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Description

bayestest model computes posterior probabilities of Bayesian models fit using the bayesmh
command. These posterior probabilities can be used to test hypotheses about model parameters. The
command reports marginal likelihoods, prior probabilities, and posterior probabilities for all tested
models.

Quick start
Compute posterior probabilities of models corresponding to previously saved estimation results M1

and M2

bayestest model M1 M2

As above, but specify prior probabilities for models
bayestest model M1 M2, prior(0.3 0.7)

Menu
Statistics > Bayesian analysis > Hypothesis testing using model posterior probabilities
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Syntax
bayestest model

[
namelist

] [
, options

]
where namelist is a name, a list of names, all, or *. A name may be ., meaning the current (active)

estimates. all and * mean the same thing.

options Description

Main

prior(numlist) specify prior probabilities for tested models; default is all models
are equally likely

Advanced

marglmethod(method) specify marginal-likelihood approximation method; default is to use
Laplace–Metropolis approximation, lmetropolis; rarely used

method Description

lmetropolis Laplace–Metropolis approximation; default
hmean harmonic-mean approximation

Options

� � �
Main �

prior(numlist) specifies prior probabilities for models. By default, all models are assumed to be
equally likely. You may specify probabilities for all tested models, in which case the probabilities
must sum to one. Alternatively, you may specify probabilities for all but the last model, in which
case the sum of the specified probabilities must be less than one, and the probability for the last
model is computed as one minus this sum.

� � �
Advanced �

marglmethod(method) specifies a method for approximating the marginal likelihood. method is either
lmetropolis, the default, for Laplace–Metropolis approximation or hmean for harmonic-mean
approximation. This option is rarely used.

Remarks and examples stata.com

Remarks are presented under the following headings:
Introduction
Testing nested hypotheses
Comparing models with different priors

http://www.stata.com/manuals14/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals14/u11.pdf#u11.1.8numlist
http://stata.com
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Introduction

In this entry, we describe hypothesis testing by computing model posterior probabilities, probabilities
of Bayesian models given observed data. For interval hypothesis testing, see [BAYES] bayestest interval.

The bayestest model command computes posterior probabilities for specified models. The
computed probabilities can be used to compare which model is more likely among considered models
given observed data. You can compare models that differ only in several covariates or models with
completely different regression functions, such as linear and nonlinear models. You can compare
models with different outcome distributions or with different prior distributions or both. The only
requirements are that the considered models have proper posterior distributions and that the same
data are used to fit the models. If MCMC is used to approximate posterior distributions, convergence
of MCMC should also be verified before model comparison.

The results reported by bayestest model are related to Bayes factors; see [BAYES] bayesstats
ic to compute Bayes factors.

To use bayestest model, you must store estimation results after each bayesmh model of interest.
You can use estimates store (see [R] estimates store) to store estimation results after bayesmh, as
you can with other estimation commands, provided you also saved simulation results from bayesmh
using the saving() option. See Storing estimation results after bayesmh in [BAYES] bayesmh
postestimation for details.

Testing nested hypotheses

Consider the following Bayesian regression model for auto.dta,

mpg = β0 + β1weight1+ β2length1+ ε

where weight1 and length1 are the original weight and length variables rescaled to have similar
scale as mpg.

We assume that errors are normally distributed: ε ∼ normal(0, σ2). We also assume a noninfor-
mative Jeffreys prior for the parameters: (β, σ2) ∼ 1/σ2. Suppose that we are interested in testing
whether there is a relationship between mileage and weight and length of cars. We will consider four
models: the mean-only model, the model with weight only, the model with length only, and the full
model with both covariates.

In a frequentist setting, the four models correspond to the following hypotheses: H0 : β1 = 0,
β2 = 0, H0: β1 = 0, and H0: β2 = 0. In a Bayesian setting, we cannot formulate point hypotheses
for parameters with continuous distributions; see [BAYES] bayestest interval for examples. However,
we can compute probabilities of how likely each of the four models is given the observed data.

