shippers
Strings
Suppliers

```

\section*{Describing a specified table}
odbc describe is used to list column (variable) names and their SQL data types that are associated with a specified table.

\section*{> Example 3}

Here we specify that we want to list all variables in the Employees table of the Northwind data source.
```

. odbc describe "Employees", dsn("Northwind")
DataSource: Northwind (query)
Table: Employees (load)

```
\begin{tabular}{ll}
\hline Variable Name & Variable Type \\
\hline ID & COUNTER \\
Company & VARCHAR \\
Last Name & VARCHAR \\
First Name & VARCHAR \\
E-mail Address & VARCHAR \\
Job Title & VARCHAR \\
Business Phone & VARCHAR \\
Home Phone & VARCHAR \\
Mobile Phone & VARCHAR \\
Fax Number & VARCHAR \\
Address & LONGCHAR \\
City & VARCHAR \\
State/Province & VARCHAR \\
ZIP/Postal Code & VARCHAR \\
Country/Region & VARCHAR \\
Web Page & LONGCHAR \\
Notes & LONGCHAR \\
Attachments & LONGCHAR \\
\hline
\end{tabular}

\section*{Loading data from ODBC sources}
odbc load is used to load an ODBC table into memory.
To load an ODBC table listed in the odbc query output, specify the table name in the table() option and the data source name in the dsn() option.

\section*{> Example 4}

We want to load the Employees table from the Northwind data source.
```

. clear
. odbc load, table("Employees") dsn("Northwind")
E-mail_Address invalid name
- converted E-mail_Address to var5
State/Province invalid name
- converted State/Province to var13
ZIP/Postal_Code invalid name
- converted ZIP/Postal_Code to var14
Country/Region invalid name
- converted Country/Region to var15

```


Sorted by:
Note: Dataset has changed since last saved.

\section*{Technical note}

When Stata loads the ODBC table, data are converted from SQL data types to Stata data types. Stata does not support all SQL data types. If the column cannot be read because of incompatible data types, Stata will issue a note and skip a column. The following table lists the supported SQL data types and their corresponding Stata data types:
\begin{tabular}{ll} 
SQL_data type & Stata data type \\
\hline SQL_BIT & byte \\
SQL_TINYINT & \\
SQL_SMALLINT & int \\
SQL_INTEGER & long \\
SQL_DECIMAL & double \\
SQL_NUMERIC & \\
SQL_FLOAT & double \\
SQL_DOUBLE & \\
SQL_REAL & string \\
SQL_BIGINT & \\
SQL_CHAR & \\
SQL_VARCHAR & \\
SQL_LONGVARCHAR & \\
SQL_WCHAR & \\
SQL_WVARCHAR & \\
SQL_WLONGVARCHAR & \\
SQL_TIME & \\
SQL_DATE & \\
SQL_TIMESTAMP & \\
SQL_TYPE_TIME & \\
SQL_TYPE_DATE & \\
SQL_TYPE_TIMESTAMP & \\
SQL_BINARY & \\
SQL_VARBINARY & \\
SQL_LONGVARBINARY & \\
\hline
\end{tabular}

You can also load an ODBC table generated by an SQL SELECT statement specified in the exec() option.

\section*{\(>\) Example 5}

Suppose that, from the Northwind data source, we want a list of all the customers who have placed orders. We might use the SQL SELECT statement
```

SELECT DISTINCT c.ID, c.Company
FROM Customers c
INNER JOIN Orders o
ON c.[Customer ID] = o.CustomerID

```

To load the table into Stata, we use odbc load with the exec () option.


Sorted by:
Note: Dataset has changed since last saved.

The extvarlist is optional. It allows you to choose which columns (variables) are to be read and to rename variables when they are read.

\section*{> Example 6}

Suppose that we want to load the ID column and the Last Name column from the Employees table of the Northwind data source. Moreover, we want to rename ID as id and Last Name as name.
\begin{tabular}{l}
. odbc load id=ID name="Last Name", table("Employees") dsn("Northwind") clear \\
. describe \\
\begin{tabular}{l} 
Contains data \\
obs: \\
vars: \\
size:
\end{tabular} \\
\hline
\end{tabular}

Sorted by:
Note: Dataset has changed since last saved.

The if and in qualifiers allow you to choose which rows are to be read. You can also use a WHERE clause in the SQL SELECT statement to select the rows to be read.

\section*{> Example 7}

Suppose that we want the information from the Order Details table, where Quantity is greater than 50 . We can specify the if and in qualifiers,
```

. odbc load if Quantity>50, table("Order Details") dsn("Northwind") clear

```
. sum Quantity
\begin{tabular}{c|ccccc} 
Variable & Obs & Mean & Std. Dev. & Min & Max \\
\hline Quantity & 10 & 177.7 & 94.21966 & 87 & 300
\end{tabular}
or we can issue the SQL SELECT statement directly:
\begin{tabular}{l}
. odbc load, exec("SELECT * FROM [Order Details] WHERE Quantity>50") \\
> dsn("Northwind") clear \\
. sum Quantity \\
\begin{tabular}{r|cccccc} 
Variable
\end{tabular} \\
\hline Quantity
\end{tabular}

\section*{Example 8}

To use odbc insert, you must have an SQL table already created in your data source. If you do not, you can use odbc exec to create a table in your data source. For example, one might create a table in an Oracle database with the SQL command below:
```

\#delimit ;
local cols '" ID NUMBER(5,0),
PAY NUMBER (8,2),
TITLE NVARCHAR2(18),
LOCATION VARCHAR(40)"; ;
\#delimit cr
odbc exec('"CREATE TABLE JOB_TYPES ('cols');"'), dsn(oracle_dsn) ///
user(username) password(password)

```

You must create a table using the correct data type for each table column for your data to transfer correctly. Note that the SQL syntax to create a table differs across data sources, as do column data types.

\section*{Also see}
[D] export - Overview of exporting data from Stata
[D] import - Overview of importing data into Stata

\section*{Title}
order - Reorder variables in dataset
\begin{tabular}{llll} 
Description & Quick start & Menu & Syntax \\
Options & Remarks and examples & References & Also see
\end{tabular}

\section*{Description}
order relocates varlist to a position depending on which option you specify. If no option is specified, order relocates varlist to the beginning of the dataset in the order in which the variables are specified.

\section*{Quick start}

Move v1 to the beginning of the dataset
order v1
As above, but instead move v 1 to the end of the dataset
order v1, last
Move v3 before v2
order v3, before(v2)
Move \(x\) and \(z\) after \(y\)
order \(\mathrm{x} z\), after ( y )
Alphabetize \(y, x\), and \(z\) and move them to the beginning of the dataset
order y x z, alphabetic
Alphabetize \(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{v} 3, \mathrm{v} 2\), and v 1 and sort numbers in sequential order
order x y z v*, sequential

\section*{Menu}

Data \(>\) Data utilities \(>\) Change order of variables

\section*{Syntax}
```

 order varlist [, options]
    ```
options Description
first move varlist to beginning of dataset; the default
last move varlist to end of dataset
before (varname) move varlist before varname
after(varname) move varlist after varname
alphabetic
alphabetize varlist and move it to beginning of dataset
sequential
alphabetize varlist keeping numbers sequential and move it to beginning of dataset

\section*{Options}
first shifts varlist to the beginning of the dataset. This is the default.
last shifts varlist to the end of the dataset.
before (varname) shifts varlist before varname.
after (varname) shifts varlist after varname.
alphabetic alphabetizes varlist and moves it to the beginning of the dataset. For example, here is a varlist in alphabetic order: a x 7 x 70 x 8 x 80 z . If combined with another option, alphabetic just alphabetizes varlist, and the movement of varlist is controlled by the other option.
sequential alphabetizes varlist, keeping variables with the same ordered letters but with differing appended numbers in sequential order. varlist is moved to the beginning of the dataset. For example, here is a varlist in sequential order: a x 7 x 8 x 70 x 80 z .

\section*{Remarks and examples}
> Example 1
When using order, you must specify a varlist, but you do not need to specify all the variables in the dataset. For example, we want to move the make and mpg variables to the front of the auto dataset.
```

. use http://www.stata-press.com/data/r14/auto4
(1978 Automobile Data)
. describe
Contains data from http://www.stata-press.com/data/r14/auto4.dta
obs: 74 1978 Automobile Data
vars: 6 6 Apr 2014 00:20
size: 2,072

```
\begin{tabular}{lllll}
\hline & \begin{tabular}{c} 
storage \\
type
\end{tabular} & \begin{tabular}{l} 
display \\
format
\end{tabular} & \begin{tabular}{c} 
value \\
label
\end{tabular} & variable label \\
\hline price & int & \(\% 8.0 \mathrm{gc}\) & & Price \\
weight & int & \(\% 8.0 \mathrm{gc}\) & & Weight (lbs.) \\
mpg & int & \(\% 8.0 \mathrm{~g}\) & & Mileage (mpg) \\
make & str18 & \(\%-18 \mathrm{~s}\) & & Make and Model \\
length & int & \(\% 8.0 \mathrm{~g}\) & & Length (in.) \\
rep78 & int & \(\% 8.0 \mathrm{~g}\) & & Repair Record 1978 \\
\hline
\end{tabular}

Sorted by:
. order make mpg
. describe
Contains data from http://www.stata-press.com/data/r14/auto4.dta
obs: 741978 Automobile Data
vars: 6 6 Apr 2014 00:20
size: 2,072
\begin{tabular}{lllll}
\hline variable name & \begin{tabular}{c} 
storage \\
type
\end{tabular} & \begin{tabular}{l} 
display \\
format
\end{tabular} & \begin{tabular}{l} 
value \\
label
\end{tabular} & variable label \\
\hline make & str18 & \(\%-18 \mathrm{~s}\) & & Make and Model \\
mpg & int & \(\% 8.0 \mathrm{~g}\) & & Mileage (mpg) \\
price & int & \(\% 8.0 \mathrm{gc}\) & & Price \\
weight & int & \(\% 8.0 \mathrm{gc}\) & & Weight (lbs.) \\
length & int & \(\% 8.0 \mathrm{~g}\) & & Length (in.) \\
rep78 & int & \(\% 8.0 \mathrm{~g}\) & & Repair Record 1978 \\
\hline
\end{tabular}

Sorted by:
We now want length to be the last variable in our dataset, so we could type order make mpg price weight rep78 length, but it would be easier to use the last option:
```

. order length, last
. describe
Contains data from http://www.stata-press.com/data/r14/auto4.dta
obs: 74 1978 Automobile Data
vars: 6 6 Apr 2014 00:20
size: 2,072

```
\begin{tabular}{llll}
\hline & \begin{tabular}{c} 
storage \\
type
\end{tabular} & \begin{tabular}{l} 
display \\
format
\end{tabular} & \begin{tabular}{c} 
value \\
label
\end{tabular}
\end{tabular} variable label \begin{tabular}{lll} 
variable name
\end{tabular}

Sorted by:
We now change our mind and decide that we prefer that the variables be alphabetized.
```

. order _all, alphabetic
. describe
Contains data from http://www.stata-press.com/data/r14/auto4.dta
obs: 74 1978 Automobile Data
vars: 6 6 Apr 2014 00:20
size: 2,072

```
\begin{tabular}{lllll} 
variable name & \begin{tabular}{c} 
storage \\
type
\end{tabular} & \begin{tabular}{l} 
display \\
format
\end{tabular} & \begin{tabular}{c} 
value \\
label
\end{tabular} & variable label \\
\hline length & int & \(\% 8.0 \mathrm{~g}\) & & Length (in.) \\
make & str18 & \(\%-18 \mathrm{~s}\) & & Make and Model \\
mpg & int & \(\% 8.0 \mathrm{~g}\) & & Mileage (mpg) \\
price & int & \(\% 8.0 \mathrm{gc}\) & & Price \\
rep78 & int & \(\% 8.0 \mathrm{~g}\) & & Repair Record 1978 \\
weight & int & \(\% 8.0 \mathrm{gc}\) & & Weight (lbs.) \\
\hline
\end{tabular}

Sorted by:

\section*{- Technical note}

If your data contain variables named year 1 , year \(2, \ldots\), year 19 , year 20 , specify the sequential option to obtain this ordering. If you specify the alphabetic option, year10 will appear between year1 and year11.

\section*{References}

Gleason, J. R. 1997. dm51: Defining and recording variable orderings. Stata Technical Bulletin 40: 10-12. Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 49-52. College Station, TX: Stata Press.

Weesie, J. 1999. dm74: Changing the order of variables in a dataset. Stata Technical Bulletin 52: 8-9. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 61-62. College Station, TX: Stata Press.

\section*{Also see}
[D] describe - Describe data in memory or in file
[D] ds - List variables matching name patterns or other characteristics
[D] edit - Browse or edit data with Data Editor
[D] rename - Rename variable

\section*{Title}
outfile - Export dataset in text format
\begin{tabular}{llll} 
Description & Quick start & Menu & Syntax \\
Options & Remarks and examples & Also see &
\end{tabular}

\section*{Description}
outfile writes data to a disk file in plain-text format, which can be read by other programs. The new file is not in Stata format; see [D] save for instructions on saving data for later use in Stata.

The data saved by outfile can be read back by infile; see [D] import. If filename is specified without an extension, . raw is assumed unless the dictionary option is specified, in which case . dct is assumed. If your filename contains embedded spaces, remember to enclose it in double quotes.

\section*{Quick start}

Export current dataset to space-separated mydata.raw outfile using mydata

As above, but export only v1, v2, and v3
outfile v1 v2 v3 using mydata
As above, but export to comma-separated mydata.csv
outfile v1 v2 v3 using mydata.csv, comma
Export current dataset in Stata's dictionary format to myfile.dct
outfile v1 v2 v3 using mydata, dictionary
Do not allow observations to break across lines
outfile using mydata, wide

\section*{Menu}

File \(>\) Export \(>\) Text data (fixed- or free-format)

\section*{Syntax}
outfile [varlist] using filename [if] [in] [, options]
options
Main
dictionary
nolabel
noquote
comma
wide
Advanced
rjs
fjs
runtogether
missing
replace

Description
write the file in Stata's dictionary format
output numeric values (not labels) of labeled variables; the default is to write labels in double quotes
do not enclose strings in double quotes
write file in comma-separated (instead of space-separated) format force 1 observation per line (no matter how wide)
right-justify string variables; the default is to left-justify
left-justify if format width \(<0\); right-justify if format width \(>0\)
all on one line, no quotes, no space between, and ignore formats retain missing values; use only with comma
overwrite the existing file
replace does not appear in the dialog box.

\section*{Options}

\section*{Main}
dictionary writes the file in Stata's data dictionary format. See [D] infile (fixed format) for a description of dictionaries. comma, missing, and wide are not allowed with dictionary.
nolabel causes Stata to write the numeric values of labeled variables. The default is to write the labels enclosed in double quotes.
noquote prevents Stata from placing double quotes around the contents of strings, meaning string variables and value labels.
comma causes Stata to write the file in comma-separated-value format. In this format, values are separated by commas rather than by blanks. Missing values are written as two consecutive commas unless missing is specified.
wide causes Stata to write the data with 1 observation per line. The default is to split observations into lines of 80 characters or fewer, but strings longer than 80 characters are never split across lines.
\(\qquad\) Advanced
rjs and fjs affect how strings are justified; you probably do not want to specify either of these options. By default, outfile outputs strings left-justified in their field.
If \(r j s\) is specified, strings are output right-justified. rjs stands for "right-justified strings".
If fjs is specified, strings are output left- or right-justified according to the variable's format: left-justified if the format width is negative and right-justified if the format width is positive. fj s stands for "format-justified strings".
runtogether is a programmer's option that is valid only when all variables of the specified varlist are of type string. runtogether specifies that the variables be output in the order specified, without quotes, with no spaces between, and ignoring the display format attached to each variable. Each observation ends with a new line character.
missing, valid only with comma, specifies that missing values be retained. When comma is specified without missing, missing values are changed to null strings (" ").

The following option is available with outfile but is not shown in the dialog box: replace permits outfile to overwrite an existing dataset.

\section*{Remarks and examples}
outfile enables data to be sent to a disk file for processing by a non-Stata program. Each observation is written as one or more records that will not exceed 80 characters unless you specify the wide option. Each column other than the first is prefixed by two blanks.
outfile is careful to put the data in columns in case you want to read the data by using formatted input. String variables and value labels are output in left-justified fields by default. You can change this behavior by using the rjs or fjs options.

Numeric variables are output right-justified in the field width specified by their display format. A numeric variable with a display format of \(\% 9.0 \mathrm{~g}\) will be right-justified in a nine-character field. Commas are not written in numeric variables, even if a comma format is used.

If you specify the dictionary option, the data are written in the same way, but preceding the data, outfile writes a data dictionary describing the contents of the file.
> Example 1: Basic usage
We have entered into Stata some data on seven employees in our firm. The data contain employee name, employee identification number, salary, and sex:
. list
\begin{tabular}{l|llll|}
\cline { 2 - 4 } & name & empno & salary & sex \\
\cline { 2 - 5 } 1. & Carl Marks & 57213 & 24,000 & male \\
2. & Irene Adler & 47229 & 27,000 & female \\
3. & Adam Smith & 57323 & 24,000 & male \\
4. & David Wallis & 57401 & 24,500 & male \\
5. & Mary Rogers & 57802 & 27,000 & female \\
\cline { 2 - 4 } 6. & Carolyn Frank & 57805 & 24,000 & female \\
7. & Robert Lawson & 57824 & 22,500 & male \\
\hline
\end{tabular}

The last variable in our data, sex, is really a numeric variable, but it has an associated value label.
If we now wish to use a program other than Stata with these data, we must somehow get the data over to that other program. The standard Stata-format dataset created by save will not do the job-it is written in a special format that only Stata understands. Most programs, however, understand plain-text datasets, such as those produced by a text editor. We can tell Stata to produce such a dataset by using outfile. Typing outfile using employee creates a dataset called employee.raw that contains all the data. We can use the Stata type command to review the resulting file:
```

. outfile using employee
. type employee.raw
"Carl Marks" 57213 24000 "male"
"Irene Adler" 47229 27000 "female"
"Adam Smith" 57323 24000 "male"
"David Wallis" 57401 24500 "male"
"Mary Rogers" 57802 27000 "female"
"Carolyn Frank" 57805 24000 "female"
"Robert Lawson" 57824 22500 "male"

```

We see that the file contains the four variables and that Stata has surrounded the string variables with double quotes.

\section*{- Technical note}

The nolabel option prevents Stata from substituting value-label strings for the underlying numeric values; see [U] 12.6.3 Value labels. The last variable in our data is really a numeric variable:
```

. outfile using employ2, nolabel
. type employ2.raw
"Carl Marks" 57213 24000 0
"Irene Adler" 47229 27000 1
"Adam Smith" 57323 24000 0
"David Wallis" 57401 24500 0
"Mary Rogers" 57802 27000 1
"Carolyn Frank" 57805 24000 1
"Robert Lawson" 57824 22500 0

```

\section*{- Technical note}

If you do not want Stata to place double quotes around the contents of string variables, you can specify the noquote option:
```

. outfile using employ3, noquote
. type employ3.raw
Carl Marks 57213 24000 male
Irene Adler 47229 27000 female
Adam Smith 57323 ma000 male
David Wallis 57401 24500 male
Mary Rogers 57802 27000 female
Carolyn Frank 57805 24000 female
Robert Lawson 57824 22500 male

```

\section*{> Example 2: Overwriting an existing file}

Stata never writes over an existing file unless explicitly told to do so. For instance, if the file employee.raw already exists and we attempt to overwrite it by typing outfile using employee, here is what would happen:
```

. outfile using employee
file employee.raw already exists
r(602);

```

We can tell Stata that it is okay to overwrite a file by specifying the replace option:
```

. outfile using employee, replace

```

\section*{- Technical note}

Some programs prefer data to be separated by commas rather than by blanks. Stata produces such a dataset if you specify the comma option:
```

. outfile using employee, comma replace

```
. type employee.raw
"Carl Marks",57213,24000,"male"
"Irene Adler",47229,27000,"female"
"Adam Smith",57323,24000,"male"
"David Wallis",57401,24500,"male"
"Mary Rogers",57802,27000,"female"
"Carolyn Frank",57805,24000,"female"
"Robert Lawson",57824,22500,"male"

\section*{Example 3: Creating data dictionaries}

Finally, outfile can create data dictionaries that infile can read. Dictionaries are perhaps the best way to organize your raw data. A dictionary describes your data so that you do not have to remember the order of the variables, the number of variables, the variable names, or anything else. The file in which you store your data becomes self-documenting so that you can understand the data in the future. See [D] infile (fixed format) for a full description of data dictionaries.

When you specify the dictionary option, Stata writes a .dct file:
```

. outfile using employee, dict replace
. type employee.dct
dictionary {
str15 name '"Employee name"'
float empno '"Employee number"'
float salary '"Annual salary"'
float sex :sexlbl '"Sex"'
}
"Carl Marks" 57213 24000 "male"
"Irene Adler" 47229 27000 "female"
"Adam Smith" 57323 24000 "male"
"David Wallis" 57401 24500 "male"
"Mary Rogers" 57802 27000 "female"
"Carolyn Frank" 57805 24000 "female"
"Robert Lawson" 57824 22500 "male"

```

\section*{Example 4: Working with dates}

We have historical data on the S\&P 500 for the month of January 2001.
. use http://www.stata-press.com/data/r14/outfilexmpl
(S\&P 500)
. describe
Contains data from http://www.stata-press.com/data/r14/outfilexmpl.dta
\begin{tabular}{crl} 
obs: & 21 & S\&P 500 \\
vars: & 6 & 6 Apr 2014 16:02
\end{tabular}
size: 420 (_dta has notes)
\begin{tabular}{llll}
\hline variable name & \begin{tabular}{c} 
storage \\
type
\end{tabular} & \begin{tabular}{l} 
display \\
format
\end{tabular} & \begin{tabular}{l} 
value \\
label
\end{tabular}
\end{tabular} variable label \begin{tabular}{lll} 
date & int & \(\%\) \%td \\
& & Date \\
open & float & \(\% 9.0 \mathrm{~g}\) \\
high & float & \(\% 9.0 \mathrm{~g}\) \\
low & float & \(\% 9.0 \mathrm{~g}\) \\
close & float & \(\% 9.0 \mathrm{~g}\) \\
volume & int & \(\% 12.0 \mathrm{gc}\)
\end{tabular}

Sorted by: date
The date variable has a display format of \(\%\) td so that it is displayed as ddmmmyyyy.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & date & open & high & low & close & volume \\
\hline 1. & 02jan2001 & 1320.28 & 1320.28 & 1276.05 & 1283.27 & 11,294 \\
\hline 2. & 03jan2001 & 1283.27 & 1347.76 & 1274.62 & 1347.56 & 18,807 \\
\hline 3. & 04jan2001 & 1347.56 & 1350.24 & 1329.14 & 1333.34 & 21,310 \\
\hline 4. & 05jan2001 & 1333.34 & 1334.77 & 1294.95 & 1298.35 & 14,308 \\
\hline 5. & 08jan2001 & 1298.35 & 1298.35 & 1276.29 & 1295.86 & 11,155 \\
\hline 6. & 09jan2001 & 1295.86 & 1311.72 & 1295.14 & 1300.8 & 11,913 \\
\hline 7. & 10jan2001 & 1300.8 & 1313.76 & 1287.28 & 1313.27 & 12,965 \\
\hline 8. & 11jan2001 & 1313.27 & 1332.19 & 1309.72 & 1326.82 & 14,112 \\
\hline 9. & 12jan2001 & 1326.82 & 1333.21 & 1311.59 & 1318.55 & 12,760 \\
\hline 10. & 16jan2001 & 1318.32 & 1327.81 & 1313.33 & 1326.65 & 12,057 \\
\hline 11. & 17jan2001 & 1326.65 & 1346.92 & 1325.41 & 1329.47 & 13,491 \\
\hline 12. & 18jan2001 & 1329.89 & 1352.71 & 1327.41 & 1347.97 & 14,450 \\
\hline 13. & 19jan2001 & 1347.97 & 1354.55 & 1336.74 & 1342.54 & 14,078 \\
\hline 14. & 22jan2001 & 1342.54 & 1353.62 & 1333.84 & 1342.9 & 11,640 \\
\hline 15. & 23jan2001 & 1342.9 & 1362.9 & 1339.63 & 1360.4 & 12,326 \\
\hline 16. & 24jan2001 & 1360.4 & 1369.75 & 1357.28 & 1364.3 & 13,090 \\
\hline 17. & 25jan2001 & 1364.3 & 1367.35 & 1354.63 & 1357.51 & 12,580 \\
\hline 18. & 26jan2001 & 1357.51 & 1357.51 & 1342.75 & 1354.95 & 10,980 \\
\hline 19. & 29jan2001 & 1354.92 & 1365.54 & 1350.36 & 1364.17 & 10,531 \\
\hline 20. & 30jan2001 & 1364.17 & 1375.68 & 1356.2 & 1373.73 & 11,498 \\
\hline 21. & \(31 \mathrm{jan2001}\) & 1373.73 & 1383.37 & 1364.66 & 1366.01 & 12,953 \\
\hline
\end{tabular}

We outfile our data and use the type command to view the result.
\begin{tabular}{lrrrrr}
. outfile using sp & & & \\
. type sp.raw & & & & \\
"02jan2001" & 1320.28 & 1320.28 & 1276.05 & 1283.27 & 11294 \\
"03jan2001" & 1283.27 & 1347.76 & 1274.62 & 1347.56 & 18807 \\
"04jan2001" & 1347.56 & 1350.24 & 1329.14 & 1333.34 & 21310 \\
"05jan2001" & 1333.34 & 1334.77 & 1294.95 & 1298.35 & 14308 \\
"08jan2001" & 1298.35 & 1298.35 & 1276.29 & 1295.86 & 11155 \\
"09jan2001" & 1295.86 & 1311.72 & 1295.14 & 1300.8 & 11913 \\
"10jan2001" & 1300.8 & 1313.76 & 1287.28 & 1313.27 & 12965 \\
"11jan2001" & 1313.27 & 1332.19 & 1309.72 & 1326.82 & 14112 \\
"12jan2001" & 1326.82 & 1333.21 & 1311.59 & 1318.55 & 12760 \\
"16jan2001" & 1318.32 & 1327.81 & 1313.33 & 1326.65 & 12057 \\
"17jan2001" & 1326.65 & 1346.92 & 1325.41 & 1329.47 & 13491 \\
"18jan2001" & 1329.89 & 1352.71 & 1327.41 & 1347.97 & 14450 \\
"19jan2001" & 1347.97 & 1354.55 & 1336.74 & 1342.54 & 14078 \\
"22jan2001" & 1342.54 & 1353.62 & 1333.84 & 1342.9 & 11640 \\
"23jan2001" & 1342.9 & 1362.9 & 1339.63 & 1360.4 & 12326 \\
"24jan2001" & 1360.4 & 1369.75 & 1357.28 & 1364.3 & 13090 \\
"25jan2001" & 1364.3 & 1367.35 & 1354.63 & 1357.51 & 12580 \\
"26jan2001" & 1357.51 & 1357.51 & 1342.75 & 1354.95 & 10980 \\
"29jan2001" & 1354.92 & 1365.54 & 1350.36 & 1364.17 & 10531 \\
"30jan2001" & 1364.17 & 1375.68 & 1356.2 & 1373.73 & 11498 \\
"31jan2001" & 1373.73 & 1383.37 & 1364.66 & 1366.01 & 12953
\end{tabular}

The date variable, originally stored as an int, was outfiled as a string variable. Whenever Stata outfiles a variable with a date format, Stata outfiles the variable as a string.

\section*{Also see \\ [D] export - Overview of exporting data from Stata \\ [D] import - Overview of importing data into Stata \\ [U] 21 Entering and importing data}

\section*{Title}
pctile - Create variable containing percentiles
\begin{tabular}{lll} 
Description & Quick start & Menu \\
Syntax & Options & Remarks and examples \\
Stored results & Methods and formulas & Acknowledgment \\
Also see & &
\end{tabular}

\section*{Description}
pctile creates a new variable containing the percentiles of exp, where the expression exp is typically just another variable.
xtile creates a new variable that categorizes exp by its quantiles. If the cutpoints (varname) option is specified, it categorizes exp using the values of varname as category cutpoints. For example, varname might contain percentiles of another variable, generated by pctile.
_pctile is a programmer's command that computes up to 1,000 percentiles and places the results in \(r()\); see [U] \(\mathbf{1 8 . 8}\) Accessing results calculated by other programs. summarize, detail computes some percentiles ( \(1,5,10,25,50,75,90,95\), and 99 th); see [R] summarize.

\section*{Quick start}

Create qrt1 containing the quartiles of \(v\)
```

pctile qrt1 = v, nq(4)

```

As above, and create percent containing the percentages
```

pctile qrt1 = v, nq(4) genp(percent)

```

As above, but apply sampling weights wvar1
```

pctile qrt1 = v [pweight=wvar1], nq(4) genp(percent)

```

Create dec1 containing the deciles of \(v\)
```

pctile dec1 = v, nq(10)

```

As above, but create dec2 indicating to which decile each observation belongs
```

xtile dec2 = v, nq(10)

```

As above, but apply frequency weights wvar2
```

xtile dec2 = v [fweight=wvar2], nq(10)

```

Compute the 10th and 90th percentiles and store them in \(r(r 1)\) and \(r(r 2)\)
```

_pctile v, percentiles(10 90)

```

\section*{Menu}
pctile
Statistics \(>\) Summaries, tables, and tests \(>\) Summary and descriptive statistics \(>\) Create variable of percentiles

\section*{xtile}

Statistics \(>\) Summaries, tables, and tests \(>\) Summary and descriptive statistics \(>\) Create variable of quantiles

\section*{Syntax}

Create variable containing percentiles
\[
\text { pctile }[\text { type }] \text { newvar }=\exp [\text { if }][\text { in }][\text { weight }][\text {, pctile_options }]
\]

Create variable containing quantile categories
\[
\text { xtile newvar }=\exp [\text { if }][\text { in }][\text { weight }][\text {, xtile_options }]
\]

Compute percentiles and store them in \(r()\)
\[
\text { _pctile varname }[\text { if }][\text { in }][\text { weight }][, \text { pctile_options }]
\]
pctile_options Description

Main
nquantiles(\#)
genp(newvar \({ }^{\text {) }}\)
altdef
xtile_options
Main
cutpoints(varname)
altdef
number of quantiles; default is nquantiles (2)
generate newvar \({ }_{p}\) variable containing percentages use alternative formula for calculating percentiles
nquantiles(\#) number of quantiles; default is nquantiles(2)
Description
use values of varname as cutpoints
use alternative formula for calculating percentiles
_pctile_options
nquantiles(\#)
percentiles(numlist) altdef
aweights, fweights, and pweights are allowed (see [U] 11.1.6 weight), except when the altdef option is specified, in which case no weights are allowed.

\section*{Options}
\(\qquad\) Main
nquantiles(\#) specifies the number of quantiles. It computes percentiles corresponding to percentages \(100 k / m\) for \(k=1,2, \ldots, m-1\), where \(m=\) \#. For example, nquantiles (10) requests that the 10 th, 20 th,\(\ldots\), 90 th percentiles be computed. The default is nquantiles(2); that is, the median is computed.
genp( newvar \(_{p}\) ) (pctile only) specifies a new variable to be generated containing the percentages corresponding to the percentiles.
altdef uses an alternative formula for calculating percentiles. The default method is to invert the empirical distribution function by using averages, \(\left(x_{i}+x_{i+1}\right) / 2\), where the function is flat (the default is the same method used by summarize; see [R] summarize). The alternative formula uses an interpolation method. See Methods and formulas at the end of this entry. Weights cannot be used when altdef is specified.
cutpoints (varname) (xtile only) requests that xtile use the values of varname, rather than quantiles, as cutpoints for the categories. All values of varname are used, regardless of any if or in restriction; see the technical note in the xtile section below.
percentiles (numlist) (_pctile only) requests percentiles corresponding to the specified percentages. Percentiles are placed in \(r(r 1), r(r 2), \ldots\), etc. For example, percentiles (10(20)90) requests that the 10 th, 30 th, 50 th, 70 th, and 90 th percentiles be computed and placed into \(r(r 1)\), \(r(r 2), r(r 3), r(r 4)\), and \(r(r 5)\). Up to 1,000 (inclusive) percentiles can be requested. See \([\mathrm{P}]\) numlist for the syntax of a numlist.

\section*{Remarks and examples}

Remarks are presented under the following headings:

\author{
pctile \\ xtile \\ _pctile
}

\section*{pctile}
pctile creates a new variable containing percentiles. You specify the number of quantiles that you want, and pctile computes the corresponding percentiles. Here we use Stata's auto dataset and compute the deciles of mpg:
```

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)
. pctile pct = mpg, nq(10)
. list pct in 1/10

pct
14
17
18
19
20
22
24
25
29
\cdot

```

If we use the genp() option to generate another variable with the corresponding percentages, it is easier to distinguish between the percentiles.
```

. drop pct
. pctile pct = mpg, nq(10) genp(percent)
. list percent pct in 1/10

```
\begin{tabular}{|r|rr|}
\cline { 2 - 3 } & percent & pct \\
\cline { 2 - 3 } 1. & 10 & 14 \\
2. & 20 & 17 \\
3. & 30 & 18 \\
4. & 40 & 19 \\
5. & 50 & 20 \\
\hline 6. & 60 & 22 \\
7. & 70 & 24 \\
8. & 80 & 25 \\
9. & 90 & 29 \\
10. &. &. \\
\hline
\end{tabular}
summarize, detail calculates standard percentiles.
\begin{tabular}{rrrlr}
\multicolumn{4}{c}{ summarize mpg, detail } \\
\multicolumn{5}{c}{ Mileage (mpg) } \\
\hline & Percentiles & Smallest & \\
\(1 \%\) & 12 & 12 & & 74 \\
\(5 \%\) & 14 & 12 & & 74 \\
\(10 \%\) & 14 & 14 & Obs & \\
\(25 \%\) & 18 & 14 & Sum of Wgt. & \\
\(50 \%\) & 20 & & Mean & 21.2973 \\
\(75 \%\) & & Largest & Std. Dev. & 5.785503 \\
\(90 \%\) & 25 & 34 & & 33.47205 \\
\(95 \%\) & 29 & 35 & Variance & .9487176 \\
\(99 \%\) & 34 & 35 & Skewness & 3.975005
\end{tabular}
summarize, detail can calculate only these particular percentiles. The pctile and _pctile commands allow you to compute any percentile.

Weights can be used with pctile, xtile, and _pctile:
```

. drop pct percent
. pctile pct = mpg [w=weight], nq(10) genp(percent)
(analytic weights assumed)
. list percent pct in 1/10

```
\begin{tabular}{|rr|}
\hline percent & pct \\
\hline 10 & 14 \\
20 & 16 \\
30 & 17 \\
40 & 18 \\
50 & 19 \\
\hline 60 & 20 \\
70 & 22 \\
80 & 24 \\
90 & 28 \\
\(\cdot\) & \(\cdot\) \\
\hline
\end{tabular}

The result is the same, no matter which weight type you specify-aweight, fweight, or pweight.

\section*{xtile}
xtile creates a categorical variable that contains categories corresponding to quantiles. We illustrate this with a simple example. Suppose that we have a variable, bp, containing blood pressure measurements:
. use http://www.stata-press.com/data/r14/bp1, clear
. list
\begin{tabular}{|c|c|}
\hline & bp \\
\hline 1. & 98 \\
\hline 2. & 100 \\
\hline 3. & 104 \\
\hline 4. & 110 \\
\hline 5. & 120 \\
\hline 6. & 120 \\
\hline 7. & 120 \\
\hline 8. & 120 \\
\hline 9. & 125 \\
\hline 10. & 130 \\
\hline 11. & 132 \\
\hline
\end{tabular}
xtile can be used to create a variable, quart, that indicates the quartiles of bp .
. xtile quart \(=\mathrm{bp}, \mathrm{nq}(4)\)
. list bp quart, sepby (quart)
\begin{tabular}{l|rr|}
\cline { 2 - 3 } & bp & quart \\
\hline 1. & 98 & 1 \\
2. & 100 & 1 \\
3. & 104 & 1 \\
\cline { 2 - 3 } 4. & 110 & 2 \\
5. & 120 & 2 \\
6. & 120 & 2 \\
7. & 120 & 2 \\
8. & 120 & 2 \\
\cline { 2 - 3 } 9. & 125 & 3 \\
10. & 130 & 4 \\
11. & 132 & 4 \\
\hline
\end{tabular}

The categories created are
\[
\left(-\infty, x_{[25]}\right], \quad\left(x_{[25]}, x_{[50]}\right], \quad\left(x_{[50]}, x_{[75]}\right], \quad\left(x_{[75]},+\infty\right)
\]
where \(x_{[25]}, x_{[50]}\), and \(x_{[75]}\) are, respectively, the 25 th, 50 th (median), and 75 th percentiles of bp . We could use the pctile command to generate these percentiles:
. pctile pct \(=\mathrm{bp}, \mathrm{nq}(4)\) genp (percent)
. list bp quart percent pct, sepby (quart)
\begin{tabular}{l|rrrr|}
\cline { 2 - 5 } & bp & quart & percent & pct \\
\cline { 2 - 5 } 1. & 98 & 1 & 25 & 104 \\
2. & 100 & 1 & 50 & 120 \\
3. & 104 & 1 & 75 & 125 \\
\cline { 2 - 5 } 4. & 110 & 2 &. &. \\
5. & 120 & 2 &. &. \\
6. & 120 & 2 &. &. \\
7. & 120 & 2 &. &. \\
8. & 120 & 2 &. & \(\cdot\) \\
\cline { 2 - 4 } 9. & 125 & 3 &. &. \\
10. & 130 & 4 &. &. \\
\cline { 2 - 4 } 11. & 132 & 4 &. &. \\
\hline
\end{tabular}
xtile can categorize a variable on the basis of any set of cutpoints, not just percentiles. Suppose that we wish to create the following categories for blood pressure:
\[
(-\infty, 100], \quad(100,110], \quad(110,120], \quad(120,130], \quad(130,+\infty)
\]

To do this, we simply create a variable containing the cutpoints,
```

. input class

```
    class
1. 100
2. 110
3. 120
4. 130
5. end
and then use xtile with the cutpoints() option:
```

. xtile category = bp, cutpoints(class)
. list bp class category, sepby(category)

```
\begin{tabular}{|c|c|c|c|}
\hline & bp & class & category \\
\hline 1. & 98 & 100 & 1 \\
\hline 2. & 100 & 110 & 1 \\
\hline 3. & 104 & 120 & 2 \\
\hline 4. & 110 & 130 & 2 \\
\hline 5. & 120 & . & 3 \\
\hline 6. & 120 & - & 3 \\
\hline 7. & 120 & . & 3 \\
\hline 8. & 120 & . & 3 \\
\hline 9. & 125 & . & 4 \\
\hline 10. & 130 & - & 4 \\
\hline 11. & 132 & . & 5 \\
\hline
\end{tabular}

The cutpoints can, of course, come from anywhere. They can be the quantiles of another variable or the quantiles of a subgroup of the variable. Suppose that we had a variable, case, that indicated whether an observation represented a case (case \(=1\) ) or control (case \(=0\) ).
```

. use http://www.stata-press.com/data/r14/bp2, clear

```
. list in \(1 / 11\), sep(4)
\begin{tabular}{c|rr|}
\cline { 2 - 3 } & bp & case \\
\cline { 2 - 3 } 1. & 98 & 1 \\
2. & 100 & 1 \\
3. & 104 & 1 \\
4. & 110 & 1 \\
\cline { 2 - 3 } 5. & 120 & 1 \\
6. & 120 & 1 \\
7. & 120 & 1 \\
8. & 120 & 1 \\
\cline { 2 - 3 } 9. & 125 & 1 \\
10. & 130 & 1 \\
11. & 132 & 1 \\
\hline
\end{tabular}

We can categorize the cases on the basis of the quantiles of the controls. To do this, we first generate a variable, pct, containing the percentiles of the controls' blood pressure data:
```

. pctile pct = bp if case==0, nq(4)
. list pct in 1/4

```
\begin{tabular}{l|r|}
\cline { 2 - 3 } & pct \\
\hline 1. & 104 \\
2. & 117 \\
3. & 124 \\
4. & \(\cdot\) \\
\hline
\end{tabular}

Then we use these percentiles as cutpoints to classify bp: for all subjects.
```

. xtile category = bp, cutpoints(pct)
. gsort -case bp
. list bp case category in 1/11, sepby(category)

```
\begin{tabular}{|c|c|c|c|}
\hline & bp & case & category \\
\hline 1. & 98 & 1 & 1 \\
\hline 2. & 100 & 1 & 1 \\
\hline 3. & 104 & 1 & 1 \\
\hline 4. & 110 & 1 & 2 \\
\hline 5. & 120 & 1 & 3 \\
\hline 6. & 120 & 1 & 3 \\
\hline 7. & 120 & 1 & 3 \\
\hline 8. & 120 & 1 & 3 \\
\hline 9. & 125 & 1 & 4 \\
\hline 10. & 130 & 1 & 4 \\
\hline 11. & 132 & 1 & 4 \\
\hline
\end{tabular}
- Technical note

In the last example, if we wanted to categorize only cases, we could have issued the command
```

. xtile category = bp if case==1, cutpoints(pct)

```

Most Stata commands follow the logic that using an if \(\exp\) is equivalent to dropping observations that do not satisfy the expression and running the command. This is not true of xtile when the cutpoints() option is used. (When the cutpoints() option is not used, the standard logic is true.) xtile uses all nonmissing values of the cutpoints() variable whether or not these values belong to observations that satisfy the if expression.

