
Title stata.com

bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

bayesmh fits a variety of Bayesian models using an adaptive Metropolis–Hastings (MH) algorithm.
It provides various likelihood models and prior distributions for you to choose from. Likelihood models
include univariate normal linear and nonlinear regressions, multivariate normal linear and nonlinear
regressions, generalized linear models such as logit and Poisson regressions, and multiple-equations
linear models. Prior distributions include continuous distributions such as uniform, Jeffreys, normal,
gamma, multivariate normal, and Wishart and discrete distributions such as Bernoulli and Poisson.
You can also program your own Bayesian models; see [BAYES] bayesmh evaluators.

Quick start
Bayesian normal linear regression of y1 on x1 with flat priors for coefficient on x1 and the intercept

and with a Jeffreys prior on the variance parameter {var}
bayesmh y1 x1, likelihood(normal({var})) ///

prior({y1: x1 _cons}, flat) prior({var}, jeffreys)

Add binary variable a using factor-variable notation
bayesmh y1 x1 i.a, likelihood(normal({var})) ///

prior({y1: x1 i.a _cons}, flat) prior({var}, jeffreys)

Same as above
bayesmh y1 x1 i.a, likelihood(normal({var})) ///

prior({y1:}, flat) prior({var}, jeffreys)

Specify a different prior for a = 1
bayesmh y1 x1 i.a, likelihood(normal({var})) ///

prior({y1:x1 _cons}, flat) prior({y1: 1.a}, normal(0,100)) ///
prior({var}, jeffreys)

Specify a starting value of 1 for parameter {var}
bayesmh y1 x1 i.a, likelihood(normal({var})) ///

prior({y1:}, flat) prior({var}, jeffreys) initial({var} 1)

Same as above
bayesmh y1 x1 i.a, likelihood(normal({var=1})) ///

prior({y1:}, flat) prior({var}, jeffreys)

A normal prior with µ = 2 and σ2 = 0.5 for the coefficient on x1, a normal prior with µ = −40 and
σ2 = 100 for the intercept, and an inverse-gamma prior with shape parameter of 0.1 and scale
parameter of 1 for {var}

bayesmh y1 x1, likelihood(normal({var})) ///
prior({y1:x1}, normal(2,.5)) ///
prior({y1:_cons}, normal(-40,100)) ///
prior({var}, igamma(0.1,1))

1

http://stata.com
http://www.stata.com/manuals14/bayesbayesmhevaluators.pdf#bayesbayesmhevaluators
http://www.stata.com/manuals14/u11.pdf#u11.4.3Factorvariables

2 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Place {var} into a separate block
bayesmh y1 x1, likelihood(normal({var})) ///

prior({y1:x1}, normal(2,.5)) ///
prior({y1:_cons}, normal(-40,100)) ///
prior({var}, igamma(0.1,1)) block({var})

Zellner’s g prior to allow {y1:x1} and {y1: cons} to be correlated, specifying 2 dimensions,
df = 30, µ = 2 for {y1:x1}, µ = −40 for {y1: cons}, and variance parameter {var}

bayesmh y1 x1, likelihood(normal({var})) ///
prior({var}, igamma(0.1,1)) ///
prior({y1:}, zellnersg(2,30,2,-40,{var}))

Model for dichotomous dependent variable y2 regressed on x1 with a logit likelihood
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100))

As above, and save model results to simdata.dta, and store estimates in memory as m1

bayesmh y2 x1, likelihood(logit) prior({y2:}, ///
normal(0,100)) saving(simdata.dta)

estimates store m1

As above, but save the results on replay
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100))
bayesmh, saving(simdata.dta)
estimates store m1

Show model summary without performing estimation
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) dryrun

Fit model without showing model summary
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

nomodelsummary

As above, and set the random-number seed for reproducibility
set seed 1234
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100))

Same as above
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

rseed(1234)

Specify 20,000 MCMC samples, and set length of the burn-in period to 5,000
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

mcmcsize(20000) burnin(5000)

Specify that only observations 1 + 5k, for k = 0, 1, . . . , be saved to the MCMC sample
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

thinning(5)

Set the maximum number of adaptive iterations of the MCMC procedure to 30, and specify that
adaptation of the MCMC procedure be attempted every 25 iterations

bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///
adaptation(maxiter(30) every(25))

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 3

Request that a dot be displayed every 100 simulations
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

dots(100)

Also request that an iteration number be displayed every 1,000 iterations
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

dots(100, every(1000))

Same as above
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

dots

Request that the 90% equal-tailed credible interval be displayed
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

clevel(90)

Request that the default 95% highest posterior density credible interval be displayed
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) hpd

Use the batch-means estimator of MCSE with the length of the block of 5
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

batch(5)

Multivariate normal regression of y1 and y3 on x1 and x2, using normal priors with µ = 0 and
σ2 = 100 for the regression coefficients and intercepts, an inverse-Wishart prior for the covariance
matrix parameter {S, matrix} of dimension 2, df = 100, and an identity scale matrix

bayesmh y1 y3 = x1 x2, likelihood(mvnormal({S, matrix})) ///
prior({y1:} {y3:}, normal(0,100)) ///
prior({S, matrix}, iwishart(2,100,I(2)))

As above, but use abbreviated declaration for the covariance matrix
bayesmh y1 y3 = x1 x2, likelihood(mvnormal({S,m})) ///

prior({y1:} {y3:}, normal(0,100)) ///
prior({S,m}, iwishart(2,100,I(2)))

As above, and specify starting values for matrix {S,m} using previously defined matrix W

bayesmh y1 y3 = x1 x2, likelihood(mvnormal({S,m})) ///
prior({y1:} {y3:}, normal(0,100)) ///
prior({S,m}, iwishart(2,100,I(2))) initial({S,m} W)

Multivariate normal regression with outcome-specific regressors
bayesmh (y1 x1 x2) (y3 x1 x3), likelihood(mvnormal({S,m})) ///

prior({y1:} {y3:}, normal(0,100)) ///
prior({S,m}, iwishart(2,100,I(2)))

Linear multiple-equation model of y1 on x1 and of y3 on y1, x1, and x2 with separate variance
parameters for each equation

bayesmh (y1 x1, likelihood(normal({var1}))) ///
(y3 y1 x1 x2, likelihood(normal({var2}))), ///
prior({y1:} {y3:}, flat) ///
prior({var1}, jeffreys) prior({var2}, jeffreys)

4 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Nonlinear model with parameters {a}, {b}, {c}, and {var} specified using a substitutable expression
bayesmh y1 = ({a}+{b}*x1^{c}), likelihood(normal({var})) ///

prior({a b}, normal(0,100)) prior({c}, normal(0,2)) ///
prior({var}, igamma(0.1,1))

Multivariate nonlinear model with distinct parameters in each equation
bayesmh (y1 = ({a1} + {b1}*x1^{c1})) ///

(y3 = ({a2} + {b2}*x1^{c2})), likelihood(mvnormal({S,m})) ///
prior({a1 a2 b1 b2}, normal(0,100)) ///
prior({c1 c2}, normal(0,2)) prior({S,m}, iwishart(2,100,I(2)))

Random-intercept logistic regression of y1 on x1 with group variable gr and zero-mean normal prior
with variance parameter {var} for the random-intercept parameters

bayesmh y1 x1, likelihood(logit) reffects(gr) ///
prior({y1:i.gr}, normal(0, {var})) ///
prior({y1: x1 _cons}, flat) prior({var}, jeffreys)

Menu
Statistics > Bayesian analysis > Estimation

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 5

Syntax
Univariate linear models

bayesmh depvar
[

indepvars
] [

if
] [

in
] [

weight
]
,

likelihood(modelspec) prior(priorspec)
[
reffects(varname) options

]
Multivariate linear models

Multivariate normal linear regression with common regressors

bayesmh depvars =
[

indepvars
] [

if
] [

in
] [

weight
]
,

likelihood(mvnormal(. . .)) prior(priorspec)
[

options
]

Multivariate normal regression with outcome-specific regressors

bayesmh (
[

eqname1:
]
depvar1

[
indepvars1

]
)

(
[

eqname2:
]
depvar2

[
indepvars2

]
)
[
. . .
] [

if
] [

in
] [

weight
]
,

likelihood(mvnormal(. . .)) prior(priorspec)
[

options
]

Multiple-equation linear models

bayesmh (eqspec)
[
(eqspec)

] [
. . .
] [

if
] [

in
] [

weight
]
, prior(priorspec)

[
options

]
Nonlinear models

Univariate nonlinear regression

bayesmh depvar = (subexpr)
[

if
] [

in
] [

weight
]
,

likelihood(modelspec) prior(priorspec)
[

options
]

Multivariate normal nonlinear regression

bayesmh (depvars1 = (subexpr1))
(depvars2 = (subexpr2))

[
. . .
] [

if
] [

in
] [

weight
]
,

likelihood(mvnormal(. . .)) prior(priorspec)
[

options
]

Probability distributions

Univariate distributions

bayesmh depvar
[

if
] [

in
] [

weight
]
,

likelihood(distribution) prior(priorspec)
[

options
]

Multiple-equation distribution specifications

bayesmh (deqspec)
[
(deqspec)

] [
. . .
] [

if
] [

in
] [

weight
]
,

prior(priorspec)
[

options
]

http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals14/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals14/u11.pdf#u11.1.6weight
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals14/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals14/u11.pdf#u11.1.6weight
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals14/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals14/u11.pdf#u11.1.6weight
http://www.stata.com/manuals14/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals14/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals14/u11.pdf#u11.1.6weight
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals14/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals14/u11.pdf#u11.1.6weight
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals14/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals14/u11.pdf#u11.1.6weight
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals14/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals14/u11.pdf#u11.1.6weight
http://www.stata.com/manuals14/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals14/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals14/u11.pdf#u11.1.6weight

6 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

The syntax of eqspec is

varspec
[

if
] [

in
] [

weight
]
, likelihood(modelspec)

[
noconstant

]
The syntax of varspec is one of the following:

for single outcome[
eqname:

]
depvar

[
indepvars

]
for multiple outcomes with common regressors

depvars =
[

indepvars
]

for multiple outcomes with outcome-specific regressors

(
[

eqname1:
]
depvar1

[
indepvars1

]
) (

[
eqname2:

]
depvar2

[
indepvars2

]
)
[
. . .
]

The syntax of deqspec is[
eqname:

]
depvar

[
if
] [

in
] [

weight
]
, likelihood(distribution)

subexpr, subexpr1, subexpr2, and so on are substitutable expressions; see Substitutable expressions
for details.

