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Description

bayestest interval performs interval hypothesis tests for model parameters and functions of
model parameters using current estimation results from the bayesmh command. bayestest interval
reports mean estimates, standard deviations, and MCMC standard errors of posterior probabilities
associated with an interval hypothesis.

Quick start
Posterior probability of the hypothesis that 45 < {y: cons} < 50

bayestest interval {y: cons}, lower(45) upper(50)

As above, but skip every 5 observations from the full MCMC sample
bayestest interval {y: cons}, lower(45) upper(50) skip(5)

Posterior probability of a hypothesis about a function of model parameter {y:x1}
bayestest interval (OR:exp({y:x1})), lower(1.1) upper(1.5)

Posterior probability of hypotheses 45 < {y: cons} < 50 and 0 < {var} < 10 tested independently
bayestest interval ({y: cons}, lower(45) upper(50)) ///

({var}, lower(0) upper(10))

As above, but tested jointly
bayestest interval (({y: cons}, lower(45) upper(50)) ///

({var}, lower(0) upper(10)), joint)

Posterior probability of the hypothesis {mean} = 2 for discrete parameter {mean}
bayestest interval ({mean}==2)

Posterior probability of the interval hypothesis 0 ≤ {mean} ≤ 4
bayestest interval {mean}, lower(0, inclusive) upper(4, inclusive)

Menu
Statistics > Bayesian analysis > Interval hypothesis testing
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2 bayestest interval — Interval hypothesis testing

Syntax
Test one interval hypothesis about continuous or discrete parameter

bayestest interval exspec
[
, luspec options

]
Test one point hypothesis about discrete parameter

bayestest interval exspec==#
[
, options

]
Test multiple hypotheses separately

bayestest interval (testspec)
[
(testspec) . . .

] [
, options

]
Test multiple hypotheses jointly

bayestest interval (jointspec)
[
, options

]
Full syntax

bayestest interval (spec)
[
(spec) . . .

] [
, options

]
exspec is optionally labeled expression of model parameters,

[
prlabel:

]
expr, where prlabel is a

valid Stata name (or prob# by default), and expr is a scalar model parameter or scalar expression
(parentheses are optional) containing scalar model parameters. The expression expr may not contain
variable names.

testspec is exspec
[
, luspec

]
or exspec==# for discrete parameters only.

jointspec is
[

prlabel:
]
(testspec) (testspec) . . . , joint. The labels (if any) of testspec are ignored.

spec is one of testspec or jointspec.

luspec Null hypothesis

lower(#)
[
upper(.)

]
θ > #

lower(#, inclusive)
[
upper(.)

]
θ ≥ #[

lower(.)
]
upper(#) θ < #[

lower(.)
]
upper(#, inclusive) θ ≤ #

lower(#l) upper(#u) #l < θ <#u
lower(#l) upper(#u, inclusive) #l < θ ≤ #u
lower(#l, inclusive) upper(#u) #l ≤ θ < #u
lower(#l, inclusive) upper(#u, inclusive) #l ≤ θ ≤ #u

lower(intspec) and upper(intspec) specify the lower- and upper-interval values, respectively.

intspec is #
[
, inclusive

]
where # is the interval value, and suboption inclusive specifies that this value should be included
in the interval, meaning a closed interval. Closed intervals make sense only for discrete parameters.

intspec may also contain a dot (.), meaning negative infinity for lower() and positive infinity
for upper(). Either option lower(.) or option upper(.) must be specified.

http://www.stata.com/manuals14/bayes.pdf#bayesbayestestintervalSyntaxintspecs
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options Description

Main

skip(#) skip every # observations from the MCMC sample; default is skip(0)

nolegend suppress table legend

Advanced

corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

Options

� � �
Main �

skip(#) specifies that every # observations from the MCMC sample not be used for computation.
The default is skip(0) or to use all observations in the MCMC sample. Option skip() can be
used to subsample or thin the chain. skip(#) is equivalent to a thinning interval of #+1. For
example, if you specify skip(1), corresponding to the thinning interval of 2, the command will
skip every other observation in the sample and will use only observations 1, 3, 5, and so on in the
computation. If you specify skip(2), corresponding to the thinning interval of 3, the command
will skip every 2 observations in the sample and will use only observations 1, 4, 7, and so on in the
computation. skip() does not thin the chain in the sense of physically removing observations from
the sample, as is done by bayesmh’s thinning() option. It only discards selected observations
from the computation and leaves the original sample unmodified.

nolegend suppresses the display of the table legend. The table legend identifies the rows of the table
with the expressions they represent.