If you do not want to use all the values in the cutpoints () variable as cutpoints, simply set the ones that you do not need to missing. xtile does not care about the order of the values or whether they are separated by missing values.
- Technical note

Quantiles are not always unique. If we categorize our blood pressure data by quintiles rather than quartiles, we get
```

. use http://www.stata-press.com/data/r14/bp1, clear
. xtile quint = bp, nq(5)
. pctile pct = bp, nq(5) genp(percent)
. list bp quint pct percent, sepby(quint)

```
\begin{tabular}{|c|c|c|c|c|}
\hline & bp & quint & pct & percent \\
\hline 1. & 98 & 1 & 104 & 20 \\
\hline 2. & 100 & 1 & 120 & 40 \\
\hline 3. & 104 & 1 & 120 & 60 \\
\hline 4. & 110 & 2 & 125 & 80 \\
\hline 5. & 120 & 2 & . & . \\
\hline 6. & 120 & 2 & . & \\
\hline 7. & 120 & 2 & . & . \\
\hline 8. & 120 & 2 & - & . \\
\hline 9. & 125 & 4 & - & . \\
\hline 10. & 130 & 5 & . & . \\
\hline 11. & 132 & 5 & . & \\
\hline
\end{tabular}

The 40th and 60th percentile are the same; they are both 120 . When two (or more) percentiles are the same, they are given the lower category number.

\section*{_pctile}
_pctile is a programmer's command. It computes percentiles and stores them in \(r()\); see [U] 18.8 Accessing results calculated by other programs.

You can use _pctile to compute quantiles, just as you can with pctile:
```

. use http://www.stata-press.com/data/r14/auto, clear
(1978 Automobile Data)
. _pctile weight, nq(10)
. return list
scalars:

$$
\begin{aligned}
& r(r 1)=2020 \\
& r(r 2)=2160 \\
& r(r 3)=2520 \\
& r(r 4)=2730 \\
& r(r 5)=3190 \\
& r(r 6)=3310 \\
& r(r 7)=3420 \\
& r(r 8)=3700 \\
& r(r 9)=4060
\end{aligned}
$$

```

The percentiles() option (abbreviation p() ) can be used to compute any percentile you wish:
```

. return list
scalars:
$r(r 1)=2020$
$r(r 2)=2640$
$r(r 3)=2830$
$r(r 4)=3190$
$r(r 5)=3250$
$r(r 6)=3400$
$r(r 7)=4060$

```
. _pctile weight, \(\mathrm{p}(10,33.333,45,50,55,66.667,90)\)
_pctile, pctile, and xtile each have an option that uses an alternative definition of percentiles, based on an interpolation scheme; see Methods and formulas below.
```

. _pctile weight, p(10, 33.333, 45, 50, 55, 66.667, 90) altdef
. return list
scalars:

```
```

r(r1) = 2005

```
r(r1) = 2005
r(r2) = 2639.985
r(r2) = 2639.985
r(r3) = 2830
r(r3) = 2830
r(r4) = 3190
r(r4) = 3190
r(r5) = 3252.5
r(r5) = 3252.5
r(r6) = 3400.005
r(r6) = 3400.005
r(r7) = 4060
```

r(r7) = 4060

```

The default formula inverts the empirical distribution function. The default formula is more commonly used, although some consider the "alternative" formula to be the standard definition. One drawback of the alternative formula is that it does not have an obvious generalization to noninteger weights.

\section*{Technical note}
summarize, detail computes the 1st, 5th, 10th, 25th, 50th (median), 75th, 90th, 95th, and 99th percentiles. There is no real advantage in using _pctile to compute these percentiles. Both summarize, detail and _pctile use the same internal code. _pctile is slightly faster because summarize, detail computes a few extra things. The value of _pctile is its ability to compute percentiles other than these standard ones.

\section*{Stored results}
pctile and _pctile store the following in \(r()\) :
Scalars
\(r(r \#) \quad\) value of \#-requested percentile

\section*{Methods and formulas}

The default formula for percentiles is as follows: Let \(x_{(j)}\) refer to the \(x\) in ascending order for \(j=1,2, \ldots, n\). Let \(w_{(j)}\) refer to the corresponding weights of \(x_{(j)}\); if there are no weights, \(w_{(j)}=1\). Let \(N=\sum_{j=1}^{n} w_{(j)}\).

To obtain the \(p\) th percentile, which we will denote as \(x_{[p]}\), let \(P=N p / 100\), and let
\[
W_{(i)}=\sum_{j=1}^{i} w_{(j)}
\]

Find the first index, \(i\), such that \(W_{(i)}>P\). The \(p\) th percentile is then
\[
x_{[p]}= \begin{cases}\frac{x_{(i-1)}+x_{(i)}}{2} & \text { if } W_{(i-1)}=P \\ x_{(i)} & \text { otherwise }\end{cases}
\]

When the altdef option is specified, the following alternative definition is used. Here weights are not allowed.

Let \(i\) be the integer floor of \((n+1) p / 100\); that is, \(i\) is the largest integer \(i \leq(n+1) p / 100\). Let \(h\) be the remainder \(h=(n+1) p / 100-i\). The \(p\) th percentile is then
\[
x_{[p]}=(1-h) x_{(i)}+h x_{(i+1)}
\]
where \(x_{(0)}\) is taken to be \(x_{(1)}\) and \(x_{(n+1)}\) is taken to be \(x_{(n)}\).
xtile produces the categories
\[
\left(-\infty, x_{\left[p_{1}\right]}\right],\left(x_{\left[p_{1}\right]}, x_{\left[p_{2}\right]}\right], \ldots,\left(x_{\left[p_{m-2}\right]}, x_{\left[p_{m-1}\right]}\right],\left(x_{\left[p_{m-1}\right]},+\infty\right)
\]
numbered, respectively, \(1,2, \ldots, m\), based on the \(m\) quantiles given by the \(p_{k}\) th percentiles, where \(p_{k}=100 k / m\) for \(k=1,2, \ldots, m-1\).

If \(x_{\left[p_{k-1}\right]}=x_{\left[p_{k}\right]}\), the \(k\) th category is empty. All elements \(x=x_{\left[p_{k-1}\right]}=x_{\left[p_{k}\right]}\) are put in the \((k-1)\) th category: \(\left(x_{\left[p_{k-2}\right]}, x_{\left[p_{k-1}\right]}\right]\).

If xtile is used with the cutpoints(varname) option, the categories are
\[
\left(-\infty, y_{(1)}\right],\left(y_{(1)}, y_{(2)}\right], \ldots,\left(y_{(m-1)}, y_{(m)}\right],\left(y_{(m)},+\infty\right)
\]
and they are numbered, respectively, \(1,2, \ldots, m+1\), based on the \(m\) nonmissing values of varname: \(y_{(1)}, y_{(2)}, \ldots, y_{(m)}\).

\section*{Acknowledgment}
xtile is based on a command originally posted on Statalist (see [U] 3.2.4 The Stata forum) by Philip Ryan of the Discipline of Public Health at the University of Adelaide, Australia.

\section*{Also see}
\([\mathrm{R}]\) centile - Report centile and confidence interval
[R] summarize - Summary statistics
[U] 18.8 Accessing results calculated by other programs

\section*{Title}
putmata - Put Stata variables into Mata and vice versa
\begin{tabular}{lll} 
Description & Quick start & Syntax \\
Options for putmata & Options for getmata & Remarks and examples \\
Stored results & Reference & Also see
\end{tabular}

\section*{Description}
putmata exports the contents of Stata variables to Mata vectors and matrices.
getmata imports the contents of Mata vectors and matrices to Stata variables.
putmata and getmata are useful for creating solutions to problems more easily solved in Mata. The commands are also useful in teaching.

\section*{Quick start}

Create a Mata vector for each Stata variable in memory
putmata *

As above, but create a vector only for nonmissing values of idvar, v1, and v2 putmata idvar v1 v2, omitmissing

Place variables v 1 and v 2 into column vectors x 1 and x 2
putmata idvar \(\mathrm{x} 1=\mathrm{v} 1 \mathrm{x} 2=\mathrm{v} 2\)
Create Mata matrix \(X\) from v1 and v2
putmata \(X=(v 1\) v2)
Create Stata variables newv1 and newv2 from Mata matrix X
getmata (newv1 newv2) \(=\mathrm{X}\)
Replace v1 and v2 with columns from Mata matrix \(X\)
getmata (v1 v2) \(=\mathrm{X}\), replace
As above, and match observations using idvar Mata vector
getmata (v1 v2) \(=\mathrm{X}\), replace id(idvar)

\section*{Syntax}
putmata putlist [if] [in] [, putmata_options]
getmata getlist [, getmata_options]
putmata_options Description
\begin{tabular}{ll} 
omitmissing & \begin{tabular}{l} 
omit observations with missing values \\
create vectors and matrices as views, not as copies
\end{tabular} \\
view & replace existing Mata vectors and matrices
\end{tabular}

A putlist can be as simple as a list of Stata variable names. See below for details.
getmata_options Description
double
update
replace
id(name)
force
create Stata variables as doubles
update existing Stata variables
replace existing Stata variables
match observations with rows based on equal values of variable name and matrix name; id (varname=vecname) is also allowed
allow nonconformable matrices; usually, id() is preferable

A getlist can be as simple as a list of Mata vector names. See below for details.
Definition of putlist for use with putmata:
A putlist is one or more of any of the following:
*
varname
varlist
vecname \(=\) varname
matname \(=(\) varlist \()\)
matname \(=([\) varlist \(] \#[\) varlist \(][\ldots])\)
Example: putmata *
Creates a vector in Mata for each of the Stata variables in memory. Vectors contain the same data as Stata variables. Vectors have the same names as the corresponding variables.

Example: putmata mpg weight displ
Creates a vector in Mata for each variable specified. Vectors have the same names as the corresponding variables. In this example, displ is an abbreviation for the variable displacement; thus the vector will also be named displacement.
Example: putmata mileage \(=\mathrm{mpg}\) pounds=weight
Creates a vector for each variable specified. Vector names differ from the corresponding variable names. In this example, vectors will be named mileage and pounds.

Example: putmata \(y=m p g X=(w e i g h t ~ d i s p l)\)
Creates \(N \times 1\) Mata vector \(\mathbf{y}\) equal to Stata variable mpg, and creates \(N \times 2\) Mata matrix \(\mathbf{X}\) containing the values of Stata variables weight and displacement.
Example: putmata \(\mathrm{y}=\mathrm{mpg} \mathrm{X}=\) (weight displ 1)
Creates \(N \times 1\) Mata vector \(\mathbf{y}\) containing mpg, and creates \(N \times 3\) Mata matrix \(\mathbf{X}\) containing weight, displacement, and a column of 1s. After typing this example, you could enter Mata and type invsym ( \(\left.X^{\prime} X\right) * X\) 'y to obtain the regression coefficients.

Syntactical elements may be combined. It is valid to type
```

. putmata mpg foreign X=(weight displ) Z=(foreign 1)

```

No matter how you specify the putlist, you will need to specify the replace option if some or all vectors already exist in Mata:
. putmata mpg foreign \(\mathrm{X}=(\) weight displ) \(\mathrm{Z}=(\) foreign 1\()\), replace
Definition of getlist for use with getmata:
A getlist is one or more of any of the following:
vecname
varname=vecname
(varname varname . . . varname)=matname
(varname*) \(=\) matname
Example: getmata x1 x2
Creates a Stata variable for each Mata vector specified. Variables will have the same names as the corresponding vectors. Names may not be abbreviated.

Example: getmata myvar1=x1 myvar2=x2
Creates a Stata variable for each Mata vector specified. Variable names will differ from the corresponding vector names.

Example: getmata (firstvar secondvar)=X
Creates one Stata variable corresponding to each column of the Mata matrix specified. In this case, the matrix has two columns, and corresponding variables will be named firstvar and secondvar. If the matrix had three columns, then three variable names would need to be specified.

Example: getmata (myvar*)=X
Creates one Stata variable corresponding to each column of the Mata matrix specified. Variables will be named myvar1, myvar2, etc. The matrix may have any number of columns, even zero!
Syntactical elements may be combined. It is valid to type
```

. getmata r1 r2 final=r3 (rplus*=X)

```

No matter how you specify the getlist, you will need to specify the replace or update option if some or all variables already exist in Stata:
```

. getmata r1 r2 final=r3 (rplus*=X), replace

```

\section*{Options for putmata}
omitmissing specifies that observations containing a missing value in any of the numeric variables specified be omitted from the vectors and matrices created in Mata. In
```

. putmata y=mpg X=(weight displ 1), omitmissing

```
rows would be omitted from y and X in which the corresponding observation contained missing in any of mpg, weight, or displ. In this case, specifying omitmissing would be equivalent to typing
```

putmata y=mpg X=(weight displ 1) if !missing(mpg) \& !missing(weight) ///
\& !missing(displ)

```

All vectors and matrices created by a single putmata command will have the same number of rows (observations). That is true whether you specify if, in, or the omitmissing option.
view specifies that putmata create views rather than copies of the Stata data in the Mata vectors and matrices. Views require less memory than copies and offer the advantage (and disadvantage) that changes in the Stata data are immediately reflected in the Mata vectors and matrices, and vice versa.
If you specify numeric constants using the matname=(...) syntax, matname is created as a copy even if the view option is specified. Other vectors and matrices created by the command, however, would be views.

Use of the view option with putmata often obviates the need to use getmata to import results back into Stata.

Warning 1: Mata records views as "this vector is a view onto variable 3, observations 2 through 5 and 7 ". If you change the order of the variables, the order of the observations, or drop variables once the views are created, then the contents of the views will change.

Warning 2: When assigning values in Mata to view vectors, code
```

 v[] = ...
 not v =
    ```

To have changes reflected in the underlying Stata data, you must update the elements of the view v , not redefine it. To update all the elements of v , you literally code \(\mathrm{v}[\).\(] . In the matrix case,\) you code \(\mathrm{X}[.,\).\(] .\)
replace specifies that existing Mata vectors or matrices be replaced should that be necessary.

\section*{Options for getmata}
double specifies that Stata numeric variables be created as doubles. The default is that they be created as floats. Actually, variables start out as floats or doubles, but then they are compressed (see [D] compress).
update and replace are alternatives. They have the same meaning unless the id() or force option is specified.
When id() or force is not specified, both replace and update specify that it is okay to replace the values in existing Stata variables. By default, vectors can be posted to new Stata variables only.

When id() or force is specified, replace and update allow posting of values of existing variables, just as usual. The options differ in how the posting is performed when the id() or force option causes only a subset of the observations of the variables to be updated. update specifies that the remaining values be left as they are. replace specifies that the remaining values be set to missing, just as if the existing variable(s) were being created for the first time.
id (name) and id(varname=vecname) specify how the rows in the Mata vectors and matrices match the observations in the Stata data. Observation \(i\) matches row \(j\) if variable name [ \(i\) ] equals vector name \([j]\), or in the second syntax, if varname \([i]=\) vecname \([j]\). The ID variable (vector) must contain values that uniquely identify the observations (rows). Only in observations that contain matching values will the variable be modified. Values in observations that have no match will not be modified or will be set to missing, as appropriate; values in the ID vector that have no match will be ignored.

Example: You wish to run a regression of y on x 1 and x 2 on the males in the data and use that result to obtain the fitted values for the males. Stata already has commands that will do this, namely, regress y x1 x2 if male followed by predict yhat if male. For instructional purposes, let's say you wish to do this in Mata. You type
```

. putmata myid y X=(x1 x2 1) if male
. mata
: b = invsym(X'X)*X'y
: yhat = X*b
: end
. getmata yhat, id(myid)

```

The new Stata variable yhat will contain the predicted values for males and missing values for the females. If the yhat variable already existed, you would type
. getmata yhat, id(myid) replace
or
```

. getmata yhat, id(myid) update

```

The replace option would set the female observations to missing. The update option would leave the female observations unchanged.

If you do not have an identification variable, create one first by typing generate myid \(=\_\).
force specifies that it is okay to post vectors and matrices with fewer or with more rows than the number of observations in the data. The force option is an alternative to id(), and usually, id() is the appropriate choice.

If you specify force and if there are fewer rows in the vectors and matrices than observations in the data, new variables will be padded with missing values. If there are more rows than observations, observations will be added to the data and previously existing variables will be padded with missing values.

\section*{Remarks and examples}

Remarks are presented under the following headings:
```

Use of putmata
Use of putmata and getmata
Using putmata and getmata on subsets of observations
Using views
Constructing do-files

```

\section*{Use of putmata}

In this example, we will use Mata to make a calculation and report the result, but we will not post results back to Stata. We will use putmata but not getmata.

Consider solving for \(\mathbf{b}\) the set of linear equations
\[
\begin{equation*}
\mathbf{y}=\mathbf{X b} \tag{1}
\end{equation*}
\]
where \(\mathbf{y}: N \times 1, \mathbf{X}: N \times k\), and \(\mathbf{b}: k \times 1\). If \(N=k\), then \(\mathbf{y}=\mathbf{X b}\) amounts to solving \(k\) equations for \(k\) unknowns, and the solution is
\[
\begin{equation*}
\mathbf{b}=\mathbf{X}^{-1} \mathbf{y} \tag{2}
\end{equation*}
\]

That solution is obtained by premultiplying both sides of (1) by \(\mathbf{X}^{-1}\).

When \(N>k\), (2) can be used to obtain least-square results if matrix inversion is appropriately defined. Assume that you wish to demonstrate this when matrix inversion is defined as the MoorePenrose generalized inverse for nonsquare matrices. The demonstration can be obtained by typing
```

. sysuse auto, clear
. regress mpg weight displacement
. putmata y=mpg X=(weight displacement 1)
. mata
: pinv(X)*y
: end

```

The Mata expression \(\operatorname{pinv}(\mathrm{X}) * y\) will display a \(3 \times 1\) column vector. The elements of the vector will equal the coefficients reported by regress mpg weight displacement.

For your information, the Moore-Penrose inverse of rectangular matrix \(\mathbf{X}: N \times k\) is a \(k \times N\) rectangular matrix. Among other properties, \(\operatorname{pinv}(\mathbf{X}) * \mathbf{X}=\mathbf{I}\), where \(\mathbf{I}\) is the \(k \times k\) identity matrix. You can demonstrate that using Mata, too:
```

. mata: pinv(X)*X

```

\section*{Use of putmata and getmata}

In this example, we will use Mata to calculate a result that we wish to post back to Stata. We will use both putmata and getmata.

Some problems are more easily solved in Mata than in Stata. For instance, say that you need to create new Stata variable D from existing variable C, defined as
\[
\mathrm{D}[i]=\operatorname{sum}(\mathrm{C}[j]-\mathrm{C}[i]) \text { for all } \mathrm{C}[j]>\mathrm{C}[i]
\]
where \(i\) and \(j\) index observations.
This problem can be solved in Stata, but the solution is elusive to most people. The solution is more natural in Mata because the Mata solution corresponds almost letter for letter with the mathematical statement of the problem. If C and D were Mata vectors rather than Stata variables, the solution would be
```

D = J(rows(C), 1, 0)
for (i=1; i<=rows(C); i++) {
for (j=1; j<=rows(C); j++) {
if (C[j]>C[i]) D[i] = D[i] + (C[j] - C[i])
}
}

```

The most difficult part of this solution to understand is the first line, \(\mathrm{D}=\mathrm{J}\) (rows (C), 1, 0 ), and that is because you may not be familiar with Mata's \(J(\) ) function. \(D=J\) (rows ( \(C\) ) , 1, 0 ) creates a rows (C) \(\times 1\) column vector of 0 s. The arguments of \(J()\) are in just that order.

C and D are not vectors in Mata, or at least they are not yet. Using getmata, we can create vector C from variable C and run our Mata solution. Then using putmata, we can post Mata vector D back to new Stata variable D. The solution includes these three steps, also shown in the do-file below:
(1) In Stata, use putmata to create vector C in Mata equal to variable C in Stata: putmata C.
(2) Use Mata to solve the problem, creating new Mata vector D.
(3) In Stata again, use getmata to create new variable \(D\) equal to Mata vector \(D\).

Because of the typing involved in the solution, we would package the code in a do-file:
```

begin myfile.do

```
\(\qquad\)
```

use mydata, clear
putmata C
mata:
D = J (rows (C), 1, 0)
for (i=1; i<=rows(C); i++) {
for (j=1; j<=rows(C); j++) {
if (C[j]>C[i]) D[i] = D[i] + (C[j] - C[i])
}
}
end
getmata D
save mydata, replace

```
(2)

With myfile.do now in place, in Stata we would type
```

. do myfile

```

Notes:
(1) Our program might be better if we changed putmata \(C\) to read putmata \(C\), replace and if we changed getmata \(D\) to read getmata \(D\), replace. As things are right now, typing do myfile works, but if we were then to run it a second time, it would not work. Stata would encounter the putmata command and issue an error that matrix C already exists. Even if Stata got through that, it would encounter the getmata command and issue an error that variable D already exists. Perhaps that is an advantage. You cannot run myfile.do again without dropping matrix \(C\) and variable \(D\). If you consider that a disadvantage, however, include the replace option.
(2) In our solution, we entered Mata by typing mata:, which is to say, mata with a colon. Interactively, we usually enter Mata by just typing mata. The colon affects how Mata treats errors. When working interactively, we want Mata to note errors but then to continue running so we can correct ourselves. In do-files, we want Mata to note the error and stop. That is the difference between mata without the colon and mata with the colon. Remember to use mata: when writing do-files.
(3) Rather than specify the replace option, you could modify the do-file to drop any preexisting Mata vector \(C\) and any preexisting variable \(D\). To drop vector \(C\), in Mata you can type mata drop C, or in Stata, you can type mata: mata drop C. To drop variable D, in Stata you can type drop D. You must worry that the variables do not exist, so in your do-file, you would code
```

capture mata: mata drop C
capture drop D

```

Rather than dropping vector C, you might prefer just to clear Mata:
```

clear mata

```

\section*{Using putmata and getmata on subsets of observations}
putmata can be used to create Mata vectors that contain a subset of the observations in the Stata data, and getmata can be used to fetch such vectors back into Stata. Thus you can work with only the males or only outcomes in which failures are observed, and so on. Below we work with only the observations in which C does not contain missing values.

In the create-variable-D-from-C example above, we assumed that there were no missing values in C, or at least we did not consider the issue. It turns out that our code produces several missing values in the presence of just one missing value in C. Perhaps, if there are missing values, we want to exclude them from our calculation. We could complicate our Mata code to handle that. We could modify our Mata code to read
```

use mydata, clear
putmata C
D = J(rows(C), 1, 0)
for (i=1; i<=rows(C); i++) {
if (C[i]>=.) D[i] = . // new
else for (j=1; j<=rows(C); j++) {
if (C[j]<.) { // new
if (C[j]>C[i]) D[i] = D[i] + (C[j] - C[i])
}
}
}
end
getmata D
save mydata, replace

```

Easier, however, is simply to restrict Mata vector C to the nonmissing elements of Stata variable C, which we could do by replacing putmata \(C\) with
```

putmata C if !missing(C)

```
or, equivalently,
```

putmata C, omitmissing

```

Whichever way we coded it, if the data contained 100 observations and variable C contained 82 nonmissing values, new Mata vector \(C\) would contain 82 rows rather than 100 . The observations corresponding to missing (C) would be omitted from the vector, and that means we could run our original Mata solution without modification.

There is, however, an issue. At the end of our code when we post the Mata solution vector D to Stata variable D-getmata D-we will need to specify which of the 100 observations are to receive the 82 results stored in the vector. getmata has an option to handle this situation-id(varname), where varname is the name of an identification variable.

An identification variable is a variable that takes on different values for each observation in the data. The values could be \(1,2, \ldots, 100\); or they could be \(1.25,-2, \ldots, 16.5\); or they could be Nick, Bill, ..., Mary. The values can be numeric or string, and they need not be in order. All that is important is that the variable contain a unique (different) value in each observation. Possibly, the data already contain such a variable. If not, you can create one by typing
```

generate fid = _n

```

When we use putmata to create vector \(C\), we will need simultaneously to create vector fid containing the selected values of variable fid, which we can do by adding fid to the putlist:
```

putmata fid C if !missing(C)

```

The above command creates two vectors in Mata: fid and C. When we post the resulting vector D back to Stata, we will specify the id(fid) option to indicate into which observations getmata is to post the results:
```

getmata D, id(fid)

```

The id(fid) option is taken to mean that there exists a variable named fid and a vector named fid. It is by comparing the values in each that getmata determines how the rows of the vectors correspond to the observations of the data.

The entire solution is
```

 begin myfile.do
    ```
```

use mydata, clear

```
use mydata, clear
putmata fid C if !missing(C) // new: we put fid & add if !missing(C)
putmata fid C if !missing(C) // new: we put fid & add if !missing(C)
mata:
mata:
D = J (rows (C), 1, 0)
D = J (rows (C), 1, 0)
for (i=1; i<=rows(C); i++) {
for (i=1; i<=rows(C); i++) {
    for (j=1; j<=rows(C); j++) {
    for (j=1; j<=rows(C); j++) {
        if (C[j]>C[i]) D[i] = D[i] + (C[j] - C[i])
        if (C[j]>C[i]) D[i] = D[i] + (C[j] - C[i])
    }
    }
}
}
end
end
getmata D, id(fid) // new: we add option id(fid)
getmata D, id(fid) // new: we add option id(fid)
save mydata, replace
```

save mydata, replace

```
\(\qquad\)

The above code will run on data with or without missing values. New variable D will be missing in observations where C is missing, but D will otherwise contain nonmissing values.

\section*{Using views}

When you type or code putmata C, vector C is created as a copy of the Stata data. The variable and the vector are separate things. An alternative is to make the Mata vector a view onto the Stata variable. By that, we mean that both the variable and the vector share the same recording of the values. Views save memory but are slightly less efficient in terms of execution time. Views have other advantages and disadvantages, too.

For instance, if you type putmata mpg and then, in Mata, type mpg[1] \(=20\), you will change not only the Mata vector but also the Stata data! Or if, after typing putmata mpg, you typed replace \(\mathrm{mpg}=20\) in 1 , that would modify both the data and the Mata vector! This is an advantage if you are fixing real errors and a disadvantage if you intend to do something else.

If in the middle of your Mata session where you are working with views you take a break and return to Stata, it is important that you do not modify the Stata data in certain ways. Rather than recording copies of the data, views record notes about the mapping. A view might record that this Mata vector corresponds to variable 3, observations 2 through 20 and 39. If you change the sort order of the data, the view will still be working with observations 2 through 20 and 39 even though those physical observations now contain different data. If you drop the first or second variable, the view will still be working with the third variable even though that will now be a different variable!

The memory savings offered by views are considerable, at least when working with large datasets. Say that you have a dataset containing 200 variables and \(1,000,000\) observations. Your data might be 1 GB in size. Even so, typing putmata \(*\), view, and thus creating 200 vectors each with \(1,000,000\) rows, would consume only a few dozen kilobytes of memory.

All the examples shown above work equally well with copies or views. We have been working with copies, but in the previous example, where we coded
```

putmata fid C if !missing(C)

```
we could switch to working with views by coding
```

putmata fid C if !missing(C), view

```

With that one change, our code would still work and it would use less memory.
With that one change, we would still not be working with views everywhere we could, however. Vector D-the vector we create in Mata and then post back to Stata-would still be a regular vector. We can save additional memory by making D a view, too. Before we do that, let us warn you that we do not recommend doing this unless the memory savings is vitally important. The result, when complete, will be elegant and memory efficient, but the extra memory savings is seldom worth the debugging effort.

No extra changes are required to your code when the vectors you make into views contain values that are not modified in the code. Vector C is such a vector. We use the values stored in C, but we do not change them. Vector D , on the other hand, is a vector in which we change values. It is usually easier if you do not convert such vectors into views.

With that proviso, we are going to make \(D\) into a view, too, and in the process, we will drop the use of fid altogether:
\(\qquad\)
```

use mydata, clear
generate D = . // new
putmata C D if !missing(C), view // changed
mata:
D[.] = J(rows (C), 1, 0) // changed
for (i=1; i<=rows(C); i++) {
for (j=1; j<=rows(C); j++) {
if (C[j]>C[i]) D[i] = D[i] + (C[j] - C[i])
}
}
end

```
    // we drop the getmata
save mydata, replace

In this solution, we create new Stata variable \(D\) at the outset, and then we modify the putmata command to create view vectors for both C and D. Our code, which stores results in vector D, now simultaneously posts to variable D when we store results in vector D, so we can omit the getmata D at the end because results are already posted! Moreover, we no longer have to concern ourselves with matching observations to rows via fid. Rows of \(D\) now automatically align themselves with the selected observations in variable \(D\) by the mere fact of \(D\) being a view.

The beginning of our Mata code has an important change, however. We change
```

D = J (rows (C), 1, 0)

```
to
```

D[.] = J(rows(C), 1, 0)

```

That change is very important. What we coded previously created vector D. What we now code changes the values stored in existing vector D. If we left what we coded previously, Mata would discard the view currently stored in D and create a new D -a regular Mata vector unconnected to Stata-containing 0s.

\section*{Constructing do-files}
putmata and getmata can be used interactively, but if you have much Mata code between the put and the get, you will be better off using a do-file because do-files can be easily edited when they have a mistake in them. We recommend the following outline for such do-files:
\begin{tabular}{ll}
\hline & \\
version 14.2 & \((1)\) \\
mata clear & \((2)\) \\
// Stata code for setup goes here & \((3)\) \\
putmata... & \((4)\) \\
mata: & \((5)\) \\
// Mata code goes here & \((6)\) \\
end & \((7)\) \\
getmata & \\
mata clear &
\end{tabular}

Notes on do-file steps:
(1) A do-file should always start with a version statement; it ensures that the do-file continues to work in the years to come as new versions of Stata are released. See [P] version.
(2) The do-file should not depend on Mata having certain vectors, matrices, or programs already loaded and set up because if you attempt to run the do-file again later, what you assumed may not be true. A do-file should be self-contained. To ensure that is true the first time we write and run the do-file and to ensure on subsequent runs that nothing lying around in Mata gets in our way, we clear Mata.
(3) You may need to sort your data, create extra variables that your do-file will use, or drop variables that you are assuming do not already exist. In the last iteration of myfile.do, we needed to generate \(\mathrm{D}=\)., and it would not have been a bad idea to capture drop D before we did that. Our example did not depend on the sort order of the data, but if it had, we would have included the sort even if we were certain that the data would already be in the right order.
(4) Put the putmata command here. If putmata includes the omitmissing option, then put everything you need to put in a single putmata command. Otherwise, you can use multiple putmata commands if you find that more convenient. If you use multiple putmata commands, be sure to include the same if expression and in range qualifiers on each one.
(5) The Mata code goes here. Note that we type mata: (mata with a colon) to enter Mata. mata: ensures that errors stop Mata and thus our do-file.
(6) The getmata command goes here if you need it. Be sure to include getmata's id (name) or id (vecname=varname) option if, on the putmata command in step 4, you included the if expression qualifier or the in range qualifier or the omitmissing option. If you include id(), be sure you included the ID variable in the putmata command in step 4.
(7) We conclude by clearing Mata again to avoid leaving memory allocated needlessly and to avoid causing problems for poorly written do-files that we might subsequently run.
putmata and getmata are designed to work interactively and in do-files. The commands are not designed to work with ado-files. An ado-file is something like a do-file, but it defines a program that implements a new command of Stata, and well-written ado-files do not use globals such as the global vectors and matrices that putmata creates. Ado-files use local variables. Ado-file programmers should use the Mata functions st_data() and st_view() (see [M-5] st_data() and [M-5] st_view()) to create vectors and matrices, and if necessary, use st_store() (see [M-5] st_store()) to post the contents of those vectors and matrices back to Stata.

\section*{Stored results}
putmata stores the following in \(r()\) :
Scalars
\[
\begin{array}{ll}
r(N) & \text { number of rows in created vectors and matrices } \\
r(\text { K_views }) & \text { number of vectors and matrices created as views } \\
r \text { (K_copies) } & \text { number of vectors and matrices created as copies }
\end{array}
\]

The total number of vectors and matrices created is \(r\) (K_views) \(+r\) (K_copies).
\(r(N)=\). if \(r\) (K_views) \(+r(\) K_copies \()=0 . r(N)=0\) means that zero-observation vectors and matrices were created, which is to say, vectors and matrices dimensioned \(0 \times 1\) and \(0 \times k\).
getmata stores the following in \(r()\) :
Scalars
\(r\) (K_new) number of new variables created
\(r\) (K_existing) number of existing variables modified
The total number of variables modified is \(r\) ( \(\left.K \_n e w\right)+r\) (K_existing).

\section*{Reference}

Gould, W. W. 2010. Mata Matters: Stata in Mata. Stata Journal 10: 125-142.

\section*{Also see}
[M-4] stata - Stata interface functions
[M-5] st_data( ) - Load copy of current Stata dataset
[M-5] st_store() - Modify values stored in current Stata dataset
[M-5] st_view() - Make matrix that is a view onto current Stata dataset

\section*{Title}
range - Generate numerical range
\begin{tabular}{llll} 
Description & Quick start & Menu & Syntax \\
Remarks and examples & Also see & &
\end{tabular}

\section*{Description}
range generates a numerical range, which is useful for evaluating and graphing functions.

\section*{Quick start}

Generate newv1 that ranges from 0 to \(\pi\) range newv1 0 _pi

As above, but only for the first 50 observations in the dataset
range newv1 0 _pi 50
Generate newv2 that ranges from the minimum to the maximum of v 2 after summarize range newv2 \(r(\min ) r(\max )\)

\section*{Menu}

Data \(>\) Create or change data \(>\) Other variable-creation commands \(>\) Generate numerical range

\section*{Syntax}
range varname \(\#_{\text {first }} \#_{\text {last }}\left[\#_{\text {obs }}\right]\)

\section*{Remarks and examples}
range constructs the variable varname, taking on values \(\#_{\text {first }}\) to \(\#_{\text {last }}\), inclusive, over \(\#_{\text {obs }}\). If \(\#_{\text {obs }}\) is not specified, the number of observations in the current dataset is used.
range can be used to produce increasing sequences, such as
. range x 012.56100
or it can be used to produce decreasing sequences:
```

. range z 100 1

```
> Example 1
To graph \(y=e^{-x / 6} \sin (x)\) over the interval [ \(\left.0,12.56\right]\), we can type
```

. scatter y x, yline(0) ytitle(y = exp(-x/6) sin(x))

```


\section*{Example 2}

Stata is not limited solely to graphing functions-it can draw parameterized curves as well. For instance, consider the curve given by the polar coordinate relation \(r=2 \sin (2 \theta)\). The conversion of polar coordinates to parameterized form is \((y, x)=(r \sin \theta, r \cos \theta)\), so we can type
. clear
. range theta 0 2*_pi 400
number of observations (_N) was 0, now 400
. generate \(r=2 * \sin (2 *\) theta)
. generate \(\mathrm{y}=\mathrm{r} * \sin (\) theta)
- generate \(x=r * \cos (\) theta)
. line \(y \mathrm{x}, \mathrm{c}(\mathrm{l}) \mathrm{m}(\mathrm{i}) \mathrm{yline}(0) \mathrm{xline}(0)\) aspectratio(1)


\section*{Also see}
[D] egen - Extensions to generate
[D] obs - Increase the number of observations in a dataset

\section*{Title}
recast - Change storage type of variable
\begin{tabular}{llll} 
Description & Quick start & Syntax & Option \\
Remarks and examples & Also see & &
\end{tabular}

\section*{Description}
recast changes the storage type of the variables identified in varlist to type.

\section*{Quick start}

Recast numeric variable v1 to type double from any other numeric type recast double v1

Recast string variable v2 to str30 from any length less than 30
recast str30 v2
As above, but for length longer than 30
recast str30 v2, force

\section*{Syntax}
recast type varlist [, force]
where type is byte, int, long, float, double, str1, str2, ..., str2045, or strL.

\section*{Option}
force makes recast unsafe by causing the variables to be given the new storage type even if that will cause a loss of precision, introduction of missing values, or, for string variables, the truncation of strings.
force should be used with caution. force is for those instances where you have a variable saved as a double but would now be satisfied to have the variable stored as a float, even though that would lead to a slight rounding of its values.

\section*{Remarks and examples}

See [U] 12 Data for a description of storage types. Also see [D] compress and [D] destring for alternatives to recast.