The syntax of modelspec is

model
[
, modelopts

]
model Description

Continuous

normal(var) normal regression with variance var
lognormal(var) lognormal regression with variance var
lnormal(var) synonym for lognormal()
exponential exponential regression
mvnormal(Sigma) multivariate normal regression with covariance matrix Sigma

Discrete

probit probit regression
logit logistic regression
logistic logistic regression; synonym for logit
binomial(n) binomial regression with logit link and number of trials n
binlogit(n) synonym for binomial()
oprobit ordered probit regression
ologit ordered logistic regression
poisson Poisson regression

Generic

llf(subexpr) substitutable expression for observation-level log-likelihood
function

A distribution argument is a number for scalar arguments such as var; a variable name, varname (except for matrix
arguments); a matrix for matrix arguments such as Sigma; a model parameter, paramspec; an expression, expr; or
a substitutable expression, subexpr. See Specifying arguments of likelihood models and prior distributions.

http://www.stata.com/manuals14/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals14/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals14/u11.pdf#u11.1.6weight
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals14/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals14/u11.pdf#u11.1.6weight
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 7

modelopts Description

offset(varnameo) include varnameo in model with coefficient constrained to 1;
not allowed with normal() and mvnormal()

exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1;
allowed only with poisson

distribution Description

dexponential(beta) exponential distribution with scale parameter beta
dbernoulli(p) Bernoulli distribution with success probability p
dbinomial(p,n) binomial distribution with success probability p and

number of trials n
dpoisson(mu) Poisson distribution with mean mu

A distribution argument is a model parameter, paramspec, or a substitutable expression, subexpr, containing model
parameters. An n argument may be a number; an expression, expr; or a variable name, varname. See Specifying
arguments of likelihood models and prior distributions.

The syntax of priorspec is

paramref, priordist

where the simplest specification of paramref is

paramspec
[

paramspec
[
...

]]
Also see Referring to model parameters for other specifications.

The syntax of paramspec is

{
[
eqname:

]
param

[
, matrix

]
}

where the parameter label eqname and parameter name param are valid Stata names. Model parameters
are either scalars such as {var}, {mean}, and {shape:alpha}, or matrices such as {Sigma,
matrix} and {Scale:V, matrix}. For scalar parameters, you can use {param=#} to specify an
initial value. For example, you can specify, {var=1}, {mean=1.267}, or {shape:alpha=3}.

http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions

8 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

priordist Description

Univariate continuous

normal(mu,var) normal with mean mu and variance var
lognormal(mu,var) lognormal with mean mu and variance var
lnormal(mu,var) synonym for lognormal()
uniform(a,b) uniform on (a, b)
gamma(alpha,beta) gamma with shape alpha and scale beta
igamma(alpha,beta) inverse gamma with shape alpha and scale beta
exponential(beta) exponential with scale beta
beta(a,b) beta with shape parameters a and b
chi2(df) central χ2 with degrees of freedom df
jeffreys Jeffreys prior for variance of a normal distribution

Multivariate continuous

mvnormal(d,mean,Sigma) multivariate normal of dimension d with mean vector mean and
covariance matrix Sigma; mean can be a matrix name or a list
of d means separated by comma: mu1, mu2, . . ., mud

mvnormal0(d,Sigma) multivariate normal of dimension d with zero mean vector and
covariance matrix Sigma

mvn0(d,Sigma) synonym for mvnormal0()
zellnersg(d,g,mean,{var}) Zellner’s g-prior of dimension d with g degrees of freedom,

mean vector mean, and variance parameter {var}; mean can be
a matrix name or a list of d means separated by comma:
mu1, mu2, . . ., mud

zellnersg0(d,g,{var}) Zellner’s g-prior of dimension d with g degrees of freedom,
zero mean vector, and variance parameter {var}

wishart(d,df,V) Wishart of dimension d with degrees of freedom df and scale
matrix V

iwishart(d,df,V) inverse Wishart of dimension d with degrees of freedom df and
scale matrix V

jeffreys(d) Jeffreys prior for covariance of a multivariate normal distribution
of dimension d

Discrete

bernoulli(p) Bernoulli with success probability p
index(p1,. . .,pk) discrete indices 1, 2, . . . , k with probabilities p1, p2, . . ., pk
poisson(mu) Poisson with mean mu

Generic

flat flat prior; equivalent to density(1) or logdensity(0)
density(f) generic density f
logdensity(logf) generic log density logf

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 9

Dimension d is a positive number #.
A distribution argument is a number for scalar arguments such as var, alpha, beta; a Stata matrix for matrix arguments

such as Sigma and V; a model parameter, paramspec; an expression, expr; or a substitutable expression, subexpr.
See Specifying arguments of likelihood models and prior distributions.

f is a nonnegative number, #; an expression, expr; or a substitutable expression, subexpr.
logf is a number, #; an expression, expr; or a substitutable expression, subexpr.

When mvnormal() or mvnormal0() of dimension d is applied to paramref with n parameters (n6=d), paramref
is reshaped into a matrix with d columns, and its rows are treated as independent samples from the specified
mvnormal() distribution. If such reshaping is not possible, an error is issued. See example 25 for application of
this feature.

10 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

options Description

Model

noconstant suppress constant term; not allowed with ordered models,
nonlinear models, and probability distributions

∗likelihood(lspec) distribution for the likelihood model
∗prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Model 2

redefine(label:i.varname) specify a random-effects linear form; this option may be repeated
xbdefine(label:varlist) specify a linear form
block(paramref

[
, blockopts

]
) specify a block of model parameters; this option may be repeated

initial(initspec) initial values for model parameters
nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values

Simulation

mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

batch(#) specify length of block for batch-means calculations;
default is batch(0)

nomodelsummary suppress model summary
noexpression suppress output of expressions from model summary
blocksummary display block summary
dots display dots every 100 iterations and iteration numbers

every 1,000 iterations
dots(#

[
, every(#)

]
) display dots as simulation is performed

noshow(paramref) specify model parameters to be excluded from the output
showreffects(paramref) specify random-effects parameters to be included in the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
saving(filename

[
, replace

]
) save simulation results to filename.dta

display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists
http://www.stata.com/manuals14/u11.pdf#u11.6Filenamingconventions

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 11

∗Options likelihood() and prior() are required. prior() must be specified for all model parameters.
Options prior(), redefine(), and block() can be repeated.
indepvars and paramref may contain factor variables; see [U] 11.4.3 Factor variables.
With multiple-equations specifications, a local if specified within an equation is applied together with the global if

specified with the command.
Only fweights are allowed; see [U] 11.1.6 weight.
With multiple-equations specifications, local weights or (weights specified within an equation) override global weights

(weights specified with the command).
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

blockopts Description

gibbs requests Gibbs sampling; available for selected models only and
not allowed with scale(), covariance(), or adaptation()

split requests that all parameters in a block be treated as separate blocks
reffects requests that all parameters in a block be treated as random-effects

parameters
scale(#) initial multiplier for scale factor for current block; default is

scale(2.38); not allowed
with gibbs

covariance(cov) initial proposal covariance for the current block; default is the
identity matrix; not allowed with gibbs

adaptation(adaptopts) control the adaptive MCMC procedure of the current block;
not allowed with gibbs

Only tarate() and tolerance() may be specified in the adaptation() option.

adaptopts Description

every(#) adaptation interval; default is every(100)

maxiter(#) maximum number of adaptation loops; default is maxiter(25) or
max{25, floor(burnin()/every())} whenever default values
of these options are modified

miniter(#) minimum number of adaptation loops; default is miniter(5)

alpha(#) parameter controlling acceptance rate (AR); default is alpha(0.75)

beta(#) parameter controlling proposal covariance; default is beta(0.8)

gamma(#) parameter controlling adaptation rate; default is gamma(0)
∗tarate(#) target acceptance rate (TAR); default is parameter specific
∗tolerance(#) tolerance for AR; default is tolerance(0.01)

∗Only starred options may be specified in the adaptation() option specified within block().

Options

� � �
Model �

noconstant suppresses the constant term (intercept) from the regression model. By default, bayesmh
automatically includes a model parameter {depname: cons} in all regression models except ordered
and nonlinear models. Excluding the constant term may be desirable when there is a factor variable,
the base level of which absorbs the constant term in the linear combination.

http://www.stata.com/manuals14/u11.pdf#u11.4.3Factorvariables
http://www.stata.com/manuals14/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals14/u11.pdf#u11.1.6weight
http://www.stata.com/manuals14/u20.pdf#u20Estimationandpostestimationcommands

12 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

likelihood(lspec) specifies the distribution of the data. This option specifies the likelihood portion
of the Bayesian model. This option is required. lspec is one of modelspec or distribution.

modelspec specifies one of the supported likelihood distributions for regression models. A location
parameter of these distributions is automatically parameterized as a linear combination of the
specified independent variables and needs not be specified. Other parameters may be specified as
arguments to the distribution separated by commas. Each argument may be a real number (#), a
variable name (except for matrix parameters), a predefined matrix, a model parameter specified in
{}, a Stata expression, or a substitutable expression containing model parameters; see Declaring
model parameters and Specifying arguments of likelihood models and prior distributions.

distribution specifies one of the supported distributions for modeling the dependent variable. A
distribution argument must be a model parameter specified in {} or a substitutable expression
containing model parameters; see Declaring model parameters and Specifying arguments of
likelihood models and prior distributions. A number of trials, n, of the binomial distribution may
be a real number (#), a Stata expression, or a variable name. For an example of modeling outcome
distributions directly, see Beta-binomial model.

For some regression models, option likelihood() provides suboptions subopts in
likelihood(. . . , subopts). subopts is offset() and exposure().

offset(varnameo) specifies that varnameo be included in the regression model with the coefficient
constrained to be 1. This option is available with probit, logit, binomial(), binlogit(),
oprobit, ologit, and poisson.

exposure(varnamee) specifies a variable that reflects the amount of exposure over which the
depvar events were observed for each observation; ln(varnamee) with coefficient constrained
to be 1 is entered into the log-link function. This option is available with poisson.

prior(priorspec) specifies a prior distribution for model parameters. This option is required and
may be repeated. A prior must be specified for each model parameter. Model parameters may
be scalars or matrices but both types may not be combined in one prior statement. If multiple
scalar parameters are assigned a single univariate prior, they are considered independent, and the
specified prior is used for each parameter. You may assign a multivariate prior of dimension d to d
scalar parameters. Also see Referring to model parameters and Specifying arguments of likelihood
models and prior distributions.