� � �
Advanced �

corrlag(#) specifies the maximum autocorrelation lag used for calculating effective sample sizes.
The default is min{500, mcmcsize()/2}. The total autocorrelation is computed as the sum of
all lag-k autocorrelation values for k from 0 to either corrlag() or the index at which the
autocorrelation becomes less than corrtol() if the latter is less than corrlag().

corrtol(#) specifies the autocorrelation tolerance used for calculating effective sample sizes. The
default is corrtol(0.01). For a given model parameter, if the absolute value of the lag-k
autocorrelation is less than corrtol(), then all autocorrelation lags beyond the kth lag are
discarded.

Remarks and examples stata.com

Remarks are presented under the following headings:
Introduction
Interval tests for continuous parameters
Interval tests for discrete parameters
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4 bayestest interval — Interval hypothesis testing

Introduction

In this entry, we describe interval hypothesis testing, the goal of which is to estimate the probability
that a model parameter lies in a certain interval. Interval hypothesis testing is inversely related to
credible intervals. For example, if we have a 95% credible interval for θ with endpoints U and L, then
the probability of a hypothesis H0: θ ∈ [U,L] is 0.95. For hypothesis testing using model posterior
probabilities, see [BAYES] bayestest model.

In frequentist hypothesis testing, we often consider a point hypothesis such as H0: θ = θ0 versus
Ha : θ 6= θ0. In Bayesian hypothesis testing, the probability P (θ = θ0) is 0 whenever θ has a
continuous posterior distribution. A point hypothesis is relevant only to parameters with discrete
posterior distributions. For continuous parameters, all hypotheses should be formulated as intervals.
One possibility is to consider an interval hypothesis H0: θ ∈ (θ0 − ε, θ0 + ε), where ε is some small
value.

Note that Bayesian hypothesis testing does not really need a distinction between the null and
alternative hypotheses, in the sense that they are defined in a frequentist statistic. There is no need to
“protect” the null hypothesis: if P{H0: θ ∈ (a, b)} = p, then P{Ha: θ /∈ (a, b)} = 1− p. In what
follows, when we refer to H0, we imply a hypothesis of interest H0: θ ∈ Θ, and when we refer to
Ha, we imply the complement hypothesis Ha: θ ∈ Θc, where Θ is a set of points from the domain
of θ and Θc is its complement.

The bayestest interval command estimates the posterior probability of a null interval hypothesis
H0 using the simulated posterior distributions of model parameters produced by bayesmh. Essentially,
bayestest interval reports posterior summaries for a dichotomous expression that represents H0.

For example, suppose we would like to test the following hypothesis: H0: θ ∈ (a, b). Then,

bayestest interval ({theta}, lower(a) upper(b))

is equivalent to

bayesstats summary ({theta} > a & {theta} < b)

bayestest interval reports the estimated posterior mean probability for H0, which is not a
p-value—as reported by classical frequentist tests—used to decide whether to reject H0 in favor
of the alternative Ha. The p-value interpretation is based on the dichotomous problem formulation
of H0 versus Ha, assuming that one of these two alternatives is actually true. The answer in the
Bayesian context is a probability statement about θ that is free of any deterministic presumptions.
For example, if you estimate P (H0) to be 0.15, you cannot ask whether this value is significant
or whether you can reject the null hypothesis. Bayesian interpretation of this probability is that if
you draw θ from the specified prior distribution and update your knowledge about θ based on the
observed data, then there is a 15% chance that θ will belong to the interval (a, b). So the conclusion
of Bayesian hypothesis testing is not an acceptance or rejection of the null hypothesis but an explicit
probability statement about the tested hypothesis.

http://www.stata.com/manuals14/bayesbayestestmodel.pdf#bayesbayestestmodel
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Interval tests for continuous parameters

Let’s continue our analysis of auto.dta from example 4 in [BAYES] bayesmh using the mean-only
normal model for mpg with a noninformative prior.