\section*{- Example 1}
recast refuses to change a variable's type if that change is inappropriate for the values actually stored, so it is always safe to try:
```

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)
. describe headroom

variable namestorage type	display format	value label	variable label	
headroom	float	$\% 6.1 f$		Headroom (in.)
recast int headroom				
headroom: 37 values would be changed; not changed				

```

Our attempt to change headroom from a float to an int was ignored-if the change had been made, 37 values would have changed. Here is an example where the type can be changed:
\begin{tabular}{|c|c|c|c|}
\hline variable name \begin{tabular}{c} 
storage \\
type
\end{tabular} & \begin{tabular}{l}
display \\
format
\end{tabular} & \begin{tabular}{l}
value \\
label
\end{tabular} & variable label \\
\hline mpg int & \%8.0g & & Mileage (mpg) \\
\hline \begin{tabular}{l}
. recast byte mpg \\
. describe mpg
\end{tabular} & & & \\
\hline storage & display & value & \\
\hline variable name type & format & label & variable label \\
\hline mpg byte & \%8.0g & & Mileage (mpg) \\
\hline
\end{tabular}
recast works with string variables as well as numeric variables, and it provides all the same protections:
```

. describe make

```
\begin{tabular}{lclll} 
variable name \begin{tabular}{c} 
storage \\
type
\end{tabular} & \begin{tabular}{l} 
display \\
format
\end{tabular} & \begin{tabular}{l} 
value \\
label
\end{tabular} & variable label \\
\hline make & str18 & \(\%-18 \mathrm{~s}\) & & Make and Model \\
recast str16 make & & \\
make: 2 values would be changed; not changed &
\end{tabular}
recast can be used both to promote and to demote variables:
```

. recast str20 make

```
. describe make
\begin{tabular}{lllll} 
variable name & \begin{tabular}{c} 
storage \\
type
\end{tabular} & \begin{tabular}{l} 
display \\
format
\end{tabular} & \begin{tabular}{l} 
value \\
label
\end{tabular} & variable label \\
\hline make & str20 & \(\%-20 s\) & & Make and Model
\end{tabular}

\section*{Also see}
[D] compress - Compress data in memory
[D] destring - Convert string variables to numeric variables and vice versa
[U] 12.2.2 Numeric storage types
[U] 12.4 Strings

\section*{Title}
recode - Recode categorical variables
\begin{tabular}{llll} 
Description & Quick start & Menu & Syntax \\
Options & Remarks and examples & Acknowledgment & Also see
\end{tabular}

\section*{Description}
recode changes the values of numeric variables according to the rules specified. Values that do not meet any of the conditions of the rules are left unchanged, unless an otherwise rule is specified.

A range \#1/\#2 refers to all (real and integer) values between \#1 and \#2, including the boundaries \#1 and \#2. This interpretation of \#1/\#2 differs from that in numlists.
min and max provide a convenient way to refer to the minimum and maximum for each variable in varlist and may be used in both the from-value and the to-value parts of the specification. Combined with if and in, the minimum and maximum are determined over the restricted dataset.

The keyword rules specify transformations for values not changed by the previous rules:
```

nonmissing all nonmissing values not changed by the rules
missing all missing values (.,.a,.b,...,.z) not changed by the rules
else

* synonym for else

```
recode provides a convenient way to define value labels for the generated variables during the definition of the transformation, reducing the risk of inconsistencies between the definition and value labeling of variables. Value labels may be defined for integer values and for the extended missing values (.a, .b, ..., .z), but not for noninteger values or for sysmiss (.).

Although this is not shown in the syntax diagram, the parentheses around the rules and keyword clauses are optional if you transform only one variable and if you do not define value labels.

\section*{Quick start}

Recode 3 to 0,4 to -1 , and 5 to -2 in v1 and store result in newv1
```

recode v1 (3=0) (4=-1) (5=-2), generate(newv1)

```

As above, and recode missing values to 9
```

recode v1 (3=0) (4=-1) (5=-2) (missing=9), gen(newv1)

```

Also recode v 2 using the same rule and store result in newv2
```

recode v1 v2 (3=0) (4=-1) (5=-2) (missing=9), gen(newv1 newv2)

```

Same as above when adding a prefix to the old variable name
```

recode v1 v2 (3=0) (4=-1) (5=-2) (missing=9), prefix(new)

```

Recode 3 through 5 to 0 and 1 through 2 to 1 and create value label mylabel
```

recode v1 (3/5=0 "Value 0") (1/2=1 "Value 1"), gen(newv1) ///
label(mylabel)

```

As above, but set all other values to 9 and label them "Invalid"
```

recode v1 (3/5=0 "Value 0") (1/2=1 "Value 1") ///
(else=9 "Invalid"), gen(newv1) label(mylabel)

```

\section*{Menu}

Data \(>\) Create or change data \(>\) Other variable-transformation commands \(>\) Recode categorical variable

\section*{Syntax}

Basic syntax
```

recode varlist (rule) [(rule)...] [, generate(newvar)]

```

Full syntax
\[
\text { recode varlist (erule) }[(\text { erule }) \ldots][\text { if }][\text { in }][\text {, options }]
\]
where the most common forms for rule are
\begin{tabular}{l}
\multicolumn{1}{c}{ rule } \\
\hline\(\#=\#\) \\
\(\# \#=\#\) \\
\(\# / \#=\#\) \\
nonmissing \(=\#\) \\
\(\underline{\text { missing }=\#}\)
\end{tabular}
\begin{tabular}{l}
\multicolumn{1}{c}{ Example } \\
\hline \(3=1\) \\
\(2 .=9\) \\
\(1 / 5=4\) \\
nonmiss \(=8\) \\
miss \(=9\)
\end{tabular}

Meaning
3 recoded to 1
2 and . recoded to 9
1 through 5 recoded to 4
all other nonmissing to 8
all other missings to 9
where erule has the form
\[
\begin{aligned}
& \text { element }[\text { element } . . .]=\text { el }[\text { "label" }] \\
& \underline{\text { nonmissing }=e l[" l a b e l "]} \\
& \underline{\text { missing }=e l[" l a b e l "]} \\
& \text { else } \mid *=e l[\text { "label" }]
\end{aligned}
\]
element has the form
el |el/el
and \(e l\) is
\# | min \(\mid \max\)
The keyword rules missing, nonmissing, and else must be the last rules specified. else may not be combined with missing or nonmissing.
options
Description
Options
generate(newvar)
prefix (str)
label (name)
copyrest
test
generate newvar containing transformed variables; default is to replace existing variables generate new variables with str prefix
specify a name for the value label defined by the transformation rules copy out-of-sample values from original variables
test that rules are invoked and do not overlap

\section*{Options}
\(\qquad\) Options
generate (newvar) specifies the names of the variables that will contain the transformed variables. into() is a synonym for generate(). Values outside the range implied by if or in are set to missing (.), unless the copyrest option is specified.

If generate() is not specified, the input variables are overwritten; values outside the if or in range are not modified. Overwriting variables is dangerous (you cannot undo changes, value labels may be wrong, etc.), so we strongly recommend specifying generate().
prefix (str) specifies that the recoded variables be returned in new variables formed by prefixing the names of the original variables with str.
label(name) specifies a name for the value label defined from the transformation rules. label() may be defined only with generate() (or its synonym, into()) and prefix(). If a variable is recoded, the label name defaults to newvar unless a label with that name already exists.
copyrest specifies that out-of-sample values be copied from the original variables. In line with other data management commands, recode defaults to setting newvar to missing (.) outside the observations selected by if exp and in range.
test specifies that Stata test whether rules are ever invoked or that rules overlap; for example, \((1 / 5=1)(3=2)\).

\section*{Remarks and examples}

Remarks are presented under the following headings:

> Simple examples
> Setting up value labels with recode
> Referring to the minimum and maximum in rules
> Recoding missing values
> Recoding subsets of the data
> Otherwise rules
> Test for overlapping rules

\section*{Simple examples}

Many users experienced with other statistical software use the recode command often, but easier and faster solutions in Stata are available. On the other hand, recode often provides simple ways to manipulate variables that are not easily accomplished otherwise. Therefore, we show other ways to perform a series of tasks with and without recode.

We want to change 1 to 2 , leave all other values unchanged, and store the results in the new variable nx .
```

. recode x (1 = 2), gen(nx)

```
or
```

. generate nx = x
. replace nx = 2 if nx==1

```
or
- generate \(\mathrm{nx}=\operatorname{cond}(\mathrm{x}==1,2, \mathrm{x})\)

We want to swap 1 and 2 , saving them in nx .
```

. recode x (1 = 2) (2 = 1), gen(nx)

```
or
```

. generate nx = cond(x==1,2, cond(x==2,1,x))

```

We want to recode item by collapsing 1 and 2 into 1,3 into 2 , and 4 to 7 (boundaries included) into 3 .
```

. recode item (1 2 = 1) (3 = 2) (4/7 = 3), gen(Ritem)

```
or
```

. generate Ritem = item
. replace Ritem = 1 if inlist(item,1,2)
. replace Ritem = 2 if item==3
. replace Ritem = 3 if inrange(item,4,7)

```

We want to change the "direction" of the \(1, \ldots, 5\) valued variables \(x 1, x 2\), \(x 3\), storing the transformed variables in \(\mathrm{n} \times 1\), nx 2 , and nx 3 (that is, we form new variable names by prefixing old variable names with an " n ").
```

. recode x1 x2 x3 (1=5) (2=4) (3=3) (4=2) (5=1), pre(n) test

```
or
```

. generate nx1 = 6-x1
. generate nx2 = 6-x2
. generate nx3 = 6-x3
. forvalues i = 1/3 {
generate nx'i' = 6-x'i'
}

```

In the categorical variable religion, we want to change 1,3 , and the real and integer numbers 3 through 5 into 6 ; we want to set 2,8 , and 10 to 3 and leave all other values unchanged.
```

. recode religion 1 3/5 = 6 2 8 10 = 3

```
or
```

. replace religion = 6 if religion==1 | inrange(religion,3,5)
. replace religion = 3 if inlist(religion,2,8,10)

```

This example illustrates two features of recode that were included for backward compatibility with previous versions of recode but that we do not recommend. First, we omitted the parentheses around the rules. This is allowed if you recode one variable and you do not plan to define value labels with recode (see below for an explanation of this feature). Personally, we find the syntax without parentheses hard to read, although we admit that we could have used blanks more sensibly. Because
difficulties in reading may cause us to overlook errors, we recommend always including parentheses. Second, because we did not specify a generate() option, we overwrite the religion variable. This is often dangerous, especially for "original" variables in a dataset. We recommend that you always specify generate() unless you want to overwrite your data.

\section*{Setting up value labels with recode}

The recode command is most often used to transform categorical variables, which are many times value labeled. When a value-labeled variable is overwritten by recode, it may well be that the value label is no longer appropriate. Consequently, output that is labeled using these value labels may be misleading or wrong.

When recode creates one or more new variables with a new classification, you may want to put value labels on these new variables. It is possible to do this in three steps:
1. Create the new variables (recode ..., gen()).
2. Define the value label (label define...).
3. Link the value label to the variables (label value ...).

Inconsistencies may emerge from mistakes between steps 1 and 2. Especially when you make a change to the recode 1 , it is easy to forget to make a similar adjustment to the value label 2. Therefore, recode can perform steps 2 and 3 itself.

Consider recoding a series of items with values
\[
\begin{aligned}
& 1=\text { strongly agree } \\
& 2=\text { agree } \\
& 3=\text { neutral } \\
& 4=\text { disagree } \\
& 5=\text { strongly disagree }
\end{aligned}
\]
into three items:
\[
\begin{aligned}
& 1=\text { positive }(=\text { "strongly agree" or "agree") } \\
& 2=\text { neutral } \\
& 3=\text { negative }(=\text { "strongly disagree" or "disagree") }
\end{aligned}
\]

This is accomplished by typing
```

. recode item* (1 2 = 1 positive) (3 = 2 neutral) (4 5 = 3 negative), pre(R)
> label(Item3)

```
which is much simpler and safer than
```

. recode item1-item7 (1 2 = 1) (3 = 2) (4 5 = 3), pre(R)
. label define Item3 1 positive 2 neutral 3 negative
forvalues i = 1/7 {
label value Ritem'i' Item3
}

```
\(>\) Example 1
As another example, let's recode vote (voting intentions) for 12 political parties in the Dutch parliament into left, center, and right parties. We then tabulate the original and new variables so that we can check that everything came out correctly.
```

. use http://www.stata-press.com/data/r14/recodexmpl
. label list pparty
pparty:
1 pvda
2 cda
d66
4 ~ v v d
5 groenlinks
6 sgp
rpf
gpv
9av
10 unie55
1 1 ~ s p
12 cd
. recode polpref (1 5 11 = 1 left) (2 3 = 2 center) (4 6/10 12 = 3 right),
> gen(polpref3)
(2020 differences between polpref and polpref3)
. tabulate polpref polpref3
pol party RECODE of polpref (pol party
choice if choice if elections)
elections

pvda	622	0	0	622
cda	0	525	0	525
d66	0	634	0	634
vvd	0	0	930	930
groenlinks	199	0	0	199
sgp	0	0	54	54
rpf	0	0	63	63
gpv	0	0	30	30
aov	0	0	17	17
unie55	0	0	23	23
sp	45	0	0	45
cd	0	0	25	25
Total	866	1,159	1,142	3,167

```

\section*{Referring to the minimum and maximum in rules}
recode allows you to refer to the minimum and maximum of a variable in the transformation rules. The keywords min and max may be included as a from-value, as well as a to-value.

For example, we might divide age into age categories, storing in iage.
```

. recode age (0/9=1) (10/19=2) (20/29=3) (30/39=4) (40/49=5) (50/max=6),
> gen(iage)

```
or
```

. generate iage = 1 + irecode(age,9,19,29,39,49)

```
or
```

. generate iage = min(6, 1+int(age/10))

```

As another example, we could set all incomes less than 10,000 to 10,000 and those more than 200,000 to 200,000 , storing the data in ninc.
```

. recode inc (min/10000 = 10000) (200000/max = 200000), gen(ninc)

```
or
. generate ninc = inc
. replace ninc \(=10000\) if ninc<10000
. replace ninc \(=200000\) if ninc>200000 \& !missing(ninc)
or
. generate ninc \(=\max (\min (\) inc, 200000\(), 10000)\)
or
```

. generate ninc = clip(inc,10000,200000)

```

\section*{Recoding missing values}

You can also set up rules in terms of missing values, either as from-values or as to-values. Here recode mimics the functionality of mvdecode and mvencode (see [D] mvencode), although these specialized commands execute much faster.

Say that we want to change missing (.) to 9, storing the data in X :
```

. recode x (.=9), gen(X)

```
or
```

. generate X = cond(x==., 9, x)

```
or
```

. mvencode x, mv(.=9) gen(X)

```

We want to change 9 to .a and 8 to ., storing the data in \(z\).
```

. recode x (9=.a) (8=.), gen(z)

```
or
```

. generate z = cond(x==9, .a, cond(x==8, ., x))

```
or
```

. mvdecode x, mv(9=.a, 8=.) gen(z)

```

\section*{Recoding subsets of the data}

We want to swap in x the values 1 and 2 only for those observations for which age>40, leaving all other values unchanged. We issue the command
```

. recode x (1=2) (2=1) if age>40, gen(y)

```
or
```

. generate }y=\operatorname{cond}(x==1,2,\operatorname{cond}(x==2,1,x)) if age>4

```

We are in for a surprise. \(y\) is missing for observations that do not satisfy the if condition. This outcome is in accordance with how Stata's data manipulation commands usually work. However, it may not be what you intend. The copyrest option specifies that x be copied into y for all nonselected observations:
```

. recode x (1=2) (2=1) if age>40, gen(y) copy

```
or
```

- generate y = x
. recode y (1=2) (2=1) if age>40

```
or
```

. generate y = cond(age>40, cond(x==1,2, cond(x==2,1,x),x))

```

\section*{Otherwise rules}

In all our examples so far, recode had an implicit rule that specified that values that did not meet the conditions of any of the rules were to be left unchanged. recode also allows you to use an "otherwise rule" to specify how untransformed values are to be transformed. recode supports three kinds of otherwise conditions:
\begin{tabular}{ll} 
nonmissing & all nonmissing not yet transformed \\
missing & all missing values not yet transformed \\
else & all values, missing or nonmissing, not yet transformed
\end{tabular}

The otherwise rules are to be specified after the standard transformation rules. nonmissing and missing may be combined with each other, but not with else.

Consider a recode that swaps the values 1 and 2 , transforms all other nonmissing values to 3 , and transforms all missing values (that is, sysmiss and the extended missing values) to . (sysmiss). We could type
```

. recode x (1=2) (2=1) (nonmissing=3) (missing=.), gen(z)

```
or
```

. generate z = cond(x==1,2, cond(x==2,1,cond(!missing(x),3),.))

```

As a variation, if we had decided to recode all extended missing values to .a but to keep sysmiss . distinct at ., we could have typed
```

. recode x (1=2) (2=1) (.=.) (nonmissing=3) (missing=.a), gen(z)

```

\section*{Test for overlapping rules}
recode evaluates the rules from left to right. Once a value has been transformed, it will not be transformed again. Thus if rules "overlap", the first matching rule is applied, and further matches are ignored. A common form of overlapping is illustrated in the following example:
\(\ldots(1 / 5=1)(5 / 10=2)\)
Here 5 occurs in the condition parts of both rules. Because rules are matched left to right, 5 matches the first rule, and the second rule will not be tested for 5 , unless recode is instructed to test for rule overlap with the test option.

Other instances of overlapping rules usually arise because you mistyped the rules. For instance, you are recoding voting intentions for parties in elections into three groups of parties (left, center, right), and you type
```

... (1/5 = 1) ... (3 = 2)

```

Party 3 matches the conditions \(1 / 5\) and 3 . Because recode applies the first matching rule, party 3 will be mapped into party category 1 . The second matching rule is ignored. It is not clear what was wrong in this example. You may have included party 3 in the range \(1 / 5\) or mistyped 3 in the second rule. Either way, recode did not notice the problem and your data analysis is in jeopardy. The test option specifies that recode display a warning message if values are matched by more than one rule. With the test option specified, recode also tests whether all rules were applied at least once and displays a warning message otherwise. Rules that never matched any data may indicate that you mistyped a rule, although some conditions may not have applied to (a selection of) your data.

\section*{Acknowledgment}

This version of recode was written by Jeroen Weesie of the Department of Sociology at Utrecht University, The Netherlands.

\section*{Also see}
[D] generate - Create or change contents of variable
[D] mvencode - Change missing values to numeric values and vice versa

\section*{Title}
rename - Rename variable

Description Quick start Menu Syntax Remarks and examples References
Also see

\section*{Description}
rename changes the name of existing variable old_varname to new_varname; the contents of the variable are unchanged. Also see [D] rename group for renaming groups of variables.

\section*{Quick start}

Change the name of v1 to var1 rename v1 var1

Also change the name of v2 to var2
```

rename v2 var2

```

\section*{Menu}

Data \(>\) Data utilities \(>\) Rename groups of variables

\section*{Syntax}
rename old_varname new_varname

\section*{Remarks and examples}

\section*{\(>\) Example 1}
rename allows you to change variable names. Say that we have labor market data for siblings.
```

. use http://www.stata-press.com/data/r14/renamexmpl
. describe
Contains data from http://www.stata-press.com/data/r14/renamexmpl.dta
obs: 277
vars: 6 9 Jan 2014 11:57
size: 6,648

```
\begin{tabular}{lllll}
\hline variable name & \begin{tabular}{c} 
storage \\
type
\end{tabular} & \begin{tabular}{l} 
display \\
format
\end{tabular} & \begin{tabular}{c} 
value \\
label
\end{tabular} & variable label \\
\hline famid & float & \(\% 9.0 \mathrm{~g}\) & & \\
edu & float & \(\% 9.0 \mathrm{~g}\) & & \\
exp & float & \(\% 9.0 \mathrm{~g}\) & & \\
promo & float & \(\% 9.0 \mathrm{~g}\) & & \\
sex & float & \(\% 9.0 \mathrm{~g}\) & sex & \\
inc & float & \(\% 9.0 \mathrm{~g}\) & & \\
\hline
\end{tabular}

Sorted by: famid

We decide to rename the exp and inc variables.
```

. rename exp experience
. rename inc income
. describe
Contains data from http://www.stata-press.com/data/r14/renamexmpl.dta
obs: 277
vars: 6 9 Jan 2014 11:57
size: 6,648

```
\begin{tabular}{lllll}
\hline & \begin{tabular}{c} 
storage \\
type
\end{tabular} & \begin{tabular}{l} 
display \\
format
\end{tabular} & \begin{tabular}{c} 
value \\
label
\end{tabular} & variable label \\
\hline famid & float & \(\% 9.0 \mathrm{~g}\) & & \\
edu & float & \(\% 9.0 \mathrm{~g}\) & & \\
experience & float & \(\% 9.0 \mathrm{~g}\) & & \\
promo & float & \(\% 9.0 \mathrm{~g}\) & & \\
sex & float & \(\% 9.0 \mathrm{~g}\) & sex & \\
income & float & \(\% 9.0 \mathrm{~g}\) & & \\
\hline
\end{tabular}

Sorted by: famid
Note: Dataset has changed since last saved.
The exp variable is now called experience, and the inc variable is now called income.

\section*{References}

Cox, N. J., and J. Weesie. 2001. dm88: Renaming variables, multiply and systematically. Stata Technical Bulletin 60: 4-6. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 41-44. College Station, TX: Stata Press.
——. 2005. Software Updates: Renaming variables, multiply and systematically. Stata Journal 5: 607.
Jenkins, S. P., and N. J. Cox. 2001. dm83: Renaming variables: Changing suffixes. Stata Technical Bulletin 59: 5-6. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 34-35. College Station, TX: Stata Press.

\section*{Also see}
[D] rename group - Rename groups of variables
[D] generate - Create or change contents of variable
[D] varmanage - Manage variable labels, formats, and other properties

\section*{Title}
rename group - Rename groups of variables

\section*{Description}

Menu
Options for renaming variables
Remarks and examples
Also see

\section*{Quick start}

Syntax
Options for changing the case of groups of variable names Stored results

\section*{Description}
rename changes the names of existing variables to the new names specified. See [D] rename for the base rename syntax. Documented here is the advanced syntax for renaming groups of variables.

\section*{Quick start}

Change the name of v1 to var1 and v2 to var2
rename (v1 v2) (var1 var2)
Change the name of V1 to v1 and V2 to v2
rename V1 V2, lower
Add suffix old to variables v1, v2, .. for one or more digits
rename v\# =old
Remove suffix old from all variables ending in old
rename *old *
Remove prefix old from all variables beginning with old
rename old* *

Note: A complete list of rules for renaming groups of variables appears below the syntax diagram.

\section*{Menu}

Data \(>\) Data utilities \(>\) Rename groups of variables

\section*{Syntax}

Rename a single variable
rename old new [, options \({ }_{1}\) ]
Rename groups of variables
\[
\text { rename }\left(\text { old }_{1} \text { old }_{2} \ldots\right)\left(\text { new }_{1} \text { new }_{2} \ldots\right)[\text {, options } 1]
\]

Change the case of groups of variable names
\[
\underline{\text { rename } \text { old }_{1} \text { old }_{2} \ldots,\{\text { upper }|\underline{\text { lower }}| \text { proper }\} \quad\left[\text { options }_{2}\right]}
\]
where old and new specify the existing and the new variable names. The rules for specifying them are
1. rename stat status: Renames stat to status.

Rule 1: This is the same rename command documented in [D] rename, with which you are familiar.
2. rename (stat inc) (status income): Renames stat to status and inc to income.

Rule 2: Use parentheses to specify multiple variables for old and new.
3. rename (v1 v2) (v2 v1): Swaps v1 and v2.

Rule 3: Variable names may be interchanged.
4. rename ( a b c) (b c a): Swaps names. Renames a to b, b to c, and c to a.

Rule 4: There is no limit to how many names may be interchanged.
5. rename ( \(\mathrm{a} b \mathrm{c}\) ) \((\mathrm{c} \mathrm{b} a)\) : Renames a to c and c to a , but leaves b as is.

Rule 5: Renaming variables to themselves is allowed.
6. rename jan* *1: Renames all variables starting with \(j a n\) to instead end with 1 , for example, janstat to stat1, janinc to inc1, etc.

Rule 6.1: * in old selects the variables to be renamed. * means that zero or more characters go here.
Rule 6.2: * in new corresponds with \(*\) in old and stands for the text that \(*\) in old matched. * in new or old is called a wildcard character, or just a wildcard.
rename jan* *: Removes prefix jan.
rename \(* j a n *\) : Removes suffix jan.
7. rename jan? ?1: Renames all variables starting with \(j a n\) and ending in one character by removing jan and adding 1 to the end; for example, jans is renamed to \(s 1\), but janstat remains unchanged. ? means that exactly one character goes here, just as \(*\) means that zero or more characters go here.

Rule 7: ? means exactly one character, ?? means exactly two characters, etc.
8. rename \(*\) jan* \(* *\) : Removes prefix, midfix, and suffix jan, for example, janstat to stat, injanstat to instat, and subjan to sub.

Rule 8: You may specify more than one wildcard in old and in new. They correspond in the order given.
rename jan*s* *s*1: Renames all variables that start with jan and contain s to instead end in 1, dropping the jan, for example, janstat to stat1 and janest to est1, but not janinc to inc1.
9. rename *jan* *: Removes jan and whatever follows from variable names, thereby renaming statjan to stat, incjan71 to inc, ....

Rule 9: You may specify more wildcards in old than in new.
10. rename \(* j a n * . *\) : Removes \(j a n\) and whatever precedes it from variable names, thereby renaming midjaninc to inc, ...

Rule 10: Wildcard . (dot) in new skips over the corresponding wildcard in old.
11. rename *pop jan=: Adds prefix \(j\) an to all variables ending in pop, for example, age1pop to janage1pop, ....
rename (status bp time) admit=: Renames status to admitstatus, bp to admitbp, and time to admittime.
rename whatever pre=: Adds prefix pre to all variables selected by whatever, however whatever is specified.

Rule 11: Wildcard = in new specifies the original variable name.
rename whatever \(=\mathrm{jan}\) : Adds suffix jan to all variables selected by whatever.
rename whatever pre=fix: Adds prefix pre and suffix fix to all variables selected by whatever.
12. rename v\# stat\#: Renames v1 to stat1, v2 to stat2, ..., v10 to stat10, ....

Rule 12.1: \# is like \(*\) but for digits. \# in old selects one or more digits.
Rule 12.2: \# in new copies the digits just as they appear in the corresponding old.
13. rename \(\mathrm{v}(\#)\) stat(\#): Renames v 1 to stat1, v 2 to stat2,..., but does not rename v10, ....

Rule 13.1: (\#) in old selects exactly one digit. Similarly, (\#\#) selects exactly two digits, and so on, up to ten \# symbols.

Rule 13.2: (\#) in new means reformat to one or more digits. Similarly, (\#\#) reformats to two or more digits, and so on, up to ten \# symbols.
rename v(\#\#) stat(\#\#): Renames v01 to stat01, v02 to stat02, ..., v10 to stat10, \(\ldots\), but does not rename v0, v1, v2, ..., v9, v100, ....
14. rename v\# v(\#\#): Renames v1 to v01, v2 to v02, ..., v10 to v10, v11 to v11, ..., v100 to v100, v101 to v101, ....

Rule 14: You may combine \#, (\#), (\#\#), ... in old with any of \#, (\#), (\#\#), ... in new.
rename v(\#\#) v(\#): Renames v01 to v1, v02 to v2, ..., v10 to v10, ..., but does not rename v001, etc.
rename stat(\#\#) stat_20(\#\#): Renames stat10 to stat_2010, stat11 to stat_2011, ..., but does not rename stat1, stat2, ...
rename stat(\#) to stat_200(\#): Renames stat1 to stat_2001, stat2 to stat_2002, ..., but does not rename stat10 or stat_2010.
15. rename \(\mathrm{v} \#\) ( a b c ): Renames v 1 to \(\mathrm{a}, \mathrm{v} 10\) to b , and v 2 to c if variables \(\mathrm{v} 1, \mathrm{v} 10\), v 2 appear in that order in the data. Because three variables were specified in new, \(\mathrm{v} \#\) in old must select three variables or rename will issue an error.

Rule 15.1: You may mix syntaxes. Note that the explicit and implied numbers of variables must agree.
rename \(\mathrm{v} \#\) ( abc ), sort: Renames (for instance) v 1 to a , v 2 to b , and v 10 to c .
Rule 15.2: The sort option places the variables selected by old in order and does so smartly. In the case where \#, (\#), (\#\#), ... appear in old, sort places the variables in numeric order.
rename v* ( abc ), sort: Renames (for instance) valpha to a, vbeta to b, and vgamma to \(c\) regardless of the order of the variables in the data.

Rule 15.3: In the case where \(*\) or ? appears in old, sort places the variables in alphabetical order.
16. rename \(\mathrm{v} \# \mathrm{v} \#\), renumber: Renames (for instance) v9 to v 1 , v 10 to v 2 , v8 to \(\mathrm{v} 3, \ldots\), assuming that variables v9, v10, v8, ... appear in that order in the data.
Rule 16.1: The renumber option resequences the numbers.
rename v\# v\#, renumber sort: Renames (for instance) v8 to v1, v9 to v2, v10 to v3, .... Concerning option sort, see rule 15.2 above.
rename v\# v\#, renumber (10) sort: Renames (for instance) v8 to v10, v9 to v11, v10 to \(\mathrm{v} 12, \ldots\).
Rule 16.2: The renumber (\#) option allows you to specify the starting value.
17. rename \(v * v \#\), renumber: Renames (for instance) valpha to \(v 1\), vgamma to v2, vbeta to v3, ..., assuming variables valpha, vgamma, vbeta, ... appear in that order in the data.

Rule 17: \# in new may correspond to *, ?, \#, (\#), (\#\#), ... in old.
rename v* v\#, renumber sort: Renames (for instance) valpha to v1, vbeta to v2, vgamma to \(\mathrm{v} 3, \ldots\). Also see rule 15.3 above concerning the sort option.
rename *stat stat\#, renumber: Renames, for instance, janstat to stat1, febstat to stat2, .... Note that \# in new corresponds to \(*\) in old, just as in the previous example.
rename *stat stat(\#\#), renumber: Renames, for instance, janstat to stat01, febstat to stat02, ....
rename *stat stat\#, renumber (0): Renames, for instance, janstat to stat0, febstat to stat1,....
rename *stat stat\#, renumber sort: Renames, for instance, aprstat to stat1, augstat to stat2, ....
18. rename ( a b c ) v\#, addnumber: Renames a to v 1 , b to v 2 , and c to v 3 .

Rule 18: The addnumber option allows you to add numbering. More formally, if you specify addnumber, you may specify one more wildcard in new than is specified in old, and that extra wildcard must be \#, (\#), (\#\#), ....
19. rename a(\#)(\#) a(\#)[2] (\#) [1]: Renames a12 to a21, a13 to a31, a14 to a41, ..., a21 to a12, ....

Rule 19.1: You may specify explicit subscripts with wildcards in new to make explicit its matching wildcard in old. Subscripts are specified in square brackets after a wildcard in new. The number refers to the number of the wildcard in old.
rename *stat* *[2]stat*[1]: Swaps prefixes and suffixes; it renames bpstata to astatbp, rstater to erstatr, etc.
rename *stat* *[2]stat*: Does the same as above; it swaps prefixes and suffixes.
Rule 19.2: After specifying a subscripted wildcard, subsequent unsubscripted wildcards correspond to the same wildcards in old as they would if you had removed the subscripted wildcards altogether.
rename v\#a\# v\#_\#[1]_a\#[2]: Renames v1a1 to v1_1_a1, v1a2 to v1_1_a2, ..., v2a1 to v2_2_a1,....

Rule 19.3: Using subscripts, you may refer to the same wildcard in old more than once.
Subscripts are commonly used to interchange suffixes at the ends of variable names. For instance, you have districts and schools within them, and many of the variable names in your data match *_\#_\#. The first number records district and the second records school within district. To reverse the ordering, you type rename *_\#_\# *_\#[3]_\#[2]. When specifying subscripts, you refer to them by the position number in the original name. For example, our original name was *_\#_\# so [1] refers to \(*\), [2] refers to the first \#, and [3] refers to the last \#.
\begin{tabular}{|c|c|c|}
\hline Specifier & Meaning in old & \\
\hline * & 0 or more characters & \\
\hline ? & 1 character exactly & \\
\hline \# & 1 or more digits & \\
\hline (\#) & 1 digit exactly & \\
\hline (\#\#) & 2 digits exactly & \\
\hline (\#\#\#) & 3 digits exactly & \\
\hline (\#\#\#\#\#\#\#\#\#\#) & 10 digits exactly & \\
\hline Specifier & May correspond in old with & Meaning in new \\
\hline * & *, ?, \#, (\#), ... & copies matched text \\
\hline ? & ? & copies a character \\
\hline \# & \#, (\#), .. & copies a number as is \\
\hline (\#) & \#, (\#), & reformats to 1 or more digits \\
\hline (\#\#) & \#, (\#) , .. & reformats to 2 or more digits \\
\hline (\#\#\#\#\#\#\#\#\#\#) & \begin{tabular}{l}
\#, (\#), ... \\
*, ?, \#, (\#), ... \\
nothing
\end{tabular} & \begin{tabular}{l}
reformats to 10 digits skip \\
copies entire variable name
\end{tabular} \\
\hline
\end{tabular}

Specifier \# in any of its guises may also correspond with \(*\) or ? if the renumber option is specified.
\begin{tabular}{ll} 
options \(_{1}\) & Description \\
\hline addnumber & add sequential numbering to end \\
addnumber (\#) & addnumber, starting at \# \\
\(\underline{\text { renumber }}\) & renumber sequentially \\
\(\underline{\text { renumber (\#) }}\) & renumber, starting at \# \\
\(\underline{\text { sort }}\) & sort before numbering \\
\(\underline{r} r y r u n\) & do not rename, but instead produce a report \\
\(\underline{l}\) & store variable names in \(r()\) for programming use
\end{tabular}

These options correspond to the first and second syntaxes.

\section*{options \(_{2}\)}

Description
upper
lower
proper
dryrun
r
uppercase ASCII letters in variable names (UPPERCASE)
lowercase ASCII letters in variable names (lowercase) propercase ASCII letters in variable names (Propercase)
do not rename, but instead produce a report
store variable names in \(r()\) for programming use

These options correspond to the third syntax. One of upper, lower, or proper must be specified.

\section*{Options for renaming variables}
addnumber and addnumber (\#) specify to add a sequence number to the variable names. See item 18 of Syntax. If \# is not specified, the sequence number begins with 1.
renumber and renumber (\#) specify to replace existing numbers or text in a set of variable names with a sequence number. See items 16 and 17 of Syntax. If \# is not specified, the sequence number begins with 1.
sort specifies that the existing names be placed in order before the renaming is performed. See item 15 of Syntax for details. This ordering matters only when addnumber or renumber is also specified or when specifying a list of variable names for old or new.
dryrun specifies that the requested renaming not be performed but instead that a table be displayed showing the old and new variable names. It is often a good idea to specify this option before actually renaming the variables.
\(r\) is a programmer's option that requests that old and new variable names be stored in \(r()\). This option may be specified with or without dryrun.

\section*{Options for changing the case of groups of variable names}
upper, lower, and proper specify how the variables are to be renamed. upper specifies that ASCII letters in variable names be changed to uppercase; lower, to lowercase; and proper, to having the first ASCII letter capitalized and the remaining ASCII letters in lowercase. One of these three options must be specified. Note that these options do not handle Unicode characters beyond the plain ASCII range. To change Unicode characters in the variable names to uppercase, lowercase, or titlecase, use functions ustrupper(), ustrlower(), and ustrtitle(). See the technical note in Remarks and examples.
dryrun and \(r\) are the same options as documented directly above.

\section*{Remarks and examples}

Remarks are presented under the following headings:
```

Advice
Explanation

* matches 0 or more characters; use ?* to match 1 or more
* is greedy

is greedier

```

\section*{Advice}
1. Read [D] rename before reading this entry.
2. Read items 1-19 (the Rules) under Syntax above before reading the rest of these remarks.
3. Specify the dryrun option when using complicated patterns. dryrun presents a table of the old and new variable names rather than actually renaming the variables, so you can check that the patterns you have specified produce the desired result.

\section*{Explanation}

The rename command has three syntaxes; see Syntax. See [D] rename for details on the first syntax, renaming a single variable. The remaining two syntaxes are for renaming groups of variables and for changing the case of groups of variables. These two syntaxes are the ones we will focus on for the remainder of this manual entry. Here they are again:

```

rename old (old 2..., {upper | lower |proper }

```

The second syntax shown above merely changes the case of variables, such as MPG or mpg or Mpg. For instance, to rename all variables to be lowercase, type
```

rename *, lower

```

The first syntax shown above is more daunting and more powerful. The first syntax has two styles, with and without parentheses:
```

rename (bp_0 bp_1) (bp_1 bp_0)
rename pop*80 pop_*_1980

```

You can combine the two styles whenever it is convenient.
```

rename v* (mpg weight displacement)
rename (mpg weight displacement) v\#, addnumber
rename (bp_0 bp_1 pop*80) (bp_1 bp_0 pop_*_1980)

```

We summarize all of this by simply writing the syntax as
```

rename old new, ...

```
and referring to old and new.
Wildcards play different but related roles in old and new. When you type
```

rename pop*80 pop_*_1980

```
the wildcard (* in this case) in old specifies which variables are to be renamed, and in new the wildcard stands for the text that appears in the variables to be renamed. In this case, there is just one wildcard, but sometimes there are more.

In old, * means zero or more characters go here. Specifying pop*80 means find all variables that begin with pop and end in 80. Say that doing so results in three variables being found: poplt2080, pop204080, and pop41plus80. To understand how \(*\) is interpreted in new, it is useful to write the three found variables like this:
\begin{tabular}{rl} 
pop*80 & \(=\) pop \(+\quad *\) \\
\hline poplt2080 & \(=\) pop +1 l20 \\
pop204080 & \(=\) pop +2040 \\
pop41plus80 & \(=\) pop +80 \\
\hline
\end{tabular}
* in new refers to what was found by * in old. So the new pattern pop_*_1980 will assemble the following new variable names for each of the old names:
\begin{tabular}{rlll} 
old variable & \(*\) is & \(\rightarrow\) & pop_*_1980 is \\
\hline poplt2080 & lt20 & \(\rightarrow\) & pop_lt20_1980 \\
pop204080 & 2040 & \(\rightarrow\) & pop_2040_1980 \\
pop41plus80 & 41plus & \(\rightarrow\) & pop_41plus_1980 \\
\hline
\end{tabular}

Thus typing rename pop*80 pop_*_1980 is equivalent to typing
```

rename poplt2080 pop_lt20_1980
rename pop204080 pop_2040_1980
rename pop41plus80 pop_41plus_1980

```

There are three basic wildcard characters for specification in old, and they filter the variables to be renamed:
* 0 or more characters go here
? exactly 1 character goes here
\# number goes here (this one comes in 11 flavors!)
The generic \# listed above collects all the digits. The other 10 flavors are (\#), which means exactly 1 digit goes here; (\#\#), which means exactly 2 digits go here; and so on, up to exactly 10 digits go here.

All the above, the \(3+10=13\) wildcard characters, can appear in new, where each has a different but related meaning:
* copy corresponding text from old as is
? copy corresponding character from old
\# copy corresponding number from old as is
(\#) reformat corresponding number from old to 1 or more digits
(\#\#) reformat corresponding number from old to 2 or more digits

In addition, new allows two special wildcard characters of its own:
\(=\quad\) copy the entire original variable name
. skip the corresponding text in old
With the above information and the definitions of the options, you can derive on your own the first eighteen rules given in Syntax. The nineteenth rule concerns subscripting. In new, you can specify explicitly to which wildcard in old you are referring. You can type
```

rename pop*80 pop_*_1980

```
or you can type
```

rename pop*80 pop_*[1]_1980

```
thus making it explicit that the \(*\) in new is referring to the text matched by the first wildcard in old. That \(*\) corresponds to \(*\) is hardly surprising, especially when there is only one \(*\) in old, so let's complicate the example:
```

rename v*_* outcome_*_*

```

You can type that command, or you can type
```

rename v*_* outcome_*[1]_*[2]

```

More importantly, you can specify the subscripts in whatever order you wish, so you could type
```

rename v*_* outcome_*[2]_*[1]

```

That command would interchange the text in old matched by the two wildcards.