All likelihood() and prior() combinations are allowed, but they are not guaranteed to correspond
to proper posterior distributions. You need to think carefully about the model you are building and
evaluate its convergence thoroughly.

dryrun specifies to show the summary of the model that would be fit without actually fitting the
model. This option is recommended for checking specifications of the model before fitting the
model.

http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 13

� � �
Model 2 �

reffects(varname) specifies a random-effects variable, a variable identifying the group structure for
the random effects, with univariate linear models. This option is useful for fitting two-level random-
intercept models. A random-effects variable is treated as a factor variable with no base level. As
such, you can refer to random-effects parameters or, simply, random effects associated with varname
using a conventional factor-variable notation. For example, you can use {depvar:i.varname} to
refer to all random-effects parameters of varname. These parameters must be included in a single
prior statement, usually a normal distribution with variance specified by an additional parameter. The
random-effects parameters are assumed to be conditionally independent across levels of varname
given all other model parameters. The random-effects parameters are automatically grouped in one
block and are thus not allowed in the block() option. See example 23.

redefine(label:i.varname) specifies a random-effects linear form that can be used in substitutable
expressions. You can use {label:} to refer to the linear form in substitutable expressions. You
can specify {label:i.varname} to refer to all random-effects parameters associated with varname.
The random-effects parameters are automatically grouped in one block and are thus not allowed
in the block() option. This option is useful for fitting multilevel models and can be repeated.
See example 29.

xbdefine(label:varlist) specifies a linear form of the variables in varlist that can be used in
substitutable expressions. You can use the specification {label:} to refer to the linear form in
substitutable expressions. For any varname in varlist, you can use {label:varname} to refer to
the corresponding parameter. This option is useful with nonlinear specifications when the linear
form contains many variables and provides more efficient computation in such cases.

block(paramref
[
, blockopts

]
) specifies a group of model parameters for the blocked MH algorithm.

By default, all parameters except matrices are treated as one block, and each matrix parameter
is viewed as a separate block. You can use the block() option to separate scalar parameters in
multiple blocks. Technically, you can also use block() to combine matrix parameters in one block,
but this is not recommended. The block() option may be repeated to define multiple blocks.
Different types of model parameters, such as scalars and matrices, may not be specified in one
block(). Parameters within one block are updated simultaneously, and each block of parameters
is updated in the order it is specified; the first specified block is updated first, the second is updated
second, and so on. See Improving efficiency of the MH algorithm—blocking of parameters.

blockopts include gibbs, split, reffects, scale(), covariance(), and adaptation().

gibbs option specifies to use Gibbs sampling to update parameters in the block. This option is
allowed only for specific combinations of likelihood models and prior distributions; see Gibbs
sampling for some likelihood-prior and prior-hyperprior configurations. For more information,
see Gibbs and hybrid MH sampling. gibbs may not be combined with reffects, scale(),
covariance(), or adaptation().

split specifies that all parameters in a block are treated as separate blocks. This may be useful
for levels of factor variables.

reffects specifies that the parameters associated with the levels of a factor variable included in
the likelihood specification be treated as random-effects parameters. Random-effects parameters
must be included in one prior statement and are assumed to be conditionally independent
across levels of a grouping variable given all other model parameters. reffects requires that
parameters be specified as {depvar:i.varname}, where i.varname is the corresponding factor
variable in the likelihood specification, and may not be combined with block()’s suboptions
gibbs and split. This option is useful for fitting hierarchical or multilevel models. See
example 25 for details.

http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals14/u11.pdf#u11.4varlists

14 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

scale(#) specifies an initial multiplier for the scale factor corresponding to the specified block.
The initial scale factor is computed as #/

√
np for continuous parameters and as #/np for

discrete parameters, where np is the number of parameters in the block. By default, # is equal
to 2.38 (that is, scale(2.38)) is the default. If specified, this option overrides the respective
setting from the scale() option specified with the bayesmh command. scale() may not be
combined with gibbs.

covariance(matname) specifies a scale matrix matname to be used to compute an initial
proposal covariance matrix corresponding to the specified block. The initial proposal covariance
is computed as rho×Sigma, where rho is a scale factor and Sigma = matname. By default,
Sigma is the identity matrix. If specified, this option overrides the respective setting from
the covariance() option specified with the bayesmh command. covariance() may not be
combined with gibbs.

adaptation(tarate()) and adaptation(tolerance()) specify block-specific TAR and ac-
ceptance tolerance. If specified, they override the respective settings from the adaptation()
option specified with the bayesmh command. adaptation() may not be combined with gibbs.

initial(initspec) specifies initial values for the model parameters to be used in the simulation.
You can specify a parameter name, its initial value, another parameter name, its initial value, and
so on. For example, to initialize a scalar parameter alpha to 0.5 and a 2x2 matrix Sigma to the
identity matrix I(2), you can type

bayesmh . . . , initial({alpha} 0.5 {Sigma,m} I(2)) . . .

You can also specify a list of parameters using any of the specifications described in Referring to
model parameters. For example, to initialize all regression coefficients from equations y1 and y2
to zero, you can type

bayesmh . . . , initial({y1:} {y2:} 0) . . .

The general specification of initspec is

paramref #
[

paramref #
[
. . .
]]

Curly braces may be omitted for scalar parameters but must be specified for matrix parameters.
Initial values declared using this option override the default initial values or any initial values
declared during parameter specification in the likelihood() option. See Specifying initial values
for details.

nomleinitial suppresses using maximum likelihood estimates (MLEs) starting values for regression
coefficients. By default, when no initial values are specified, MLE values (when available) are used
as initial values. If nomleinitial is specified and no initial values are provided, bayesmh uses
ones for positive scalar parameters, zeros for other scalar parameters, and identity matrices for
matrix parameters. nomleinitial may be useful for providing an alternative starting state when
checking convergence of MCMC. This option cannot be combined with initrandom.

initrandom requests that the model parameters be initialized randomly. Random initial values are
generated from the prior distributions of the model parameters. If you want to use fixed initial
values for some of the parameters, you can specify them in the initial() option or during
parameter declarations in the likelihood() option. Random initial values are not available for
parameters with flat, density(), logdensity(), and jeffreys() priors; you must provide
fixed initial values for such parameters. This option cannot be combined with nomleinitial.

� � �
Simulation �

mcmcsize(#) specifies the target MCMC sample size. The default MCMC sample size is mcmc-
size(10000). The total number of iterations for the MH algorithm equals the sum of the burn-in

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 15

iterations and the MCMC sample size in the absence of thinning. If thinning is present, the total
number of MCMC iterations is computed as burnin() + (mcmcsize()− 1)× thinning() + 1.
Computation time of the MH algorithm is proportional to the total number of iterations. The MCMC
sample size determines the precision of posterior summaries, which may be different for different
model parameters and will depend on the efficiency of the Markov chain. Also see Burn-in period
and MCMC sample size.

burnin(#) specifies the number of iterations for the burn-in period of MCMC. The values of parameters
simulated during burn-in are used for adaptation purposes only and are not used for estimation.
The default is burnin(2500). Typically, burn-in is chosen to be as long as or longer than the
adaptation period. Also see Burn-in period and MCMC sample size and Convergence of MCMC.

thinning(#) specifies the thinning interval. Only simulated values from every (1+k×#)th iteration
for k = 0, 1, 2, . . . are saved in the final MCMC sample; all other simulated values are discarded.
The default is thinning(1); that is, all simulation values are saved. Thinning greater than one
is typically used for decreasing the autocorrelation of the simulated MCMC sample.

rseed(#) sets the random-number seed. This option can be used to reproduce results. rseed(#)
is equivalent to typing set seed # prior to calling bayesmh; see [R] set seed and Reproducing
results.

exclude(paramref) specifies which model parameters should be excluded from the final MCMC
sample. These model parameters will not appear in the estimation table, and postestimation
features for these parameters and log marginal likelihood will not be available. This option is
useful for suppressing nuisance model parameters. For example, if you have a factor predictor
variable with many levels but you are only interested in the variability of the coefficients associated
with its levels, not their actual values, then you may wish to exclude this factor variable from the
simulation results. If you simply want to omit some model parameters from the output, see the
noshow() option.

� � �
Adaptation �

adaptation(adaptopts) controls adaptation of the MCMC procedure. Adaptation takes place every
prespecified number of MCMC iterations and consists of tuning the proposal scale factor and
proposal covariance for each block of model parameters. Adaptation is used to improve sampling
efficiency. Provided defaults are based on theoretical results and may not be sufficient for all
applications. See Adaptation of the MH algorithm for details about adaptation and its parameters.

adaptopts are any of the following options:

every(#) specifies that adaptation be attempted every #th iteration. The default is every(100).
To determine the adaptation interval, you need to consider the maximum block size specified
in your model. The update of a block with k model parameters requires the estimation
of k × k covariance matrix. If the adaptation interval is not sufficient for estimating the
k(k + 1)/2 elements of this matrix, the adaptation may be insufficient.

maxiter(#) specifies the maximum number of adaptive iterations. Adaptation includes tuning
of the proposal covariance and of the scale factor for each block of model parameters.
Once the TAR is achieved within the specified tolerance, the adaptation stops. However, no
more than # adaptation steps will be performed. The default is variable and is computed as
max{25, floor(burnin()/adaptation(every()))}.
maxiter() is usually chosen to be no greater than (mcmcsize() + burnin())/
adaptation(every()).

miniter(#) specifies the minimum number of adaptive iterations to be performed regardless of
whether the TAR has been achieved. The default is miniter(5). If the specified miniter()

http://www.stata.com/manuals14/rsetseed.pdf#rsetseed

16 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

is greater than maxiter(), then miniter() is reset to maxiter(). Thus, if you set
maxiter(0), then no adaptation will be performed.

alpha(#) specifies a parameter controlling the adaptation of the AR. alpha() should be in
[0, 1]. The default is alpha(0.75).

beta(#) specifies a parameter controlling the adaptation of the proposal covariance matrix.
beta() must be in [0,1]. The closer beta() is to zero, the less adaptive the proposal
covariance. When beta() is zero, the same proposal covariance will be used in all MCMC
iterations. The default is beta(0.8).

gamma(#) specifies a parameter controlling the adaptation rate of the proposal covariance
matrix. gamma() must be in [0,1]. The larger the value of gamma(), the less adaptive the
proposal covariance. The default is gamma(0).

tarate(#) specifies the TAR for all blocks of model parameters; this is rarely used. tarate()
must be in (0,1). The default AR is 0.234 for blocks containing continuous multiple parameters,
0.44 for blocks with one continuous parameter, and 1/n maxlev for blocks with discrete
parameters, where n maxlev is the maximum number of levels for a discrete parameter in
the block.

tolerance(#) specifies the tolerance criterion for adaptation based on the TAR. tolerance()
should be in (0,1). Adaptation stops whenever the absolute difference between the current
and TARs is less than tolerance(). The default is tolerance(0.01).

scale(#) specifies an initial multiplier for the scale factor for all blocks. The initial scale factor is
computed as #/

√
np for continuous parameters and #/np for discrete parameters, where np is the

number of parameters in the block. By default, # is equal to 2.38; that is, scale(2.38) is the
default.

covariance(cov) specifies a scale matrix cov to be used to compute an initial proposal covariance
matrix. The initial proposal covariance is computed as ρ × Σ, where ρ is a scale factor and
Σ = matname. By default, Σ is the identity matrix. Partial specification of Σ is also allowed.
The rows and columns of cov should be named after some or all model parameters. According
to some theoretical results, the optimal proposal covariance is the posterior covariance matrix of
model parameters, which is usually unknown.