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:_cons}, flat) prior({var}, jeffreys)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ 1 (flat)

{var} ~ jeffreys

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2668
Efficiency: min = .09718

avg = .1021
Log marginal likelihood = -234.645 max = .1071

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 21.29222 .6828864 .021906 21.27898 19.99152 22.61904

var 34.76572 5.91534 .180754 34.18391 24.9129 47.61286

Example 1: Interval hypothesis and credible intervals

In the introduction, we commented on the inverse relationship that exists between interval hypothesis
tests and credible intervals. Let’s verify this using bayestest interval. We are interested in a
hypothesis H0: {mpg: cons} ∈ (19.992, 22.619), where the specified numbers are the endpoints of
the credible interval for {mpg: cons} from the bayesmh output. To compute the posterior probability
for this hypothesis, we specify the parameter following the command line and specify interval endpoints
in lower() and upper().

. bayestest interval {mpg:_cons}, lower(19.992) upper(22.619)

Interval tests MCMC sample size = 10,000

prob1 : 19.992 < {mpg:_cons} < 22.619

Mean Std. Dev. MCSE

prob1 .9496 0.21878 .0053652

The estimated posterior probability is close to 0.95, as we expected, because we used the endpoints
of the 95% credible intervals for {mpg: cons}.

http://www.stata.com/manuals14/bayesbayesmh.pdf#bayesbayesmhRemarksandexamplesex4
http://www.stata.com/manuals14/bayesbayesmh.pdf#bayesbayesmh
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By default, bayestest interval labels probabilities as prob# (prob1 in our example). You can
specify your own label as long as you enclose the parameter in parentheses:

. bayestest interval (mean:{mpg:_cons}), lower(19.992) upper(22.619)

Interval tests MCMC sample size = 10,000

mean : 19.992 < {mpg:_cons} < 22.619

Mean Std. Dev. MCSE

mean .9496 0.21878 .0053652

Example 2: Testing multiple hypotheses separately

Continuing example 1, we can verify that the probability associated with the credible interval for
{var} is also close to 0.95.

We can specify multiple hypotheses with bayestest interval, but we must enclose them in
parentheses.

. bayestest interval ({mpg:_cons}, lower(19.992) upper(22.619))
> ({var}, lower(24.913) upper(47.613))

Interval tests MCMC sample size = 10,000

prob1 : 19.992 < {mpg:_cons} < 22.619
prob2 : 24.913 < {var} < 47.613

Mean Std. Dev. MCSE

prob1 .9496 0.21878 .0053652
prob2 .9502 0.21754 .0053011

The estimated posterior probability prob2 is also close to 0.95.

Example 3: Testing multiple hypotheses jointly

We can perform joint tests of multiple hypotheses by enclosing hypothesis to be tested jointly in
parentheses and by specifying suboption joint. Notice that each individual hypothesis must also be
enclosed in parentheses.

. bayestest interval (({mpg:_cons}, lower(19.992) upper(22.619))
> ({var}, lower(24.913) upper(47.613)), joint)

Interval tests MCMC sample size = 10,000

prob1 : 19.992 < {mpg:_cons} < 22.619,
24.913 < {var} < 47.613

Mean Std. Dev. MCSE

prob1 .9034 0.29543 .0076789

The joint posterior probability of both {mpg: cons} and {var} belonging to their respective intervals
is 0.9 with a posterior variance of 0.3 and MCSE of 0.008.
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Example 4: Full syntax

We can specify multiple separate hypotheses and hypotheses tested jointly in one call to bayestest
interval.