\section*{* matches \(\mathbf{0}\) or more characters; use ?* to match \(\mathbf{1}\) or more}
l*a in old matches louisiana and it matches la because \(*\) means zero or more characters. What if you want to match louisiana and lymphoma but not la?

For instance, say you have from-to variables named from*to* and from variables named from*. The problem is that variable fromtoledo would match from*to*. To avoid that, rather than describing the from-to pattern from*to*, you use from?*to?*. Thus you could type
```

rename from?*to?* from_?*_to_?*

```
?* is not a secret wildcard we have yet to tell you about-it is merely the two wildcards ? and * in sequence. ? means exactly one character goes here, and \(*\) means zero or more characters go here, so ?* means one or more characters go here. In the same way, ??* means two or more characters go here, and so on.

\section*{is greedy}

Consider the existing variable assessment and pattern *s* in old. Clearly, *s* matches assessment, but how? That is, among these possibilities,

which one is true? We need to know the answer to know what each of the corresponding wildcards in new will mean. The answer is that \(*\) is greedy, and the pattern is matched from left to right. As we move through the variable name from left to right, at each step \(*\) takes the most characters possible, subject to the pattern working out.


Thus the first \(*\) in new would stand for asses and the second would stand for ment.
The "subject to the pattern working out" part is important. Variable sunglasses would be broken out by *s* as
\[
\text { sunglasses }=\frac{* \quad s \quad *}{\text { sunglasse }+\mathrm{s}+\text { nothing }}
\]

But by \(* s ? *\), the breakout would be


\section*{\# is greedier}

Wildcard \# in old is greedier than \(*\), which means that when \(*\) and \# are up against each other, \# wins.

Consider the pattern \(* \#\) and the variable name v1234. Given that \(*\) is greedy and that the \(\#\) specifies one or more digits, the possible solutions are
\[
\begin{aligned}
\mathrm{v} 1234= & \frac{*}{} \begin{aligned}
& \# \\
& \mathrm{v} 123+4 \\
& \mathrm{v} 12+34 \\
& \mathrm{v} 1 \quad+234 \\
& \mathrm{v} \quad+ \\
& 1234
\end{aligned}
\end{aligned}
\]

The solution chosen by rename is the last one, \(v+1234\). Thus you can type
```

rename *\# period_\#[2]

```
without concern that some digits might be lost.

\section*{- Technical note}

You cannot directly use functions ustrupper(), ustrlower(), and ustrtitle() in your rename command. You must first create a local macro with the new variable name and then use that macro in your rename command. For example,
. local new = ustrlower(Ubicación)
. rename Ubicación 'new'

You can use multiple local macros in a varlist. For example,
. local new1 = ustrlower(Ubicación1)
. local new2 = ustrlower(Ubicación2)
. rename (Ubicación1 Ubicación2) ('new1' 'new2')
For more information about local macros, see [U] 18.3.1 Local macros.

\section*{Stored results}
rename stores nothing in \(r()\) by default. If the \(r\) option is specified, then rename stores the following in \(r()\) :

Scalar
\(r(n) \quad\) number of variables to be renamed
Macros
\(r\) (oldnames) original variable names
\(r\) (newnames) new variable names
Variables that are renamed to themselves are omitted from the recorded lists.

\section*{Also see}
[D] rename - Rename variable
[D] generate - Create or change contents of variable
[D] varmanage - Manage variable labels, formats, and other properties

\section*{Title}
reshape - Convert data from wide to long form and vice versa
\begin{tabular}{llll} 
Description & Quick start & Menu & Syntax \\
Options & Remarks and examples & Stored results & Acknowledgment \\
References & Also see & &
\end{tabular}

\section*{Description}
reshape converts data from wide to long form and vice versa.

\section*{Quick start}

Create v from 2 time periods stored in v1 and v2 for observations identified by idvar and add tvar identifying time period
reshape long v, i(idvar) j(tvar)
Create v from 2 subobservations stored in v1 and v2 for observations identified by idvar and add subobs identifying each subobservation
reshape long v, i(idvar) j(subobs)
As above, but allow subobs to contain strings
reshape long v, i(idvar) j (subobs) string
Undo results from above
reshape wide
Create v1 and v2 from v with observations identified by idvar and time period identified by tvar reshape wide v, i(idvar) \(j\) (tvar)

Undo results from above
reshape long
Create var and time identifier tvar from v1ar and v2ar with observation identifier idvar
reshape long v@ar, i(idvar) j(tvar)

\section*{Menu}

Data \(>\) Create or change data \(>\) Other variable-transformation commands \(>\) Convert data between wide and long

\section*{Syntax}

Overview
\begin{tabular}{|ccr|}
\multicolumn{3}{c}{ long } \\
\hline\(i\) & \(j\) & stub \\
\hline 1 & 1 & 4.1 \\
1 & 2 & 4.5 \\
2 & 1 & 3.3 \\
2 & 2 & 3.0 \\
\hline
\end{tabular}


To go from long to wide:


To go from wide to long:
reshape long stub, i(i) j(j)
\(j\) new variable
To go back to long after using reshape wide:
reshape long
To go back to wide after using reshape long:
reshape wide

\section*{Basic syntax}

Convert data from wide form to long form reshape long stubnames, i(varlist) [options]

Convert data from long form to wide form
reshape wide stubnames, i(varlist) [options]
Convert data back to long form after using reshape wide
reshape long

Convert data back to wide form after using reshape long
reshape wide
List problem observations when reshape fails
reshape error
\begin{tabular}{ll} 
options & Description \\
\hline \(\mathrm{i}(\) varlist \()\) & \begin{tabular}{l} 
use varlist as the ID variables \\
j (varname [values] \(]\) \\
long \(\rightarrow\) wide: varname, existing variable \\
wide \(\rightarrow\) long: varname, new variable \\
optionally specify values to subset varname \\
varname is a string variable (default is numeric)
\end{tabular} \\
string &
\end{tabular}
* i (varlist) is required.
where values is
```

\#[-\#][...] if varname is numeric (default)
"string" ["string" ...] if varname is string

```
and where stubnames are variable names (long \(\rightarrow\) wide), or stubs of variable names (wide \(\rightarrow\) long), and either way, may contain @, denoting where \(j\) appears or is to appear in the name.

Advanced syntax
reshape i varlist
```

reshape j varname [values] [, string]
reshape xij fvarnames [, atwl(chars)]
reshape xi [varlist]
reshape [query]
reshape clear

```

\section*{Options}
i (varlist) specifies the variables whose unique values denote a logical observation. i() is required.
\(j\) (varname [values]) specifies the variable whose unique values denote a subobservation. values lists the unique values to be used from varname, which typically are not explicitly stated because reshape will determine them automatically from the data.
string specifies that \(j\) () may contain string values.
atwl (chars), available only with the advanced syntax and not shown in the dialog box, specifies that plain ASCII chars be substituted for the @ character when converting the data from wide to long form.

\section*{Remarks and examples}

Remarks are presented under the following headings:
```

Description of basic syntax
Wide and long data forms
Avoiding and correcting mistakes
reshape long and reshape wide without arguments
Missing variables
Advanced issues with basic syntax: i()
Advanced issues with basic syntax: j()
Advanced issues with basic syntax: xij
Advanced issues with basic syntax: String identifiers for j()
Advanced issues with basic syntax: Second-level nesting
Description of advanced syntax

```

See Mitchell (2010, chap. 8) for information and examples using reshape.

\section*{Description of basic syntax}

Before using reshape, you need to determine whether the data are in long or wide form. You also must determine the logical observation (i) and the subobservation ( j ) by which to organize the data. Suppose that you had the following data, which could be organized in wide or long form as follows:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline i & & & \(X_{i j}\) & & i & j & & \(X_{i j}\) \\
\hline id & sex & inc80 & inc81 & inc82 & id & year & sex & inc \\
\hline 1 & 0 & 5000 & 5500 & 6000 & 1 & 80 & 0 & 5000 \\
\hline 2 & 1 & 2000 & 2200 & 3300 & 1 & 81 & 0 & 5500 \\
\hline 3 & 0 & 3000 & 2000 & 1000 & 1 & 82 & 0 & 6000 \\
\hline & & & & & 2 & 80 & 1 & 2000 \\
\hline & & & & & 2 & 81 & 1 & 2200 \\
\hline & & & & & 2 & 82 & 1 & 3300 \\
\hline & & & & & 3 & 80 & 0 & 3000 \\
\hline & & & & & 3 & 81 & 0 & 2000 \\
\hline & & & & & 3 & 82 & 0 & 1000 \\
\hline
\end{tabular}

Given these data, you could use reshape to convert from one form to the other:
```

. reshape long inc, i(id) j(year) /* goes from left form to right */
. reshape wide inc, i(id) j(year) /* goes from right form to left */

```

Because we did not specify sex in the command, Stata assumes that it is constant within the logical observation, here id.

\section*{Wide and long data forms}

Think of the data as a collection of observations \(X_{i j}\), where \(i\) is the logical observation, or group identifier, and \(j\) is the subobservation, or within-group identifier.

Wide-form data are organized by logical observation, storing all the data on a particular observation in one row. Long-form data are organized by subobservation, storing the data in multiple rows.

\section*{> Example 1}

For example, we might have data on a person's ID, gender, and annual income over the years 1980-1982. We have two \(X_{i j}\) variables with the data in wide form:
. use http://www.stata-press.com/data/r14/reshape1
. list
\begin{tabular}{l|rrrrrrr|}
\cline { 2 - 8 } & id & sex & inc80 & inc81 & inc82 & ue80 & ue81 \\
ue82 \\
\hline 1. & 1 & 0 & 5000 & 5500 & 6000 & 0 & 1 \\
2. & 2 & 1 & 2000 & 2200 & 3300 & 1 & 0 \\
3. & 3 & 0 & 3000 & 2000 & 1000 & 0 & 0 \\
\hline
\end{tabular}

To convert these data to the long form, we type
```

. reshape long inc ue, i(id) j(year)
(note: j = 80 81 82)
Data wide -> long
Number of obs. 3 -> 9
Number of variables 8 -> 5
j variable (3 values) -> year
xij variables:
inc80 inc81 inc82 -> inc
ue80 ue81 ue82 -> ue

```

There is no variable named year in our original, wide-form dataset. year will be a new variable in our long dataset. After this conversion, we have
```

. list, sep(3)

```
\begin{tabular}{l|rrrrr|}
\cline { 2 - 6 } & id & year & sex & inc & ue \\
\hline 1. & 1 & 80 & 0 & 5000 & 0 \\
2. & 1 & 81 & 0 & 5500 & 1 \\
3. & 1 & 82 & 0 & 6000 & 0 \\
\hline 4. & 2 & 80 & 1 & 2000 & 1 \\
5. & 2 & 81 & 1 & 2200 & 0 \\
6. & 2 & 82 & 1 & 3300 & 0 \\
\hline 7. & 3 & 80 & 0 & 3000 & 0 \\
8. & 3 & 81 & 0 & 2000 & 0 \\
9. & 3 & 82 & 0 & 1000 & 1 \\
\hline
\end{tabular}

We can return to our original, wide-form dataset by using reshape wide.
\begin{tabular}{|c|c|c|c|}
\hline Data & long & -> & wide \\
\hline Number of obs. & 9 & -> & 3 \\
\hline Number of variables & 5 & -> & 8 \\
\hline j variable (3 values) & year & -> & (dropped) \\
\hline xij variables: & \[
\begin{array}{r}
\text { inc } \\
\text { ue }
\end{array}
\] & -> & \begin{tabular}{l}
inc80 inc81 inc82 \\
ue80 ue81 ue82
\end{tabular} \\
\hline
\end{tabular}
. list
\begin{tabular}{l|rrrrrrrr|}
\cline { 2 - 8 } & id & inc80 & ue80 & inc81 & ue81 & inc82 & ue82 & sex \\
\hline 1. & 1 & 5000 & 0 & 5500 & 1 & 6000 & 0 & 0 \\
2. & 2 & 2000 & 1 & 2200 & 0 & 3300 & 0 & 1 \\
3. & 3000 & 0 & 2000 & 0 & 1000 & 1 & 0 \\
\hline
\end{tabular}

Converting from wide to long creates the j (year) variable. Converting back from long to wide drops the j (year) variable.

\section*{Technical note}

If your data are in wide form and you do not have a group identifier variable (the \(i\) (varlist) required option), you can create one easily by using generate; see [D] generate. For instance, in the last example, if we did not have the id variable in our dataset, we could have created it by typing
```

. generate id = _n

```

\section*{Avoiding and correcting mistakes}
reshape often detects when the data are not suitable for reshaping; an error is issued, and the data remain unchanged.

\section*{> Example 2}

The following wide data contain a mistake:
```

. use http://www.stata-press.com/data/r14/reshape2, clear
. list

```
\begin{tabular}{l|rrrrr|}
\cline { 2 - 5 } & id & sex & inc80 & inc81 & inc82 \\
\hline 1. & 1 & 0 & 5000 & 5500 & 6000 \\
2. & 2 & 1 & 2000 & 2200 & 3300 \\
3. & 3 & 0 & 3000 & 2000 & 1000 \\
4. & 2 & 0 & 2400 & 2500 & 2400 \\
\hline
\end{tabular}
```

. reshape long inc, i(id) j(year)
(note: j = 80 81 82)
variable id does not uniquely identify the observations
Your data are currently wide. You are performing a reshape long. You
specified i(id) and j(year). In the current wide form, variable id should
uniquely identify the observations. Remember this picture:
long
\(\left.\begin{array}{|llll|}\hline i \& j \& \mathrm{a} \& \mathrm{b}

\hline 1 \& 1 \& 1 \& 2

1 \& 2 \& 3 \& 4

2 \& 1 \& 5 \& 6

2 \& 2 \& 7 \& 8\end{array}\right)<\) reshape \longrightarrow| i | a 1 | a 2 | b 1 | b 2 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 3 | 2 | 4 |
| 2 | 5 | 7 | 6 | 8 |

```

Type reshape error for a list of the problem observations. \(r(9)\);

The i variable must be unique when the data are in the wide form; we typed i(id), yet we have 2 observations for which id is 2 . (Is person 2 a male or female?)

\section*{Example 3}

It is not a mistake when the \(i\) variable is repeated when the data are in long form, but the following data have a similar mistake:
. use http://www.stata-press.com/data/r14/reshapexp1
. list
\begin{tabular}{l|rrrr|}
\cline { 2 - 4 } & id & year & sex & inc \\
\cline { 2 - 4 } 1. & 1 & 80 & 0 & 5000 \\
2. & 1 & 81 & 0 & 5500 \\
3. & 1 & 81 & 0 & 5400 \\
4. & 1 & 82 & 0 & 6000 \\
\hline
\end{tabular}
. reshape wide inc, i(id) \(j\) (year)
(note: j = 8081 82)
values of variable year not unique within id
Your data are currently long. You are performing a reshape wide. You
specified i(id) and j(year). There are observations within i(id) with the
same value of \(\mathbf{j}\) (year). In the long data, variables \(i()\) and \(j()\) together must uniquely identify the observations.
long
\begin{tabular}{|llll}
\hline\(i\) & \(j\) & a & b \\
\hline 1 & 1 & 1 & 2 \\
1 & 2 & 3 & 4 \\
2 & 1 & 5 & 6 \\
2 & 2 & 7 & 8
\end{tabular}

Type reshape error for a list of the problem variables.
\(r(9)\);
In the long form, \(i\) (id) does not have to be unique, but \(j\) (year) must be unique within \(i\); otherwise, what is the value of inc in 1981 for which \(i d==1\) ?
reshape told us to type reshape error to view the problem observations.
```

. reshape error
(note: j = 80 81 82)
i (id) indicates the top-level grouping such as subject id.
j (year) indicates the subgrouping such as time.
The data are in the long form; j should be unique within i.
There are multiple observations on the same year within id.
The following 2 of 4 observations have repeated year values:

```
2.
\begin{tabular}{|cr|}
\hline id & year \\
\hline 1 & 81 \\
1 & 81 \\
\hline
\end{tabular}
(data now sorted by id year)

\section*{> Example 4}

Consider some long-form data that have no mistakes. We list the first 4 observations.
```

. use http://www.stata-press.com/data/r14/reshape6

``` . list in \(1 / 4\)
\begin{tabular}{l|rrrrr|}
\cline { 2 - 5 } & id & year & sex & inc & ue \\
\cline { 2 - 6 } 1. & 1 & 80 & 0 & 5000 & 0 \\
2. & 1 & 81 & 0 & 5500 & 1 \\
3. & 1 & 82 & 0 & 6000 & 0 \\
4. & 2 & 80 & 1 & 2000 & 1 \\
\hline
\end{tabular}

Say that when converting the data to wide form, however, we forget to mention the ue variable (which varies within person).
```

. reshape wide inc, i(id) j(year)
(note: j = 80 81 82)
variable ue not constant within id
Your data are currently long. You are performing a reshape wide. You
typed something like
. reshape wide a b, i(id) j(year)
There are variables other than a, b, id, year in your data. They must be
constant within id because that is the only way they can fit into wide
data without loss of information.
The variable or variables listed above are not constant within id.
Perhaps the values are in error. Type reshape error for a list of the
problem observations.
Either that, or the values vary because they should vary, in which case
you must either add the variables to the list of xij variables to be
reshaped, or drop them.
r(9);

```

Here reshape observed that ue was not constant within id and so could not restructure the data so that there were single observations on id. We should have typed
```

. reshape wide inc ue, i(id) j(year)

```

In summary, there are three cases in which reshape will refuse to convert the data:
1. The data are in wide form and \(i\) is not unique.
2. The data are in long form and \(j\) is not unique within \(i\).
3. The data are in long form and an unmentioned variable is not constant within i.
\(>\) Example 5
With some mistakes, reshape will probably convert the data and produce a surprising result. Suppose that we forget to mention that the ve variable varies within id in the following wide data:
```

. use http://www.stata-press.com/data/r14/reshape1
. list

```
\begin{tabular}{l|rrrrrrrr|}
\cline { 2 - 8 } & id & sex & inc80 & inc81 & inc82 & ue80 & ue81 & ue82 \\
\cline { 2 - 8 } & 1. & 1 & 0 & 5000 & 5500 & 6000 & 0 & 1 \\
2. & 2 & 1 & 2000 & 2200 & 3300 & 1 & 0 & 0 \\
3. & 3 & 0 & 3000 & 2000 & 1000 & 0 & 0 & 1 \\
\hline
\end{tabular}
```

. reshape long inc, i(id) j(year)
(note: j = 80 81 82)

```
\begin{tabular}{lrrrr} 
Data & wide & -> & long \\
\hline Number of obs. & 3 & \(->\) & 9 \\
Number of variables & 8 & \(->\) & 7 \\
j variable (3 values) & & & -> & year \\
xij variables: & inc80 inc81 inc82 & -> & inc
\end{tabular}
```

. list, sep(3)

```
\begin{tabular}{l|ccccccc|}
\cline { 2 - 8 } & id & year & sex & inc & ue80 & ue81 & ue82 \\
\hline 1. & 1 & 80 & 0 & 5000 & 0 & 1 & 0 \\
2. & 1 & 81 & 0 & 5500 & 0 & 1 & 0 \\
3. & 1 & 82 & 0 & 6000 & 0 & 1 & 0 \\
\hline 4. & 2 & 80 & 1 & 2000 & 1 & 0 & 0 \\
5. & 2 & 81 & 1 & 2200 & 1 & 0 & 0 \\
6. & 2 & 82 & 1 & 3300 & 1 & 0 & 0 \\
\hline 7. & 3 & 80 & 0 & 3000 & 0 & 0 & 1 \\
8. & 3 & 81 & 0 & 2000 & 0 & 0 & 1 \\
9. & 3 & 82 & 0 & 1000 & 0 & 0 & 1 \\
\hline
\end{tabular}

We did not state that ue varied within \(i\), so the variables ue80, ue81, and ue82 were left as is. reshape did not complain. There is no real problem here because no information has been lost. In fact, this may actually be the result we wanted. Probably, however, we simply forgot to include ue among the \(X_{i j}\) variables.

If you obtain an unexpected result, here is how to undo it:
1. If you typed reshape long ... to produce the result, type reshape wide (without arguments) to undo it.
2. If you typed reshape wide ... to produce the result, type reshape long (without arguments) to undo it.

So, we can type
. reshape wide
to get back to our original, wide-form data and then type the reshape long command that we intended:
```

. reshape long inc ue, i(id) j(year)

```

\section*{reshape long and reshape wide without arguments}

Whenever you type a reshape long or reshape wide command with arguments, reshape remembers it. Thus you might type
. reshape long inc ue, i(id) j(year)
and work with the data like that. You could then type
. reshape wide
to convert the data back to the wide form. Then later you could type
```

. reshape long

```
to convert them back to the long form. If you save the data, you can even continue using reshape wide and reshape long without arguments during a future Stata session.

Be careful. If you create new \(X_{i j}\) variables, you must tell reshape about them by typing the full reshape command, although no real damage will be done if you forget. If you are converting from long to wide form, reshape will catch your error and refuse to make the conversion. If you are converting from wide to long, reshape will convert the data, but the result will be surprising: remember what happened when we forgot to mention the ue variable and ended up with ue80, ue81, and ue82 in our long data; see example 5 . You can reshape long to undo the unwanted change and then try again.

\section*{Missing variables}

When converting data from wide form to long form, reshape does not demand that all the variables exist. Missing variables are treated as variables with missing observations.
> Example 6
Let's drop ue81 from the wide form of the data:
. use http://www.stata-press.com/data/r14/reshape1, clear
. drop ue81
. list
\begin{tabular}{l|rrrrrrr|}
\cline { 2 - 7 } & id & sex & inc80 & inc81 & inc82 & ue80 & ue82 \\
\hline 1. & 1 & 0 & 5000 & 5500 & 6000 & 0 & 0 \\
2. & 2 & 1 & 2000 & 2200 & 3300 & 1 & 0 \\
3. & 3 & 0 & 3000 & 2000 & 1000 & 0 & 1 \\
\hline
\end{tabular}
```

. reshape long inc ue, i(id) j(year)
(note: j = 80 81 82)
(note: ue81 not found)
Data wide \rightarrow long

Number of obs.	3	$->$	9
Number of variables	7	$->$	5
j variable (3 values)			->
xij variables:			year
	inc80 inc81 inc82	->	inc
	ue80 ue81 ue82	->	ue

```
. list, \(\operatorname{sep}(3)\)
\begin{tabular}{l|rrrrr|}
\cline { 2 - 6 } & id & year & sex & inc & ue \\
\cline { 2 - 6 } 1. & 1 & 80 & 0 & 5000 & 0 \\
2. & 1 & 81 & 0 & 5500 &. \\
3. & 1 & 82 & 0 & 6000 & 0 \\
\cline { 2 - 6 } 4. & 2 & 80 & 1 & 2000 & 1 \\
5. & 2 & 81 & 1 & 2200 &. \\
6. & 2 & 82 & 1 & 3300 & 0 \\
\hline 7. & 3 & 80 & 0 & 3000 & 0 \\
8. & 3 & 81 & 0 & 2000 &. \\
9. & 3 & 82 & 0 & 1000 & 1 \\
\hline
\end{tabular}
reshape placed missing values where ue81 values were unavailable. If we reshaped these data back to wide form by typing
```

. reshape wide inc ue, i(id) j(year)

```
the ue81 variable would be created and would contain all missing values.

\section*{Advanced issues with basic syntax: \(i()\)}

The i() option can indicate one i variable (as our past examples have illustrated) or multiple variables. An example of multiple i variables would be hospital ID and patient ID within each hospital.
```

. reshape ... , i(hid pid)

```

Unique pairs of values for hid and pid in the data define the grouping variable for reshape.

\section*{Advanced issues with basic syntax: j()}

The j () option takes a variable name (as our past examples have illustrated) or a variable name and a list of values. When the values are not provided, reshape deduces them from the data. Specifying the values with the j() option is rarely needed.
reshape never makes a mistake when the data are in long form and you type reshape wide. The values are easily obtained by tabulating the \(j\) variable.
reshape can make a mistake when the data are in wide form and you type reshape long if your variables are poorly named. Say that you have the inc80, inc81, and inc82 variables, recording income in each of the indicated years, and you have a variable named inc2, which is not income but indicates when the area was reincorporated. You type
```

. reshape long inc, i(id) j(year)

```
reshape sees the inc2, inc80, inc81, and inc82 variables and decides that there are four groups in which \(\mathrm{j}=2,80,81\), and 82 .

The easiest way to solve the problem is to rename the inc2 variable to something other than "inc" followed by a number; see [D] rename.

You can also keep the name and specify the \(j\) values. To perform the reshape, you can type
```

. reshape long inc, i(id) j(year 80-82)

```
or
```

. reshape long inc, i(id) j(year 80 81 82)

```

You can mix the dash notation for value ranges with individual numbers. reshape would understand 80 82-87 89 91-95 as a valid values specification.

At the other extreme, you can omit the \(j()\) option altogether with reshape long. If you do, the \(j\) variable will be named \(\quad\) j.

\section*{Advanced issues with basic syntax: xij}

When specifying variable names, you may include @ characters to indicate where the numbers go.

\section*{Example 7}

Let's reshape the following data from wide to long form:
```

. use http://www.stata-press.com/data/r14/reshape3, clear

```
. list
\begin{tabular}{l|rrrrrrrr|}
\cline { 2 - 8 } & id & sex & inc80r & inc81r & inc82r & ue80 & ue81 & ue82 \\
\hline 1. & 1 & 0 & 5000 & 5500 & 6000 & 0 & 1 & 0 \\
2. & 2 & 1 & 2000 & 2200 & 3300 & 1 & 0 & 0 \\
3. & 3 & 0 & 3000 & 2000 & 1000 & 0 & 0 & 1 \\
\hline
\end{tabular}
- reshape long inc@r ue, i(id) j(year)
(note: \(\mathrm{j}=8081\) 82)

. list, \(\operatorname{sep}(3)\)
\begin{tabular}{l|rrrrr|}
\cline { 2 - 6 } & id & year & sex & incr & ue \\
\hline 1. & 1 & 80 & 0 & 5000 & 0 \\
2. & 1 & 81 & 0 & 5500 & 1 \\
3. & 1 & 82 & 0 & 6000 & 0 \\
\hline 4. & 2 & 80 & 1 & 2000 & 1 \\
5. & 2 & 81 & 1 & 2200 & 0 \\
6. & 2 & 82 & 1 & 3300 & 0 \\
\hline 7. & 3 & 80 & 0 & 3000 & 0 \\
8. & 3 & 81 & 0 & 2000 & 0 \\
9. & 3 & 82 & 0 & 1000 & 1 \\
\hline
\end{tabular}

At most one @ character may appear in each name. If no @ character appears, results are as if the @ character appeared at the end of the name. So, the equivalent reshape command to the one above is
. reshape long inc@r ue@, i(id) j(year)
inc@r specifies variables named inc\#r in the wide form and incr in the long form. The © notation may similarly be used for converting data from long to wide format:
```

. reshape wide inc@r ue, i(id) j(year)

```

\section*{Advanced issues with basic syntax: String identifiers for j()}

The string option allows j to take on string values.

\section*{\(>\) Example 8}

Consider the following wide data on husbands and wives. In these data, incm is the income of the man and incf is the income of the woman.
. use http://www.stata-press.com/data/r14/reshape4, clear
. list
\begin{tabular}{|crcc|}
\hline id & kids & incm & incf \\
\hline 1 & 0 & 5000 & 5500 \\
2 & 1 & 2000 & 2200 \\
3 & 2 & 3000 & 2000 \\
\hline
\end{tabular}

These data can be reshaped into separate observations for males and females by typing
\begin{tabular}{|c|c|c|c|}
\hline Data & wide & -> & long \\
\hline Number of obs. & 3 & -> & 6 \\
\hline Number of variables & 4 & -> & 4 \\
\hline j variable (2 values) & & -> & sex \\
\hline \multicolumn{4}{|l|}{xij variables:} \\
\hline & incf incm & -> & inc \\
\hline
\end{tabular}

The string option specifies that \(j\) take on nonnumeric values. The result is . list, sep(2)
\begin{tabular}{|c|c|c|c|c|}
\hline & id & sex & kids & inc \\
\hline 1. & 1 & f & 0 & 5500 \\
\hline 2. & 1 & m & 0 & 5000 \\
\hline 3. & 2 & f & 1 & 2200 \\
\hline 4. & 2 & m & 1 & 2000 \\
\hline 5. & 3 & f & 2 & 2000 \\
\hline 6. & 3 & m & 2 & 3000 \\
\hline
\end{tabular}
sex will be a string variable. Similarly, these data can be converted from long to wide form by typing
```

. reshape wide inc, i(id) j(sex) string

```

Strings are not limited to being single characters or even having the same length. You can specify the location of the string identifier in the variable name by using the @ notation.

\section*{> Example 9}

Suppose that our variables are named id, kids, incmale, and incfem.
```

. use http://www.stata-press.com/data/r14/reshapexp2, clear

```
. list
\begin{tabular}{l|rrrr|}
\cline { 2 - 4 } & id & kids & incmale & incfem \\
\cline { 2 - 4 } 1. & 1 & 0 & 5000 & 5500 \\
2. & 2 & 1 & 2000 & 2200 \\
3. & 3 & 2 & 3000 & 2000 \\
\hline
\end{tabular}
. reshape long inc, i(id) \(j(s e x)\) string
(note: \(j=\) fem male)
\begin{tabular}{lrrr} 
Data & wide & -> & long \\
\hline Number of obs. & 3 & \(->\) & 6 \\
Number of variables & 4 & \(->\) & 4 \\
j variable (2 values) & & \(->\) & sex \\
xij variables: & incfem incmale & -> & inc
\end{tabular}
. list, sep(2)
\begin{tabular}{l|rrrr|}
\cline { 2 - 5 } & id & sex & kids & inc \\
\cline { 2 - 5 } \begin{tabular}{l} 
1. \\
2.
\end{tabular} & 1 & fem & 0 & 5500 \\
3. & male & 0 & 5000 \\
\cline { 2 - 5 } 4. & 2 & fem & 1 & 2200 \\
2 & male & 1 & 2000 \\
\cline { 2 - 5 } & 3 & fem & 2 & 2000 \\
3 & male & 2 & 3000 \\
\hline
\end{tabular}

If the wide data had variables named minc and finc, the appropriate reshape command would have been
```

. reshape long @inc, i(id) j(sex) string

```

The resulting variable in the long form would be named inc.
We can also place strings in the middle of the variable names. If the variables were named incMome and incFome, the reshape command would be
```

. reshape long inc@ome, i(id) j(sex) string

```

Be careful with string identifiers because it is easy to be surprised by the result. Say that we have wide data having variables named incm, incf, uem, uef, agem, and agef. To make the data long, we might type
```

. reshape long inc ue age, i(id) j(sex) string

```

Along with these variables, we also have the variable agenda. reshape will decide that the sexes are \(m\), \(f\), and nda. This would not happen without the string option if the variables were named inc0, inc1, ue0, ue1, age0, and age1, even with the agenda variable present in the data.

\section*{Advanced issues with basic syntax: Second-level nesting}

Sometimes the data may have more than one possible \(j\) variable for reshaping. Suppose that your data have both a year variable and a sex variable. One logical observation in the data might be represented in any of the following four forms:
```

. list in 1/4 // The long-long form

```
\begin{tabular}{l|rrrr|}
\cline { 2 - 4 } & hid & year & minc & finc \\
\hline 1. & 1 & 90 & 4500 & 3200 \\
2. & 91 & 4600 & 4700 \\
\hline
\end{tabular}
. list in \(1 / 2\) // The wide-year long-sex form
1.
\begin{tabular}{|rrrr|}
\hline hid & sex & inc90 & inc91 \\
\hline 1 & f & 3200 & 4700 \\
1 & m & 4500 & 4600 \\
\hline
\end{tabular}
. list in 1 // The wide-wide form
1.
\begin{tabular}{|rrrrr|}
\hline hid & minc90 & minc91 & finc90 & finc91 \\
\hline 1 & 4500 & 4600 & 3200 & 4700 \\
\hline
\end{tabular}
reshape can convert any of these forms to any other. Converting data from the long-long form to the wide-wide form (or any of the other forms) takes two reshape commands. Here is how we would do it:
\begin{tabular}{lllll}
\multicolumn{2}{c}{ From } & & \multicolumn{2}{c}{ To } \\
year & sex & & year & sex \\
\cline { 5 - 5 } & & & \\
\hline long & long & & long & wide \\
long & wide & & long & long \\
long & long & & wide & long \\
wide & long & & long & long \\
long & wide & & wide & wide \\
wide & wide & & long & wide \\
wide & long & & wide & wide \\
wide & wide & & wide & long
\end{tabular}
```

Command
reshape wide @inc, i(hid year) j(sex) string
reshape long @inc, i(hid year) j(sex) string
reshape wide inc, i(hid sex) j(year)
reshape long inc, i(hid sex) j(year)
reshape wide minc finc, i(hid) j(year)
reshape long minc finc, i(hid) j(year)
reshape wide @inc90 @inc91, i(hid) j(sex) string
reshape long @inc90 @inc91, i(hid) j(sex) string

```

\section*{Description of advanced syntax}

The advanced syntax is simply a different way of specifying the reshape command, and it has one seldom-used feature that provides extra control. Rather than typing one reshape command to describe the data and perform the conversion, such as
```

. reshape long inc, i(id) j(year)

```
you type a sequence of reshape commands. The initial commands describe the data, and the last command performs the conversion:
```

. reshape i id
. reshape j year
. reshape xij inc
. reshape long

```
reshape \(i\) corresponds to \(i()\) in the basic syntax.
reshape j corresponds to j() in the basic syntax.
reshape xij corresponds to the variables specified in the basic syntax. reshape xij also accepts the atwl () option for use when @ characters are specified in the fvarnames. atwl stands for at-whenlong. When you specify names such as inc@r or ue@, in the long form the names become incr and ue, and the @ character is ignored. atwl() allows you to change @ into whatever you specify. For example, if you specify atwl(X), the long-form names become incXr and ueX.

There is also one more specification, which has no counterpart in the basic syntax:
```

. reshape xi varlist

```

In the basic syntax, Stata assumes that all unspecified variables are constant within i. The advanced syntax works the same way, unless you specify the reshape xi command, which names the constant-within-i variables. If you specify reshape xi, any variables that you do not explicitly specify are dropped from the data during the conversion.

As a practical matter, you should explicitly drop the unwanted variables before conversion. For instance, suppose that the data have variables inc80, inc81, inc82, sex, age, and age2 and that you no longer want the age 2 variable. You could specify
```

. reshape xi sex age

```
or
```

. drop age2

```
and leave reshape xi unspecified.
reshape xi does have one minor advantage. It saves reshape the work of determining which variables are unspecified. This saves a relatively small amount of computer time.

Another advanced-syntax feature is reshape query, which is equivalent to typing reshape by itself. reshape query reports which reshape parameters have been defined. reshape i, reshape j, reshape xij, and reshape xi specifications may be given in any order and may be repeated to change or correct what has been specified.

Finally, reshape clear clears the definitions. reshape definitions are stored with the dataset when you save it. reshape clear allows you to erase these definitions.

The basic syntax of reshape is implemented in terms of the advanced syntax, so you can mix basic and advanced syntaxes.

\section*{Stored results}
reshape stores the following characteristics with the data (see [P] char):
```

_dta[ReS_Xi]
_dta[ReS_atwl]

```
_dta[ReS_i] i variable names
_dta[ReS_j] \(j\) variable name
_dta[ReS_jv] \(j\) values, if specified
_dta[ReS_Xij] \(\quad X_{i j}\) variable names
_dta[ReS_Xij_n] number of \(X_{i j}\) variables
_dta[ReS_Xij_long\#] name of \#th \(X_{i j}\) variable in long form
_dta[ReS_Xij_wide\#] name of \#th \(X_{i j}\) variable in wide form
_dta[ReS_str] \(\quad 1\) if option string specified; 0 otherwise

\section*{Acknowledgment}

This version of reshape was based in part on the work of Jeroen Weesie (1997) of the Department of Sociology at Utrecht University, The Netherlands.

\section*{References}

Baum, C. F., and N. J. Cox. 2007. Stata tip 45: Getting those data into shape. Stata Journal 7: 268-271.
Gould, W. W. 1997. stata48: Updated reshape. Stata Technical Bulletin 39: 4-16. Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 5-20. College Station, TX: Stata Press.
Jeanty, P. W. 2010. Using the World Development Indicators database for statistical analysis in Stata. Stata Journal 10: 30-45.

Mitchell, M. N. 2010. Data Management Using Stata: A Practical Handbook. College Station, TX: Stata Press.
Weesie, J. 1997. dm48: An enhancement of reshape. Stata Technical Bulletin 38: 2-4. Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 40-43. College Station, TX: Stata Press.
——. 1998. dm58: A package for the analysis of husband-wife data. Stata Technical Bulletin 43: 9-13. Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 13-20. College Station, TX: Stata Press.

\footnotetext{
Also see
[D] save - Save Stata dataset
[D] stack - Stack data
[D] xpose - Interchange observations and variables
[P] char - Characteristics
}

\section*{Title}
rmdir - Remove directory

Description Quick start Syntax Remarks and examples Also see

\section*{Description}
rmdir removes an empty directory (folder).

\section*{Quick start}

Remove empty myfolder from the current working directory rmdir myfolder

Remove myfolder from C: \mydir using Stata for Windows rmdir c:\mydir \(\backslash m y f o l d e r\)

Remove myfolder from \(\sim /\) mydir using Stata for Mac or Unix rmdir ~/mydir/myfolder

Remove my folder from C: \my dir using Stata for Windows rmdir "c:\my dir\my folder"

\section*{Syntax}
rmdir directory_name
Double quotes may be used to enclose the directory name, and the quotes must be used if the directory name contains embedded blanks.

\section*{Remarks and examples}

Examples:
Windows
. rmdir myproj
. rmdir c:\projects\myproj
. rmdir "c:\My Projects\Project 1"
Mac and Unix
. rmdir myproj
. rmdir ~/projects/myproj

\section*{Also see}
[D] cd - Change directory
[D] copy - Copy file from disk or URL
[D] dir - Display filenames
[D] erase - Erase a disk file
[D] mkdir - Create directory
[D] shell - Temporarily invoke operating system
[D] type - Display contents of a file
[U] 11.6 Filenaming conventions

\section*{Title}
sample - Draw random sample
\begin{tabular}{llll} 
Description & Quick start & Menu & Syntax \\
Options & Remarks and examples & References & Also see
\end{tabular}

\section*{Description}
sample draws random samples of the data in memory. "Sampling" here is defined as drawing observations without replacement; see \([R]\) bsample for sampling with replacement.

The size of the sample to be drawn can be specified as a percentage or as a count:
- sample without the count option draws a \#\% pseudorandom sample of the data in memory, thus discarding \((100-\#) \%\) of the observations.
- sample with the count option draws a \#-observation pseudorandom sample of the data in memory, thus discarding \(\_\mathrm{N}-\) \# observations. \# can be larger than _N, in which case all observations are kept.
In either case, observations not meeting the optional if and in criteria are kept (sampled at \(100 \%\) ).
If you are interested in reproducing results, you must first set the random-number seed; see \([R]\) set seed.

\section*{Quick start}

Draw \(10 \%\) pseudorandom sample without replacement from data in memory sample 10

As above, but perform sampling within strata identified by svar
```

sample 10, by(svar)

```

Sample 100 observations from data in memory
sample 100, count
As above, but only sample observations where catvar equals 5
```

sample 100 if catvar==5, count

```

\section*{Menu}

Statistics \(>\) Resampling \(>\) Draw random sample

\section*{Syntax}
```

sample \# [if] [in] [, count by (groupvars)]

```
by is allowed; see [D] by.