� � �
Reporting �

clevel(#) specifies the credible level, as a percentage, for equal-tailed and HPD credible intervals.
The default is clevel(95) or as set by [BAYES] set clevel.

hpd specifies the display of HPD credible intervals instead of the default equal-tailed credible intervals.

batch(#) specifies the length of the block for calculating batch means, batch standard deviation, and
MCSE using batch means. The default is batch(0), which means no batch calculations. When
batch() is not specified, MCSE is computed using effective sample sizes instead of batch means.
Option batch() may not be combined with corrlag() or corrtol().

nomodelsummary suppresses the detailed summary of the specified model. Model summary is reported
by default.

noexpression suppresses the output of expressions from the model summary. Expressions (when
specified) are reported by default.

blocksummary displays the summary of the specified blocks. This option is useful when block()
is specified and may not be combined with dryrun.

dots and dots(#) specify to display dots as simulation is performed. dots(#) displays a dot every
iterations. During the adaptation period, a symbol a is displayed instead of a dot. If dots(. . .,

http://www.stata.com/manuals14/bayessetclevel.pdf#bayessetclevel

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 17

every(#)) is specified, then an iteration number is displayed every #th iteration instead of a
dot or a. dots(, every(#)) is equivalent to dots(1, every(#)). dots displays dots every
100 iterations and iteration numbers every 1,000 iterations; it is a synonym for dots(100),
every(1000). By default, no dots are displayed (dots(0)).

noshow(paramref) specifies a list of model parameters to be excluded from the output. Do not
confuse this option with exclude(), which excludes the specified parameters from the MCMC
sample.

showreffects(paramref) is used with option reffects() and specifies a list of random-effects
parameters to be included in the output. By default, all random-effects parameters introduced by
reffects() are excluded from the output as if you have specified the noshow() option.

notable suppresses the estimation table from the output. By default, a summary table is displayed
containing all model parameters except those listed in the exclude() and noshow() options.
Regression model parameters are grouped by equation names. The table includes six columns
and reports the following statistics using the MCMC simulation results: posterior mean, posterior
standard deviation, MCMC standard error or MCSE, posterior median, and credible intervals.

noheader suppresses the output header either at estimation or upon replay.

title(string) specifies an optional title for the command that is displayed above the table of the
parameter estimates. The default title is specific to the specified likelihood model.

saving(filename
[
, replace

]
) saves simulation results in filename.dta. The replace option

specifies to overwrite filename.dta if it exists. If the saving() option is not specified, bayesmh
saves simulation results in a temporary file for later access by postestimation commands. This
temporary file will be overridden every time bayesmh is run and will also be erased if the current
estimation results are cleared. saving() may be specified during estimation or on replay.

The saved dataset has the following structure. Variance index records iteration numbers. bayesmh
saves only states (sets of parameter values) that are different from one iteration to another and
the frequency of each state in variable frequency. (Some states may be repeated for discrete
parameters.) As such, index may not necessarily contain consecutive integers. Remember to use
frequency as a frequency weight if you need to obtain any summaries of this dataset. Values

for each parameter are saved in a separate variable in the dataset. Variables containing values of
parameters without equation names are named as eq0 p#, following the order in which parameters
are declared in bayesmh. Variables containing values of parameters with equation names are named
as eq# p#, again following the order in which parameters are defined. Parameters with the same
equation names will have the same variable prefix eq#. For example,

. bayesmh y x1, likelihood(normal({var})) saving(mcmc) . . .

will create a dataset mcmc.dta with variable names eq1 p1 for {y:x1}, eq1 p2 for {y: cons},
and eq0 p1 for {var}. Also see macros e(parnames) and e(varnames) for the correspondence
between parameter names and variable names.

In addition, bayesmh saves variable loglikelihood to contain values of the log likelihood from
each iteration and variable logposterior to contain values of log posterior from each iteration.

display options: vsquish, noemptycells, baselevels, allbaselevels, nofvlabel,
fvwrap(#), fvwrapon(style), and nolstretch; see [R] estimation options.

� � �
Advanced �

search(search options) searches for feasible initial values. search options are on, repeat(#),
and off.

search(on) is equivalent to search(repeat(500)). This is the default.

http://www.stata.com/manuals14/u11.pdf#u11.6Filenamingconventions
http://www.stata.com/manuals14/restimationoptions.pdf#restimationoptions

18 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

search(repeat(k)), k > 0, specifies the number of random attempts to be made to find
a feasible initial-value vector, or initial state. The default is repeat(500). An initial-value
vector is feasible if it corresponds to a state with positive posterior probability. If feasible initial
values are not found after k attempts, an error will be issued. repeat(0) (rarely used) specifies
that no random attempts be made to find a feasible starting point. In this case, if the specified
initial vector does not correspond to a feasible state, an error will be issued.

search(off) prevents bayesmh from searching for feasible initial values. We do not recommend
specifying this option.

corrlag(#) specifies the maximum autocorrelation lag used for calculating effective sample sizes. The
default is min{500, mcmcsize()/2}. The total autocorrelation is computed as the sum of all lag-k
autocorrelation values for k from 0 to either corrlag() or the index at which the autocorrelation
becomes less than corrtol() if the latter is less than corrlag(). Options corrlag() and
batch() may not be combined.

corrtol(#) specifies the autocorrelation tolerance used for calculating effective sample sizes. The
default is corrtol(0.01). For a given model parameter, if the absolute value of the lag-k
autocorrelation is less than corrtol(), then all autocorrelation lags beyond the kth lag are
discarded. Options corrtol() and batch() may not be combined.

Remarks and examples stata.com

Remarks are presented under the following headings:

Using bayesmh
Setting up a posterior model

Likelihood model
Prior distributions
Declaring model parameters
Referring to model parameters
Specifying arguments of likelihood models and prior distributions
Substitutable expressions
Checking model specification

Specifying MCMC sampling procedure
Reproducing results
Burn-in period and MCMC sample size
Improving efficiency of the MH algorithm—blocking of parameters
Gibbs and hybrid MH sampling
Adaptation of the MH algorithm
Specifying initial values

Summarizing and reporting results
Posterior summaries and credible intervals
Saving MCMC results

Convergence of MCMC

Examples are presented under the following headings:

Getting started examples
Mean of a normal distribution with a known variance
Mean of a normal distribution with an unknown variance
Simple linear regression
Multiple linear regression
Improving efficiency of MH sampling
Graphical diagnostics using multiple chains

Logistic regression model: a case of nonidentifiable parameters
Ordered probit regression
Beta-binomial model
Multivariate regression
Panel-data and multilevel models

http://stata.com

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 19

Two-level random-intercept model or panel-data model
Linear growth curve model—a random-coefficient model
Mixed-effects logistic regression

Bayesian analysis of change-point problem
Bioequivalence in a crossover trial
Random-effects meta-analysis of clinical trials
Item response theory

For a quick overview example of all Bayesian commands, see Overview example in [BAYES] bayes.

Using bayesmh

The bayesmh command for Bayesian analysis includes three functional components: setting up
a posterior model, performing MCMC simulation, and summarizing and reporting results. The first
component, the model-building step, requires some experience in the practice of Bayesian statistics
and, as any modeling task, is probably the most demanding. You should specify a posterior model
that is statistically correct and that represents the observed data. Another important aspect is the
computational feasibility of the model in the context of the MH MCMC procedure implemented in
bayesmh. The provided MH algorithm is adaptive and, to a degree, can accommodate various statistical
models and data structures. However, careful model parameterization and well-specified initial values
and MCMC sampling scheme are crucial for achieving a fast-converging Markov chain and consequently
good results. Simulation of MCMC must be followed by a thorough investigation of the convergence
of the MCMC algorithm. Once you are satisfied with the convergence of the simulated chains, you
may proceed with posterior summaries of the results and their interpretation. Below we discuss the
three major steps of using bayesmh and provide recommendations.

Setting up a posterior model

Any posterior model includes a likelihood model that specifies the conditional distribution of the
data given model parameters and prior distributions for all model parameters. The prior distribution of
a parameter can itself be specified conditional on other parameters, also referred to as hyperparameters.
We will refer to their prior distributions as hyperpriors.

Likelihood model

The likelihood model describes the data. You build your likelihood model the same way you do
this in frequentist likelihood-based analysis.

The bayesmh command provides various likelihood models, which are specified in the like-
lihood() option. For a univariate response, there are normal models, generalized linear models
for binary and count response, and more. For a multivariate model, you may choose between a
multivariate normal model with covariates common to all variables and with covariates specific to
each variable. You can also build likelihood models for multiple variables by specifying a distribution
and a regression function for each variable by using bayesmh’s multiple-equation specification.

bayesmh is primarily designed for fitting regression models. As we said above, you specify the
likelihood or outcome distribution in the likelihood() option. The regression specification of the
model is the same as for other regression commands. For a univariate response, you specify the
dependent and all independent variables following the command name. (Here we also include the
prior() option that specifies prior distributions to emphasize that it is required in addition to
likelihood(). See the next subsection for details about this option.)

. bayesmh y x1 x2, likelihood() prior() . . .

http://www.stata.com/manuals14/bayesbayes.pdf#bayesbayesRemarksandexamplesOverviewexample
http://www.stata.com/manuals14/bayesbayes.pdf#bayesbayes

20 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

For a multivariate response, you separate the dependent variables from the independent variables
with the equal sign.