. bayestest interval (({mpg:_cons}, lower(19.992) upper(22.619))
> ({var}, lower(24.913) upper(47.613)), joint)
> ({mpg:_cons}, lower(21))
> ({var}, upper(40))

Interval tests MCMC sample size = 10,000

prob1 : 19.992 < {mpg:_cons} < 22.619,
24.913 < {var} < 47.613

prob2 : {mpg:_cons} > 21
prob3 : {var} < 40

Mean Std. Dev. MCSE

prob1 .9034 0.29543 .0076789
prob2 .6505 0.47684 .015786
prob3 .8136 0.38945 .0110613

In addition to the joint hypothesis from the previous example, we specified two new separate
interval hypotheses for testing {mpg: cons} > 21 and for testing {var} < 40. The estimated
posterior probabilities for these hypotheses are 0.65 and 0.81, respectively.

Example 5: Point hypothesis for continuous parameters

As we discussed in Introduction above, point hypothesis for continuous parameters do not make
sense, because the corresponding probability is 0:

. bayestest interval ({mpg:_cons}==21)

Interval tests MCMC sample size = 10,000

prob1 : {mpg:_cons}==21

Mean Std. Dev. MCSE

prob1 0 0.00000 0

We can consider a small window around the value of interest and test an interval hypothesis
instead:

. bayestest interval ({mpg:_cons}, lower(20.5) upper(21.5))

Interval tests MCMC sample size = 10,000

prob1 : 20.5 < {mpg:_cons} < 21.5

Mean Std. Dev. MCSE

prob1 .4932 0.49998 .0138391

The probability that {mpg: cons} is between 20.5 and 21.5 is about 50%.

Note that the probability of a continuous parameter belonging to a closed interval or semiclosed
interval is the same as that for the open interval. Below we use suboption inclusive within lower()
and upper() to request the closed interval.
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. bayestest interval ({mpg:_cons}, lower(20.5,inclusive) upper(21.5,inclusive))

Interval tests MCMC sample size = 10,000

prob1 : 20.5 <= {mpg:_cons} <= 21.5

Mean Std. Dev. MCSE

prob1 .4932 0.49998 .0138391

We obtain the same results as above for the corresponding open interval.

Example 6: Functions of parameters

We can test functions of model parameters. For example, let’s compute the probability that the
posterior standard deviation is greater than 6.

. bayestest interval (sd: sqrt({var}), lower(6))

Interval tests MCMC sample size = 10,000

sd : sqrt({var}) > 6

Mean Std. Dev. MCSE

sd .3793 0.48524 .0143883

The estimated probability is 0.38.

Interval tests for discrete parameters

In this section, we demonstrate how to perform hypothesis testing for a discrete parameter.

First, we simulate data from the Poisson distribution with a mean of 2.

. clear

. set seed 12345

. set obs 20
number of observations (_N) was 0, now 20

. generate double y = rpoisson(2)
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We fit a Bayesian Poisson model to the data and specify a discrete prior for the mean
P (µ = k) = 0.25 for k = 1, 2, 3, 4.

. set seed 14

. bayesmh y, likelihood(dpoisson({mu}))
> prior({mu}, index(0.25,0.25,0.25,0.25)) initial({mu} 2)
Burn-in ...
Simulation ...

Model summary

Likelihood:
y ~ poisson({mu})

Prior:
{mu} ~ index(0.25,0.25,0.25,0.25)

Bayesian Poisson model MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 20
Acceptance rate = .2552

Log marginal likelihood = -31.58903 Efficiency = .4428

Equal-tailed
y Mean Std. Dev. MCSE Median [95% Cred. Interval]

mu 2.0014 .1039188 .001562 2 2 2

Example 7: Point hypotheses for discrete parameters

We can compute probabilities for each of the four discrete values of {mu}.