\section*{Options}
count specifies that \# in sample \# be interpreted as an observation count rather than as a percentage. Typing sample 5 without the count option means that a \(5 \%\) sample be drawn; typing sample 5 , count, however, would draw a sample of 5 observations.
Specifying \# as greater than the number of observations in the dataset is not considered an error.
by (groupvars) specifies that a \#\% sample be drawn within each set of values of groupvars, thus maintaining the proportion of each group.
count may be combined with by (). For example, typing sample 50, count by (sex) would draw a sample of size 50 for men and 50 for women.
Specifying by varlist: sample \# is equivalent to specifying sample \#, by (varlist); use whichever syntax you prefer.

\section*{Remarks and examples}

\section*{> Example 1}

We have NLSY data on young women aged 14-26 years in 1968 and wish to draw a \(10 \%\) sample of the data in memory.
```

. use http://www.stata-press.com/data/r14/nlswork
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)
. describe, short
Contains data from http://www.stata-press.com/data/r14/nlswork.dta
obs: 28,534 National Longitudinal Survey.
Young Women 14-26 years of age
in 1968
vars: 21 27 Nov 2014 08:14
size: 941,622
Sorted by: idcode year
. sample 10
(25,681 observations deleted)
. describe, short
Contains data from http://www.stata-press.com/data/r14/nlswork.dta
obs: 2,853 National Longitudinal Survey.
Young Women 14-26 years of age
in 1968
vars: 21 27 Nov 2014 08:14
size: 94,149
Sorted by:
Note: Dataset has changed since last saved.

```

Our original dataset had 28,534 observations. The sample-10 dataset has 2,853 observations, which is the nearest number to \(0.10 \times 28534\).

\section*{> Example 2}

Among the variables in our data is race. By typing label list, we see that race \(=1\) denotes whites, race \(=2\) denotes blacks, and race \(=3\) denotes other races. We want to keep \(100 \%\) of the nonwhite women but only \(10 \%\) of the white women.
```

. use http://www.stata-press.com/data/r14/nlswork, clear
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)
. tab race

race	Freq.	Percent	Cum.
white	20,180	70.72	70.72
black	8,051	28.22	98.94
other	303	1.06	100.00
Total	28,534	100.00	

. sample 10 if race == 1
(18,162 observations deleted)
. describe, short
Contains data from http://www.stata-press.com/data/r14/nlswork.dta
obs: 10,372 National Longitudinal Survey.
Young Women 14-26 years of age
in 1968
vars: 21 27 Nov 2014 08:14
size: 342,276
Sorted by:
Note: Dataset has changed since last saved.
. display . 10*20180 + 8051 + 303
10372

```

\section*{> Example 3}

Now let's suppose that we want to keep \(10 \%\) of each of the three categories of race.
```

. use http://www.stata-press.com/data/r14/nlswork, clear
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)
. sample 10, by(race)
(25,681 observations deleted)
. tab race

race	Freq.	Percent	Cum.
white	2,018	70.73	70.73
black	805	28.22	98.95
other	30	1.05	100.00
Total	2,853	100.00	

```

This differs from simply typing sample 10 in that with by (), sample holds constant the percentages of white, black, and other women.

\section*{\(\square\) Technical note}

We have a large dataset on disk containing 125,235 observations. We wish to draw a \(10 \%\) sample of this dataset without loading the entire dataset (perhaps because the dataset will not fit in memory). sample will not solve this problem - the dataset must be loaded first—but it is rather easy to solve it ourselves. Say that bigdata.dct contains the dictionary for this dataset; see [D] import. One solution is to type
```

. infile using bigdata if runiform()<=.1
dictionary {
etc.
}
(12,580 observations read)

```

The if qualifier on the end of infile drew uniformly distributed random numbers over the interval 0 and 1 and kept each observation if the random number was less than or equal to 0.1 . This, however, did not draw an exact \(10 \%\) sample - the sample was expected to contain only \(10 \%\) of the observations, and here we obtained just more than \(10 \%\). This is probably a reasonable solution.

If the sample must contain precisely 12,524 observations, however, after getting too many observations, we could type
```

. generate u=runiform()
. sort u
. keep in 1/12524
(56 observations deleted)

```

That is, we put the resulting sample in random order and keep the first 12,524 observations. Now our only problem is making sure that, at the first step, we have more than 12,524 observations. Here we were lucky, but half the time we will not be so lucky - after typing infile... if runiform() <=.1, we will have less than a \(10 \%\) sample. The solution, of course, is to draw more than a \(10 \%\) sample initially and then cut it back to \(10 \%\).

How much more than \(10 \%\) do we need? That depends on the number of records in the original dataset, which in our example is 125,235 .

A little experimentation with bitesti (see [R] bitest) provides the answer:
```

. bitesti 125235 12524 . }10

```
\begin{tabular}{rcccc}
N & Observed k & Expected k & Assumed p & Observed p \\
\hline 125235 & 12524 & 12773.97 & 0.10200 & 0.10000 \\
\(\operatorname{Pr}(\mathrm{k}>=12524)\) & \(=0.990466\) & (one-sided test) \\
\(\operatorname{Pr}(\mathrm{k}<=12524)\) & \(=0.009777\) & (one-sided test) \\
\(\operatorname{Pr}(\mathrm{k}\langle=12524\) or \(\mathrm{k}>=\) & \(13025)\) & \(=0.019584\) & (two-sided test)
\end{tabular}

Initially drawing a \(10.2 \%\) sample will yield a sample larger than \(10 \% 99\) times of 100 . If we draw a \(10.4 \%\) sample, we are virtually assured of having enough observations (type bitesti 12523512524 .104 for yourself).

\section*{References}

Cox, N. J. 2001. dm86: Sampling without replacement: Absolute sample sizes and keeping all observations. Stata Technical Bulletin 59: 8-9. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 38-39. College Station, TX: Stata Press.
. 2005. Software Updates: Sampling without replacement: Absolute sample sizes and keeping all observations. Stata Journal 5: 139.

Gould, W. W. 2012a. Using Stata's random-number generators, part 2: Drawing without replacement. The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/.
__. 2012b. Using Stata's random-number generators, part 3: Drawing with replacement. The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-with-replacement/.
Weesie, J. 1997. dm46: Enhancement to the sample command. Stata Technical Bulletin 37: 6-7. Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 37-38. College Station, TX: Stata Press.

\section*{Also see}
[R] bsample - Sampling with replacement

\section*{Title}
save - Save Stata dataset
\begin{tabular}{lll} 
Description & Quick start & Menu \\
Syntax & Options for save & Options for saveold \\
Remarks and examples & Also see &
\end{tabular}

\section*{Description}
save stores the dataset currently in memory on disk under the name filename. If filename is not specified, the name under which the data were last known to Stata (c (filename)) is used. If filename is specified without an extension, . dta is used. If your filename contains embedded spaces, remember to enclose it in double quotes.
saveold saves the dataset currently in memory on disk under the name filename in previous .dta formats, namely, those for Stata 13, 12, or 11. If you are using Stata 14 and want to save a file so that it may be read by someone using an older version of Stata, use the saveold command.

\section*{Quick start}

Save data in memory to mydata.dta in the current directory save mydata

As above, but overwrite mydata.dta if it exists
```

save mydata, replace

```

Also save value labels that have not been applied to variables save mydata, replace orphans

Save data in Stata 13 format
saveold mydata

\section*{Menu}

File \(>\) Save as...

\section*{Syntax}

Save data in memory to file
save [filename] [, save_options]

Save data in memory to file in Stata 13, 12, or 11 format
saveold filename [, saveold_options]
save_options Description
nolabel omit value labels from the saved dataset
replace overwrite existing dataset
all save e (sample) with the dataset; programmer's option
orphans save all value labels
emptyok
save dataset even if zero observations and zero variables
saveold_options Description
version(\#)
nolabel
specify version \(11 \leq \# \leq 13\); default is version(13), meaning Stata 13 format
replace
omit value labels from the saved dataset
all overwrite existing dataset save e(sample) with the dataset; programmer's option

\section*{Options for save}
nolabel omits value labels from the saved dataset. The associations between variables and value-label names, however, are saved along with the dataset label and the variable labels.
replace permits save to overwrite an existing dataset.
all is for use by programmers. If specified, e (sample) will be saved with the dataset. You could run a regression; save mydata, all; drop _all; use mydata; and predict yhat if e(sample).
orphans saves all value labels, including those not attached to any variable.
emptyok is a programmer's option. It specifies that the dataset be saved, even if it contains zero observations and zero variables. If emptyok is not specified and the dataset is empty, save responds with the message "no variables defined".

\section*{Options for saveold}
version(\#) specifies which previous .dta file format is to be used. \# may be 13,12 or 11 . The default is version(13), meaning Stata 13 format. To save datasets in the modern, Stata 14 format, use the save command, not saveold.
nolabel omits value labels from the saved dataset. The associations between variables and value-label names, however, are saved along with the dataset label and the variable labels.
replace permits saveold to overwrite an existing dataset.
all is for use by programmers. If specified, e (sample) will be saved with the dataset. You could run a regression; save mydata, all; drop _all; use mydata; and predict yhat if e(sample).

\section*{Remarks and examples}

Stata keeps the data on which you are currently working in your computer's memory. You put the data there in the first place; see [U] 21 Entering and importing data. Thereafter, you can save the dataset on disk so that you can use it easily in the future. Stata stores your data on disk in a compressed format that only Stata understands. This does not mean, however, that you are locked into using only Stata. Any time you wish, you can export the data to a format other software packages understand; see [D] export.

Stata goes to a lot of trouble to keep you from accidentally losing your data. When you attempt to leave Stata by typing exit, Stata checks that your data have been safely stored on disk. If not, Stata refuses to let you leave. (You can tell Stata that you want to leave anyway by typing exit, clear.) Similarly, when you save your data in a disk file, Stata ensures that the disk file does not already exist. If it does exist, Stata refuses to save it. You can use the replace option to tell Stata that it is okay to overwrite an existing file.
\(>\) Example 1
We have entered data into Stata for the first time. We have the following data:
\begin{tabular}{|c|c|c|c|c|}
\hline ```
Contains data
    obs:
    vars:
    size:
``` & \[
\begin{array}{r}
39 \\
5 \\
780
\end{array}
\] & & & \\
\hline variable name & storage type & \begin{tabular}{l}
display \\
format
\end{tabular} & \begin{tabular}{l}
value \\
label
\end{tabular} & variable label \\
\hline acc_rate & float & \(\% 9.0 \mathrm{~g}\) & & Accident rate \\
\hline spdlimit & float & \(\% 9.0 \mathrm{~g}\) & & Speed limit \\
\hline acc_pts & float & \%9.0g & & Access points per mile \\
\hline rate & float & \%9.0g & rcat & Accident rate per million vehicle miles \\
\hline spdcat & float & \%9.0g & scat & Speed limit category \\
\hline
\end{tabular}

Sorted by:
Note: Dataset has changed since last saved.
We have a dataset containing 39 observations on five variables, and, evidently, we have gone to a lot of trouble to prepare this dataset. We have used the label data command to label the data Minnesota Highway Data, the label variable command to label all the variables, and the label define and label values commands to attach value labels to the last two variables. (See [U] 12.6.3 Value labels for information about doing this.)

At the end of the describe, Stata notes that the "dataset has changed since last saved". This is Stata's way of gently reminding us that these data need to be saved. Let's save our data:
```

. save hiway
file hiway.dta saved

```

We type save hiway, and Stata stores the data in a file named hiway.dta. (Stata automatically added the .dta suffix.) Now when we describe our data, we no longer get the warning that our dataset has not been saved; instead, we are told the name of the file in which the data are saved:
\begin{tabular}{lrll}
C describe & & \\
Contains data from hiway.dta \\
obs: & 39 & & \\
vars: & 5 & & \begin{tabular}{l}
Minnesota Highway Data, 1973 \\
size:
\end{tabular} \\
\hline & 780 & & Jan 2014 11:42
\end{tabular}

\section*{Sorted by:}

Just to prove to you that the data have really been saved, let's eliminate the copy of the data in memory by typing drop _all:
```

. drop _all
. describe
Contains data
obs: 0
vars: 0
size: 0
Sorted by:

```

We now have no data in memory. Because we saved our dataset, we can retrieve it by typing use hiway:
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{(Minnesota Highway Data, 1973) . describe} \\
\hline \multicolumn{5}{|l|}{Contains data from hiway.dta} \\
\hline obs: & 39 & & & Minnesota Highway Data, 1973 \\
\hline vars: & 5 & & & 18 Jan 2014 11:42 \\
\hline size: & 780 & & & \\
\hline & storage & display & value & \\
\hline variable name & type & format & label & variable label \\
\hline acc_rate & float & \% 9.0 g & & Accident rate \\
\hline spdlimit & float & \%9.0g & & Speed limit \\
\hline acc_pts & float & \%9.0g & & Access points per mile \\
\hline rate & float & \%9.0g & rcat & Accident rate per million vehicle miles \\
\hline spdcat & float & \%9.0g & scat & Speed limit category \\
\hline
\end{tabular}

\footnotetext{
Sorted by:
}

\section*{Example 2}

Continuing with our previous example, we have saved our data in the file hiway.dta. We continue to work with our data and discover an error; we made a mistake when we typed one of the values for the spdlimit variable:
. list in \(1 / 3\)
\begin{tabular}{l|rrrrr|}
\cline { 2 - 6 } & acc_rate & spdlimit & acc_pts & rate & spdcat \\
\hline 1. & 1.61 & 50 & 2.2 & Below 4 & Above 60 \\
2. & 1.81 & 60 & 6.8 & Below 4 & 55 to 60 \\
3. & 1.84 & 55 & 14 & Below 4 & 55 to 60 \\
\hline
\end{tabular}

In the first observation, the spdlimit variable is 50 , whereas the spdcat variable indicates that the speed limit is more than 60 miles per hour. We check our original copy of the data and discover that the spdlimit variable ought to be 70 . We can fix it with the replace command:
```

. replace spdlimit=70 in 1
(1 real change made)

```

If we were to describe our data now, Stata would warn us that our data have changed since they were last saved:
```

. describe
Contains data from hiway.dta
obs: 39 Minnesota Highway Data, 1973
vars: 5 18 Jan 2014 11:42
size: 780

```
\begin{tabular}{lllll}
variable name & \begin{tabular}{c}
storage \\
type
\end{tabular} & \begin{tabular}{l}
display \\
format
\end{tabular} & \begin{tabular}{c}
value \\
label
\end{tabular} & variable label \\
\hline acc_rate & float & \(\% 9.0 \mathrm{~g}\) & & Accident rate \\
spdlimit & float & \(\% 9.0 \mathrm{~g}\) & & \begin{tabular}{l}
Speed limit
\end{tabular} \\
acc_pts & float & \(\% 9.0 \mathrm{~g}\) & & Access points per mile \\
rate & float & \(\% 9.0 \mathrm{~g}\) & rcat & \begin{tabular}{c}
Accident rate per million vehicle \\
miles
\end{tabular} \\
spdcat & float & \(\% 9.0 \mathrm{~g}\) & scat & \begin{tabular}{l}
Speed limit category
\end{tabular} \\
\hline
\end{tabular}
Sorted by:
 Note: Dataset has changed since last saved.

We take our cue and attempt to save the data again:
```

. save hiway
file hiway.dta already exists
r(602);

```

Stata refuses to honor our request, telling us instead that "file hiway.dta already exists". Stata will not let us accidentally overwrite an existing dataset. To replace the data, we must do so explicitly by typing save hiway, replace. If we want to save the file under the same name as it was last known to Stata, we can omit the filename:
```

. save, replace
file hiway.dta saved

```

Now our data are saved.

\section*{Also see}
[D] compress - Compress data in memory
[D] export - Overview of exporting data from Stata
[D] import - Overview of importing data into Stata
[D] use - Load Stata dataset
[P] file formats .dta - Description of .dta file format
[U] 11.6 Filenaming conventions

\section*{Title}
separate - Create separate variables
\begin{tabular}{llll}
Description & Quick start & Menu & Syntax \\
Options & Remarks and examples & Stored results & Acknowledgment \\
Reference & Also see & &
\end{tabular}

\section*{Description}
separate creates new variables containing values from varname.

\section*{Quick start}

Create one variable for each level of catvar containing value of v1 or missing separate v1, by (catvar)

As above, but treat missing values of catvar as a valid category
separate v1, by(catvar) missing
Create v10 as the value of v1 when \(\mathrm{v} 2 \geq 20\) or missing and missing otherwise and v11 as the value of v1 when \(\mathrm{v} 2<20\) and missing otherwise
separate v 1, by (v2 < 20)
As above, but name new variables newv1 and newv2
separate v1, by(v2 < 20) generate(newv) sequential

\section*{Menu}

Data \(>\) Create or change data \(>\) Other variable-transformation commands \(>\) Create separate variables

\section*{Syntax}
separate varname [if] [in], by (groupvar|exp) [options]
options Description
Main
* by (groupvar) categorize observations into groups defined by groupvar
* by (exp) categorize observations into two groups defined by exp

Options
generate (stubname)
sequential
missing
shortlabel
name new variables by suffixing values to stubname; default is to use varname as prefix
use as name suffix categories numbered sequentially from 1
create variables for the missing values
create shorter variable labels

\footnotetext{
* Either by (groupvar) or by (exp) must be specified.
}

\section*{Options}
\(\qquad\) Main
by (groupvar \(\mid \exp\)) specifies one variable defining the categories or a logical expression that categorizes the observations into two groups.
If by (groupvar) is specified, groupvar may be a numeric or string variable taking on any values. If by (exp) is specified, the expression must evaluate to true (1), false (0), or missing. by () is required.

\section*{Options}
generate (stubname) specifies how the new variables are to be named. If generate() is not specified, separate uses the name of the original variable, shortening it if necessary. If generate() is specified, separate uses stubname. If any of the resulting names is too long when the values are suffixed, it is not shortened and an error message is issued.
sequential specifies that categories be numbered sequentially from 1. By default, separate uses the actual values recorded in the original variable, if possible, and sequential numbers otherwise. separate can use the original values if they are all nonnegative integers smaller than 10,000 .
missing also creates a variable for the category missing if missing occurs (groupvar takes on the value missing or exp evaluates to missing). The resulting variable is named in the usual manner but with an appended underscore, for example, \(\mathrm{bp}_{-}\). By default, separate creates no such variable. The contents of the other variables are unaffected by whether missing is specified.
shortlabel creates a variable label that is shorter than the default. By default, when separate generates the new variable labels, it includes the name of the variable being separated. shortlabel specifies that the variable name be omitted from the new variable labels.

\section*{Remarks and examples}

\section*{\(>\) Example 1}

We have data on the miles per gallon (mpg) and country of manufacture of 74 automobiles. We want to compare the distributions of mpg for domestic and foreign automobiles by plotting the quantiles of the two distributions (see \([R]\) diagnostic plots).
```

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

```
. separate mpg, by(foreign)
\begin{tabular}{lclll}
variable name & \begin{tabular}{c}
storage \\
type
\end{tabular} & \begin{tabular}{l}
display \\
format
\end{tabular} & \begin{tabular}{c}
value \\
label
\end{tabular} & variable label \\
\hline mpg0 & byte & \(\% 8.0 \mathrm{~g}\) & & mpg, foreign \(==\) Domestic \\
mpg1 & byte & \(\% 8.0 \mathrm{~g}\) & & mpg, foreign \(==\) Foreign
\end{tabular}
\begin{tabular}{c|cccc|}
\cline { 2 - 5 } & mpg & mpg0 & mpg1 & foreign \\
\cline { 2 - 5 } 1. & 22 & 22 & \(\cdot\) & Domestic \\
2. & 17 & 17 & \(\cdot\) & Domestic \\
3. & 22 & 22 & \(\cdot\) & Domestic
\end{tabular}
qqplot mpg0 mpg1

In our auto dataset, the foreign cars have better gas mileage.

\section*{Stored results}
separate stores the following in \(r()\) :
Macros
\(r\) (varlist) names of the newly created variables

\section*{Acknowledgment}
separate was originally written by Nicholas J. Cox of the Department of Geography at Durham University, UK, and coeditor of the Stata Journal and author of Speaking Stata Graphics.

\section*{Reference}

Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press.

\section*{Also see}
[R] tabulate oneway - One-way table of frequencies
[R] tabulate twoway - Two-way table of frequencies
[R] tabulate, summarize() - One- and two-way tables of summary statistics

\section*{Title}
shell - Temporarily invoke operating system
Description Syntax Remarks and examples Also see

\section*{Description}
shell (synonym: "!") allows you to send commands to your operating system or to enter your operating system for interactive use. Stata will wait for the shell to close or the operating_system_command to complete before continuing.
winexec allows you to start other programs (such as browsers) from Stata's command line. Stata will continue without waiting for the program to complete.
xshell (Stata for Mac and Unix(GUI) only) brings up an xterm window in which the command is to be executed.

\section*{Syntax}
\(\{\) shell \(\mid!\}[\) operating_system_command \(]\)
winexec program_name [program_args]
\(\{\) xshell |!! \}[operating_system_command \(]\)

Command availability:
\begin{tabular}{lcccc}
& \begin{tabular}{c}
Stata for \(\ldots\) \\
Windows
\end{tabular} & Mac & Unix(GUI) & Unix(console) \\
\hline shemmand & X & X & X & X \\
winexec & X & X & X & - \\
xshell & - & X & X & - \\
\hline
\end{tabular}

\section*{Remarks and examples}

Remarks are presented under the following headings:

\author{
Stata for Windows \\ Stata for Mac \\ Stata for Unix(GUI) \\ Stata for Unix(console)
}

\section*{Stata for Windows}
shell, without arguments, preserves your session and invokes the operating system. The Command window will disappear, and a DOS window will appear, indicating that you may not continue in Stata until you exit the DOS shell. To reenter Stata, type exit at your operating system's prompt. Your Stata session is reestablished just as if you had never left.

Say that you are using Stata for Windows and you suddenly realize you need to do two things. You need to enter your operating system for a few minutes. Rather than exiting Stata, doing what you have to do, and then restarting Stata, you type shell in the Command window. A DOS window appears:
```

C:\data>

```

You can now do whatever you need to do in DOS, and Stata will wait until you exit the DOS window before continuing.

Experienced Stata users seldom type out the word shell. They type "!". Also you do not have to enter your operating system, issue a command, and then exit back to Stata. If you want to execute one command, you can type the command right after the word shell or the exclamation point:
```

. !rename try15.dta final.dta

```

If you do this, the DOS window will open and close as the command is executed.
Stata for Windows users can also use the winexec command, which allows you to launch any Windows application from within Stata. You can think of it as a shortcut for clicking on the Windows Start button, choosing Run..., and typing a command.

Assume that you are working in Stata and decide that you want to run a text editor:
```

. winexec notepad
( The Windows application Notepad will start and run at the same time as Stata )

```

You could even pass a filename to your text editor:
```

. winexec notepad c:\docs\myfile.txt

```

You may need to specify a complete path to the executable that you wish to launch:
```

. winexec c:\windows\notepad c:\docs\myfile.txt

```

The important difference between winexec and shell is that Stata does not wait for whatever program winexec launches to complete before continuing. Stata will wait for the program shell launches to complete before performing any further commands.

\section*{Stata for Mac}
shell, with arguments, invokes your operating system, executes one command, and redirects the output to the Results window. The command must complete before you can enter another command in the Command window.

Say that you are using Stata for Mac and suddenly realize that there are two things you have to do. You need to switch to the Finder or enter commands from a terminal for a few minutes. Rather than exiting Stata, doing what you have to do, and then switching back to Stata, you type shell and the command in the Command window to execute one command. You then repeat this step for each command that you want to execute from the shell.

Experienced Stata users seldom type out the word shell. They type "!".
```

. !mv try15.dta final.dta

```

Be careful not to execute commands, such as vi, that require interaction from you. Because all output is redirected to Stata's Results window, you will not be able to interact with the command from Stata. This will effectively lock up Stata because the command will never complete.

When you type xshell vi myfile.do, Stata invokes an xterm window (which in turn invokes a shell) and executes the command there. Typing !!vi myfile.do is equivalent to typing xshell vi myfile.do.

\section*{- Technical note}

On Mac OS X, xterm is available when X11 is installed. X11 is installed by default on Mac OS X 10.7 but not on Mac OS X 10.8 and newer. To install X11 on these newer operating systems, you must first download XQuartz from http://xquartz.macosforge.org/.

Stata for Mac users can also use the winexec command, which allows you to launch any native application from within Stata. You may, however, have to specify the absolute path to the application. If the application you wish to launch is a Mac OS X application bundle, you must specify an absolute path to the executable in the bundle.

Assume that you are working in Stata and decide that you want to run a text editor:
```

. winexec /Applications/TextEdit.app/Contents/MacOS/TextEdit
( The OS X application TextEdit will start and run at the same time as Stata )

```

You could even pass a filename to your text editor:
```

. winexec /Applications/TextEdit.app/Contents/MacOS/TextEdit
> /Users/cnguyen/myfile.do

```

If you specify a file path as an argument to the program to be launched, you must specify an absolute path. Also using ~ in the path will not resolve to a home directory. winexec cannot launch PEF binaries such as those from Mac OS 9 and some Carbon applications. If an application cannot be launched from a terminal window, it cannot be launched by winexec.

The important difference between winexec and shell is that Stata does not wait for whatever program winexec launches to complete before continuing. Stata will wait for the program shell launches to complete before performing any further commands. shell is appropriate for executing shell commands; winexec is appropriate for launching applications.

\section*{Stata for Unix(GUI)}
shell, without arguments, preserves your session and invokes the operating system. The Command window will disappear, and an xterm window will appear, indicating that you may not do anything in Stata until you exit the xterm window. To reenter Stata, type exit at the Unix prompt. Your Stata session is reestablished just as if you had never left.

Say that you are using Stata for Unix(GUI) and suddenly realize that you need to do two things. You need to enter your operating system for a few minutes. Rather than exiting Stata, doing what you have to do, and then restarting Stata, you type shell in the Command window. An xterm window will appear:
```

mycomputer\$

```

You can now do whatever you need to do, and Stata will wait until you exit the window before continuing.

Experienced Stata users seldom type out the word shell. They type "!". Also you do not have to enter your operating system, issue a command, and then exit back to Stata. If you want to execute one command, you can type the command right after the word shell or the exclamation point:
```

. !mv try15.dta final.dta

```

Be careful because sometimes you will want to type
```

. !!vi myfile.do

```
and in other cases,
```

. winexec xedit myfile.do

```
!! is a synonym for xshell-a command different from, but related to, shell-and winexec is a different and related command, too.

Before we get into this, understand that if all you want is a shell from which you can issue Unix commands, type shell or !:
```

. !
mycomputer\$ _

```

When you are through, type exit to the Unix prompt, and you will return to Stata:
```

mycomputer\$ exit

```

If, on the other hand, you want to specify in Stata the Unix command that you want to execute, you need to decide whether you want to use shell, xshell, or winexec. The answer depends on whether the command you want to execute requires a terminal window or is an X application:
... does not need a terminal window: use shell ... (synonym: !...)
... needs a terminal window: use xshell ... (synonym: !!...)
... is an X application: use winexec ... (no synonym)

When you type shell mv try15.dta final.dta, Stata invokes your shell (/bin/sh, /bin/csh, etc.) and executes the specified command (mv here), routing the standard output and standard error back to Stata. Typing !mv try15.dta final.dta is the same as typing shell mv try15.dta final.dta.

When you type xshell vi myfile.do, Stata invokes an xterm window (which in turn invokes a shell) and executes the command there. Typing !!vi myfile.do is equivalent to typing xshell vi myfile.do.

When you type winexec xedit myfile.do, Stata directly invokes the command specified (xedit here). No xterm window is brought up nor is a shell invoked because, here, xterm does not need it. xterm is an X application that will create its own window in which to run. You could have typed ! !xedit myfile.do. That would have brought up an unnecessary xterm window from which xedit would have been executed, and that would not matter. You could even have typed !xedit myfile.do. That would have invoked an unnecessary shell from which xedit would have been executed, and that would not matter, either. The important difference, however, is that shell and xshell wait until the process completes before allowing Stata to continue, and winexec does not.

\section*{- Technical note}

You can set Stata global macros to control the behavior of shell and xshell. The macros are
```

\$S_SHELL defines the shell to be used by shell when
you type a command following shell.
The default is something like "/bin/sh -c", although this can vary,
depending on how your Unix environment variables are set.
\$S_XSHELL defines shell to be used by shell and xshell
when they are typed without arguments.
The default is "xterm".
\$S_XSHELL2 defines shell to be used by xshell when it is
typed with arguments.
The default is "xterm -e".

```

For instance, if you type in Stata
```

. global S_XSHELL2 "/usr/X11R6/bin/xterm -e"

```
and then later type
```

. !!vi myfile.do

```
then Stata would issue the command /usr/X11R6/bin/xterm -e vi myfile.do to Unix.
If you do make changes, we recommend that you record the changes in your profile.do file.

\section*{Stata for Unix(console)}
shell, without arguments, preserves your session and then invokes your operating system. Your Stata session will be suspended until you exit the shell, at which point your Stata session is reestablished just as if you had never left.

Say that you are using Stata and you suddenly realize that you need to do two things. You need to enter your operating system for a few minutes. Rather than exiting Stata, doing what you have to do, and then restarting Stata, you type shell. A Unix prompt appears:
```

. shell
(Type exit to return to Stata)
\$

```

You can now do whatever you need to do and type exit when you finish. You will return to Stata just as if you had never left.

Experienced Stata users seldom type out the word shell. They type '!'. Also you do not have to enter your operating system, issue a command, and then exit back to Stata. If you want to execute one command, you can type the command right after the word shell or the exclamation point. If you want to edit the file myfile.do, and if vi is the name of your favorite editor, you could type
```

. !vi myfile.do
Stata opens your editor.
When you exit your editor:

```

\section*{Also see}
[D] cd — Change directory
[D] copy - Copy file from disk or URL
[D] dir - Display filenames
[D] erase - Erase a disk file
[D] mkdir - Create directory
[D] rmdir - Remove directory
[D] type - Display contents of a file

\section*{Title}
snapshot - Save and restore data snapshots
\begin{tabular}{llll}
Description & Quick start & Menu & Syntax \\
Option & Remarks and examples & Stored results & Also see
\end{tabular}

\section*{Description}
snapshot saves to disk and restores from disk copies of the data in memory. snapshot's main purpose is to allow the Data Editor to save and restore data snapshots during an interactive editing session. A more popular alternative for programmers is preserve; see [P] preserve.

Snapshots are referred to by a snapshot\#. If no snapshots currently exist, the next snapshot saved will receive a snapshot\# of 1. If snapshots do exist, the next snapshot saved will receive a snapshot\# one greater than the highest existing snapshot\#.
snapshot save creates a temporary file containing a copy of the data currently in memory and attaches an optional label (up to 80 characters) to the saved snapshot. Up to 1,000 snapshots may be saved.
snapshot label changes the label on the specified snapshot.
snapshot restore replaces the data in memory with the data from the specified snapshot.
snapshot list lists specified snapshots.
snapshot erase erases specified snapshots.

\section*{Quick start}

Save a temporary copy of the data to disk and label the snapshot mylabel1 snapshot save, label(mylabel1)

List snapshot numbers and labels
snapshot list _all
Restore snapshot mylabel1 with number 1
snapshot restore 1
Change label of snapshot 1 to mylabel2
snapshot label 1 "mylabel2"
Delete all current snapshots and begin renumbering new snapshots from 1
snapshot erase _all

\section*{Menu}

Data \(>\) Data Editor \(>\) Data Editor (Edit)

\section*{Syntax}

Save snapshot
```

snapshot save [, label("label")]

```

Change snapshot label
```

snapshot label snapshot\# "label"

```

Restore snapshot snapshot restore snapshot\#

List snapshots
snapshot list [_all|numlist]

Erase snapshots
snapshot erase _all|numlist

\section*{Option}
label("label") is for use with snapshot save and allows you to label a snapshot when saving it.

\section*{Remarks and examples}
snapshot was created to allow a user using the Data Editor to save and restore snapshots of their data while editing them interactively. It is similar to a checkpoint save in a video game, where after you have made a certain amount of progress, you wish to make sure you will be able to return to that point no matter what may happen in the future.
snapshot does not overwrite any copies of your data that you may have saved to disk. It saves a copy of the data currently in memory to a temporary file and allows you to later restore that copy to memory.
snapshot saves the date and time at which you create a snapshot. It is a good idea to also give a snapshot a label so that you will be better able to distinguish between multiple snapshots should you need to restore one.

\section*{- Technical note}

Although we mention above the use of the Data Editor and we demonstrate below the use of snapshot, we recommend that data cleaning not be done interactively. Instead, we recommend that data editing and cleaning be done in a reproducible manner through the use of do-files; see [U] 16 Do-files.

\section*{> Example 1}

You decide to make some changes to the auto dataset. You make a snapshot of the data before you begin making changes, and you make another snapshot after the changes:
```

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)
. snapshot save, label("before changes")
snapshot 1 (before changes) created at 19 Apr 2014 21:32
. generate gpm = 1/mpg
. label variable gpm "Gallons per mile"
. snapshot save, label("after changes")
snapshot 2 (after changes) created at 19 Apr 2014 21:34

```

You go on to do some analyses, but then, for some reason, you accidentally drop the variable you previously created:
```

. drop gpm

```

Luckily, you made some snapshots of your work:
```

. snapshot list
snapshot 1 (before changes) created at 19 Apr 2014 21:32
snapshot 2 (after changes) created at 19 Apr 2014 21:34
. snapshot restore 2
. describe gpm

variable name	storage   type	display   format	value   label	variable label
gpm	float	$\% 9.0 \mathrm{~g}$		Gallons per mile

```

\section*{Stored results}
snapshot save stores the following in \(r()\) :
Scalars
\(r\) (snapshot) sequence number of snapshot saved

\section*{Also see}
[D] edit - Browse or edit data with Data Editor
[P] preserve - Preserve and restore data

\section*{Title}
sort — Sort data
\begin{tabular}{llll}
Description & Quick start & Menu & Syntax \\
Option & Remarks and examples & References & Also see
\end{tabular}

\section*{Description}
sort arranges the observations of the current data into ascending order based on the values of the variables in varlist. There is no limit to the number of variables in the varlist. Missing numeric values are interpreted as being larger than any other number, so they are placed last with \(.<. \mathrm{a}<. \mathrm{b}<\cdots<. \mathrm{z}\). When you sort on a string variable, however, null strings are placed first and uppercase letters come before lowercase letters.

The dataset is marked as being sorted by varlist unless in range is specified. If in range is specified, only those observations are rearranged. The unspecified observations remain in the same place.

\section*{Quick start}

Sort dataset in memory by ascending values of v1
sort v1
As above, and order within v1 by ascending values of v 2 and within v 2 by v 3
sort v1 v2 v3
As above, and keep observations with the same values of v1, v2, and v3 in the same presort order
sort v1 v2 v3, stable

\section*{Menu}

Data \(>\) Sort

\section*{Syntax}
sort varlist \([\) in \(][\), stable]

\section*{Option}
stable specifies that observations with the same values of the variables in varlist keep the same relative order in the sorted data that they had previously. For instance, consider the following data:

\footnotetext{
x b
31
12
11
13
24
}

Typing sort x without the stable option produces one of the following six orderings:
\begin{tabular}{ll|ll|ll|ll|ll|ll}
x & b & x & b & x & b & x & b & x & b & x & b \\
1 & 2 & 1 & 2 & 1 & 1 & 1 & 1 & 1 & 3 & 1 & 1 \\
1 & 1 & 1 & 3 & 1 & 3 & 1 & 2 & 1 & 1 & 1 & 2 \\
1 & 3 & 1 & 1 & 1 & 2 & 1 & 3 & 1 & 2 & 1 & 1 \\
2 & 4 & 2 & 4 & 2 & 4 & 2 & 4 & 2 & 4 & 2 & 4 \\
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1
\end{tabular}

Without the stable option, the ordering of observations with equal values of varlist is randomized. With sort x , stable, you will always get the first ordering and never the other five.
If your intent is to have the observations sorted first on \(x\) and then on \(b\) within tied values of \(x\) (the fourth ordering above), you should type sort x b rather than sort x , stable. stable is seldom used and, when specified, causes sort to execute more slowly.

\section*{Remarks and examples}

Sorting data is one of the more common tasks involved in processing data. Sometimes, before Stata can perform some task, the data must be in a specific order. For example, if you want to use the by varlist: prefix, the data must be sorted in order of varlist. You use the sort command to fulfill this requirement.

\section*{\(>\) Example 1}

Sorting data can also be informative. Suppose that we have data on automobiles, and each car's make and mileage rating (called make and mpg) are included among the variables in the data. We want to list the five cars with the lowest mileage rating in our data:
```

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)
. keep make mpg weight
. sort mpg, stable
. list make mpg in 1/5

```
\begin{tabular}{|lr|}
\hline make & mpg \\
\hline Linc. Continental & 12 \\
Linc. Mark V & 12 \\
Cad. Deville & 14 \\
Cad. Eldorado & 14 \\
Linc. Versailles & 14 \\
\hline
\end{tabular}
> Example 2: Tracking the sort order
Stata keeps track of the order of your data. For instance, we just sorted the above data on mpg. When we ask Stata to describe the data in memory, it tells us how the dataset is sorted:

Sorted by: mpg
Note: Dataset has changed since last saved.
Stata keeps track of changes in sort order. If we were to make a change to the mpg variable, Stata would know that the data are no longer sorted. Remember that the first observation in our data has mpg equal to 12 , as does the second. Let's change the value of the first observation:
\begin{tabular}{l}
replace mpg=13 in 1 \\
(1 real change made) \\
• describe \\
Contains data from http://www.stata-press.com/data/r14/auto.dta \\
\begin{tabular}{c}
obs: \\
vars: \\
size:
\end{tabular} \\
\hline
\end{tabular}

Sorted by:
Note: Dataset has changed since last saved.
After making the change, Stata indicates that our dataset is "Sorted by:" nothing. Let's put the dataset back as it was:
```

. replace mpg=12 in 1
(1 real change made)
. sort mpg

```
- Technical note

Stata does not track changes in the sort order and will sometimes decide that a dataset is not sorted when, in fact, it is. For instance, if we were to change the first observation of our auto dataset from 12 miles per gallon to 10 , Stata would decide that the dataset is "Sorted by:" nothing, just as it did above when we changed mpg from 12 to 13 . Our change in example 2 did change the order of the data, so Stata was correct. Changing mpg from 12 to 10 , however, does not really affect the sort order.

As far as Stata is concerned, any change to the variables on which the data are sorted means that the data are no longer sorted, even if the change actually leaves the order unchanged. Stata may be dumb, but it is also fast. It sorts already-sorted datasets instantly, so Stata's ignorance costs us little.

\section*{> Example 3: Sorting on multiple variables}

Data can be sorted by more than one variable, and in such cases, the sort order is lexicographic. If we sort the data by two variables, for instance, the data are placed in ascending order of the first variable, and then observations that share the same value of the first variable are placed in ascending order of the second variable. Let's order our automobile data by mpg and within mpg by weight:
```