. bayesmh y1 y2 = x1 x2, likelihood(mvnormal(. . .)) prior() . . .

With the multiple-equation specification, you follow the syntax for the univariate response, but
you specify each equation in parentheses and you specify the likelihood() option within each
equation.

. bayesmh (y1 x1, likelihood()) (y2 x2, likelihood()), prior() . . .

In the above models, the regression function is modeled using a linear combination of the specified
independent variables and regression coefficients. The constant is included by default, but you can
specify the noconstant option to omit it from the linear predictor.

bayesmh also allows you to model the regression function as a nonlinear function of independent
variables and regression parameters. In this case, you must use the equal sign to separate the dependent
variable from the expression and specify the expression in parentheses:

. bayesmh y = ({a}+{b}*x^{c}), likelihood(normal()) prior() . . .

. bayesmh (y1 = ({a1}+{b1}*x^{c1}) ///
(y2 = ({a2}+{b2}*x^{c2}), likelihood(mvnormal()) prior() . . .

You can also model an outcome distribution directly by specifying one of the supported probability
distributions.

For a not-supported or nonstandard likelihood, you can use the llf() option within likeli-
hood() to specify a generic expression for the observation-level likelihood function; see Substitutable
expressions. When you use the llf() option, it is your responsibility to ensure that the provided
expression corresponds to a valid density. For more complicated Bayesian models, you may consider
writing your own likelihood or posterior function evaluators; see [BAYES] bayesmh evaluators.

Prior distributions

In addition to the likelihood, you must also specify prior distributions for all model parameters in
a Bayesian model. Prior distributions or priors are key components in a Bayesian model specification
and should be chosen carefully. They are used to quantify some expert knowledge or existing
information about model parameters. For example, priors can be used for constraining the domain
of some parameters to localize values that we think are more probable for reasons that are not
considered in the likelihood specification. Improper priors (priors with densities that do not integrate
to finite numbers) are also allowed, as long as they yield valid posterior distributions. Priors are
often categorized as informative (subjective) or noninformative (objective). Noninformative priors
are also known as vague priors. Uniform distributions are often used as noninformative priors and
can even be applied to parameters with unbounded domains, in which case they become improper
priors. Normal and gamma distributions with very large variances relative to the expected values
of the parameters are also used as noninformative priors. Another family of noninformative priors,
often chosen for their invariance under reparameterization, are so-called Jeffreys priors, named after
Harold Jeffreys (Jeffreys 1946). For example, the bayesmh command provides built-in Jeffreys priors
for the normal family of distributions. Jeffreys priors are usually improper. As discussed by many
researchers, however, the overuse of noninformative priors contradicts the principles of Bayesian
approach—analysis of a posterior model with noninformative priors would be close to one based on
the likelihood only. Noninformative priors may also negatively influence the MCMC convergence. It
is thus important to find good priors based on earlier studies and use them in the model as well as
perform sensitivity analysis for competing priors. A good choice of prior should minimize the MCMC
standard errors of the parameter estimates.

http://www.stata.com/manuals14/bayesbayesmhevaluators.pdf#bayesbayesmhevaluators

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 21

As for likelihoods, the bayesmh command provides several priors you can choose from by
specifying the prior() options. For example, continuous univariate priors include normal, lognormal,
uniform, inverse gamma, and exponential; discrete priors include Bernoulli and Poisson; multivariate
priors include multivariate normal and inverse Wishart. There are also special priors: jeffreys and
jeffreys(#), which specify Jeffreys priors for the variance of the normal and multivariate normal
distributions, and zellnersg() and zellnersg0(), which specify multivariate priors for regression
coefficients (Zellner and Revankar 1969).

The prior() option is required and can be repeated. You can use the prior() option for each
parameter or you can combine multiple parameters in one prior() specification.

For example, we can specify different priors for parameters {y:x} and {y: cons} by

. bayesmh y x, . . . prior({y:x}, normal(10,100)) prior({y: cons}, normal(20,200)) . . .

or the same univariate prior using one prior() statement, using

. bayesmh y x, . . . prior({y:x _cons}, normal(10,100)) . . .

or a multivariate prior with zero mean and fixed variance–covariance S, as follows:

. bayesmh y x, . . . prior({y:x _cons}, mvnormal0(2,S)) . . .

In the prior() option, we list model parameters following any of the specifications described in
Referring to model parameters and then, following the comma, we specify one of the prior distributions
priordist.

If you want to specify a nonstandard prior or if the prior you need is not supported, you can use
the density() or logdensity() option within the prior() option to specify an expression for
a generic density or log density of the prior distribution; see Substitutable expressions. When you
use the density() or logdensity() option, it is your responsibility to ensure that the provided
expression corresponds to a valid density. For a complicated Bayesian model, you may consider
writing your own posterior function evaluator; see [BAYES] bayesmh evaluators.

Sometimes, you may need to specify a flat prior (a prior with the density equal to one) for some
of the parameters. This is often needed when specifying a noninformative prior. You can specify the
flat option instead of the prior distribution in the prior() option to request the flat prior. This
option is equivalent to specifying density(1) or logdensity(0) in prior().

The specified likelihood model for the data and prior distributions for the parameters are not
guaranteed to result in proper posterior distributions of the parameters. Therefore, unless you are
using one of the standard Bayesian models, you should always check the validity of the posterior
model you specified.

Declaring model parameters

Model parameters are typically declared, meaning first introduced, in the arguments of distributions
specified in options likelihood() and prior(). We will refer to model parameters that are declared
in the prior distributions (and not the likelihood distributions) as hyperparameters. Model parameters
may also be declared within the parameter specification of the prior() option, but this is more rare.

bayesmh distinguishes between two types of model parameters: scalar and matrix. All parameters
must be specified in curly braces, {}. There are two ways for declaring a scalar parameter: {param}
and {eqname:param}, where param and eqname are valid Stata names.

The specification of a matrix parameter is similar, but you must use the matrix suboptions:
{param, matrix} and {eqname:param, matrix}. The most common application of matrix model
parameters is for specifying the variance–covariance matrix of a multivariate normal distribution.

http://www.stata.com/manuals14/bayesbayesmhevaluators.pdf#bayesbayesmhevaluators

22 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

All matrices are assumed to be symmetric and only the elements in the lower diagonal are reported in
the output. Only a few multivariate prior distributions are available for matrix parameters: wishart(),
iwishart(), and jeffreys(). In addition to being symmetric, these distributions require that the
matrices be positive definite.

It is your responsibility to declare all parameters of your model, except regression coefficients in
linear models. For a linear model, bayesmh automatically creates a regression coefficient with the
name {depvar:indepvar} for each independent variable indepvar in the model and, if noconstant is
not specified, an intercept parameter {depvar: cons}. In the presence of factor variables, bayesmh
will create a parameter {depvar:level} for each level indicator level and a parameter {depvar:inter}
for each interaction indicator inter; see [U] 11.4.3 Factor variables. (It is still your responsibility,
however, to specify prior distributions for the regression parameters.)

For example,

. bayesmh y x, . . .

will automatically have two regression parameters: {y:x} and {y: cons}, whereas

. bayesmh y x, noconstant . . .

will have only one: {y:x}.

For a univariate normal linear regression, we may want to additionally declare the scalar variance
parameter by

. bayesmh y x, likelihood(normal({sig2})) . . .

We can label the variance parameter, as follows:

. bayesmh y x, likelihood(normal({var:sig2})) . . .

We can declare a hyperparameter for {sig2} using

. bayesmh y x, likelihood(normal({sig2})) prior({sig2}, igamma({df},2)) . . .

where the hyperparameter {df} is declared in the inverse-gamma prior distribution for {sig2}.

For a multivariate normal linear regression, in addition to four regression parameters declared
automatically by bayesmh: {y1:x}, {y1: cons}, {y2:x}, and {y2: cons}, we may also declare
a parameter for the variance–covariance matrix:

. bayesmh y1 y2 = x, likelihood(mvnormal({Sigma, matrix})) . . .

or abbreviate matrix to m for short:

. bayesmh y1 y2 = x, likelihood(mvnormal({Sigma, m})) . . .

Referring to model parameters

After a model parameter is declared, we may need to refer to it in our further model specification.
We will definitely need to refer to it when we specify its prior distribution. We may also need to use
it as an argument in the prior distributions of other parameters or need to specify it in the block()
option for blocking of model parameters; see Improving efficiency of the MH algorithm—blocking
of parameters.

To refer to one parameter, we simply use its definition: {param}, {eqname:param}, {param,
matrix}, or {eqname:param, matrix}. There are several ways in which you can refer to multiple
parameters. You can refer to multiple model parameters in the parameter specification paramref of the
prior(paramref, . . .) option, of the block(paramref, . . .) option, or of the initial(paramref
#) option.

http://www.stata.com/manuals14/u11.pdf#u11.4.3Factorvariables

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 23

The most straightforward way to refer to multiple scalar model parameters is to simply list them
individually, as follows:

{param1} {param2} . . .

but there are shortcuts.

For example, the alternative to the above is

{param1 param2} . . .

where we simply list the names of all parameters inside one set of curly braces.

If parameters have the same equation name, you can refer to all the parameters with that equation
name as follows. Suppose that we have three parameters with the same equation name eqname, then
the specification

{eqname:param1} {eqname:param2} {eqname:param3}

is the same as the specification

{eqname:}

or the specification

{eqname:param1 param2 param3}

The above specification is useful if we want to refer to a subset of parameters with the same
equation name. For example, in the above, if we wanted to refer to only param1 and param2, we
could type

{eqname:param1 param2}

If a factor variable is used in the specification of the regression function, you can use the same
factor-variable specification within paramref to refer to the coefficients associated with the levels of
that factor variable; see [U] 11.4.3 Factor variables.

For example, factor variables are useful for constructing multilevel Bayesian models. Suppose that
variable id defines the second level of hierarchy in a two-level random-effects model. We can fit a
Bayesian random-intercept model as follows.

. bayesmh y x i.id, likelihood(normal({var})) prior({y:i.id}, normal(0,{tau})) . . .

Here we used {y:i.id} in the prior specification to refer to all levels of id.

Similarly, we can add a random coefficient for a continuous covariate x by typing

. bayesmh y c.x##i.id, likelihood(normal({var}))
> prior({y:i.id}, normal(0,{tau1}))
> prior({y:c.x#i.id}, normal(0,{tau2})) . . .

You can mix and match all the specifications above in one parameter specification, paramref.

To refer to multiple matrix model parameters, you can use {paramlist, matrix} to refer to matrix
parameters with names paramlist and {eqname:paramlist, matrix} to refer to matrix parameters
with names in paramlist and with equation name eqname.