http://www.stata.com/manuals14/bayesbayestestinterval.pdf#bayesbayestestinterval
http://www.stata.com/manuals14/bayesbayesstatsic.pdf#bayesbayesstatsic
http://www.stata.com/manuals14/bayesbayesstatsic.pdf#bayesbayesstatsic
http://www.stata.com/manuals14/restimatesstore.pdf#restimatesstore
http://www.stata.com/manuals14/bayesbayesmhpostestimation.pdf#bayesbayesmhpostestimationRemarksandexamplesStoringestimationresultsafterbayesmh
http://www.stata.com/manuals14/bayesbayesmhpostestimation.pdf#bayesbayesmhpostestimation
http://www.stata.com/manuals14/bayesbayesmhpostestimation.pdf#bayesbayesmhpostestimation
http://www.stata.com/manuals14/bayesbayestestinterval.pdf#bayesbayestestinterval
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Let’s load auto.dta and generate rescaled versions of weight and length.

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. generate weight1 = weight/100

. generate length1 = length/10

Next, we fit the four models using bayesmh. We use the saving() option to save the simulation
datasets so that we can store estimation results of each model for later use with bayestest model.

The first model we fit is the mean-only model. We store its estimation results as meanonly.

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:}, flat) prior({var}, jeffreys)
> saving(meanonly_simdata) burnin(3500)
note: adaptation option maxiter() changed to 35
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ 1 (flat)

{var} ~ jeffreys

Bayesian normal regression MCMC iterations = 13,500
Random-walk Metropolis-Hastings sampling Burn-in = 3,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2627
Efficiency: min = .105

avg = .1064
Log marginal likelihood = -234.64617 max = .1078

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 21.29355 .6768607 .020887 21.28059 20.00132 22.61904

var 34.80707 5.963995 .181615 34.23247 24.9129 47.6883

file meanonly_simdata.dta saved

. estimates store meanonly

To accommodate the Jeffreys prior for the parameters, we specify suboption flat within the
prior() option for coefficients to request the flat prior with the density of 1 and suboption jeffreys
within prior() for the variance parameter to request a Jeffreys prior. We also specify a longer burn-in
period to improve convergence of MCMC samples for all examples. (Remember to use bayesgraph
to check convergence of MCMC.)

http://www.stata.com/manuals14/bayesbayesgraph.pdf#bayesbayesgraph
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We fit the second model containing only covariate length1 and store its results as length:

. set seed 14

. bayesmh mpg length1, likelihood(normal({var}))
> prior({mpg:}, flat) prior({var}, jeffreys)
> saving(length_simdata) burnin(3500)
note: adaptation option maxiter() changed to 35
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:length1 _cons} ~ 1 (flat) (1)

{var} ~ jeffreys

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 13,500
Random-walk Metropolis-Hastings sampling Burn-in = 3,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2865
Efficiency: min = .0771

avg = .07938
Log marginal likelihood = -198.7678 max = .08286

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
length1 -2.069861 .1882345 .006539 -2.068094 -2.44718 -1.706264

_cons 60.20346 3.562119 .127411 60.20927 53.34306 67.22423

var 12.88852 2.273808 .081887 12.62042 9.169482 18.16685

file length_simdata.dta saved

. estimates store length
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We fit the third model containing only covariate weight1 and store its results as weight:

. set seed 14

. bayesmh mpg weight1, likelihood(normal({var}))
> prior({mpg:}, flat) prior({var}, jeffreys)
> saving(weight_simdata) burnin(3500)
note: adaptation option maxiter() changed to 35
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight1 _cons} ~ 1 (flat) (1)

{var} ~ jeffreys

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 13,500
Random-walk Metropolis-Hastings sampling Burn-in = 3,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .1735
Efficiency: min = .0463

avg = .06694
Log marginal likelihood = -198.20751 max = .07989

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight1 -.6014409 .0506121 .001791 -.6013071 -.6996976 -.50121

_cons 39.45934 1.574673 .057646 39.49735 36.31386 42.33547

var 12.13997 2.141741 .099534 11.87332 8.883221 17.14041

file weight_simdata.dta saved

. estimates store weight
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Finally, we fit the last model containing both covariates and store its results as full:
. set seed 14

. bayesmh mpg weight1 length1, likelihood(normal({var}))
> prior({mpg:}, flat) prior({var}, jeffreys)
> saving(full_simdata) burnin(3500)
note: adaptation option maxiter() changed to 35
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight1 length1 _cons} ~ 1 (flat) (1)