. sort mpg weight
. list in 1/8, sep(4)

```
\begin{tabular}{|lrr|}
\hline make & mpg & weight \\
\hline Linc. Mark V & 12 & 4,720 \\
Linc. Continental & 12 & 4,840 \\
Peugeot 604 & 14 & 3,420 \\
Linc. Versailles & 14 & 3,830 \\
\hline Cad. Eldorado & 14 & 3,900 \\
Merc. Cougar & 14 & 4,060 \\
Merc. XR-7 & 14 & 4,130 \\
Cad. Deville & 14 & 4,330 \\
\hline
\end{tabular}

The data are in ascending order of mpg, and, within each mpg category, the data are in ascending order of weight. The lightest car that achieves 14 miles per gallon in our data is the Peugeot 604.

\section*{- Technical note}

The sorting technique used by Stata is fast, but the order of variables not included in the varlist is not maintained. If you wish to maintain the order of additional variables, include them at the end of the varlist. There is no limit to the number of variables by which you may sort.

\section*{> Example 4: Descending sorts}

Sometimes you may want to order a dataset by descending sequence of something. Perhaps we wish to obtain a list of the five cars achieving the best mileage rating. The sort command orders the data only into ascending sequences. Another command, gsort, orders the data in ascending or descending sequences; see [D] gsort. You can also create the negative of a variable and achieve the desired result:
```

. generate negmpg = -mpg
. sort negmpg
. list in 1/5

```
\begin{tabular}{|lrrr|}
\hline make & mpg & weight & negmpg \\
\hline VW Diesel & 41 & 2,040 & -41 \\
Subaru & 35 & 2,050 & -35 \\
Datsun 210 & 35 & 2,020 & -35 \\
Plym. Champ & 34 & 1,800 & -34 \\
Toyota Corolla & 31 & 2,200 & -31 \\
\hline
\end{tabular}

We find that the VW Diesel tops our list.
> Example 5: Sorting on string variables
sort may also be used on string variables. The data are sorted alphabetically:
```

. sort make
. list in 1/5

```
\begin{tabular}{|lrrr|}
\hline make & mpg & weight & negmpg \\
\hline AMC Concord & 22 & 2,930 & -22 \\
AMC Pacer & 17 & 3,350 & -17 \\
AMC Spirit & 22 & 2,640 & -22 \\
Audi 5000 & 17 & 2,830 & -17 \\
Audi Fox & 23 & 2,070 & -23 \\
\hline
\end{tabular}
- Technical note

Bear in mind that Stata takes "alphabetically" to mean "in order by byte value". This means that all uppercase letters come before lowercase letters; for example, \(\mathrm{Z}<\mathrm{a}\). As far as Stata is concerned, the following list is sorted alphabetically:
```

. list, sep(0)

```
\begin{tabular}{l|r|}
\cline { 2 - 3 } & myvar \\
\cline { 2 - 2 } 1. & ALPHA \\
2. & Alpha \\
3. & BETA \\
4. & Beta \\
5. & alpha \\
6. & beta \\
\hline
\end{tabular}

For most purposes, this method of sorting is sufficient. It is possible to override Stata's sort logic. See [U] 12.4.2.5 Sorting strings containing Unicode characters for information about ordering strings in a language-sensitive way. We do not recommend that you do this.

\section*{References}

Royston, P. 2001. Sort a list of items. Stata Journal 1: 105-106.
Schumm, L. P. 2006. Stata tip 28: Precise control of dataset sort order. Stata Journal 6: 144-146.

\section*{Also see}
[D] describe - Describe data in memory or in file
[D] gsort - Ascending and descending sort
[U] 11 Language syntax

\section*{Title}
split - Split string variables into parts
\begin{tabular}{llll}
Description & Quick start & Menu & Syntax \\
Options & Remarks and examples & Stored results & Acknowledgments
\end{tabular}

\section*{Description}
split splits the contents of a string variable, strvar, into one or more parts, using one or more parse_strings (by default, blank spaces), so that new string variables are generated. Thus split is useful for separating "words" or other parts of a string variable. strvar itself is not modified.

\section*{Quick start}

Create variables v \# for each word of v separated by spaces
split v

As above, but split into words or phrases on commas and generate variables newv\#
```

split v, parse(,) generate(newv)

```

As above, but do not trim leading or trailing spaces
split v, parse(,) generate(newv) notrim
Create only newv1, newv2, and newv3 regardless of the number of possible new variables
```

split v, generate(newv) limit(3)

```

As above, and convert to numeric type when possible
```

split v, generate(newv) limit(3) destring

```

\section*{Menu}

Data \(>\) Create or change data \(>\) Other variable-transformation commands \(>\) Split string variables into parts

\section*{Syntax}
\[
\text { split strvar }[\text { if }][\text { in }][, \text { options }]
\]
options Description

Main
generate (stub)
parse(parse_strings)
limit(\#)
notrim
Destring
destring
ignore("chars")
force
float
percent
begin new variable names with stub; default is strvar
parse on specified strings; default is to parse on spaces
create a maximum of \# new variables
do not trim leading or trailing spaces of original variable
apply destring to new string variables, replacing initial string variables with numeric variables where possible
remove specified nonnumeric characters
convert nonnumeric strings to missing values
generate numeric variables as type float
convert percent variables to fractional form

\section*{Options}
\(\qquad\) Main
generate (stub) specifies the beginning characters of the new variable names so that new variables stub1, stub2, etc., are produced. stub defaults to strvar.
parse (parse_strings) specifies that, instead of using spaces, parsing use one or more parse_strings. Most commonly, one string that is one punctuation character will be specified. For example, if parse(,) is specified, then " \(1,2,3\) " is split into " 1 ", " 2 ", and " 3 ".

You can also specify 1) two or more strings that are alternative separators of "words" and 2) strings that consist of two or more characters. Alternative strings should be separated by spaces. Strings that include spaces should be bound by " ". Thus if parse (, " ") is specified, "1,2 3 " is also split into " 1 ", " 2 ", and " 3 ". Note particularly the difference between, say, parse (a b) and parse (ab): with the first, a and \(b\) are both acceptable as separators, whereas with the second, only the string ab is acceptable.
limit(\#) specifies an upper limit to the number of new variables to be created. Thus limit(2) specifies that, at most, two new variables be created.
notrim specifies that the original string variable not be trimmed of leading and trailing spaces before being parsed. notrim is not compatible with parsing on spaces, because the latter implies that spaces in a string are to be discarded. You can either specify a parsing character or, by default, allow a trim.

Destring
destring applies destring to the new string variables, replacing the variables initially created as strings by numeric variables where possible. See [D] destring.
ignore(), force, float, percent; see [D] destring.

\section*{Remarks and examples}
split is used to split a string variable into two or more component parts, for example, "words". You might need to correct a mistake, or the string variable might be a genuine composite that you wish to subdivide before doing more analysis.

The basic steps applied by split are, given one or more separators, to find those separators within the string and then to generate one or more new string variables, each containing a part of the original. The separators could be, for example, spaces or other punctuation symbols, but they can in turn be strings containing several characters. The default separator is a space.

The key string functions for subdividing string variables and, indeed, strings in general, are strpos(), which finds the position of separators, and substr(), which extracts parts of the string. (See [FN] String functions.) split is based on the use of those functions.

If your problem is not defined by splitting on separators, you will probably want to use substr() directly. Suppose that you have a string variable, date, containing dates in the form "21011952" so that the last four characters define a year. This string contains no separators. To extract the year, you would use substr (date, \(-4,4\)). Again suppose that each woman's obstetric history over the last 12 months was recorded by a str12 variable containing values such as "nppppppppbnn", where p , b , and n denote months of pregnancy, birth, and nonpregnancy. Once more, there are no separators, so you would use substr() to subdivide the string.
split discards the separators, because it presumes that they are irrelevant to further analysis or that you could restore them at will. If this is not what you want, you might use substr() (and possibly strpos()).

Finally, before we turn to examples, compare split with the egen function ends(), which produces the head, the tail, or the last part of a string. This function, like all egen functions, produces just one new variable as a result. In contrast, split typically produces several new variables as the result of one command. For more details and discussion, including comments on the special problem of recognizing personal names, see [D] egen.
split can be useful when input to Stata is somehow misread as one string variable. If you copy and paste into the Data Editor, say, under Windows by using the clipboard, but data are space-separated, what you regard as separate variables will be combined because the Data Editor expects comma- or tab-separated data. If some parts of your composite variable are numeric characters that should be put into numeric variables, you could use destring at the same time; see [D] destring.
. split var1, destring
Here no generate() option was specified, so the new variables will have names var11, var12, and so forth. You may now wish to use rename to produce more informative variable names. See [D] rename.

You can also use split to subdivide genuine composites. For example, email addresses such as tech-support@stata.com may be split at "@":
. split address, p(@)
This sequence yields two new variables: address1, containing the part of the email address before the "@", such as "tech-support", and address2, containing the part after the "@", such as "stata.com". The separator itself, "@", is discarded. Because generate() was not specified, the name address was used as a stub in naming the new variables. split displays the names of new variables created, so you will see quickly whether the number created matches your expectations.

If the details of individuals were of no interest and you wanted only machine names, either
```

. egen machinename = ends(address), tail p(@)

```
or
```

. generate machinename = substr(address, strpos(address,"@") + 1,.)

```
would be more direct.
Next suppose that a string variable holds names of legal cases that should be split into variables for plaintiff and defendant. The separators could be " V ", " V. ", " VS ", and " VS. ". (We assume that any inconsistency in the use of uppercase and lowercase has been dealt with by the string function strupper (); see [FN] String functions.) Note particularly the leading and trailing spaces in our detailing of separators: the first separator is " V ", for example, not "V", which would incorrectly split "GOLIATH V DAVID" into "GOLIATH ", " DA", and "ID". The alternative separators are given as the argument to parse():
```

. split case, p(" V " " V. " " VS " " VS. ")

```

Again with default naming of variables and recalling that separators are discarded, we expect new variables case1 and case2, with no creation of case3 or further new variables. Whenever none of the separators specified were found, case2 would have empty values, so we can check:
```

. list case if case2 == ""

```

Suppose that a string variable contains fields separated by tabs. For example, import delimited leaves tabs unchanged. Knowing that a tab is char (9), we can type
```

. split data, p('=char(9)') destring

```
p (char(9)) would not work. The argument to parse() is taken literally, but evaluation of functions on the fly can be forced as part of macro substitution.

Finally, suppose that a string variable contains substrings bound in parentheses, such as (1 2 3) (456). Here we can split on the right parentheses and, if desired, replace those afterward. For example,
```

split data, p(")")
foreach v in 'r(varlist)' {
replace 'v' = 'v' + ")"
}

```

\section*{Stored results}
split stores the following in \(r()\) :
Scalars
\(r\) (nvars) number of new variables created
\(r\) (varlist) names of the newly created variables

\section*{Acknowledgments}
split was written by Nicholas J. Cox of the Department of Geography at Durham University, UK, and coeditor of the Stata Journal and author of Speaking Stata Graphics. He in turn thanks Michael Blasnik of M. Blasnik \& Associates for ideas contributed to an earlier jointly written program.

\section*{Also see}
[D] destring - Convert string variables to numeric variables and vice versa
[D] egen - Extensions to generate
[D] rename - Rename variable
[D] separate - Create separate variables
[FN] String functions

\section*{Title}
stack - Stack data
\begin{tabular}{llll}
Description & Quick start & Menu & Syntax \\
Options & Remarks and examples & Reference & Also see
\end{tabular}

\section*{Description}
stack stacks the variables in varlist vertically, resulting in a dataset with variables newvars and \(_\mathrm{N} \cdot\left(N_{v} / N_{n}\right)\) observations, where \(N_{v}\) is the number of variables in varlist and \(N_{n}\) is the number in newvars. stack creates the new variable _stack identifying the groups.

\section*{Quick start}

Replace data in memory with v, v2 appended to v1 and identify original variable by order in _stack stack v1 v2, into(v)

As above, but with v1 appended to v2 and do not display warning that data in memory will be replaced
stack v2 v1, into(v) clear
As above, but save result in v 2
stack v2 v1, group(2) clear
Append v2 to v1 and v4 to v3 and save result in newv1 and newv2
stack v1 v3 v2 v4, into(newv1 newv2) clear
As above, but save results in v 1 and v 3
```

stack v1 v3 v2 v4, group(2) clear

```

\section*{Menu}

Data \(>\) Create or change data \(>\) Other variable-transformation commands \(>\) Stack data

\section*{Syntax}
```

stack varlist [if] [in], {into(newvars)|group(\#) [options]}

```
options Description

\section*{Main}
*into(newvars) identify names of new variables to be created
* group(\#)
stack \# groups of variables in varlist
clear clear dataset from memory
wide keep variables in varlist that are not specified in newvars

\footnotetext{
* Either into(newvars) or \(\operatorname{group}(\#)\) is required.
}

\section*{Options}
\(\qquad\) Main
into (newvars) identifies the names of the new variables to be created. into() may be specified using variable ranges (for example, into(v1-v3)). Either into() or group(), but not both, must be specified.
group(\#) specifies the number of groups of variables in varlist to be stacked. The created variables will be named according to the first group in varlist. Either group() or into(), but not both, must be specified.
clear indicates that it is okay to clear the dataset in memory. If you do not specify this option, you will be asked to confirm your intentions.
wide includes any of the original variables in varlist that are not specified in newvars in the resulting data.

\section*{Remarks and examples}

\section*{> Example 1: Illustrating the concept}

This command is best understood by examples. We begin with artificial but informative examples and end with useful examples.
. use http://www.stata-press.com/data/r14/stackxmpl
. list
\begin{tabular}{l|llll|}
\cline { 2 - 4 } & a & b & c & d \\
\hline 1. & 1 & 2 & 3 & 4 \\
2. & 5 & 6 & 7 & 8 \\
\hline
\end{tabular}
. stack a b c d, into(e f) clear
. list
\begin{tabular}{l|rr|}
\cline { 2 - 3 } & _stack & \(e\) \\
1. & \(f\) \\
\hline 2. & 1 & 1 \\
3. & 2 \\
4. & 5 & 6 \\
2 & 3 & 4 \\
2 & 7 & 8 \\
\hline
\end{tabular}

We formed the new variable e by stacking a and \(c\), and we formed the new variable \(f\) by stacking b and d. _stack is automatically created and set equal to 1 for the first (\(\mathrm{a}, \mathrm{b}\)) group and equal to 2 for the second (\(c, d\)) group. (When _stack \(==1\), the new data e and \(f\) contain the values from a and b . When _stack \(==2\), e and f contain values from c and d.)

There are two groups because we specified four variables in the varlist and two variables in the into list, and \(4 / 2=2\). If there were six variables in the varlist, there would be \(6 / 2=3\) groups. If there were also three variables in the into list, there would be \(6 / 3=2\) groups. Specifying six variables in the varlist and four variables in the into list would result in an error because \(6 / 4\) is not an integer.
> Example 2: Stacking a variable multiple times
Variables may be repeated in the varlist, and the varlist need not contain all the variables:
```

. use http://www.stata-press.com/data/r14/stackxmpl, clear

```
. list
\begin{tabular}{l|cccc|}
\hline & \(a\) & \(b\) & \(c\) & \(d\) \\
\cline { 2 - 5 } & 1 & 2 & 3 & 4 \\
2. & 5 & 6 & 7 & 8 \\
\hline
\end{tabular}
. stack a b a c, into(a bc) clear
. list
\begin{tabular}{l|rrr|}
\cline { 2 - 3 } & _stack & a & bc \\
\hline 1. & 1 & 1 & 2 \\
2. & 1 & 5 & 6 \\
3. & 2 & 1 & 3 \\
4. & 2 & 5 & 7 \\
\hline
\end{tabular}
a was stacked on a and called a, whereas b was stacked on c and called bc.
If we had wanted the resulting variables to be called simply \(a\) and \(b\), we could have used . stack a b a c, group(2) clear
which is equivalent to
. stack a b a c, into(a b) clear

\section*{Example 3: Keeping the original variables}

In this artificial but informative example, the wide option includes the variables in the original dataset that were specified in varlist in the output dataset:
```

. use http://www.stata-press.com/data/r14/stackxmpl, clear
. list

```
\begin{tabular}{l|llll|}
\hline & a & b & c & d \\
\hline 1. & 1 & 2 & 3 & 4 \\
2. & 5 & 6 & 7 & 8 \\
\hline
\end{tabular}
```

. stack a b c d, into(e f) clear wide

```
. list
1.
\begin{tabular}{|rcccccc|}
\hline _stack & \(e\) & \(f\) & \(a\) & \(b\) & \(c\) & \(d\) \\
\hline 1 & 1 & 2 & 1 & 2 &. &. \\
1 & 5 & 6 & 5 & 6 &. &. \\
2 & 3 & 4 &. &. & 3 & 4 \\
2 & 7 & 8 &. &. & 7 & 8 \\
\hline
\end{tabular}

In addition to the stacked \(e\) and \(f\) variables, the original \(a, b, c\), and \(d\) variables are included. They are set to missing where their values are not appropriate.
> Example 4: Using wide with repeated variables
This is the last artificial example. When you specify the wide option and repeat the same variable name in both the varlist and the into list, the variable will contain the stacked values:
```

. use http://www.stata-press.com/data/r14/stackxmpl, clear
. list

```
\begin{tabular}{l|cccc|}
\hline & \(a\) & \(b\) & \(c\) & \(d\) \\
\hline 1. & 1 & 2 & 3 & 4 \\
2. & 5 & 6 & 7 & 8 \\
\hline
\end{tabular}
. stack a b a c, into(a bc) clear wide
. list
\begin{tabular}{l|rrrrr|}
\cline { 2 - 6 } & _stack & a & bc & b & c \\
\hline 1. & 1 & 1 & 2 & 2 &. \\
2. & 1 & 5 & 6 & 6 &. \\
3. & 2 & 1 & 3 &. & 3 \\
4. & 2 & 5 & 7 &. & 7 \\
\hline
\end{tabular}

\section*{> Example 5: Using stack to make graphs}

We want one graph of y against x 1 and y against x 2 . We might be tempted to type scatter y x 1 x 2 , but that would graph y against x 2 and x 1 against x 2 . One solution is to type
. save mydata
. stack \(\mathrm{y} x 1 \mathrm{y}\) x2, into(yy x12) clear
. generate \(\mathrm{y} 1=\) yy if _stack==1
. generate y 2 = yy if _stack==2
. scatter y1 y2 x12
. use mydata, clear
The names yy and x 12 are supposed to suggest the contents of the variables. yy contains (\(\mathrm{y}, \mathrm{y}\)) , and x 12 contains (\(\mathrm{x} 1, \mathrm{x} 2\)). We then make y 1 defined at the x 1 points but missing at the x 2 points-graphing y1 against x 12 is the same as graphing y against x 1 in the original dataset. Similarly, y2 is defined at the x 2 points but missing at x 1 -graphing y 2 against x 12 is the same as graphing y against x 2 in the original dataset. Therefore, scatter y1 y2 x12 produces the desired graph.
> Example 6: Plotting cumulative distributions
We wish to graph y1 against x 1 and y 2 against x 2 on the same graph. The logic is the same as above, but let's go through it. Perhaps we have constructed two cumulative distributions by using cumul (see [R] cumul):
```

. use http://www.stata-press.com/data/r14/citytemp
(City Temperature Data)
. cumul tempjan, gen(cjan)
. cumul tempjuly, gen(cjuly)

```

We want to graph both cumulatives in the same graph; that is, we want to graph cjan against tempjan and cjuly against tempjuly. Remember that we could graph the tempjan cumulative by typing
```

. scatter cjan tempjan, c(l) m(o) sort
(output omitted)

```

We can graph the tempjuly cumulative similarly. To obtain both on the same graph, we must stack the data:
```

. stack cjuly tempjuly cjan tempjan, into(c temp) clear
. generate cjan = c if _stack==1
(958 missing values generated)
. generate cjuly = c if _stack==2
(958 missing values generated)
. scatter cjan cjuly temp, c(l l) m(o o) sort
(output omitted)

```

Alternatively, if we specify the wide option, we do not have to regenerate cjan and cjuly because they will be created automatically:
```

. use http://www.stata-press.com/data/r14/citytemp, clear
(City Temperature Data)
. cumul tempjan, gen(cjan)
. cumul tempjuly, gen(cjuly)
. stack cjuly tempjuly cjan tempjan, into(c temp) clear wide
. scatter cjan cjuly temp, c(l l) m(o o) sort
(output omitted)

```

\section*{- Technical note}

There is a third way, not using the wide option, that is exceedingly tricky but is sometimes useful:
```

. use http://www.stata-press.com/data/r14/citytemp, clear
(City Temperature Data)
. cumul tempjan, gen(cjan)
. cumul tempjuly, gen(cjuly)
. stack cjuly tempjuly cjan tempjan, into(c temp) clear
. sort _stack temp
. scatter c temp, c(L) m(o)
(output omitted)

```

Note the use of connect's capital L rather than lowercase loption. c (L) connects points only from left to right; because the data are sorted by _stack temp, temp increases within the first group (cjuly vs. tempjuly) and then starts again for the second (cjan vs. tempjan); see [G-4] connectstyle.

\section*{Reference}

Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press.

\section*{Also see}
[D] contract - Make dataset of frequencies and percentages
[D] reshape - Convert data from wide to long form and vice versa
[D] xpose - Interchange observations and variables

\section*{Title}
statsby - Collect statistics for a command across a by list
\begin{tabular}{llll}
Description & Quick start & Menu & Syntax \\
Options & Remarks and examples & Acknowledgment & References \\
Also see & & &
\end{tabular}

\section*{Description}
statsby collects statistics from command across a by list. Typing . statsby exp_list, by(varname): command
executes command for each group identified by varname, building a dataset of the associated values from the expressions in exp_list. The resulting dataset replaces the current dataset, unless the saving () option is supplied. varname can refer to a numeric or a string variable.
command defines the statistical command to be executed. Most Stata commands and user-written programs can be used with statsby, as long as they follow standard Stata syntax and allow the if qualifier, see [U] 11 Language syntax. The by prefix cannot be part of command.
exp_list specifies the statistics to be collected from the execution of command. If no expressions are given, exp_list assumes a default depending upon whether command changes results in e() and \(r()\). If command changes results in \(e()\), the default is _b. If command changes results in \(r()\) (but not e()), the default is all the scalars posted to r() . It is an error not to specify an expression in exp_list otherwise.

\section*{Quick start}

Replace data in memory with estimates of the coefficient of \(x\) and constant for each value of catvar statsby, by (catvar): regress y x

As above, but name new variables \(b\) and cons
statsby \(b=_b[x]\) cons=_b[_cons], by (catvar): regress y x
Add standard errors of the estimates and use default variable names
statsby _b _se, by(catvar): regress y x
As above, but retain data in memory and save estimates to myest.dta
```

statsby _b _se, by(catvar) saving(myest): regress y x

```

As above, and include estimate for entire dataset
statsby _b _se, by (catvar) saving(myest) total: regress y x
Note: Any command that accepts the statsby prefix may be substituted for regress above.

\section*{Menu}

Statistics \(>\) Other \(>\) Collect statistics for a command across a by list

\section*{Syntax}
```

statsby [exp_list] [, options]: command

```
options
Main
*by (varlist \([\), missing \(])\) equivalent to interactive use of by varlist:
Options
clear
saving (filename, ...)
total
subsets
Reporting
nodots
noisily
trace
nolegend
verbose
Advanced
basepop (exp)
force
forcedrop
replace data in memory with results
save results to filename; save statistics in double precision; save results to filename every \# replications
include results for the entire dataset
include all combinations of subsets of groups
suppress replication dots
display any output from command
trace command
suppress table legend
display the full table legend
restrict initializing sample to exp; seldom used
do not check for svy commands; seldom used
retain only observations in by-groups when calling command; seldom used
```

    * by () is required on the dialog box because statsby is useful to the interactive user only when using by ().
    All weight types supported by command are allowed except pweights; see [U] 11.1.6 weight.
    exp_list contains (name: elist)
                                elist
                                eexp
    elist contains newvarname \(=(\exp )\)
                                    (exp)
    eexp is
                                    specname
                                    [eqno]specname
    specname is _b
    _b []
    _se
    _se []
    eqno is \#\#
        name
    ```
\(\exp\) is a standard Stata expression; see [U] 13 Functions and expressions.
Distinguish between [], which are to be typed, and [], which indicate optional arguments.

\section*{Options}

\begin{abstract}
Main
by (varlist [, missing]) specifies a list of existing variables that would normally appear in the by varlist: section of the command if you were to issue the command interactively. By default, statsby ignores groups in which one or more of the by () variables is missing. Alternatively, missing causes missing values to be treated like any other values in the by-groups, and results from the entire dataset are included with use of the subsets option. If by () is not specified, command will be run on the entire dataset. varlist can contain both numeric and string variables.
\end{abstract}

Options
clear specifies that it is okay to replace the data in memory, even though the current data have not been saved to disk.
saving (filename [, suboptions]) creates a Stata data file (.dta file) consisting of (for each statistic in exp_list) a variable containing the replicates.
double specifies that the results for each replication be stored as doubles, meaning 8 -byte reals. By default, they are stored as floats, meaning 4-byte reals.
every (\#) specifies that results be written to disk every \#th replication. every () should be specified in conjunction with saving() only when command takes a long time for each replication. This will allow recovery of partial results should your computer crash. See [P] postfile.
total specifies that command be run on the entire dataset, in addition to the groups specified in the by () option.
subsets specifies that command be run for each group defined by any combination of the variables in the by () option.

\section*{Reporting}
nodots suppresses display of the replication dots. By default, one dot character is printed for each by-group. A red ' \(x\) ' is printed if command returns with an error or if one of the values in exp_list is missing.
noisily causes the output of command to be displayed for each by-group. This option implies the nodots option.
trace causes a trace of the execution of command to be displayed. This option implies the noisily option.
nolegend suppresses the display of the table legend, which identifies the rows of the table with the expressions they represent.
verbose requests that the full table legend be displayed. By default, coefficients and standard errors are not displayed.

\footnotetext{
Advanced
basepop (exp) specifies a base population that statsby uses to evaluate the command and to set up for collecting statistics. The default base population is the entire dataset, or the dataset specified by any if or in conditions specified on the command.

One situation where basepop() is useful is collecting statistics over the panels of a panel dataset by using an estimator that works for time series, but not panel data, for example,
}
```

. statsby, by(mypanels) basepop(mypanels==2): arima ...

```
force suppresses the restriction that command not be a svy command. statsby does not perform subpopulation estimation for survey data, so it should not be used with svy. statsby reports an error when it encounters svy in command if the force option is not specified. This option is seldom used, so use it only if you know what you are doing.
forcedrop forces statsby to drop all observations except those in each by-group before calling command for the group. This allows statsby to work with user-written commands that completely ignore if and in but do not return an error when either is specified. forcedrop is seldom used.

\section*{Remarks and examples}

Remarks are presented under the following headings:
```

Collecting coefficients and standard errors
Collecting stored results
All subsets

```

\section*{Collecting coefficients and standard errors}

\section*{> Example 1}

We begin with an example using auto2.dta. In this example, we want to collect the coefficients from a regression in which we model the price of a car on its weight, length, and mpg. We want to run this model for both domestic and foreign cars. We can do this easily by using statsby with the extended expression _b.
```

. use http://www.stata-press.com/data/r14/auto2
(1978 Automobile Data)
. statsby _b, by(foreign) verbose nodots: regress price weight length mpg
command: regress price weight length mpg
_b_weight: _b[weight]
_b_length: _b[length]
_b_mpg: _b[mpg]
_b_cons: _b[_cons]
by: foreign
. list

```
\begin{tabular}{|rrrrr|}
\hline foreign & _b_wei~t & _b_length & _b_mpg & _b_cons \\
\hline Domestic & 6.767233 & -109.9518 & 142.7663 & 2359.475 \\
Foreign & 4.784841 & 13.39052 & -18.4072 & -6497.49 \\
\hline
\end{tabular}

If we were interested only in the coefficient of a particular variable, such as mpg , we would specify that particular coefficient; see [U] 13.5 Accessing coefficients and standard errors.
```

. use http://www.stata-press.com/data/r14/auto2, clear
(1978 Automobile Data)
. statsby mpg=_b[mpg], by(foreign) nodots: regress price weight length mpg
command: regress price weight length mpg
mpg: _b[mpg]
by: foreign
. list

|  | foreign | mpg |
| :--- | ---: | ---: |
| 1. | Domestic | 142.7663 |
| 2. | Foreign | -18.4072 |

```

The extended expression _se indicates that we want standard errors.
```

. use http://www.stata-press.com/data/r14/auto2, clear
(1978 Automobile Data)
. statsby _se, by(foreign) verbose nodots: regress price weight length mpg
command: regress price weight length mpg
_se_weight: _se[weight]
_se_length: _se[length]
_se_mpg: _se[mpg]
_se_cons: _se[_cons]
by: foreign
. list

| foreign | _se_we~t | _se_le~h | _se_mpg | _se_cons |
| ---: | ---: | ---: | ---: | ---: |
| Domestic | 1.226326 | 39.48193 | 134.7221 | 7770.131 |
| Foreign | 1.670006 | 50.70229 | 59.37442 | 6337.952 |

```

\section*{> Example 2}

For multiple-equation estimations, we can use [eqno]_b ([eqno]_se) to get the coefficients (standard errors) of a specific equation or use _b (_se) to get the coefficients (standard errors) of all the equations. To demonstrate, we use heckman and a slightly different dataset.
```

. use http://www.stata-press.com/data/r14/statsby, clear
. statsby _b, by(group) verbose nodots: heckman price mpg, sel(trunk)
command: heckman price mpg, sel(trunk)
price_b_mpg: [price]_b[mpg]
price_b_cons: [price]_b[_cons]
select_b_tr~k: [select]_b[trunk]
select_b_cons: [select]_b[_cons]
athrho_b_cons: [athrho]_b[_cons]
lnsigma_b_c~s: [lnsigma]_b[_cons]
by: group

```
. list, compress noobs
\begin{tabular}{|rrrrrrr|}
\hline group & price_b~g & price_~s & select_~k & select~s & athrho_~s & lnsigm~s \\
\hline 1 & -253.9293 & 11836.33 & -.0122223 & 1.248342 & -.31078 & 7.895351 \\
2 & -242.5759 & 11906.46 & -.0488969 & 1.943078 & -1.399222 & 8.000272 \\
3 & -172.6499 & 9813.357 & -.0190373 & 1.452783 & -.3282423 & 7.876059 \\
4 & -250.7318 & 10677.31 & .0525965 & .3502012 & .6133645 & 7.96349 \\
\hline
\end{tabular}

To collect the coefficients of the first equation only, we would specify [price] _b instead of _b.
```

. use http://www.stata-press.com/data/r14/statsby, clear
. statsby [price]_b, by(group) verbose nodots: heckman price mpg, sel(trunk)
command: heckman price mpg, sel(trunk)
price_b_mpg: [price]_b[mpg]
price_b_cons: [price]_b[_cons]
by: group
. list

|  | group | price_b~g | price_~s |
| :--- | ---: | ---: | ---: |
| 1. | 1 | -253.9293 | 11836.33 |
| 2. | 2 | -242.5759 | 11906.46 |
| 3. | 3 | -172.6499 | 9813.357 |
| 4. | 4 | -250.7318 | 10677.31 |
|  |  |  |  |

```

\section*{Collecting stored results}

Many Stata commands store results of calculations; see [U] 13.6 Accessing results from Stata commands. statsby can collect the stored results and expressions involving these stored results, too. Expressions must be bound in parentheses.

\section*{> Example 3}

Suppose that we want to collect the mean and the median of price, as well as their ratios, and we want to collect them for both domestic and foreign cars. We might type
```

. use http://www.stata-press.com/data/r14/auto2, clear
(1978 Automobile Data)
. statsby mean=r(mean) median=r(p50) ratio=(r(mean)/r(p50)), by(foreign) nodots:
> summarize price, detail
command: summarize price, detail
mean: r(mean)
median: r(p50)
ratio: r(mean)/r(p50)
by: foreign
. list
1.

| foreign | mean | median | ratio |
| ---: | ---: | ---: | ---: |
| Domestic | 6072.423 | 4782.5 | 1.269717 |
| Foreign | 6384.682 | 5759 | 1.108644 |

```

\section*{All subsets}

\section*{> Example 4}

When there are two or more variables in by (varlist), we can execute command for any combination, or subset, of the variables in the by () option by specifying the subsets option.
```

. use http://www.stata-press.com/data/r14/auto2, clear
(1978 Automobile Data)
. statsby mean=r(mean) median=r(p50) n=r(N), by(foreign rep78) subsets nodots:
> summarize price, detail
command: summarize price, detail
mean: r(mean)
median: r(p50)
n: r(N)
by: foreign rep78

```
. list
\begin{tabular}{|c|c|c|c|c|c|}
\hline & foreign & rep78 & mean & median & n \\
\hline 1. & Domestic & Poor & 4564.5 & 4564.5 & 2 \\
\hline 2. & Domestic & Fair & 5967.625 & 4638 & 8 \\
\hline 3. & Domestic & Average & 6607.074 & 4749 & 27 \\
\hline 4. & Domestic & Good & 5881.556 & 5705 & 9 \\
\hline 5. & Domestic & Excellent & 4204.5 & 4204.5 & 2 \\
\hline 6. & Domestic & & 6179.25 & 4853 & 48 \\
\hline 7. & Foreign & Average & 4828.667 & 4296 & 3 \\
\hline 8. & Foreign & Good & 6261.444 & 6229 & 9 \\
\hline 9. & Foreign & Excellent & 6292.667 & 5719 & 9 \\
\hline 10. & Foreign & . & 6070.143 & 5719 & 21 \\
\hline 11. & . & Poor & 4564.5 & 4564.5 & 2 \\
\hline 12. & - & Fair & 5967.625 & 4638 & 8 \\
\hline 13. & - & Average & 6429.233 & 4741 & 30 \\
\hline 14. & - & Good & 6071.5 & 5751.5 & 18 \\
\hline 15. & . & Excellent & 5913 & 5397 & 11 \\
\hline 16. & - & . & 6165.257 & 5006.5 & 74 \\
\hline
\end{tabular}

In the above dataset, observation 6 is for domestic cars, regardless of the repair record; observation 10 is for foreign cars, regardless of the repair record; observation 11 is for both foreign cars and domestic cars given that the repair record is 1 ; and the last observation is for the entire dataset.
- Technical note

To see the output from command for each group identified in the by () option, we can use the noisily option.
```

. use http://www.stata-press.com/data/r14/auto2, clear
(1978 Automobile Data)
. statsby mean=r(mean) se=(r(sd)/sqrt(r(N))), by(foreign) noisily nodots:
> summarize price
statsby: First call to summarize with data as is:
. summarize price

| Variable | Obs | Mean | Std. Dev. | Min | Max |
| ---: | ---: | ---: | ---: | ---: | ---: |
| price | 74 | 6165.257 | 2949.496 | 3291 | 15906 |

statsby legend:
command: summarize price
mean: r(mean)
se: r(sd)/sqrt(r(N))
by: foreign
Statsby groups
running (summarize price) on group 1

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline Variable & Obs & Mean & Std. Dev. & Min & Max \\
\hline price & 52 & 6072.423 & 3097.104 & 3291 & 15906 \\
\hline \multicolumn{6}{|l|}{running (summarize price) on group 2 . summarize price} \\
\hline Variable & Obs & Mean & Std. Dev. & Min & Max \\
\hline price & 22 & 6384.682 & 2621.915 & 3748 & 12990 \\
\hline
\end{tabular}
. list
\begin{tabular}{l|rrr|}
\cline { 2 - 4 } & foreign & mean & se \\
\cline { 2 - 4 } 1. & Domestic & 6072.423 & 429.4911 \\
2. & Foreign & 6384.682 & 558.9942 \\
\cline { 2 - 4 } & & &
\end{tabular}

\section*{Acknowledgment}

Speed improvements in statsby were based on code written by Michael Blasnik of M. Blasnik \& Associates.

\section*{References}

Cox, N. J. 2010. Speaking Stata: The statsby strategy. Stata Journal 10: 143-151.
Hardin, J. W. 1996. dm42: Accrue statistics for a command across a by list. Stata Technical Bulletin 32: 5-9. Reprinted in Stata Technical Bulletin Reprints, vol. 6, pp. 13-18. College Station, TX: Stata Press.
Newson, R. B. 1999a. dm65.1: Update to a program for saving a model fit as a dataset. Stata Technical Bulletin 58: 25. Reprinted in Stata Technical Bulletin Reprints, vol. 10, p. 7. College Station, TX: Stata Press.

1999b. dm65: A program for saving a model fit as a dataset. Stata Technical Bulletin 49: 2-5. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 19-23. College Station, TX: Stata Press.
- 2003. Confidence intervals and p-values for delivery to the end user. Stata Journal 3: 245-269.

\footnotetext{
Also see
[D] by - Repeat Stata command on subsets of the data
[D] collapse - Make dataset of summary statistics
[P] postfile - Post results in Stata dataset
[R] bootstrap - Bootstrap sampling and estimation
[R] jackknife - Jackknife estimation
[R] permute - Monte Carlo permutation tests
}

\section*{Title}
sysuse - Use shipped dataset
\begin{tabular}{llll}
Description & Quick start & Menu & Syntax \\
Options & Remarks and examples & Stored results & Also see
\end{tabular}

\section*{Description}
sysuse filename loads the specified Stata-format dataset that was shipped with Stata or that is stored along the ado-path. If filename is specified without a suffix, . dta is assumed.
sysuse dir lists the names of the datasets shipped with Stata plus any other datasets stored along the ado-path.

\section*{Quick start}

List example datasets installed with Stata
sysuse dir
Use auto.dta example dataset installed with Stata sysuse auto

As above, but clear current dataset from memory first sysuse auto, clear

\section*{Menu}

File \(>\) Example datasets...

\section*{Syntax}

Use example dataset installed with Stata
sysuse ["]filename["] [, clear]

List example Stata datasets installed with Stata
sysuse dir [, all]

\section*{Options}
clear specifies that it is okay to replace the data in memory, even though the current data have not been saved to disk.
all specifies that all datasets be listed, even those that include an underscore (-) in their name. By default, such datasets are not listed.

\section*{Remarks and examples}

Remarks are presented under the following headings:

\author{
Typical use \\ A note concerning shipped datasets \\ Using user-installed datasets How sysuse works
}

\section*{Typical use}

A few datasets are included with Stata and are stored in the system directories. These datasets are often used in the help files to demonstrate a certain feature.

Typing
```

. sysuse dir

```
lists the names of those datasets. One such dataset is lifeexp. dta. If you simply type use lifeexp, you will see
```

. use lifeexp
file lifeexp.dta not found
r(601);

```

Type sysuse, however, and the dataset is loaded:
```