For example, the specification

{eqname:Sigma1,m} {eqname:Sigma2,m} {Sigma3,m} {Sigma4,m}

is the same as the specification

{eqname:Sigma1 Sigma2,m} {Sigma3 Sigma4,m}

http://www.stata.com/manuals14/u11.pdf#u11.4.3Factorvariables

24 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

You cannot refer to both scalar and matrix parameters in one paramref specification.

For referring to model parameters in postestimation commands, see Different ways of specifying
model parameters in [BAYES] bayesmh postestimation.

Specifying arguments of likelihood models and prior distributions

As previously mentioned, likelihood distributions (or more precisely, likelihood models), modelspec,
are specified in the likelihood(modelspec) option and prior distributions priordist are specified
following the comma in the prior(paramref, priordist) option. For a list of supported models and
distributions, see the corresponding tables in the syntax diagram.

In a likelihood model, mean and location parameters are determined by the specified regression
function and thus need not be specified in the likelihood distributions. For example, for a normal linear
regression, we use likelihood(normal(var)), where we specify only the variance parameter—the
mean is already parameterized as a linear combination of the specified independent variables. In the
prior distributions, we must specify all parameters of the distribution. For example, for a normal prior
specification, we use prior(paramref, normal(mu, var)), where we must specify both mean mu
and variance var. In addition, all multivariate prior distributions require that you specify the dimension
d as the first argument.

Scalar arguments of the distributions may be specified as a number or as a scalar expression exp.
Matrix arguments of the distributions may be specified as a matrix or as a matrix expression exp.
Both types of arguments may be specified as a parameter (see Declaring model parameters) or as
a substitutable expression, subexp (see Substitutable expressions). All distribution arguments, except
the dimension d of multivariate prior distributions, support the above specifications. For likelihood
models, arguments of the distributions may also contain variable names.

For example, in a normal linear regression, we can specify the variance as a known value of 25,

. bayesmh y x, likelihood(normal(25)) . . .

or as a squared standard deviation of 5 (scalar expression),

. bayesmh y x, likelihood(normal(5^2)) . . .

or as an unknown variance parameter {var},

. bayesmh y x, likelihood(normal({var})) . . .

or as a function of an unknown standard-deviation parameter {sd} (substitutable expression),

. bayesmh y x, likelihood(normal({sd}^2)) . . .

In a multivariate normal linear regression, we can specify the variance–covariance matrix as a
known matrix S,

. bayesmh y1 y2 = x, likelihood(mvnormal(S)) . . .

or as a matrix function S = R*R’ using its Cholesky decomposition,

. bayesmh y1 y2 = x, likelihood(mvnormal(R*R’)) . . .

or as an unknown matrix parameter {Sigma,m},

. bayesmh y1 y2 = x, likelihood(mvnormal({Sigma,m})) . . .

or as a function of an unknown variance parameter {var} (substitutable expression),

. bayesmh y1 y2 = x, likelihood(mvnormal({var}*S)) . . .

http://www.stata.com/manuals14/bayesbayesmhpostestimation.pdf#bayesbayesmhpostestimationRemarksandexamplesDifferentwaysofspecifyingmodelparameters
http://www.stata.com/manuals14/bayesbayesmhpostestimation.pdf#bayesbayesmhpostestimationRemarksandexamplesDifferentwaysofspecifyingmodelparameters
http://www.stata.com/manuals14/bayesbayesmhpostestimation.pdf#bayesbayesmhpostestimation

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 25

Substitutable expressions

You may use substitutable expressions in bayesmh to define nonlinear expressions subexpr,
arguments of outcome distributions in option likelihood(), observation-level log likelihood in
option llf(), arguments of prior distributions in option prior(), and generic prior distributions in
prior()’s suboptions density() and logdensity(). Substitutable expressions are just like any
other mathematical expression in Stata, except that they may include model parameters.

To specify a substitutable expression in your bayesmh model, you must comply with the following
rules:

1. Model parameters are bound in braces: {mu}, {var:sigma2}, {Sigma, matrix}, and
{Cov:Sigma, matrix}.

2. Linear combinations can be specified using the notation {eqname:varlist}. For example,

{xb:mpg price weight} is equivalent to

{xb_mpg}*mpg + {xb_price}*price + {xb_weight}*weight

3. There is a small caveat with using the {eqname:name} specification 2 when name corresponds
to both one of the variables in the dataset and a parameter in the model. The linear-combination
specification takes precedence in this case. For example, {eq:var} will be expanded to
{eq var}*var, where var is the variable in a dataset and eq var is the coefficient
corresponding to this variable. To refer directly to the coefficient, you must use {eq var}.

4. Initial values are given by including an equal sign and the initial value inside the braces,
for example, {b1=1.267}, {gamma=3}, etc. If you do not specify an initial value, that
parameter is initialized to one for positive scalar parameters and to zero for other scalar
parameters, or it is initialized to its MLE, if available. The initial() option overrides initial
values provided in substitutable expressions. Initial values for matrices must be specified in
the initial() option. By default, matrix parameters are initialized with identity matrices.

Specifying linear combinations. We can use substitutable expressions to specify linear combinations.

For example, a normal linear regression,

. bayesmh y x1 x2, likelihood(normal(1)) noconstant prior({y:x1 x2}, normal(0,100))

may be equivalently (but less efficiently) fit using a nonlinear regression,

. bayesmh y = ({y:x1 x2}), likelihood(normal(1)) prior({y:x1 x2}, normal(0,100))

The above nonlinear specification is essentially,

. bayesmh y = ({y_x1}*x1+{y_x2}*x2), likelihood(normal(1))
> prior({y:x1 x2}, normal(0,100))

Notice that the specification {y:x1 x2} in the prior() option is not a substitutable expression, but
it is one way of referring to model parameters described in Referring to model parameters. Substitutable
expressions are not allowed in the parameter specification paramref of prior(paramref, . . .).

Specifying nonstandard densities. We can use substitutable expressions to define nonstandard or
not-supported probability distributions.

For example, suppose we want to specify a Cauchy distribution with location a and scale b. We
can specify the expression for the observation-level likelihood function in the llf() option within
likelihood().

. bayesmh y, likelihood(llf(ln({b})-ln({b}^2+(y-{a})^2)-ln(_pi))) noconstant . . .

26 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

You can also use substitutable expressions to define nonstandard or not-supported prior distributions.
For example, as suggested by Gelman et al. (2014), we can specify a Cauchy prior with location a = 0
and scale b = 2.5 for logistic regression coefficients, where continuous covariate x is standardized to
have mean 0 and standard deviation 0.5.

. bayesmh y x, likelihood(logit)
> prior({y:x}, logdensity(ln(2.5)-ln(2.5^2+{y:x}^2)-ln(_pi)))
> prior({y:_cons}, logdensity(ln(10)-ln(10^2+{y:_cons}^2)-ln(_pi)))

Checking model specification

Specifying a Bayesian model may be a tedious task when there are many model parameters and
possibly hyperparameters. It is thus essential to verify model specification before starting a potentially
time-consuming estimation.

bayesmh displays the summary of the specified model as a part of its standard output. You can
use the dryrun option to obtain the model summary without estimation or simulation. Once you are
satisfied with the specified model, you can use the nomodelsummary option to suppress a potentially
long model summary during estimation. Even if you specify nomodelsummary during estimation,
you will still be able to see the model summary, if desired, by simply replaying the results:

. bayesmh

Specifying MCMC sampling procedure

Once you specify a correct posterior model, bayesmh uses an adaptive random-walk MH algorithm
to obtain MCMC samples of model parameters from their posterior distribution.

Reproducing results

Because bayesmh uses MCMC simulation—a stochastic procedure for sampling from a complicated
and possibly nontractable distribution—it will produce different results each time you run the command.
If the MCMC algorithm converged, the results should not change drastically. To obtain reproducible
results, you must specify the random-number seed.

To specify a random-number seed, you can use set seed # prior to calling bayesmh (see [R] set
seed) or you can specify the seed in bayesmh’s option rseed(). For simplicity and consistency, we
use set seed 14 in all of our examples throughout the documentation.

If you forgot to specify the random-number seed before calling bayesmh, you can retrieve the
random-number state used by the command from e(rngstate) and use it later with set rngstate.

Burn-in period and MCMC sample size

bayesmh has the default burn-in period of 2,500 iterations and the default MCMC sample size of
10,000 iterations. That is, the first 2,500 iterations of the MCMC sampler are discarded and the next
10,000 iterations are used to form the MCMC samples of values of model parameters. You can change
these numbers by specifying options burnin() and mcmcsize().

The burn-in period must be long enough for the algorithm to reach convergence or, in other words,
for the Markov chain to reach its stationary distribution or the desired posterior distribution of model
parameters. The sample size for the MCMC sample is typically determined based on the autocorrelation
present in the MCMC sample. The higher the autocorrelation, the larger the MCMC sample should be
to achieve the same precision of the parameter estimates as obtained from the chain with low or
negligible autocorrelation. Because of the nature of the sampling algorithm, all MCMC exhibit some
autocorrelation and thus MCMC samples tend to have large sizes.

http://www.stata.com/manuals14/rsetseed.pdf#rsetseed
http://www.stata.com/manuals14/rsetseed.pdf#rsetseed

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 27

The defaults provided by bayesmh may not be sufficient for all Bayesian models and data types.
You will need to explore the convergence of the MCMC algorithm for your particular data problem
and modify the settings, if needed.

After the burn-in period, bayesmh includes every iteration in the MCMC sample. You can specify
the thinning(#) option to store results from a subset of iterations. This option is useful if you want
to subsample the chain to decrease autocorrelation in the final MCMC sample. If you use this option,
bayesmh will perform a total of thinning()× (mcmcsize()− 1) + 1 iterations, excluding burn-in
iterations, to obtain MCMC sample of size mcmcsize().

Improving efficiency of the MH algorithm—blocking of parameters

Although the MH algorithm is very general and can be applied to any Bayesian model, it is not
the most optimal sampler and may require tuning to achieve higher efficiency.

Efficiency describes mixing properties of the Markov chain. High efficiency means good mixing
(low autocorrelation) in the MCMC sample, and low efficiency means bad mixing (high autocorrelation)
in the MCMC sample.

An AR is the number of accepted proposals of model parameters relative to the total number of
proposals. It should not be confused with sampling efficiency. High AR does not mean high efficiency.