{var} ~ jeffreys

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 13,500
Random-walk Metropolis-Hastings sampling Burn-in = 3,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2323
Efficiency: min = .05455

avg = .06647
Log marginal likelihood = -196.86195 max = .08085

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight1 -.3977027 .1580411 .005558 -.401646 -.6965175 -.0721332
length1 -.7599159 .5546754 .021944 -.7502182 -1.907818 .3106868

_cons 47.5913 6.132597 .262563 47.5656 35.89593 60.18002

var 11.81753 1.96315 .07608 11.59273 8.729182 16.14065

file full_simdata.dta saved

. estimates store full

Example 1: Computing posterior probabilities of models

We now use bayestest model to compute posterior probabilities of the four models.
. bayestest model meanonly length weight full

Bayesian model tests

log(ML) P(M) P(M|y)

meanonly -234.6462 0.2500 0.0000
length -198.7678 0.2500 0.1055
weight -198.2075 0.2500 0.1848

full -196.8619 0.2500 0.7097

Note: Marginal likelihood (ML) is computed using
Laplace-Metropolis approximation.

The mean-only model is very unlikely compared with other models. The length and weight models
are somewhat likely with the respective posterior probabilities of 0.11 and 0.18, and the full model
has the highest posterior probability of 0.71.
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Example 2: Specifying prior probabilities of models

If we have some prior knowledge about each of the models, we can use the prior() option to
specify prior probabilities for each model. For example, suppose that we have prior knowledge that
the weight model is much more likely than the full model so that the prior probabilities are 0.1 for
the mean-only model and the length model, 0.6 for the weight model, and only 0.2 for the full model.

. bayestest model meanonly length weight full, prior(0.1 0.1 0.6 0.2)

Bayesian model tests

log(ML) P(M) P(M|y)

meanonly -234.6462 0.1000 0.0000
length -198.7678 0.1000 0.0401
weight -198.2075 0.6000 0.4210

full -196.8619 0.2000 0.5389

Note: Marginal likelihood (ML) is computed using
Laplace-Metropolis approximation.

Under the specified prior, posterior probabilities of the weight and full models are now more similar:
0.42 and 0.54, respectively, but the full model is still preferable.

The above is equivalent to the following prior specification:

. bayestest model meanonly length weight full, prior(0.1 0.1 0.6)
(output omitted )

Using our results, we conclude that mpg is related to both weight and length and would proceed
with the full model.

After your analysis, remember to erase the saved simulation datasets you no longer need. For
example, we erase all of them by typing

. erase meanonly_simdata.dta

. erase weight_simdata.dta

. erase length_simdata.dta

. erase full_simdata.dta

Comparing models with different priors

In the previous section, we used bayestest model to compare nested hypotheses about which
covariates to include in the regression function. We can use bayestest model to compare models
with not only different covariates but also different outcome distributions and priors for parameters.

We continue our analysis of auto.dta, but for simplicity, we now consider the mean-only model
for mpg. Let’s compare models with two slightly different informative priors. We use an informative
normal–inverse-gamma prior for both models,

(β0|σ2) ∼ N(µ0, σ
2/n0)

σ2 ∼ InvGamma(ν0/2, ν0σ2
0/2)

with µ0 = 25, n0 = 10, and σ2
0 = 30, but we consider two different values for the degrees of

freedom: ν0 = 5 and ν0 = 1.
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We use bayesmh to fit our models. Following the formulas, we specify a normal() prior for the
constant {mpg: cons} (mean parameter) and an inverse-gamma prior igamma() for the variance
parameter {var}. We specify an expression for the variance of the normal prior distribution in
parentheses.

We fit the first model with ν0 = 5 and store its estimation results as informative1.

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:}, normal(25,{var}/10))
> prior({var}, igamma(2.5,75)) saving(inf1_simdata)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ normal(25,{var}/10)

{var} ~ igamma(2.5,75)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2548
Efficiency: min = .09065

avg = .1049
Log marginal likelihood = -238.55856 max = .1192

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 21.71853 .6592655 .019091 21.69554 20.44644 23.04896

var 35.47405 5.823372 .193417 34.72454 25.84419 48.228

file inf1_simdata.dta saved

. estimates store informative1
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We fit the second model with ν0 = 1 and store its estimation results as informative2.