. sysuse lifeexp
(Life expectancy, 1998)

```

The datasets shipped with Stata are stored in different folders (directories) so that they do not become confused with your datasets.

\section*{A note concerning shipped datasets}

Not all the datasets used in the manuals are shipped with Stata. To obtain the other datasets, see [D] webuse.

The datasets used to demonstrate Stata are often fictional. If you want to know whether a dataset is real or fictional, and its history, load the dataset and type
. notes
A few datasets have no notes. This means that the datasets are believed to be real, but that they were created so long ago that information about their original source has been lost. Treat such datasets as if they were fictional.

\section*{Using user-installed datasets}

Any datasets you have installed using net or ssc (see [R] net and [R] ssc) can be listed by typing sysuse dir and can be loaded using sysuse filename.

Any datasets you store in your personal ado folder (see [P] sysdir) are also listed by sysuse dir and can be loaded using sysuse filename.

\section*{How sysuse works}
sysuse simply looks across the ado-path for .dta files; see [P] sysdir.
By default, sysuse dir does not list a dataset that contains an underscore (_) in its name. By convention, such datasets are used by ado-files to achieve their ends and probably are not of interest to you. If you type sysuse dir, all, then all datasets are listed.

\section*{Stored results}
sysuse dir stores in the macro \(r\) (files) the list of dataset names.
sysuse filename stores in the macro \(r(f n)\) the filename, including the full path specification.
Also see
[D] webuse - Use dataset from Stata website
[D] use - Load Stata dataset
[P] findfile - Find file in path
[P] sysdir - Query and set system directories
\([\mathrm{R}]\) net - Install and manage user-written additions from the Internet
[R] ssc - Install and uninstall packages from SSC

\section*{Title}
type - Display contents of a file
Description Quick start Syntax Options Remarks and examples
Also see

\section*{Description}
type lists the contents of a file stored on disk. This command is similar to the Windows type command and the Unix more(1) or \(\mathrm{pg}(1)\) commands.

In Stata for Mac and Stata for Unix, cat is a synonym for type.

\section*{Quick start}

Display contents of myfile.txt in the Results window
type myfile.txt
As above, but display myfile.txt saved in \mydir \(\backslash\) mysubdir using Stata for Windows type \mydir\mysubdir\myfile.txt

As above, but using Stata for Mac or Unix
type ~/mydir/mysubdir/myfile.txt
Display contents of my file.txt
type "my file.txt"
Display the first 20 lines of myfile.txt
type myfile.txt, lines(20)

\section*{Syntax}
```

type ["] filename["] [, options]

```

Note: Double quotes must be used to enclose filename if the name contains blanks.
options Description
\begin{tabular}{ll}
asis & show file as is; default is to display files with suffix .smcl or .sthlp as SMCL \\
smcl & display file as SMCL; default for files with suffix .smcl or .sthlp \\
showtabs & display tabs as <T> rather than being expanded \\
starbang & list lines in the file that begin with "*!" \\
lines(\#) & list first \# lines
\end{tabular}

\section*{Options}
asis specifies that the file be shown exactly as it is. The default is to display files with the suffix .smcl or . sthlp as SMCL, meaning that the SMCL directives are interpreted and properly rendered. Thus type can be used to look at files created by the log using command.
smcl specifies that the file be displayed as SMCL, meaning that the SMCL directives are interpreted and properly rendered. This is the default for files with the suffix .smcl or .sthlp.
showtabs requests that any tabs be displayed as <T> rather than being expanded.
starbang lists only the lines in the specified file that begin with the characters " \(*\) !". Such comment lines are typically used to indicate the version number of ado-files, class files, etc. starbang may not be used with SMCL files.
lines(\#) lists the first \# lines of a file. lines() is ignored if the file is displayed as SMCL or if \# is less than or equal to 0 .

\section*{Remarks and examples}

\section*{> Example 1}

We have raw data containing the level of Lake Victoria Nyanza and the number of sunspots during the years 1902-1921 stored in a file called sunspots.raw. We want to read this dataset into Stata by using infile, but we cannot remember the order in which we entered the variables. We can find out by using the type command:
\begin{tabular}{lrrrrrrrr}
\multicolumn{9}{c}{ type sunspots.raw } \\
1902 & -10 & 5 & 1903 & 13 & 24 & 1904 & 18 & 42 \\
1905 & 15 & 63 & 1906 & 29 & 54 & 1907 & 21 & 62 \\
1908 & 10 & 49 & 1909 & 8 & 44 & 1910 & 1 & 19 \\
1911 & -7 & 6 & 1912 & -11 & 4 & 1913 & -3 & 1 \\
1914 & -2 & 10 & 1915 & 4 & 47 & 1916 & 15 & 57 \\
1917 & 35 & 104 & 1918 & 27 & 81 & 1919 & 8 & 64 \\
1920 & 3 & 38 & 1921 & -5 & 25 & & &
\end{tabular}

Looking at this output, we now remember that the variables are entered year, level, and number of sunspots. We can read this dataset by typing infile year level spots using sunspots.

If we wanted to see the tabs in sunspots.raw, we could type
```

. type sunspots.raw, showtabs
1902 -10 5<T>1903 13 24<T>1904 18 42
1905 15 63<T>1906 29 54<T>1907 21 62
1908 10 49<T>1909 8 44<T>1910 1 19
1911 -7 6<T>1912 -11 4<T>1913 -3 1
1914 -2 10<T>1915 4 47<T>1916 15 57
1917 35 104<T>1918 27 81<T>1919 8 64
1920 3 38<T>1921 -5 25

```

\section*{> Example 2}

In a previous Stata session, we typed log using myres and created myres.smcl, containing our results. We can use type to list the log:
. type myres.smcl
```

            name: <unnamed>
            log: /work/peb/dof/myres.smcl
        log type: smcl
    opened on: 20 Jan 2015, 15:37:48
. use lbw
(Hosmer \& Lemeshow data)
. logistic low age lwt i.race smoke ptl ht ui
Logistic regression Number of obs =
=
Prob > chi2
Pseudo R2 = 0.1416
(output omitted)
. estat gof
Logistic model for low, goodness-of-fit test
(output omitted)
. log close
name: <unnamed>
log: /work/peb/dof/myres.smcl
log type: smcl
closed on: 20 Jan 2015, 15:38:30

```

We could also use view to look at the log; see [R] view.

\section*{Also see}
[D] cd — Change directory
[D] copy - Copy file from disk or URL
[D] dir - Display filenames
[D] erase - Erase a disk file
[D] mkdir - Create directory
[D] rmdir - Remove directory
[D] shell — Temporarily invoke operating system
[P] viewsource - View source code
[R] translate - Print and translate logs
[R] view - View files and logs
[U] 11.6 Filenaming conventions

\section*{Title}
unicode - Unicode utilities

\section*{Description Remarks and examples Also see}

\section*{[Suggestion: Read [U] 12.4.2 Handling Unicode strings first.]}

\section*{Description}

The unicode command provides utilities to help you work with Unicode strings in your data. If you have only plain ASCII characters in your data (\(\mathrm{a}-\mathrm{z}, \mathrm{A}-\mathrm{Z}, 0-9\), and typical punctuation characters), you can stop reading now. Otherwise, continue with Remarks and examples below.

\section*{Remarks and examples}

We recommend that you start with some overview documentation. First, you should read [U] 12.4.2 Handling Unicode strings, which will explain the difference between ASCII and Unicode and provide detailed advice on working with Unicode strings in Stata. In that section, you will learn about locales, encodings, sorting, and Unicode-specific string functions. For a general overview of Unicode-specific advice, see help unicode advice.

Second, if you have datasets, do-files, ado-files, or other files that you used with Stata 13 or earlier and those files contain characters other than plain ASCII such as accented characters, Chinese, Japanese, or Korean (CJK) characters, Cyrillic characters, and the like, you should read [D] unicode translate.
unicode provides the following utilities:
[D] unicode translate Translate files to Unicode
[D] unicode encoding Unicode encoding utilities
[D] unicode locale Unicode locale utilities
[D] unicode collator Language-specific Unicode collators
[D] unicode convertfile Low-level file conversion between encodings
You may also find help encodings useful if you need to choose an encoding when converting a string from extended ASCII to Unicode.

\footnotetext{
Also see
[D] unicode collator - Language-specific Unicode collators
[D] unicode convertfile - Low-level file conversion between encodings
[D] unicode encoding - Unicode encoding utilities
[D] unicode locale - Unicode locale utilities
[D] unicode translate - Translate files to Unicode
[U] 12.4.2 Handling Unicode strings
}

\section*{Title}
unicode collator - Language-specific Unicode collators

Description Syntax Remarks and examples Also see

\section*{Description}
unicode collator list lists the subset of locales that have language-specific collators for the Unicode string comparison functions: ustrcompare(), ustrcompareex(), ustrsortkey(), and ustrsortkeyex().

\section*{Syntax}
```

unicode collator list [pattern]

```
pattern is one of _all, *, *name*, *name, or name*. If you specify nothing, _all, or \(*\), then all results will be listed. *name* lists all results containing name; *name lists all results ending with name; and name* lists all results starting with name.

\section*{Remarks and examples}

Remarks are presented under the following headings:
Overview of collation
The role of locales in collation
Further controlling collation

\section*{Overview of collation}

Collation is the process of comparing and sorting Unicode character strings as a human might logically order them. We call this ordering strings in a language-sensitive manner. To do this, Stata uses a Unicode tool known as the Unicode collation algorithm, or UCA.

To perform language-sensitive string sorts, you must combine ustrsortkey() or ustrsortkeyex () with sort. It is a complicated process and there are several issues about which you need to be aware. For details, see [U] 12.4.2.5 Sorting strings containing Unicode characters. To perform language-sensitive string comparisons, you can use ustrcompare() or ustrcompareex ().

For details about the UCA, see http://www.unicode.org/reports/tr10/.

\section*{The role of locales in collation}

During collation, Stata can use the default collator or it can perform language-sensitive string comparisons or sorts that require knowledge of a locale.

A locale identifies a community with a certain set of preferences for how their language should be written; see [U] 12.4.2.4 Locales in Unicode. For example, in English, the uppercase letter of the Latin small letter " \(i\) " is the Latin capital letter "I". However, in Turkish, the uppercase letter is "I" with a dot above it (Unicode \u0130); hence, the case mapping is locale-sensitive.

Collation in Stata involves the locale-sensitive functions ustrcompare(), ustrcompareex(), ustrsortkey (), and ustrsortkeyex (). If you specify a locale with one of these functions or if you have set the locale globally (see [P] set locale_functions), then collation may be performed using a language-specific collator.

Because a locale is simply an identifier to locate the resources for specific services, there is no validation of the locale. For example, specifying "klingon" is as valid as specifying "en" when calling ustrcompare () or the other functions discussed here. If the collation data for the "klingon" locale is found, then the locale is populated; otherwise, fallback rules are followed. For more information, see Default locale and locale fallback in [D] unicode locale.

Stata supports hundreds of locales, but only about 100 have a language-specific collator. unicode collator list lets you determine whether your locale (or language) has its own collator. For example, Stata supports two locales for the Zulu language: zu is a general locale and \(\mathrm{zu} Z \mathrm{ZA}\) is Zulu specific to South Africa. Only zu has a language-specific collator.

\section*{Further controlling collation}
ustrcompare() and ustrsort() use the default collation algorithm for the locale. However, you can exercise finer control over the collation algorithm if you use ustrcompareex () or ustrsortkeyex().

An International Components for Unicode (ICU) locale may contain up to five subtags in the following order: language, script, country, variant, and keywords. Stata usually uses only the language and country tags. However, collation keywords may be used in the ustrcompareex() and ustrsortkeyex() functions.

The collation keyword specifies the string sort order of the locale. For example, "pinyin" and "stroke" for Chinese language produce different string sort orders. In most cases, it is not necessary to specify a collation keyword; the default collator (either for Stata or for the language) provides sufficient control. However, some programmers may wish to specify a specific value. If you do not know the value of the collation keyword, you can obtain a list of valid collation values and their meanings in XML format at http://unicode.org/repos/cldr/trunk/common/bcp47/collation.xml.

If you are comparing or sorting Unicode strings that have come from different data sources, then you may need to normalize the strings before ordering them. See ustrnormalize() for details on normalization, and note the norm parameter in ustrcompareex() and ustrsortkeyex().

\footnotetext{
Also see
[D] unicode - Unicode utilities
[D] unicode locale - Unicode locale utilities
[U] 12.4.2 Handling Unicode strings
[U] 12.4.2.5 Sorting strings containing Unicode characters
}

\section*{Title}
unicode convertfile - Low-level file conversion between encodings
Description Syntax Options Remarks and examples Also see

\section*{Description}
unicode convertfile converts text files from one encoding to another encoding. It is a low-level utility that will feel familiar to those of you who have used the Unix command iconv or the similar International Components for Unicode (ICU)-based command uconv. If you need to convert Stata datasets (.dta) or text files commonly used with Stata such as do-files, ado-files, help files, and CSV (*.csv) files, you should use the unicode translate command; see [D] unicode translate. If you wish to convert individual strings or string variables in your dataset, use the ustrfrom() and ustrto() functions.

\section*{Syntax}
unicode convertfile srcfilename destfilename [, options]
srcfilename is a text file that is to be converted from a given encoding and destfilename is the destination text file that will use a different encoding.
\begin{tabular}{ll}
options & Description \\
\hline srcencoding \(([\) string \(])\) & \begin{tabular}{l}
encoding of the source file; UTF-8 if not specified \\
dstencoding \(([\) string \(])\)
\end{tabular} \\
\begin{tabular}{l}
srccallback \((\) method \()\) \\
encoding of the destination file; UTF-8 if not specified \\
what to do if source file contains invalid byte sequence(s)
\end{tabular} \\
replace & \begin{tabular}{l}
what to do if destination encoding does not support characters in the \\
source file \\
replace the destination file if it exists
\end{tabular} \\
\hline \hline method & \begin{tabular}{l}
Description
\end{tabular} \\
\hline stop & \begin{tabular}{l}
specify that unicode convertfile stop with an error if an invalid \\
character is encountered; the default
\end{tabular} \\
specify that unicode convertfile skip invalid characters \\
substitute & \begin{tabular}{l}
specify that unicode convertfile substitute invalid characters \\
with the destination encoding's substitute character during \\
conversion; the substitute character for Unicode encodings is lufffd
\end{tabular} \\
specify that unicode convertfile replace any Unicode characters \\
not supported in the destination encoding with an escaped string
\end{tabular}

\section*{Options}
srcencoding ([string \(]\)) specifies the source file encoding. See help encodings for a list of common encodings and advice on choosing an encoding.
dstencoding ([string]) specifies the destination file encoding. See help encodings for a list of common encodings and advice on choosing an encoding.
srccallback (method) specifies the method for handling characters in the source file that cannot be converted.
dstcallback(method) specifies the method for handling characters that are not supported in the destination encoding.
replace permits unicode convertfile to overwrite an existing destination file.

\section*{Remarks and examples}

Remarks are presented under the following headings:
Conversion between encodings
Invalid and unsupported characters

\section*{Conversion between encodings}
unicode convertfile is a utility to convert strings from one encoding to another. Encoding is the method by which text is stored in a computer. It maps a character to a nonnegative integer, called a code point, and then maps that integer to a single byte or a sequence of bytes. Common encodings are ASCII, UTF-8, and UTF-16. Stata uses UTF-8 encoding for storing text. Unless otherwise noted, the terms "Unicode string" and "Unicode character" in Stata refer to a UTF-8 encoded Unicode string or character. For more information about encodings, see [U] 12.4.2.3 Encodings. See help encodings for a list of common encodings, and see [D] unicode encoding for a utility to find all available encodings.

If you are using unicode convertfile to convert a file to UTF-8 format, the string encoding using by Stata, you only need to specify the encoding of the source file. By default, UTF-8 is selected as the encoding for the destination file. You can also use unicode convertfile to convert files from UTF-8 encoding to another encoding. Although conversion to or from UTF-8 is the most common usage, you can use unicode convertfile to convert files between any pair of encodings.

Be aware that some characters may not be shared across encodings. The next section explains options for dealing with unsupported characters.

\section*{Invalid and unsupported characters}

Unsupported characters generally occur in two ways: the bytes used to encode a character in the source encoding are not valid in the destination encoding such as UTF-8 (called an invalid sequence); or the character from the source encoding does not exist in the destination encoding.

It is common to encounter inconvertible characters when converting from a Unicode encoding such as UTF-8 to some other encoding. UTF-8 supports more than 100,000 characters. Depending on the characters in your file and the destination encoding you select, it is possible that not all characters will be supported. For example, ASCII only supports 128 characters, so all Unicode characters with code points greater than 127 are unsupported in ASCII encoding.

\section*{Examples}

Convert file from Latin1 encoding to UTF-8 encoding
. unicode convertfile data.csv data_utf8.csv, srcencoding(ISO-8859-1)
Convert file from UTF-32 encoding to UTF-16 encoding, skipping any invalid sequences in the source file
. unicode convertfile utf32file.txt utf16file.txt, srcencoding(UTF-32)
> dstencoding(UTF-16) srccallback(skip)

\section*{Also see}
[D] unicode - Unicode utilities
[D] unicode translate - Translate files to Unicode
[U] 12.4.2 Handling Unicode strings
[U] 12.4.2.6 Advice for users of Stata before version 14

\section*{Title}
unicode encoding — Unicode encoding utilities

\section*{Description Syntax Remarks and examples Also see}

\section*{Description}
unicode encoding list and unicode encoding alias list encodings that are available in Stata. See help encodings for advice on choosing an encoding and a list of the most common encodings. unicode encoding list provides a list of all encodings and their aliases or those that meet specified criteria. unicode encoding alias provides a list of alternative names that may be used to refer to a specific encoding.
unicode encoding set sets an encoding to be used with the unicode translate command; see [D] unicode translate for documentation for unicode encoding set.

\section*{Syntax}

List encodings
```

unicode encoding list [pattern]

```

List all aliases of an encoding
```

unicode encoding alias name

```

Set an encoding for use with unicode translate unicode encoding set name
pattern is one of the following: *,_all, *name*, *name, or name*. Specifying nothing, _all, or * lists all results. Specifying *name* lists all results containing name. Specifying *name lists all results ending with name. Specifying name* lists all results starting with name.

\section*{Remarks and examples}

Encoding is the method by which text is stored in a computer. It maps a character to a nonnegative integer, called a code point, then maps that integer to a single byte or a sequence of bytes. Common encodings are ASCII (for which there are many variants), UTF-8, and UTF-16. Stata uses UTF-8 encoding for storing text and UTF-16 to encode the GUI on Microsoft Windows and Mac OS X. For more information about encodings, see [U] 12.4.2.3 Encodings.

The most common reason you will need to specify an encoding is when converting a dataset, do-file, ado-file, or some other file used with Stata 13 or earlier (which was not Unicode aware) for use with Stata 14. See [D] unicode translate for help with this, and see help encodings for advice on choosing an encoding and a list of common encodings.

Some commands and functions require that you specify one or more encodings. Often you will need to use only common encodings. However, you may not know how to specify these to Stata. For example, suppose that we are using unicode translate to convert a do-file from Stata 13 that contains extended ASCII characters for use in Stata 14. If we are working on a Windows machine, the most likely encoding is Windows-1252. If we want to check that this is how it should be specified as we use unicode translate, we can type
. unicode encoding list Windows-1252
Stata returns all encodings for which the encoding name or an alias exactly matches Windows-1252. Capitalization does not matter.

If we wanted to search for all encodings and aliases that have windows anywhere in their name, we could type
```

. unicode encoding list *windows*

```
and see a long list of matches.
If we are told that a text file is encoded with ibm-913_P100-2000 and we want to see by what other names that encoding is known (perhaps because we just do not want to type out such a long string when using Stata's functions that need an encoding), we can use
. unicode encoding alias ibm-913_P100-2000
and we find that there are many synonyms, including some that are much easier to type.
You may not know the exact encoding that you need and wish to browse the full list of available encodings. To do this, you can just type unicode encoding list without specifying a pattern.

\section*{Also see}
help encodings
[D] unicode - Unicode utilities
[D] unicode translate - Translate files to Unicode
[U] 12.4.2 Handling Unicode strings
[U] 12.4.2.3 Encodings

\section*{Title}
unicode locale - Unicode locale utilities
Description Syntax Remarks and examples Also see

\section*{Description}
unicode locale list lists all available locales or those locales that meet the specified criteria. Any of these locale codes may be specified in Stata or Mata functions that accept a locale as an argument, such as ustrcompare() and ustrupper(), or in the set locale_functions setting.
unicode uipackage list lists all localization packages that are available for the graphics user interface (GUI). Any of the listed locales may be specified in the set locale_ui setting to change the language of the text that is displayed in GUI elements such as the menus and dialog boxes.

\section*{Syntax}

List locales
```

unicode locale list [pattern]

```

List user interface (UI) localization packages
```

unicode uipackage list

```
pattern is one of _all, *, *name*, *name, or name*. If you specify nothing, _all, or *, then all results will be listed. *name* lists all results containing name; *name lists all results ending with name; and name* lists all results starting with name.

\section*{Remarks and examples}

Remarks are presented under the following headings:

\section*{Overview}

Default locale and locale fallback

\section*{Overview}

A locale identifies a user community with a certain preference for how their language should be written; see [U] 12.4.2.4 Locales in Unicode. A locale can be as general as a certain language (for example, "en" for English) or can be more specific to a country or region (for example, "en_US" for U.S. English or "en_HK" for Hong Kong English. Stata uses International Components for Unicode's (ICU's) locale format. See http://userguide.icu-project.org/locale for full information about ICU. Note that ICU differs from the POSIX locale identifiers used by Linux systems.

Locales use tags to define how specific they are to language variants. An ICU locale may contain up to five subtags in the following order: language, script, country, variant, and keywords. Typically, the language is required and the other tags are optional. In most cases, Stata uses only the language and country tags. For example, "en_US" specifies the language as English and the country as the USA.

Many language-specific operations require the locale to perform their task. This kind of operation is called locale-sensitive. For example, in English, the uppercase letter of the Latin small letter "i" is the Latin capital letter "I". However, in Turkish, the uppercase letter is "亡" with a dot above it (Unicode \u0130); hence, the case mapping is locale-sensitive.

The following functions are locale-sensitive: ustrupper(), ustrlower(), ustrtitle(), ustrword(), ustrwordcount(), ustrcompare(), ustrcompareex(), ustrsortkey(), and ustrsortkeyex ().

Although Stata usually uses only the language and country tags, collation keywords may also be used in functions ustrcompare() and ustrsortkey() to affect ordering of Unicode strings. The collation keyword affects the string sort order of the locale. For example, "pinyin" and "stroke" for Chinese language produce different string sort orders. In most cases, it is not necessary to specify a collation keyword; the default collator (either for Stata or for the language) provides sufficient control. However, some programmers may wish to specify a specific value. If you do not know the value of the collation keyword, you can obtain a list of valid collation values and their meanings in XML format at http://unicode.org/repos/cldr/trunk/common/bcp47/collation.xml.

\section*{Default locale and locale fallback}

Because a locale is simply an identifier to locate the resources for specific services, there is no validation of the locale. For example, specifying "klingon" is as valid as specifying "en" when calling ustrcompare () or the other functions discussed here. If the collation data for the "klingon" locale is found, then the locale is populated; otherwise, a fallback search process starts.

The fallback process proceeds as follows:
1 . The variant is removed if there is one.
2 . The country is removed if there is one.
3 . The script is removed if there is one.
4 . Steps \(1-3\) are repeated on the default locale.
5 . If a locale cannot be found after following the previous steps, the ICU "Root", or built-in fallback, locale is used.

The process stops at any point if the desired information is found. The ICU default locale is usually the system locale on the machine, which you can change. Note that on Mac OS X, the ICU default locale is usually "en_US_posix", which does not change even if you change the system locale from the operating system's "Language" setting. To see the ICU default locale, you can type
```

. display c(locale_icudflt)

```

You can also find it under the Unicode settings in the output of creturn list along with two other locale-related settings: locale_ui and locale_functions. See [P] set locale_ui and [P] set locale_functions for details.
set locale_functions affects the functions ustrupper(), ustrlower(), ustrtitle(), ustrword(), ustrwordcount(), ustrcompare(), ustrcompareex(), ustrsortkey(), and ustrsortkeyex () when no locale is specified. If locale_functions is not set, the default ICU locale c(locale_icudflt) is used.

For example, if your operating system is Microsoft Windows English version, the system locale is most likely "en". It is "en_US" if you chose the country to be USA during installation of the operating system. If locale_functions is not set or is set to default, then ustrupper("istanbul") is equivalent to ustrupper("istanbul", "en_US"), which returns ISTANBUL.

However, if locale_functions is set to tr for Turkish, then ustrupper("istanbul") is equivalent to ustrupper("istanbul", "tr"), which returns İSTANBUL with a dot over the capital I. Although ICU does not validate locales, Stata validates that the language subtag of the locale_functions setting is a valid ISO-639-2 language code. (See the ISO-639-2 list at http: //www.loc.gov/standards/iso639-2/.) Hence, set locale_functions klingon will produce an error.

With the fallback rules, the effective locale can be very different from the locale you specified, depending on the operation being performed. Currently, ustrword() and ustrwordcount (), which use ICU's word break iterator service, and ustrcompare(), ustrcompareex (), ustrsortkey (), and ustrsortkeyex (), which use ICU's collation service, are affected by this. You may use the functions wordbreaklocale() and collatorlocale() to find the effective locale from the requested locale.

\section*{Also see}
[D] unicode - Unicode utilities
[P] set locale_functions - Specify default locale for functions
[P] set locale_ui - Specify a localization package for the user interface
[U] 12.4.2 Handling Unicode strings
[U] 12.4.2.4 Locales in Unicode

\section*{Title}
unicode translate－Translate files to Unicode

Description Syntax Options Remarks and examples Also see

\section*{Description}
unicode translate translates files containing extended ASCII to Unicode（UTF－8）．
Extended ASCII is how people got accented Latin characters such as＂á＂and＂à＂and got characters from other languages such as＂\(Я\)＂，＂\(\Theta\)＂，and＂わたし＂before the advent of Unicode or，in this context， before Stata became Unicode aware．

If you have do－files，ado－files，．dta files，etc．，from Stata 13 or earlier－and those files contain extended ASCII－you need to use the unicode translate command to translate the files from extended ASCII to Unicode．

The unicode translate command is also useful if you have text files containing extended ASCII that you wish to read into Stata．

\section*{Syntax}

Analyze files to be translated
\[
\text { unicode analyze filespec }[\text {, redo nodata }]
\]

Set encoding to be used during translation
\[
\text { unicode encoding set }[\text { "]encoding }["]
\]

Translate or retranslate files
```

unicode translate filespec [, invalid[(escape|mark|ignore)]
transutf8 nodata]
unicode retranslate filespec [, invalid[(escape|mark|ignore)]
transutf8 replace nodata]

```

Restore backups of translated files
```

unicode restore filespec [, replace]

```

Delete backups of translated files
```

unicode erasebackups, badidea

```
filespec is a single filename or a file specification containing \(*\) and ? specifying one or more files, such as
```

*.dta
*.do
*.*
*
myfile.*
year??data.dta

```
unicode analyzes and translates .dta files and text files. It assumes that filenames with suffix .dta contain Stata datasets and that all other suffixes contain text. Those other suffixes are .ado, .do, .mata, .txt, .csv, .sthlp, .class, .dlg, .idlg, .ihlp, .smcl, and .stbcal.

Files with suffixes other than those listed are ignored. Thus "*.*" would ignore any .docx files or files with other suffixes. If such files contain text, they can be analyzed and translated by specifying the suffix explicitly, such as info. README and *.README.

\section*{Options}
redo is allowed with unicode analyze. unicode analyze remembers results from one run to the next so that it does not repeat results for files that have been previously analyzed and determined not to need translation. Thus unicode analyze's output focuses on the files that remain to be translated. redo specifies that unicode analyze show the analysis for all files specified.
nodata is used with unicode analyze, translate, and retranslate. It specifies that the contents of the str\# and strL variables in .dta files are not to be translated. The contents of the variables are to be left as is. The default behavior is to translate if necessary.
If option nodata is specified, only the meta data-variable names, dataset label, variable labels, value labels, and characteristics-are analyzed and perhaps translated.
This option is provided for two reasons.
nodata is included for those who do not trust automated software to modify the most vital part of their datasets, the data themselves. We emphasize to those users that unicode backs up files, and so translated files are easily restored to their original status.
The other reason nodata is included is for those datasets that include string variables in which some variables (observations) use one encoding and other variables (observations) use another. Such datasets are rare and called mixed-encoding datasets. One could arise if dataset result.dta was the result of merging input1.dta and input2.dta, and input1.dta encoded its string variables using ISO-8859-1, whereas input2.dta used JIS-X-0208. Such datasets are rare because if this had occurred, you would have noticed when you produced result.dta. The two extended ASCII encodings are simply not compatible, and one group or another of characters would have displayed incorrectly.
invalid and invalid() are allowed with unicode translate and retranslate. They specify how invalid characters are to be handled. Invalid characters are not supposed to arise, and when they do, it is a sign that you have set the wrong extended ASCII encoding. So let's assume that you have indeed set the right encoding and that still one or a few invalid characters do arise. The stories on how this might happen are long and technical, and all of them involve you playing sophisticated font games, or they involve you using a proprietary extended ASCII encoding that is no longer available, and so you are using an encoding that is close to the actual encoding used.

By default, unicode will not translate files containing invalid characters. unicode instead warns you so that you can specify the correct extended ASCII encoding.
invalid specifies the invalid characters are to be shown with an escape sequence. If a string contained "A@B", where @ indicates an invalid character, after translation, the string might contain "A\%XCDB", which is say, \%XCD was substituted for @. In general, invalid characters are replaced with \(\% \mathrm{X} \# \#\), where \#\# is the invalid character's hex value. The substitution is admittedly ugly, but it ensures that distinct strings remain distinct, which is important if the string is used as an identifier when you use the data.
invalid(escape) is a synonym for invalid.
invalid(mark) specifies that the official Unicode replacement character be substituted for invalid characters. That official character is \ufffd in Unicode speak and how it looks varies across operating systems. On Windows, the Unicode replacement character looks like a square; on Mac and Unix, it looks like a question mark in a hexagon.
invalid(ignore) indicates that the invalid character simply be removed. "A@B" becomes "AB".
transutf8 is allowed with unicode translate and retranslate. transutf8 specifies that characters that look as if they are UTF-8 already should nonetheless be translated according to the extended ASCII encoding. Do not specify this option unless unicode suggests it when you translate the file without the option, and even then, specify the option only after you have examined the translated file and determined that you agree.
For most of us, this issue arises when two extended ASCII characters appear next to each other, such as a German word containing "üß", or a French word containing "àö". Even when extended ASCII characters are adjacent, that is not necessarily sufficient to mimic valid UTF-8 characters, but some combinations do mimic UTF-8.

Adjacent UTF-8 characters that mimic UTF-8 characters are actually likely when you are using a CJK extended ASCII encoding. CJK stands for Chinese, Japanese, and Korean.
In any case, if unicode analyze reports when valid UTF-8 strings appear and if the file needs translating because it is not all ASCII plus UTF-8, you may need to specify transutf8 when you translate the file. If you are unsure, proceed by translating the file without specifying transutf8, inspect the result, and retranslate if necessary.
replace has nothing to do with translation and is allowed with unicode retranslate and restore. It has to do with the restoration of original, untranslated files from the backups that unicode translate and retranslate make. Option replace should not be specified unless unicode suggests it.
unicode keeps backups of your originals. When you restore the originals or retranslate files (which involves restoring the originals), unicode checks that the previously translated file is unchanged from when unicode last translated it. It does this because if you modified the translated file since translation, those changes might be important to you and because if unicode restored the original from the backup, you would lose those changes. replace specifies that it is okay to change the previously translated file even though it has changed.
badidea is used with unicode erasebackups and is not optional. Erasing the backups of original files is usually a bad idea. We recommend you keep them for six months or so. Eventually, however, you will want to delete the backups. You are required to specify option badidea to show that you realize that erasing the backups is a bad idea if done too soon.

\section*{Remarks and examples}

Remarks are presented under the following headings：
What is this about？
Do I need to translate my files？
Overview of the process
How to determine the extended ASCII encoding
Use of unicode analyze
Use of unicode translate：Overview
Use of unicode translate：A word on backups
Use of unicode translate：Output
Translating binary strLs

\section*{What is this about？}

Stata 14 uses UTF－8，a form of Unicode，to encode strings．Previous releases of Stata used ASCII． Datasets，do－files，ado－files，help files，and the like may need translation to display properly in Stata 14.

Files containing strings using only plain ASCII do not need translation．Plain ASCII provides the following characters：

If the variable names，variable labels，value labels，and string variables in your ．dta files and the lines in your do－files，ado－files，and other Stata text files contain only the characters above，there is nothing you need to do．

On the other hand，if your ．dta files，do－files，ado－files，etc．，contain accented characters such as
á è ô ü ý ...
or symbols such as
£ \(¥ \ldots\)
or characters from other alphabets，

\section*{знать}

こんにちは
then the files do need translating so that the characters display correctly．
unicode analyze will tell you whether you have such files，and unicode translate will translate them．

You first use unicode analyze．It may turn out that no files need translating，and in that case， you are done．

If you do have files that need translating，you will use unicode translate．unicode translate makes a backup of your file before translating it．

If you do have files that need translating，unicode translate will translate them．Before you can use unicode translate，you must set the extended ASCII encoding that your files used．You do this with unicode encoding set．Encodings go by names such as ISO－8859－1，Windows－1252， Big5，ISO－2022－KR，and about a thousand other names．However，there are only 231 encodings．Most
of the names are aliases (synonyms). ISO-8859-1, for instance, is also known as ISO-Latin1, Latin1, and other names.

See help encodings for more information on encodings. Some of you will find the appropriate encoding name immediately. Others will be able only to narrow down the alternatives. Even so, all is not lost. unicode translate makes it easy to translate and retranslate a file over and over again until you find the encoding that works best. Once you find that encoding, it is likely that all of your files are using the same encoding.

\section*{Do I need to translate my files?}

Can I ignore the issue?
If you are asking whether you can close your eyes and ignore the issue, the answer is maybe and maybe not.
If you have files using extended ASCII, they will not display correctly in Stata 14 . We view that as a significant problem, but let's assume that does not concern you. If you used extended ASCII for variable names, you may find it difficult or impossible to type the untranslated name. That would be a problem. Other than that, you are probably okay, or more accurately, we cannot think of a problem even though we have tried. We have tried because if we could think of a problem, we would have fixed it. Stata's data management routines have been modified and certified to work with UTF-8. If they receive extended ASCII, they can mightily mess up what is displayed, but beyond that, they should produce results equivalent to what previous Statas produced.

Our advice is, for safety's sake, do not ignore the problem.
However, you do not need to analyze and translate all of your files today. One day, you will use a dataset and results will look odd when you describe or list the data. You will see unprintable characters and probably mutter a few unprintable words yourself, but having discovered the problem, you can then turn to solving it using unicode analyze and unicode translate.
However, we recommend that you learn to use unicode translate today. Take some files you are working with, determine whether you have a problem, and fix them if you do.

\section*{Do my files need translation?}

If you are asking whether you have files that contain extended ASCII in hopes that you do not, here is our answer:
If you live and work in an English-speaking country, you probably do not have files containing extended ASCII.

If you live and work outside an English-speaking country but you have limited yourself to the unadorned Latin alphabet, you probably do not have files containing extended ASCII.
Otherwise, you probably do have files containing extended ASCII.
How will I know what to do?
unicode analyze will tell you whether you have files containing extended ASCII. unicode analyze can look at single files, or it can look at all the files in a directory. And if you do have files containing extended ASCII, unicode translate will fix the files.

\section*{Overview of the process}

You will analyze your files and, if necessary, translate them. You can do this one file at a time by typing
. unicode analyze myfile.dta
. unicode encoding set encoding
. unicode translate myfile.dta
or you can do this with all of your files at once by typing
. unicode analyze *
. unicode encoding set encoding
. unicode translate *
Shockingly, we are going to advise you that analyzing and even translating all of your files at once is perfectly safe! That is because
1. unicode analyze by default ignores files that are not Stata related.
2. unicode analyze reads your files and reports on them; it does not change them.
3. unicode analyze might report that no files need translating. In that case, you are done.
4. if you do have files that need translating, before you can use unicode translate, you must set the extended ASCII encoding. How you determine the encoding is the topic of the next section.
5. unicode translate, just like unicode analyze, ignores by default files that are not Stata related. Typing unicode translate \(*\) is safe.
6. unicode translate does not modify files that do not need translation. This does not hinge on your having run unicode analyze. Typing unicode translate \(*\) is safe.
7. unicode translate does not modify files in which the translation goes poorly; it discards the translation. Typing unicode translate \(*\) is safe.
8. unicode translate makes backups of the original of any file it does translate successfully. At any time, you can type
```

. unicode restore *

```
and the files in your directory are back to being just as they were when you started. Typing unicode translate \(*\) is safe.
In the rest of this manual entry, we could discuss what might happen when you run unicode analyze and unicode translate and offer advice on what you might do about it.
unicode analyze and unicode translate, however, produce a ream of output, especially if you run them on a group of files. That output is tailored to your files and your situation. That output states what did happen and offers advice. Read it.

\section*{How to determine the extended ASCII encoding}

We are getting ahead of ourselves because we have not yet determined that any of your files do need translating. Whether translation is necessary can be determined without knowing the extended ASCII encoding.

Determining the encoding can be more difficult than you would wish. Back in the day when the experts were still trying to make the extended ASCII solution work, the cleverest among them went to a lot of effort to hide the encoding from you, and they did a good job.

When the time comes to type
. unicode encoding set encoding
see help encodings. We have advice. In the meantime, allow us to predict how this process will transpire:

Some of you will not be able to determine the encoding your files are using, but you will be able to make guesses and narrow the choices down to a few of them. Then you will experiment to see which works best. We say "see" because that is literally how you are going to do it. You will guess, you will translate, and you will look at the result. And then you will repeat the process with a different encoding. The unicode command will make the translation and retranslation part easy.

Many of you will discover the single encoding that works for all of your files. Some of you will discover that one encoding works for most of your files but that there are one or two other encodings that you have to use with other files.

And then there is the issue of mixed UTF-8 and extended ASCII. This will affect only a few of you.
1. unicode translate will warn you when a file is a mix of UTF-8 and extended ASCII. It warns you because 1) the file could be exactly what it appears to be, a mix of encodings, or 2) the file is all extended ASCII and a few extended ASCII strings are merely masquerading as UTF-8.
2. By default, unicode translate assumes that the file really is a mix. It does not translate the UTF-8 strings; it translates just the strings that are extended ASCII.
Technical note: Here is how this works. A variable label appearing to be UTF-8 already is not translated, whereas another variable label containing extended ASCII is translated even if a part of it appears to be UTF-8. unicode translate assumes that each variable label follows a single encoding. This same logic applies to str\# and strL variables in the data. The variable is assumed to use the same encoding in all observations.
3. The default assumption may be incorrect; the file could be entirely extended ASCII. The default assumption is more likely to be incorrect in the CJK case. You can determine whether the default assumption is correct by looking at the file after translation. If some parts of it look like memory junk, then use unicode retranslate, transutf8 to retranslate the file, and if you do not like that result, use unicode retranslate without transutf8 to return to the previous result. Or you could use unicode restore to return to the original file and start all over again, perhaps with a different encoding.
Technical note: There is no difference between using unicode restore followed by unicode translate and using unicode retranslate. So if you want to try a different encoding, you can restore, set the new encoding, and translate, or you can set the new encoding and retranslate.

\section*{Use of unicode analyze}

If the files you want to examine are not in the current directory, change to the appropriate directory:
```

. cd wherever

```
unicode analyze and all the rest of the unicode commands described in this entry look at files in the current directory and only files in the current directory. unicode does not even look in subdirectories of the current directory.

Analyze the file.
unicode analyze will report whether the file needs translation and provide other information, too. The output looks something like this:
```

. unicode analyze myfile.dta
File summary (before starting):
1 file(s) specified
1 file(s) to be examined ...
File myfile.dta (Stata dataset)
File does not need translation
File summary:
all files okay

```

Or it might look like this:
```

. unicode analyze myfile.dta
File summary (before starting):
1 file(s) specified
1 file(s) to be examined ...
File myfile.dta (Stata dataset)
3 variable names need translation
2 variable labels need translation
1 str\# variable needs translation

```
 File needs translation.
 Use unicode translate on this file
File summary:
 1 file needs translation

If you were to now rerun the analysis in the case where the file does not need translation, you would see something like this:
```