An efficient MH sampler has an AR between 15% and 50% (Roberts and Rosenthal 2001) and low
autocorrelation and thus relatively large effective sample size (ESS) for all model parameters.

One way to improve efficiency of the MH algorithm is by blocking of model parameters. Blocking
of model parameters is an important functional aspect of the MH sampler. By default, all parameters
are used as one block and their covariance matrix is used to adapt the proposal distribution. With
many parameters, estimation of this covariance matrix becomes difficult and imprecise and may lead
to the loss of efficiency of the MH algorithm. In many cases, this matrix has a block diagonal structure
because of independence of some blocks or sets of model parameters and its estimation may be
replaced with estimation of the corresponding blocks, which are typically of smaller dimension. This
may improve the efficiency of the sampler. To achieve optimal blocking, you need to identify the sets
of approximately independent (a posteriori) model parameters and specify them in separate blocks.

To achieve an optimal blocking, you need to know or have some idea about the dependence between
the parameters as determined by the posterior distribution. To improve efficiency, follow this principle:
correlated parameters should be specified together, while independent groups of parameters should
be specified in separate blocks. Because the posterior is usually defined indirectly, the relationship
between the parameters is generally unknown. Often, however, we have some knowledge, either
deduced from the model specification or based on prior experience with the model, about which
parameters are highly correlated. In the worst case, you may need to run some preliminary simulations
and determine an optimal blocking by using trial and error.

An ideal case for the MH algorithm is when all model parameters are independent with respect
to the posterior distribution and are thus placed in separate blocks and sampled independently. In
practice, this is not a realistic or interesting case, but it gives us an idea that we should always try to
parameterize the model in such a way that the correlation between model parameters is minimized.

With bayesmh, you can use options block() to perform blocking. You specify one block()
option for each set of independent model parameters. Model parameters that are dependent with each
other are specified in the same block() option.

To illustrate a typical case, consider the following simple linear regression model:

y = {a} + {b}× x + ε, ε ∼ N(0, {var})

28 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Even when {a} and {b} have independent prior specifications, the location parameters {a} and {b}
are expected to be correlated a posteriori because of their common dependence on y. Alternatively, if
the variance parameter {var} is independent of {a} and {b} a priori, it is generally less correlated
with the location parameters a posteriori. A good blocking scheme is to use options block({a} {b})
and block({var}) with bayesmh. We can also reparameterize our model to reduce the correlation
between {a} and {b} by recentering. To center the slope parameter, we replace {b} with {b}− #,
where # is a constant close to the mean of {b}. Now {a} and {b}− # can also be placed in separate
blocks. See, for example, Thompson (2014) for more discussion related to model parameterization.

Other options that control MCMC sampling efficiency are scale(), covariance(), and adap-
tation(); see Adaptation of the MH algorithm for details.

Gibbs and hybrid MH sampling

In Improving efficiency of the MH algorithm—blocking of parameters, we discussed blocking of
model parameters as a way of improving efficiency of the MH algorithm. For certain Bayesian models,
further improvement is possible by using Gibbs sampling for certain blocks of parameters. This leads
to what we call a hybrid MH sampling with Gibbs updates.

Gibbs sampling is the most effective sampling procedure with the maximum possible AR of one and
with often very high efficiency. Using Gibbs sampling for some blocks of parameters will typically
lead to higher efficiency of the hybrid MH sampling compared with the simple MH sampling.

To apply Gibbs sampling to a set of parameters, we need to know the full conditional distribution
for each parameter and be able to generate random samples from it. Usually, the full conditionals are
known in various special cases but are not available for general posterior distributions. Thus, Gibbs
sampling is not available for all likelihood and prior combinations. bayesmh provides Gibbs sampling
for Bayesian models with conjugate, or more specifically, semiconjugate prior distributions. See Gibbs
sampling for some likelihood-prior and prior-hyperprior configurations for a list of supported models.

For a supported semiconjugate model, you can request Gibbs sampling for a block of parameters
by specifying the gibbs suboption within option block(). In some cases, the gibbs suboption may
be used in all parameter blocks, in which case we will have full Gibbs sampling.

To use Gibbs sampling for a set of parameters, you must first place them in separate prior()
statements and specify semiconjugate prior distributions and then place them in a separate block and
include the gibbs suboption, block(. . ., gibbs).

Here is a standard application of a full Gibbs sampling to a normal mean-only model. Under the
normal–inverse-gamma prior, the conditional posterior distributions of the mean parameter is normal
and of the variance parameter is inverse gamma.

. bayesmh y, likelihood(normal({var}))
> prior({y: cons}, normal(1,10))
> prior({var}, igamma(10,1))
> block({y: cons}, gibbs)
> block({var}, gibbs)

Because {y: cons} and {var} are approximately independent a posteriori, we specified them in
separate blocks.

Gibbs sampling can be applied to hyperparameters, which are not directly involved in the likelihood
specification of the model. For example, we can use Gibbs sampling for the covariance matrix of
regression coefficients.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 29

. bayesmh y x, likelihood(normal(var))
> prior(var, igamma(10,1))
> prior({y:_cons x}, mvnormal(2,1,0,{Sigma,m}))
> prior({Sigma,m}, iwishart(2,10,V))
> block({Sigma,m}, gibbs)

In the next example, the matrix parameter {Sigma,m} specifies the covariance matrix in the
multivariate normal prior for a pair of model parameters, {y:1.cat} and {y:2.cat}. {Sigma,m} is
a hyperparameter—it is not a model parameter of the likelihood but a parameter of a prior distribution,
and it has an inverse-Wishart hyperprior distribution, which is a semiconjugate prior with respect to
the multivariate normal prior distribution. Therefore, we can request a Gibbs sampler for {Sigma,m}.

bayesmh y x i.cat, likelihood(probit)
> prior(y:x _cons, normal(0, 1000))
> prior(y:1.cat 2.cat, mvnormal0(2,{Sigma,m}))
> prior({Sigma,m}, iwishart(2,10,V))
> block({Sigma,m}, gibbs)

In general, Gibbs sampling, when available, is useful for covariance matrices because MH sam-
pling has low efficiency for sampling positive-definite symmetric matrices. In a multivariate normal
regression, the inverse Wishart distribution is a conjugate prior for the covariance matrix and thus
inverse Wishart is the most common prior specification for a covariance matrix parameter. If an
inverse-Wishart prior (iwishart()) is used for a covariance matrix, you can specify Gibbs sampling
for the covariance matrix. You can do so by placing the matrix in a separate block and specifying
the gibbs suboption in that block, as we showed above. Using Gibbs sampling for the covariance
matrix usually greatly improves the sampling efficiency.

Adaptation of the MH algorithm

The MH algorithm simulates Markov chains by generating small moves or jumps from the current
parameter values (or current state) according to the proposal distribution. At each iteration of the
algorithm, the proposed new state is accepted with a probability that is calculated based on the
newly proposed state and the current state. The choice of a proposal distribution is crucial for the
mixing properties of the Markov chain, that is, the rate at which the chain explores its stationary
distribution. (In a Bayesian context, a Markov chain state is a vector of model parameters, and a
stationary distribution is the target posterior distribution.) If the jumps are too small, almost all moves
will be accepted. If the jumps are too large, almost all moves will be rejected. Either case will cause
the chain to explore the entire posterior domain slowly and will thus lead to poor mixing. Adaptive
MH algorithms try to tune the proposal distribution so that some optimal AR is achieved (Haario,
Saksman, and Tamminen [2001]; Roberts and Rosenthal [2009]; Andrieu and Thoms [2008]).

In the random-walk MH algorithm, the proposal distribution is a Gaussian distribution with a zero
mean and is completely determined by its covariance matrix. It is useful to represent the proposal
covariance matrix as a product of a (scalar) scale factor and a positive-definite scale matrix. Gelman,
Gilks, and Roberts (1997) show that the optimal scale matrix is the true covariance matrix of the
target distribution, and the optimal scale factor is inversely proportional to the number of parameters.
Therefore, in the ideal case when the true covariance matrix is available, it can be used as a proposal
covariance and an MCMC adaptation can be avoided altogether. In practice, the true covariance is
rarely known and the adaptation is thus unavoidable.

In the bayesmh command, the scale factor and the scale matrix that form the proposal covariance
are constantly tuned during the adaptation phase of an MCMC so that the current AR approaches some
predefined value.

You can use scale(), covariance(), and adaptation() options to control adaptation of the MH
algorithm. The TAR is controlled by option adaptation(tarate()). The initial scale factor and scale

30 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

matrix can be modified using the scale() and covariance() options. In the presence of blocks of
parameters, these options can be specified separately for each block within the block() option. At each
adaptation step, a new scale matrix is formed as a mixture (a linear combination) of the previous scale
matrix and the current empirical covariance matrix of model parameters. The mixture of the two matrices
is controlled by option adaptation(beta()). A positive adaptation(beta()) is recommended to
have a more stable scale matrix between adaptation periods. The adaptation lasts until the maximum
number adaptation(every())×adaptation(maxiter()) of adaptive iterations is reached or
until adaptation(tarate()) is reached within the adaptation(tolerance()) limit. The default
for maxiter() depends on the specified burn-in and adaptation(every()) and is computed as
max{25, floor(burnin()/adaptation(every()))}. The default for adaptation(every()) is
100. If you change the default values of these parameters, you may want to increase the burnin()
to be as long as the specified adaptation period so that adaptation is finished before the final
simulated sample is obtained. (There are adaptation regimes in which adaptation is performed during
the simulation phase as well, such as continuous adaptation.) Two additional adaptation options,
adaptation(alpha()) and adaptation(gamma()) control the AR and the adaptation rate. For
a detailed description of the adaptation process, see Adaptive random-walk Metropolis–Hastings in
[BAYES] intro and Adaptive MH algorithm in Methods and formulas.

Specifying initial values

When exploring convergence of MCMC, it may be useful to try different initial values to verify
that the convergence is unaffected by starting values.

There are two different ways to specify initial values of model parameters in bayesmh. First is
by specifying an initial value when declaring a model parameter. Second is by specifying an initial
value in the initial() option. Initial values for matrix model parameters may be specified only in
the initial() option.

For example, below we initialize variance parameter {var} with value of 1 using two equivalent
ways, as follows:

. bayesmh y x, likelihood(normal({var=1})) . . .

or

. bayesmh y x, likelihood(normal({var})) initial({var} 1) . . .

If both initial-value specifications are used, initial values specified in the initial() option override
any initial values specified during parameter declaration for the corresponding parameters.