. bayestest interval ({mu}==1) ({mu}==2) ({mu}==3) ({mu}==4)

Interval tests MCMC sample size = 10,000

prob1 : {mu}==1
prob2 : {mu}==2
prob3 : {mu}==3
prob4 : {mu}==4

Mean Std. Dev. MCSE

prob1 .0047 0.06840 .0013918
prob2 .9892 0.10337 .0027909
prob3 .0061 0.07787 .0017691
prob4 0 0.00000 0

The posterior probability that {mu} equals 2 is 0.99.
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Example 8: Interval hypotheses for discrete parameters

As we can with continuous parameters, we can test interval hypotheses for discrete parameters.
For example, we can compute the probability of whether {mu} is between 2 and 4.

. bayestest interval {mu}, lower(2) upper(4)

Interval tests MCMC sample size = 10,000

prob1 : 2 < {mu} < 4

Mean Std. Dev. MCSE

prob1 .0061 0.07787 .0017691

The estimated probability is very small.

Note that unlike hypotheses for continuous parameters, hypotheses including open intervals and
closed or semiclosed intervals for discrete parameters may have different probabilities.

. bayestest interval {mu}, lower(2, inclusive) upper(4, inclusive)

Interval tests MCMC sample size = 10,000

prob1 : 2 <= {mu} <= 4

Mean Std. Dev. MCSE

prob1 .9953 0.06840 .0013918

The estimated posterior probability that {mu} is between 2 and 4, inclusively, is drastically different
compared with the results for the corresponding open interval.

Stored results
bayestest interval stores the following in r():
Scalars
r(skip) number of MCMC observations to skip in the computation; every r(skip) observations

are skipped
r(corrlag) maximum autocorrelation lag
r(corrtol) autocorrelation tolerance

Macros
r(expr #) #th probability expression
r(names) names of probability expressions

Matrices
r(summary) test results for parameters in r(names)

Methods and formulas
Let θ be a model parameter and {θt}Tt=1 be an MCMC sample of size T drawn from the marginal

posterior distribution of θ. It is often of interest to test how likely it is that θ belongs to a particular
range of values. Note that testing a point null hypothesis such as H0: θ = θ0 is usually of no interest
for parameters with continuous posterior distributions, because the posterior probability P (H0) is 0.

To perform an open-interval test of the form

H0: θ ∈ (a, b) versus Ha: θ /∈ (a, b)
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we estimate the posterior probability of H0 from the given MCMC sample. The bayestest interval
command calculates the probability P (H0) based on the simulated marginal posterior distribution of
θ. The estimate is given by the frequency of inclusion of θts in the test interval

P̂ (H0) =
1

T

T∑
t=1

1{θt∈(a,b)} (1)

where 1{A} is an indicator function and equals 1 if A is true and 0 otherwise.

When a model parameter θ is discrete, the following closed- and semiclosed-interval tests may be
of interest in addition to open-interval tests:

H0: θ = a versus Ha: θ 6= a

H0: θ ∈ [a, b] versus Ha: θ /∈ [a, b]

H0: θ ∈ [a, b) versus Ha: θ /∈ [a, b)

H0: θ ∈ (a, b] versus Ha: θ /∈ (a, b]

The corresponding probabilities are calculated as follows:

P̂ (H0) =
1

T

T∑
t=1

1{θt=a}

P̂ (H0) =
1

T

T∑
t=1

1{θt∈[a,b]}

P̂ (H0) =
1

T

T∑
t=1

1{θt∈[a,b)}

P̂ (H0) =
1

T

T∑
t=1

1{θt∈(a,b]}

The probability of an alternative hypothesis is always given by P (Ha) = 1− P (H0).

The formulas above can be modified to accommodate joint hypotheses tests by multiplying the
indicator functions of the individual hypothesis statements. For example, for a joint hypothesis
H0: θ1 > a, θ2 < b, we would replace the indicator function with 1{θ1t>a} × 1{θ2t<b} in (1), where
{θ1t}Tt=1 and {θ2t}Tt=1 are the corresponding MCMC samples for θ1 and θ2.

Also see
[BAYES] bayesmh — Bayesian regression using Metropolis–Hastings algorithm

[BAYES] bayesmh postestimation — Postestimation tools for bayesmh

[BAYES] bayesstats summary — Bayesian summary statistics

[BAYES] bayestest model — Hypothesis testing using model posterior probabilities
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