. unicode analyze myfile.dta
File summary (before starting):
1 file(s) specified
1 file(s) already known to be ASCII in previous runs
0 file(s) to be examined ...
(nothing to do)

```

If you want to see the detailed output, type unicode analyze myfile.dta, redo.
The primary purpose of unicode analyze is to get the files that do not need translating out of the way. unicode analyze does not change your files; it just dismisses the ones that need no further work.

You can run unicode analyze on multiple files, and we recommend that you do that.
```

. unicode analyze *
30 file(s) specified
6 file(s) not Stata
1 file(s) already known to be ASCII in previous runs
1 file(s) already known to be UTF-8 in previous runs
22 files(s) to be examined

```

There is more to the output, but before we look at that, note that unicode analyze reported that 6 files were not Stata. unicode analyze and unicode translate ignore non-Stata files unless you explicitly specify them, say, by typing unicode analyze README or unicode analyze *. README.

Let's now return to the remaining output from unicode analyze \(*\) :
```

File filename (filetype)
notes about elements that need translating
recommendations
File filename (filetype)
notes about elements that need translating
recommendations
.
File filename (filetype)
notes about elements that need translating
recommendations
Files matching * that need translation:
list of files
File summary:
2 file(s) skipped (known okay from previous runs)
f file(s) need translation

```
unicode analyze produced a lot of output. If you are like us, you will want a \(\log\) of the output and perhaps want to look at it in the Viewer. It is not too late, just remember to specify the redo option:
```

. log using output
. unicode analyze *, redo
(output omitted)
. log close
. view output.smcl

```

If you are really like us, you will instead want a file you can edit in Stata's Do-file Editor:
```

. log using output.log
. unicode analyze *, redo
(output omitted)
. log close
. doedit output.log

```

Now, you can edit the output to make a to-do list for yourself. We go through the output and delete the parts with which we agree, such as the following:
```

File myfile.do (text file)
40 line(s) in file
File does not need translation.

```

Buried in the output, however, may be something like this:
```

File german.dta (Stata dataset)
File does not need translation, except ...
The file appears to be UTF-8 already. Sometimes, files that need
translating can look like UTF-8. Look at these examples:
variable name "länge"
variable label "Kofferraumvolumen (Kubikfuß)"
value-label contents "Ausländisch"
contents of str\# variable marke
Do they look okay to you?
If not, the file needs translating or retranslating with the
transutf8 option. Type
. unicode translate "bill_utf8.dta", transutf8
. unicode retranslate "bill_utf8.dta", transutf8

```

This file, too, is marked as not needing translation, and we agree based on the evidence presented, but we might not have agreed. Assume that the file was named japan.dta and that the examples did not look like Japanese but looked like memory junk. We would want to add this file to our list to translate and remind ourselves to specify option transutf8 when translating.

It is unlikely that any file that unicode analyze reports as purely UTF-8 needs translating unless the file is short, and then you must look at it to determine whether the file really is UTF-8.

Here is a different example. The file, according to unicode analyze, needs translation, but it also includes UTF-8:
```

File filter.do (text file)
40 line(s) in file
33 line(s) ASCII
1 line(s) UTF-8
6 line(s) need translation

```
 File needs translation. Use unicode translate on this file.
 There are three possibilities.
 1) The file is exactly what it appears to be, a mix of extended
 ASCII and UTF-8. Use unicode translate.
 2) The UTF-8 lines are extended ASCII masquerading as UTF-8.
 Use unicode translate, transutf8.
 3) The file is UTF-8 with some invalid characters. Set the
 encoding to utf8 and then use unicode translate, invalid().
unicode analyze thinks this file needs translation and speculates about how it should be translated. Read the output. Possibility 3) did not even occur to us. Even so, and even without looking at the file, we would favor possibility 2) because there is only one UTF-8 line and there are 6 lines known to need translation.

You will learn that running unicode analyze is optional. The advantage of running unicode analyze is that it offers advice.

You can analyze files repeatedly. If you type unicode analyze without the redo option, the output reappears, but files are skipped that unicode analyze previously determined as not needing translation. Specify redo and you will see all the files.
unicode analyze remembers results from previous runs. Five years from now, unicode analyze will remember the files it has examined and determined do not need translation, and it will even know whether the file has changed in the intervening five years and so needs reexamination.
unicode analyze remembers from one run to the next by creating a directory named bak.stunicode, where it can put its notes. Ignore the directory and its subdirectories. When we tell you about unicode translate, you will learn that bak.stunicode is also where backups of unmodified original files
are stored. Now that you know that, you might be tempted to restore originals from the backups by copying the files. Do not do that because you will confuse unicode. Use unicode restore to restore originals. We will get to that.

The purpose of unicode analyze is to dismiss all the files that do not have problems so you can focus on those that do. When you later use unicode translate, it will also skip over files that do not need translating. Using unicode analyze is optional, and even if you do not use it, unicode translate will never translate a file that does not need it; unicode translate runs unicode analyze in secret if it needs to.

\section*{Use of unicode translate: Overview}

Let's assume that we have used unicode analyze and learned that the following files need translating:
```

myfile.dta
anotherfile.do

```

Before we can translate the files, we must set the extended ASCII encoding. See help encodings when you are translating your files.

Let's just assume right now that we know the encoding for the files is ISO-8859-1, and then we will assume that we were wrong and show you how we get out of that situation.

Step 1. Inform unicode of the encoding by typing . unicode encoding set ISO-8859-1

Step 2. Translate the files, one at a time by typing
. unicode translate myfile.dta
. unicode translate anotherfile.do
or both in one command by typing
```

. unicode translate *

```

Specifying * or \(* . *\) or \(* . d t a\) or \(\mathrm{m} * . *\) or any other file specification is perfectly safe. unicode translate ignores irrelevant files just as unicode analyze does. unicode translate also ignores files that do not need translating, and it ignores files that have already been translated. unicode translate does not depend on your having run unicode analyze previously.
unicode translate has another great feature: it makes backups of the files it modifies. If, after translation, you decide you do not like the translation, you can restore the original by typing
```

. unicode restore myfile.dta

```

You can even type
```

. unicode restore *

```
if you want all of your files restored.
You do not have to restore the original just to retranslate it. Use unicode retranslate instead:
```

. unicode retranslate myfile.dta

```
. unicode retranslate *
The only reason to run unicode retranslate, however, is if you want to specify different options or try a different encoding:
. unicode encoding set some_other_encoding
. unicode retranslate *
And if you do not like that result, you can still unicode restore.

\section*{Use of unicode translate: A word on backups}
unicode translate and retranslate automatically make backups when they modify a file and a backup does not already exist. unicode calculates and keeps track of checksums calculated on the original and translated files, so it knows whether the files are subsequently changed. unicode is thoroughly tested. What could possibly go wrong?

If you are like us, you trust nobody with regard to your files. We do not even trust ourselves. Trust us on this. Make your own back up in whatever way you know before using unicode translate. Backup the entire directory. We would make a zip file of it, but if nothing else, just copy all the files to a new, out-of-the-way directory. We predict you will not need the copies, but one never knows for sure.

Even if unicode is perfect, the subsequent validity of the backups depends on the bak.stunicode subdirectory not being corrupted by another process or even by you. More than once, we have ourselves damaged files in haste.

After you have translated your files, keep the backups for a while. Eventually, however, there will come a day when the backups are no longer needed. The command to delete the backups of your originals is
```

. unicode erasebackups, badidea

```

You must specify option badidea. Think of badidea as an abbreviation for badideaifdonetoosoon: what you are doing in specifying the option is stating that it is not too soon.

\section*{Use of unicode translate: Output}
unicode translate's output looks just like unicode analyze's output except that the content varies:
```

. unicode translate *
30 file(s) specified
6 file(s) not Stata
6 file(s) already known to be ASCII in previous runs
4 file(s) already known to be UTF-8 in previous runs
14 files(s) to be examined
File filename (filetype)
notes about the translation
result message
File badfile.ado (textfile)
40 lines in file
16 lines ASCII
2 lines translated
22 lines w/ invalid chars not translated
File not translated because it contains untranslatable
characters;
you need to specify a different encoding or, if you
are sure that you have the correct encoding, use
unicode translate with the invalid() option

```
```

File filename (filetype)
notes about the translation
notes about elements that need translating
result message
Files matching * that still need translation:
badfile.ado
File summary:
10 file(s) skipped (known okay from previous runs)
13 file(s) successfully translated
1 files(s) not translated because they contain
untranslatable characters
you need to specify a different encoding or, if you
are sure that you have the correct encoding, use
unicode translate with the invalid() option

```

One file still needs translation according to the output. How can files still need translation? The output explains. We had untranslatable characters. The output even says what to do about it. We should specify a different encoding-the fact that we had untranslatable characters is evidence that we are using the wrong encoding-or we should accept that there are invalid characters in our file and tell unicode translate how to handle them. It will help us make the decision if we scan up from the file-summary message to find the detailed output for badfile.ado:
```

File badfile.ado (textfile)
40 lines in file
16 lines ASCII
2 lines translated
22 lines w/ invalid chars not translated
File not translated because it contains untranslatable
characters;
you need to specify a different encoding or, if you
are sure that you have the correct encoding, use
unicode translate with the invalid() option

```

You can read about the invalid() option under Options, but this looks like a case where the file needs a different encoding; 2 lines translated with the current encoding, and 22 did not. If we had instead seen that 22 lines translated and that 2 lines had invalid characters, we would be less sure about needing a different encoding. Assume the output had been
```

File badfile.ado (textfile)
40 lines in file
38 lines ASCII
2 lines w/ invalid chars not translated
File not translated because it contains untranslatable
characters;
you need to specify a different encoding or, if you
are sure that you have the correct encoding, use
unicode translate with the invalid() option

```

That an ado-file is mostly ASCII does not surprise us. The fact that no lines could be translated (given the encoding) speaks volumes. We need a different encoding.

Most of our files were translated. For successful translations, the detailed output for . dta files will be something like the following:
```

File trees.dta (Stata dataset)
9 variable names okay, ASCII
3 variable names translated
all data labels okay, ASCII
8 variable labels okay, ASCII
4 variable labels translated
all value-label names okay, ASCII
all value-label contents translated
all characteristic names okay, ASCII
all characteristic contents okay, ASCII
all str\# variables okay, ASCII

```
 File successfully translated

The detailed output for text files might look like the following:
```

File runjob.do (textfile)
120 lines in file
101 lines ASCII
19 lines translated

```
 File successfully translated

Here is an example of a file that translated successfully but produced a lot of output:
```

File northwest.dta (Stata dataset)
all variable names okay, ASCII
all data labels okay, ASCII
all variable labels okay, ASCII
all value-label names okay, ASCII
all value-label contents okay, ASCII
all characteristic names okay, ASCII
all characteristic contents okay, ASCII
1 strL variable okay, ASCII
1 strL variable(s) have binary values
This concerns strL variable diagnotes.
StrL variables that contain binary values in even one
observation are not translated by unicode. Translating
binary values is inappropriate. Rarely, however,
"binary" values are just text or the variable contains
binary values in some observations and nonbinary values
in others. You translate such variables using generate
or replace; see translating binary strLs.
1 strL variable translated
2 str\# variables okay, ASCII
1 str\# variable translated
File successfully translated

```

The extra output concerns a strL variable that was not translated. The output states that the variable is binary and that translating binary strLs is inappropriate, but maybe not. This is the topic of the next section.

\section*{Translating binary strLs}
unicode translate does not translate binary strLs. That is probably the right decision. StrLs are sometimes used in Stata to record documents, images, and other binary files, and modifying binary files is never a good idea.

Stata marks strL variables as binary on an observation-by-observation basis. As far as unicode translate is concerned, however, if there is just one observation in which the strL is marked as binary, it treats all observations as binary and does not translate them. The thinking is that variables hold different realizations of the same underlying type of thing, and if the strL is binary in one observation, it is probably truly binary in all observations.

Perhaps you know differently in your specific application and wish to translate the variable's nonbinary observations or all of its observations. Here is how you do that.

You use string function ustrfrom() to obtain a translated string. Assuming the existing strL variable is named myvar, you type
```

. generate strL newvar = ustrfrom(myvar, "encoding", \#)

```

Specify encoding just as you would with unicode encoding set encoding. encoding might be ISO-8859-1, Windows-1252, Big5, ISO-2022-KR, or any other extended ASCII encoding. Whatever string you specify for encoding, make sure it is valid and spelled correctly. Testing the string with unicode encoding set is one way to do that.
\# is specified as \(1,2,3\), or 4 and determines how invalid characters are to be handled. Three of the four values correspond to unicode's invalid() option:
\begin{tabular}{lll}
1 & is equivalent to & invalid(mark) \\
2 & is equivalent to & invalid(ignore) \\
4 & is equivalent to & invalid(escape)
\end{tabular}

The remaining code, 3 , specifies that the function return " " if invalid characters are encountered.
So one way of translating all the values of myvar would be
```

. generate strL try = ustrfrom(myvar, "ISO-8859-1", 1)
. browse newvar // review result
. replace newvar = try
. drop try

```

If you want to translate only the nonbinary values of myvar, you could type
. gen strL try = ustrfrom(myvar, "ISO-8859-1", 1) if !_strisbinary (myvar)
. replace try \(=\) myvar if _strisbinary (myvar)
That would use Stata's definition of binary, which is difficult to explain. Another good definition of binary is that the string not contain binary 0 :
```

. gen strL try = ustrfrom(myvar, "ISO-8859-1", 1) if !strpos(myvar, char(0))
. replace try = myvar if strpos(myvar, char(0))

```

\section*{Also see}
[D] unicode - Unicode utilities
[U] 12.4.2 Handling Unicode strings
[U] 12.4.2.6 Advice for users of Stata before version 14

\section*{Title}
use - Load Stata dataset
Description Quick start Menu Syntax Options Remarks and examples
Also see

\section*{Description}
use loads into memory a Stata-format dataset previously saved by save. If filename is specified without an extension, . dta is assumed. If your filename contains embedded spaces, remember to enclose it in double quotes.

In the second syntax for use, a subset of the data may be read.

\section*{Quick start}

Load Stata-format dataset mydata.dta into memory from current directory use mydata

As above, but load data from the mysubdir subdirectory in current directory and clear current data from memory first
use mysubdir/mydata, clear
Load only variables v1, v2, and v3 from mydata.dta use v1 v2 v3 using mydata

As above, and further restrict to the first 100 observations
use v1 v2 v3 in \(1 / 100\) using mydata
Load observations from mydata.dta where catvar \(=2\)
use if catvar=\(=2\) using mydata

\section*{Menu}

File \(>\) Open...

\section*{Syntax}

Load Stata-format dataset
```

use filename [, clear nolabel]

```

Load subset of Stata-format dataset
```

use [varlist] [if] [in] using filename [, clear nolabel]

```

\section*{Options}
clear specifies that it is okay to replace the data in memory, even though the current data have not been saved to disk.
nolabel prevents value labels in the saved data from being loaded. It is unlikely that you will ever want to specify this option.

\section*{Remarks and examples}

\section*{> Example 1}

We have no data in memory. In a previous session, we issued the command save hiway to save the Minnesota Highway Data that we had been analyzing. We retrieve it now:
```

. use hiway
(Minnesota Highway Data, 1973)

```

Stata loads the data into memory and shows us that the dataset is labeled "Minnesota Highway Data, 1973".

\section*{> Example 2}

We continue to work with our hiway data and find an error in our data that needs correcting:
. replace spdlimit=70 in 1
(1 real change made)
We remember that we need to forward some information from another dataset to a colleague. We use that other dataset:
```

. use accident
no; data in memory would be lost
r(4);

```

Stata refuses to load the data because we have not saved the hiway data since we changed it.
```

. save hiway, replace
file hiway.dta saved
. use accident
(Minnesota Accident Data)

```

After we save our hiway data, Stata lets us load our accident dataset. If we had not cared whether our changed hiway dataset were saved, we could have typed use accident, clear to tell Stata to load the accident data without saving the changed dataset in memory.

\section*{Technical note}

In example 2, you saved a revised hiway.dta dataset, which you forward to your colleague. Your colleague issues the command
```

. use hiway

```
and gets the message
```

file hiway.dta not Stata format
r(610);

```

Your colleague is using a version of Stata older than Stata 14. If your colleague is using Stata 11, 12 , or 13, you can save the dataset in Stata 11, 12, or 13 format by using the saveold command; see [D] save.

Newer versions of Stata can always read datasets created by older versions of Stata. Stata/MP and Stata/SE can read datasets created by Stata/IC. Stata/IC can read datasets created by Stata/MP and Stata/SE if those datasets conform to Stata/IC's limits; see [R] limits.

\section*{> Example 3}

If you are using a dataset that is too large for the amount of memory on your computer, you could load only some of the variables:
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{(National Longitudinal Survey. Young Women \(14-26\) years of age in 1968) . describe} \\
\hline Contains data obs: & from ht
\[
28,534
\] & ://www.s & -press & \begin{tabular}{l}
/data/r14/nlswork.dta \\
National Longitudinal Survey. \\
Young Women \(14-26\) years of age in 1968
\end{tabular} \\
\hline vars: & 5 & & & 7 Dec 2010 17:02 \\
\hline size: & 313,874 & & & \\
\hline variable name & storage type & \begin{tabular}{l}
display \\
format
\end{tabular} & \begin{tabular}{l}
value \\
label
\end{tabular} & variable label \\
\hline age & byte & \%8.0g & & age in current year \\
\hline race & byte & \%8.0g & & 1=white, 2=black, 3=other \\
\hline grade & byte & \%8.0g & & current grade completed \\
\hline tenure & float & \%9.0g & & job tenure, in years \\
\hline ln_wage & float & \%9.0g & & ln(wage/GNP deflator) \\
\hline
\end{tabular}

Sorted by:
Stata successfully loaded the five variables.
> Example 4
You are new to Stata and want to try working with a Stata dataset that was used in example 1 of [XT] xtlogit. You load the dataset:
```

. use http://www.stata-press.com/data/r14/union
(NLS Women 14-24 in 1968)

```

The dataset is successfully loaded, but it would have been shorter to type
. webuse union
(NLS Women 14-24 in 1968)
webuse is a synonym for use http://www.stata-press.com/data/r14/; see [D] webuse.

\section*{Also see \\ [D] compress - Compress data in memory \\ [D] datasignature - Determine whether data have changed \\ [D] import - Overview of importing data into Stata \\ [D] save - Save Stata dataset \\ [D] sysuse - Use shipped dataset \\ [D] webuse - Use dataset from Stata website \\ [U] 11.6 Filenaming conventions \\ [U] 21 Entering and importing data}

\section*{Title}
varmanage - Manage variable labels, formats, and other properties

Description Menu Syntax Remarks and examples Also see

\section*{Description}
varmanage opens the Variables Manager. The Variables Manager allows for the sorting and filtering of variables for the purpose of setting properties on one or more variables at a time. Variable properties include the name, label, storage type, format, value label, and notes. The Variables Manager also can be used to create varlists for the Command window.

\section*{Menu}

Data \(>\) Variables Manager

\section*{Syntax}

\section*{varmanage}

\section*{Remarks and examples}

A tutorial discussion of varmanage can be found in [GS] 7 Using the Variables Manager (GSM, GSU, or GSW).

\section*{Also see}
[D] drop - Drop variables or observations
[D] edit - Browse or edit data with Data Editor
[D] format - Set variables' output format
[D] label - Manipulate labels
[D] notes - Place notes in data
[D] rename - Rename variable

\section*{Title}
webuse - Use dataset from Stata website
\begin{tabular}{llll}
Description & Quick start & Menu & Syntax \\
Option & Remarks and examples & Also see &
\end{tabular}

\section*{Description}
webuse filename loads the specified dataset, obtaining it over the web. By default, datasets are obtained from http://www.stata-press.com/data/r14/. If filename is specified without a suffix, .dta is assumed.
webuse query reports the URL from which datasets will be obtained.
webuse set allows you to specify the URL to be used as the source for datasets. webuse set without arguments resets the source to http://www.stata-press.com/data/r14/.

\section*{Quick start}

Load example nlswork.dta dataset from default Stata Press website webuse nlswork

As above, but clear current dataset from memory first
webuse nlswork, clear
Change URL for data downloads to http://www.myuniversity.edu/mycourse webuse set www.myuniversity.edu/mycourse

Reset source for datasets to Stata Press
webuse set
Report current URL from which datasets will be obtained
webuse query

\section*{Menu}

File \(>\) Example datasets...

\section*{Syntax}

Load dataset over the web
webuse ["]filename["] [, clear]

Report URL from which datasets will be obtained webuse query

Specify URL from which dataset will be obtained webuse set [http://]url[/]

Reset URL to default webuse set

\section*{Option}
clear specifies that it is okay to replace the data in memory, even though the current data have not been saved to disk.

\section*{Remarks and examples}

Remarks are presented under the following headings:

> Typical use
> A note concerning example datasets
> Redirecting the source

\section*{Typical use}

In the examples in the Stata manuals, we see things such as
. use http://www.stata-press.com/data/r14/lifeexp
The above is used to load-in this instance-the dataset lifeexp.dta. You can type that, and it will work:
```

. use http://www.stata-press.com/data/r14/lifeexp
(Life expectancy, 1998)

```

Or you may simply type
. webuse lifeexp
(Life expectancy, 1998)
webuse is a synonym for use http://www.stata-press.com/data/r14/.

\section*{A note concerning example datasets}

The datasets used to demonstrate Stata are often fictional. If you want to know whether a dataset is real or fictional, and its history, load the dataset and type
```

. notes

```

A few datasets have no notes. This means that the datasets are believed to be real but that they were created so long ago that information about their original source has been lost. Treat such datasets as if they were fictional.

\section*{Redirecting the source}

By default, webuse obtains datasets from http://www.stata-press.com/data/r14/, but you can change that. Say that the site http://www.zzz.edu/users/sue/ has several datasets that you wish to explore. You can type
. webuse set http://www.zzz.edu/users/~sue
webuse will become a synonym for use http://www.zzz.edu/users/~sue/ for the rest of the session or until you give another webuse command.

When you set the URL, you may omit the trailing slash (as we did above), or you may include it: . webuse set http://www.zzz.edu/users/~sue/

You may also omit http://:
```

. webuse set www.zzz.edu/users/~sue

```

If you type webuse set without arguments, the URL will be reset to the default, http://www.stata-press.com/data/r14/:
```

. webuse set

```

\section*{Also see}
[D] sysuse - Use shipped dataset
[D] use - Load Stata dataset
[U] 1.2.2 Example datasets

\section*{Title}
xmlsave - Export or import dataset in XML format
\begin{tabular}{llll}
Description & Menu & Syntax & Options for xmlsave \\
Options for xmluse & Remarks and examples & Also see &
\end{tabular}

\section*{Description}
xmlsave and xmluse allow datasets to be exported or imported in XML file formats for Stata's .dta and Microsoft Excel's SpreadsheetmL format. XML files are advantageous because they are structured text files that are highly portable between applications that understand XML.

Stata can directly import files in Microsoft Excel .xls or .xlsx format. If you have files in that format or you wish to export files to that format, see [D] import excel.
xmlsave exports the data in memory in the dta XML format by default. To export the data, type
. xmlsave filename
although sometimes you will want to explicitly specify which document type definition (DTD) to use by typing
```

. xmlsave filename, doctype(dta)

```
xmluse can read either an Excel-format XML or a Stata-format XML file into Stata. You type
. xmluse filename
Stata will read into memory the XML file filename.\(x m l\), containing the data after determining whether the file is of document type dta or excel. As with the xmlsave command, the document type can also be explicitly specified with the doctype() option.
. xmluse filename, doctype(dta)
It never hurts to specify the document type; it is actually recommended because there is no guarantee that Stata will be able to determine the document type from the content of the XML file. Whenever the doctype() option is omitted, a note will be displayed that identifies the document type Stata used to load the dataset.

If filename is specified without an extension, .xml is assumed.
xmlsave cannot save strLs.

\section*{Menu}
xmlsave
File \(>\) Export \(>\) XML data
xmluse
File \(>\) Import \(>\) XML data

\section*{Syntax}

Export dataset in memory to XML format xmlsave filename [if] [in] [, xmlsave_options]

Export subset of dataset in memory to XML format
xmlsave varlist using filename [if] [in] [, xmlsave_options]

Import XML-format dataset
xmluse filename [, xmluse_options]
xmlsave_options Description
Main
doctype (dta) save XML file by using Stata's .dta format
doctype (excel) save XML file by using Excel XML format
dtd
include Stata DTD in XML file
legible format XML to be more legible
replace overwrite existing filename
xmluse_options
Description
doctype (dta)
doctype (excel)
sheet("sheetname")
cells(upper-left:lower-right)
datestring
allstring
firstrow
missing
nocompress
clear
load XML file by using Stata's .dta format load XML file by using Excel XML format Excel worksheet to load Excel cell range to load import Excel dates as strings import all Excel data as strings treat first row of Excel data as variable names treat inconsistent Excel types as missing do not compress Excel data replace data in memory

\section*{Options for xmlsave}
\(\qquad\) Main
doctype (dta|excel) specifies the DTD to use when exporting the dataset.
doctype (dta), the default, specifies that an XML file will be exported using Stata's .dta format (see [P] file formats .dta). This is analogous to Stata's binary dta format for datasets. All data that can normally be represented in a normal dta file will be represented by this document type. doctype (excel) specifies that an XML file will be exported using Microsoft's SpreadsheetML DTD. SpreadsheetmL is the term given by Microsoft to the Excel XML format. Specifying this document type produces a generic spreadsheet with variable names as the first row, followed by data. It can be imported by any version of Microsoft Excel that supports Microsoft's SpreadsheetML format.
dtd when combined with doctype (dta) embeds the necessary DTD into the XML file so that a validating parser of another application can verify the dta XML format. This option is rarely used, however, because it increases file size with information that is purely optional.
legible adds indents and other optional formatting to the XML file, making it more legible for a person to read. This extra formatting, however, is unnecessary and in larger datasets can significantly increase the file size.
replace permits xmlsave to overwrite existing filename.xml.

\section*{Options for xmluse}
doctype (dta|excel) specifies the DTD to use when loading data from filename. xml. Although it is optional, use of doctype () is encouraged. If this option is omitted with xmluse, the document type of filename.xml will be determined automatically. When this occurs, a note will display the document type used to translate filename.xml. This automatic determination of document type is not guaranteed, and the use of this option is encouraged to prevent ambiguity between various XML formats. Specifying the document type explicitly also improves speed, as the data are only passed over once to load, instead of twice to determine the document type. In larger datasets, this advantage can be noticeable.
doctype (dta) specifies that an XML file will be loaded using Stata's dta format. This document type follows closely Stata's binary .dta format (see [P] file formats .dta).
doctype (excel) specifies that an XML file will be loaded using Microsoft's SpreadsheetML DTD. SpreadsheetML is the term given by Microsoft to the Excel XML format.
sheet("sheetname") imports the worksheet named sheetname. Excel files can contain multiple worksheets within one document, so using the sheet () option specifies which of these to load. The default is to import the first worksheet to occur within filename. xml.
cells(upper-left:lower-right) specifies a cell range within an Excel worksheet to load. The default range is the entire range of the worksheet, even if portions are empty. Often the use of cells() is necessary because data are offset within a spreadsheet, or only some of the data need to be loaded. Cell-range notation follows the letter-for-column and number-for-row convention that is popular within all spreadsheet applications. The following are valid examples:
. xmluse filename, doctype(excel) cells(A1:D100)
. xmluse filename, doctype(excel) cells(C23:AA100)
datestring forces all Excel SpreadsheetML date formats to be imported as strings to retain time information that would otherwise be lost if automatically converted to Stata's date format. With this option, time information can be parsed from the string after loading it.
allstring forces Stata to import all Excel SpreadsheetML data as string data. Although data type information is dictated by SpreadsheetML, there are no constraints to keep types consistent within columns. When such inconsistent use of data types occurs in SpreadsheetML, the only way to resolve inconsistencies is to import data as string data.
firstrow specifies that the first row of data in an Excel worksheet consist of variable names. The default behavior is to generate generic names. If any name is not a valid Stata variable name, a generic name will be substituted in its place.
missing forces any inconsistent data types within SpreadsheetML columns to be imported as missing data. This can be necessary for various reasons but often will occur when a formula for a particular cell results in an error, thus inserting a cell of type ERROR into a column that was predominantly of a NUMERIC type.
nocompress specifies that data not be compressed after loading from an Excel SpreadsheetML file. Because data type information in SpreadsheetML can be ambiguous, Stata initially imports with broad data types and, after all data are loaded, performs a compress (see [D] compress) to reduce data types to a more appropriate size. The following table shows the data type conversion used before compression and the data types that would result from using nocompress:
\begin{tabular}{ll}
SpreadsheetML type & Initial Stata type \\
\hline String & str2045 \\
Number & double \\
Boolean & double \\
DateTime & double \\
Error & str2045 \\
\hline
\end{tabular}
clear clears data in memory before loading from filename. xml.

\section*{Remarks and examples}

XML stands for Extensible Markup Language and is a highly adaptable text format derived from SGML. The World Wide Web Consortium is responsible for maintaining the XML language standards. See http://www.w3.org/XML/ for information regarding the XML language, as well as a thorough definition of its syntax.

The document type dta, used by both xmlsave and xmluse, represents Stata's own DTD for representing Stata . dta files in XML. Stata reserves the right to modify the specification for this DTD at any time, although this is unlikely to be a frequent event.

The document type excel, used by both xmlsave and xmluse, corresponds to the DTD developed by Microsoft for use in modern versions of Microsoft Excel spreadsheets. This product may incorporate intellectual property owned by Microsoft Corporation. The terms and conditions under which Microsoft is licensing such intellectual property may be found at

> http://www.microsoft.com/openspecifications/en/us/programs/osp/default.aspx

For more information about Microsoft Office and XML, see http://msdn.microsoft.com/en-us/library/ aa140066\%28office. \(10 \% 29\).aspx.
- Technical note

When you import data from Excel to Stata, a common hurdle is handling Excel's use of inconsistent data types within columns. Numbers, strings, and other types can be mixed freely within a column of Excel data. Stata, however, requires that all data in a variable be of one consistent type. This can cause problems when a column of data from Excel is imported into Stata and the data types vary across rows.

By default, xmluse attempts to import Excel data by using the data type information stored in the XML file. If an error due to data type inconsistencies is encountered, you can use the options firstrow, missing, and cells() to isolate the problem while retaining as much of the data-type information as possible.

However, identifying the problem and determining which option to apply can sometimes be difficult. Often you may not care in what format the data are imported into Stata, as long as you can import them. The quick solution for these situations is to use the allstring option to guarantee that all the
data are imported as strings, assuming that the XML file itself was valid. Often converting the data back into numeric form after they are imported into Stata is easier, given Stata's vast data management commands.

\section*{> Example 1: Saving XML files}

To export the current Stata dataset to a file, auto. xml, type
. xmlsave auto
To overwrite an existing XML dataset with a new file containing the variables make, mpg, and weight, type
```

. xmlsave make mpg weight using auto, replace

```

To export the dataset to an XML file for use with Microsoft Excel, type
```

. xmlsave auto, doctype(excel) replace

```
> Example 2: Using XML files
Assuming that we have a file named auto.xml exported using the doctype (dta) option of xmlsave, we can read in this dataset with the command
. xmluse auto, doctype(dta) clear
If the file was exported from Microsoft Excel to a file called auto.xml that contained the worksheet Rollover Data, with the first row representing column headers (or variable names), we could import the worksheet by typing
```

. xmluse auto, doctype(excel) sheet("Rollover Data") firstrow clear

```

Continuing with the previous example: if we wanted just the first column of data in that worksheet, and we knew that there were only 75 rows, including one for the variable name, we could have typed . xmluse auto, doc(excel) sheet("Rollover Data") cells(A1:A75) first clear

\section*{Also see}
[D] compress - Compress data in memory
[D] export - Overview of exporting data from Stata
[D] import - Overview of importing data into Stata
[P] file formats .dta - Description of .dta file format

\section*{Title}
xpose - Interchange observations and variables
\begin{tabular}{llll}
Description & Quick start & Menu & Syntax \\
Options & Remarks and examples & Methods and formulas & References
\end{tabular}

\section*{Options}

Remarks and examples
Methods and formulas
References
Also see

\section*{Description}
xpose transposes the data, changing variables into observations and observations into variables. All new variables - that is, those created by the transposition-are made the default storage type. Thus any original variables that were strings will result in observations containing missing values. (If you transpose the data twice, you will lose the contents of string variables.)

\section*{Quick start}

Replace dataset in memory with transposed variables and observations
xpose, clear
Add _varname containing the original variable names
xpose, clear varname
Use the most compact data type that preserves accuracy in the transposed data
xpose, clear promote

\section*{Menu}

Data \(>\) Create or change data \(>\) Other variable-transformation commands \(>\) Interchange observations and variables

\section*{Syntax}
```

xpose, clear [options]

```

\section*{options Description}
\begin{tabular}{ll}
* clear & reminder that untransposed data will be lost if not previously saved \\
format & use largest numeric display format from untransposed data \\
format \((\%\) fint \()\) & apply specified format to all variables in transposed data \\
varname & add variable _varname containing original variable names \\
promote & use the most compact data type that preserves numeric accuracy
\end{tabular}
* clear is required.

\section*{Options}
clear is required and is supposed to remind you that the untransposed data will be lost (unless you have saved the data previously).
format specifies that the largest numeric display format from your untransposed data be applied to the transposed data.
format (\%fmt) specifies that the specified numeric display format be applied to all variables in the transposed data.
varname adds the new variable _varname to the transposed data containing the original variable names. Also, with or without the varname option, if the variable _varname exists in the dataset before transposition, those names will be used to name the variables after transposition. Thus transposing the data twice will (almost) yield the original dataset.
promote specifies that the transposed data use the most compact numeric data type that preserves the original data accuracy.

If your data contain any variables of type double, all variables in the transposed data will be of type double.

If variables of type float are present, but there are no variables of type double or long, the transposed variables will be of type float. If variables of type long are present, but there are no variables of type double or float, the transposed variables will be of type long.

\section*{Remarks and examples}
> Example 1
We have a dataset on something by county and year that contains
. use http://www.stata-press.com/data/r14/xposexmpl
. list
\begin{tabular}{l|rrrr|}
\cline { 2 - 4 } & county & year1 & year2 & year3 \\
\hline 1. & 1 & 57.2 & 11.3 & 19.5 \\
2. & 2 & 12.5 & 8.2 & 28.9 \\
3. & 3 & 18 & 14.2 & 33.2 \\
\hline
\end{tabular}

Each observation reflects a county. To change this dataset so that each observation reflects a year, type
```

. xpose, clear varname

```
. list
\begin{tabular}{|rrrr|}
\hline v1 & v2 & v3 & _varname \\
\hline 1 & 2 & 3 & county \\
57.2 & 12.5 & 18 & year1 \\
11.3 & 8.2 & 14.2 & year2 \\
19.5 & 28.9 & 33.2 & year3 \\
\hline
\end{tabular}

We would now have to drop the first observation (corresponding to the previous county variable) to make each observation correspond to one year. Had we not specified the varname option, the variable _varname would not have been created. The _varname variable is useful, however, if we want to transpose the dataset back to its original form.
```

. xpose, clear

```
. list
\begin{tabular}{l|rrrr|}
\cline { 2 - 4 } & county & year1 & year2 & year3 \\
\hline 1. & 1 & 57.2 & 11.3 & 19.5 \\
2. & 2 & 12.5 & 8.2 & 28.9 \\
3. & 3 & 18 & 14.2 & 33.2 \\
\hline
\end{tabular}

\section*{Methods and formulas}

See Hamilton (2013, chap. 2) for an introduction to Stata's data management features.

\section*{References}

Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press.
Hamilton, L. C. 2013. Statistics with Stata: Updated for Version 12. 8th ed. Boston: Brooks/Cole.

\section*{Also see}
[D] reshape - Convert data from wide to long form and vice versa
[D] stack - Stack data

\section*{Title}
zipfile - Compress and uncompress files and directories in zip archive format
\begin{tabular}{llll}
Description & Quick start & Syntax & Option for zipfile \\
Option for unzipfile & Remarks and examples & &
\end{tabular}

\section*{Description}
zipfile compresses files and directories into a zip file that is compatible with WinZip, PKZIP 2.04 g , and other applications that use the zip archive format.
unzipfile extracts files and directories from a file in zip archive format into the current directory. unzipfile can open zip files created by WinZip, PKZIP 2.04 g , and other applications that use the zip archive format.

\section*{Quick start}

Compress mydata.dta and save as myproject.zip zipfile mydata.dta, saving(myproject)

As above, but also compress mydofile.do and mylog.smcl
zipfile mydata.dta mydofile.do mylog.smcl, saving(myproject)
Replace myproject.zip if it already exists
zipfile mydata.dta mydofile.do mylog.smcl, /// saving(myproject, replace)

Compress all files in the myproject subdirectory of the current directory zipfile myproject/*, saving(myproject)

Extract files and directories from myzip.zip to the current directory
unzipfile myzip
As above, but replace any file or directory in the current directory that has the same name as a file or directory in the zip file
unzipfile myzip, replace

\section*{Syntax}

Add files or directories to a zip file
```

zipfile file |directory [file | directory] ..., saving(zipfilename[, replace])

```

Extract files or directories from a zip file unzipfile zipfilename [, replace]

Note: Double quotes must be used to enclose file and directory if the name or path contains blanks. file and directory may also contain the ? and \(*\) wildcard characters.

\section*{Option for zipfile}
\(\operatorname{saving}\) (zipfilename [, replace]) is required. It specifies the filename to be created or replaced. If zipfilename is specified without an extension, .zip will be assumed.

\section*{Option for unzipfile}
replace overwrites any file or directory in the current directory with the files or directories in the zip file that have the same name.

\section*{Remarks and examples}
> Example 1: Creating a zip file
Suppose that we would like to zip all the .dta files in the current directory into the file myfiles.zip. We would type
```

. zipfile *.dta, saving(myfiles)

```

But we notice that we did not want the files in the current directory; instead, we wanted the files in the dta, abc, and eps subdirectories. We can easily zip all the . dta files from all three-character subdirectories of the current directory and overwrite the file myfiles.zip if it exists by typing
```

. zipfile ???/*.dta, saving(myfiles, replace)

```
> Example 2: Unzipping a zip file
Say, for example, we send myfiles.zip to a colleague, who now wants to unzip the file in the current directory, overwriting any files or directories that have the same name as the files or directories in the zip file. The colleague should type
```

. unzipfile myfiles, replace

```

\section*{Subject and author index}

See the combined subject index and the combined author index in the Glossary and Index.```

[^0]: *from (varname) is required.

[^1]: ${ }^{*}$ eol() is required.

[^2]: . use http://www.myuni.edu/department/~joe/mydata
 (important data from joe)

[^3]: Also see
 [D] describe - Describe data in memory or in file
 [D] ds - List variables matching name patterns or other characteristics
 [D] inspect - Display simple summary of data's attributes
 [D] labelbook - Label utilities
 [D] notes - Place notes in data
 [D] split - Split string variables into parts
 [U] 15 Saving and printing output-log files

[^4]: replace does not appear in the dialog box.

[^5]: * Either generate (newvarlist) or replace is required.

[^6]: Introduction
 Importing a text file
 Using other delimiters
 Specifying variable types
 Exporting to a text file
 Video example

[^7]: Introduction
 Reading free-format files
 Reading fixed-format files
 Numeric formats
 String formats
 Specifying column and line numbers
 Examples of reading fixed-format files
 Reading fixed-block files
 Reading EBCDIC files