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:}, normal(25,{var}/10))
> prior({var}, igamma(0.5,15)) saving(inf2_simdata)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ normal(25,{var}/10)

{var} ~ igamma(0.5,15)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2261
Efficiency: min = .0941

avg = .109
Log marginal likelihood = -239.4049 max = .1239

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 21.7175 .6539814 .021319 21.7295 20.47311 23.02638

var 35.89504 6.288571 .178665 35.17056 25.86084 50.21624

file inf2_simdata.dta saved

. estimates store informative2

Example 3: Comparing models with informative priors

We now use bayestest model to compare our models with two different informative priors.

. bayestest model informative1 informative2

Bayesian model tests

log(ML) P(M) P(M|y)

informative1 -238.5586 0.5000 0.6998
informative2 -239.4049 0.5000 0.3002

Note: Marginal likelihood (ML) is computed using
Laplace-Metropolis approximation.

Assuming that both models are equally likely a priori, the posterior probability of the informative1
stored results, 0.70, is much higher than the probability of the informative2 stored results, 0.3.
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Example 4: Comparing a model with noninformative prior

A note of caution regarding comparing models with informative and noninformative priors—models
with noninformative priors will often win because they are typically in most agreement with the
observed data. For models with noninformative priors, most of the information about parameters
is contained in a likelihood. As such, any model with an informative prior that is not in perfect
agreement with the data will not fit data as well as a model with a noninformative prior.

For example, let’s fit our constant-only model using a noninformative Jeffreys prior for the
parameters.

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:}, flat) prior({var}, jeffreys)
> saving(jeffreys_simdata)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ 1 (flat)

{var} ~ jeffreys

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2668
Efficiency: min = .09718

avg = .1021
Log marginal likelihood = -234.645 max = .1071

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 21.29222 .6828864 .021906 21.27898 19.99152 22.61904

var 34.76572 5.91534 .180754 34.18391 24.9129 47.61286

file jeffreys_simdata.dta saved

. estimates store jeffreys

Let’s now compare this model with our two informative models.
. bayestest model informative1 informative2 jeffreys

Bayesian model tests

log(ML) P(M) P(M|y)

informative1 -238.5586 0.3333 0.0194
informative2 -239.4049 0.3333 0.0083

jeffreys -234.6450 0.3333 0.9723

Note: Marginal likelihood (ML) is computed using
Laplace-Metropolis approximation.

The posterior probability of the Jeffreys model is 0.97.
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Finally, at the end of our analysis, we erase all the simulation datasets we no longer need. We
erase all of them by typing

. erase inf1_simdata.dta

. erase inf2_simdata.dta

. erase jeffreys_simdata.dta

Stored results
bayestest model stores the following in r():

Macros
r(names) names of estimation results used
r(marglmethod) method for approximating marginal likelihood: lmetropolis or hmean

Matrices
r(test) test results for parameters in r(names)

Methods and formulas
Suppose we have r models Mj for j = 1, . . . , r with prior probabilities P (Mj) such that∑r
j=1 p(Mj) = 1. Then, posterior probability for model J is

P (Mj |y) =
P (y|Mj)P (Mj)

P (y)

where P (y|Mj) = mj(y) is the marginal likelihood of Mj with respect to y, and P (y) =∑r
j=1 P (y|Mj)P (Mj). See Methods and formulas in [BAYES] bayesmh for details about computing

marginal likelihood.

Also see
[BAYES] bayesmh — Bayesian regression using Metropolis–Hastings algorithm

[BAYES] bayesmh postestimation — Postestimation tools for bayesmh

[BAYES] bayesstats ic — Bayesian information criteria and Bayes factors

[BAYES] bayesstats summary — Bayesian summary statistics

[BAYES] bayestest interval — Interval hypothesis testing
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http://www.stata.com/manuals14/bayesbayesmh.pdf#bayesbayesmh
http://www.stata.com/manuals14/bayesbayesmh.pdf#bayesbayesmh
http://www.stata.com/manuals14/bayesbayesmhpostestimation.pdf#bayesbayesmhpostestimation
http://www.stata.com/manuals14/bayesbayesstatsic.pdf#bayesbayesstatsic
http://www.stata.com/manuals14/bayesbayesstatssummary.pdf#bayesbayesstatssummary
http://www.stata.com/manuals14/bayesbayestestinterval.pdf#bayesbayestestinterval