You can initialize multiple parameters with the same value by supplying a list of parameters
by using any of the specifications described in Referring to model parameters to initial(). For
example, to initialize all regression coefficients from equations y1 and y2 to zero, you can type

. bayesmh . . ., initial({y1:} {y2:} 0) . . .

By default, if no initial value is specified and option nomleinitial is not used, bayesmh uses
MLEs, whenever available, as starting values for model parameters.

For example, for the previous regression model, bayesmh uses regression coefficients and mean
squared error from linear regression regress y x as the respective starting values for the regression
model parameters and variance parameter {var}.

If MLE is not available and an initial value is not provided, then a scalar model parameter is
initialized with 1 for positive parameters and 0 for other parameters, and a matrix model parameter is
initialized with an identity matrix. Note, however, that this default initialization is not guaranteed to
correspond to the feasible state for the specified posterior model; that is, posterior probability of the

http://www.stata.com/manuals14/bayesintro.pdf#bayesintroRemarksandexamplesAdaptiverandom-walkMetropolis--Hastings
http://www.stata.com/manuals14/bayesintro.pdf#bayesintro

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 31

initial state can be 0. When initial values are not feasible, bayesmh makes 500 random attempts to
find a feasible initial-value vector. An initial-value vector is feasible if it corresponds to a state with
positive posterior probability. If feasible initial values are not found after 500 attempts, bayesmh will
issue the following error:

could not find feasible initial state
r(498);

You may use the search() option to modify the default settings for finding feasible initial values.

In addition to fixed initial values, you may request random initial values for all model parameters
by specifying the initrandom option. Random initial values are generated from the prior distributions
of the parameters, except for parameters that are assigned flat, density(), logdensity(), or
jeffreys() prior distributions. For such parameters, you must specify fixed initial values, or bayesmh
will issue an error. See Graphical diagnostics using multiple chains for an example.

Summarizing and reporting results

As we discussed in Checking model specification, it is useful to verify the details about your
model specification before estimation. The dryrun model will display the model summary without
estimation. Once you are satisfied with the model specification, you can use the nomodelsummary
option during estimation to suppress a potentially long model summary from the final output.

In the presence of blocking, you may also display the information about specified blocks by using
the blocksummary option.

Simulation may be time consuming for large datasets and for models with many parameters. You
can specify one of dots or dots(#) option to display a dot every # iterations to see the simulation
progress.

Posterior summaries and credible intervals

After simulation, bayesmh reports various summaries about the model parameters in the output
table. The summaries include posterior mean and median estimates, estimates of posterior standard
deviation and MCSE, and credible intervals. By default, 95% equal-tailed credible intervals are reported.
You can use the hpd option to request HPD intervals instead. You can also use the clevel() option
to change the default credible level.

bayesmh provides two estimators for MCSE: one using ESS and one using batch means. The ESS-
based estimator is the default. You can request the batch-means estimator by specifying the batch()
option. Options corrlag() and corrtol() affect how ESS is estimated when computing MCSE; see
Methods and formulas in [BAYES] bayesstats summary for details.

Saving MCMC results

In addition to postestimation summaries, bayesmh saves simulation results containing MCMC
samples for all model parameters to a temporary Stata dataset. You can use the saving() option to
save simulation results to a permanent dataset. In fact, if you want to store your estimation results
in memory or save them to a disk, you must specify the saving() option with bayesmh; see
Storing estimation results after bayesmh in [BAYES] bayesmh postestimation. You can also specify
the saving() option on replay.

. bayesmh, saving(. . .)

http://www.stata.com/manuals14/perror.pdf#perrorRemarksandexamplesr(498)
http://www.stata.com/manuals14/bayesbayesstatssummary.pdf#bayesbayesstatssummaryMethodsandformulas
http://www.stata.com/manuals14/bayesbayesstatssummary.pdf#bayesbayesstatssummary
http://www.stata.com/manuals14/bayesbayesmhpostestimation.pdf#bayesbayesmhpostestimationRemarksandexamplesStoringestimationresultsafterbayesmh
http://www.stata.com/manuals14/bayesbayesmhpostestimation.pdf#bayesbayesmhpostestimation

32 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

By default, all model parameters are saved in the dataset. If desired, you can exclude some of the
parameters from the dataset by specifying the exclude() option. Beware that you will not be able
to obtain posterior summaries for these parameters or use them in any way in your analysis, because
no simulation results will be available for them. Also, the Laplace–Metropolis approximation for the
log marginal likelihood will not be available because its computation requires simulation results for
all model parameters.

Convergence of MCMC

As we discuss in Convergence diagnostics of MCMC in [BAYES] intro, checking convergence is an
essential step of any MCMC simulation. Bayesian inference based on an MCMC sample is only valid
if the Markov chain has converged and the sample is drawn from the desired posterior distribution.
It is important to emphasize that we need to verify the convergence for all model parameters and
not only for a subset of parameters of interest. Another difficulty in accessing convergence of MCMC
is the lack of a single conclusive convergence criterion. The diagnostic usually involves checking
for several necessary (but not necessarily sufficient) conditions for convergence. In general, the more
aspects of the MCMC sample you inspect, the more reliable your results are.

An MCMC is said to have converged if it reached its stationary distribution. In the Bayesian context,
the stationary distribution is the true posterior distribution of model parameters. Provided that the
considered Bayesian model is well specified (that is, it defines a proper posterior distribution of model
parameters), the convergence of MCMC is determined by the properties of its sampling algorithm.

The main component of the MH algorithm, or any MCMC algorithm, is the number of iterations
it takes for the chain to approach its stationary distribution or for the MCMC sample to become
representative of a sample from the true posterior distribution of model parameters. The period during
which the chain is converging to its stationary distribution from its initial state is called the burn-in
period. The iterations of the burn-in period are discarded from the MCMC sample used for analysis.
Another complication is that adjacent observations from the MCMC sample tend to be positively
correlated; that is, autocorrelation is typically present in MCMC samples. In theory, this should not be
a problem provided that the MCMC sample size is sufficiently large. In practice, the autocorrelation in
the MCMC sample may be so high that obtaining a sample of the necessary size becomes infeasible
and finding ways to reduce autocorrelation becomes important.

Two aspects of the MH algorithm that affect the length of the burn-in (and convergence) are the
starting values of model parameters or, in other words, a starting state and a proposal distribution.
bayesmh has the default burn-in of 2,500 iterations, but you can change it by specifying the burnin()
option. bayesmh uses a Gaussian normal distribution with a zero mean and a covariance matrix that
is updated with current sample values during the adaptation period. You can control the proposal
distribution by changing the initial scale factor in option scale() and an initial scale matrix in option
covariance(); see Adaptation of the MH algorithm.

For the starting values, bayesmh uses MLEs whenever available, but you can specify your own
initial values in option initial(); see Specifying initial values. Good initial values help to achieve
fast convergence of MCMC and bad initial values may slow convergence down. A common approach
for eliminating the dependence of the chain on the initial values is to discard an initial part of
the simulated sample: a burn-in period. The burn-in period must be sufficiently large for a chain to
“forget” its initial state and approach its stationary distribution or the desired posterior distribution.

There are some researchers (for example, Geyer [2011]) who advocate that any starting point in
the posterior domain is equally good and there should be no burn-in. While this is a sensible approach
for a fixed, nonadaptive MH algorithm, it may not be as sensible for an adaptive MH algorithm because
the proposal distribution is changing (possibly drastically) during the adaptation period. Therefore,
adaptive iterations are better discarded from the analysis MCMC sample and thus it is recommended

http://www.stata.com/manuals14/bayesintro.pdf#bayesintroRemarksandexamplesConvergencediagnosticsofMCMC
http://www.stata.com/manuals14/bayesintro.pdf#bayesintro

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 33

that the burn-in period is at least as long as the adaptation period. (There are adaptive regimes such
as continuous adaptation in which adaptation continues after the burn-in period as well.)

In addition to fast convergence, an “ideal” MCMC chain will also have good mixing (or low
autocorrelation). A good mixing can be viewed as a rapid movement of the chain around the parameter
space. High autocorrelation in MCMC and consequently low efficiencies are usually indications of bad
mixing. To improve the mixing of the chain, you may need to improve the efficiency of the algorithm
(see Improving efficiency of the MH algorithm—blocking of parameters) or sometimes reparameterize
your model. In the presence of high autocorrelation, you may also consider subsampling or thinning
the chain, option thinning(), to reduce autocorrelation, but this may not always be the best approach.

Even when the chain appears to have converged and has good mixing, you may still have a case
of pseudoconvergence, which is common for multimodal posterior distributions. Specifying different
sets of initial values may help detect pseudoconvergence.

For more information about convergence of MCMC and its diagnostics, see Convergence diagnostics
of MCMC in [BAYES] intro, [BAYES] bayesgraph, and [BAYES] bayesstats ess.

In what follows, we concentrate on demonstrating various specifications of bayesmh, which may
not always correspond to the optimal Bayesian analysis for the considered problem. In addition,
although we skip checking convergence for some of our models to keep the exposition short, it is
important that you always check the convergence of all parameters in your model in your analysis
before you make any inferential conclusions. If you are also interested in any functions of model
parameters, you must check convergence of those functions as well.

Getting started examples

We will use the familiar auto.dta for our introductory examples. This dataset contains information
about 74 automobiles, including their make and model, price, and mileage (variable mpg). In our
examples, we are interested in estimating the average fuel efficiency as measured by the mpg variable
and its relationship with other automobile characteristics such as weight.

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. describe mpg weight length

storage display value
variable name type format label variable label

mpg int %8.0g Mileage (mpg)
weight int %8.0gc Weight (lbs.)
length int %8.0g Length (in.)

Mean of a normal distribution with a known variance

We start with an example of estimating the mean of a normal distribution with known variance.
This corresponds to a constant-only normal linear regression with an unknown constant (or intercept)
and a known error variance.

Suppose we are interested in estimating the average fuel efficiency as measured by the mpg variable.
For illustration purposes, let’s assume that mpg is normally distributed. We are interested in estimating
its mean. Let’s also assume that we know the variance of mpg and it is 36.

http://www.stata.com/manuals14/bayesintro.pdf#bayesintroRemarksandexamplesConvergencediagnosticsofMCMC
http://www.stata.com/manuals14/bayesintro.pdf#bayesintroRemarksandexamplesConvergencediagnosticsofMCMC
http://www.stata.com/manuals14/bayesintro.pdf#bayesintro
http://www.stata.com/manuals14/bayesbayesgraph.pdf#bayesbayesgraph
http://www.stata.com/manuals14/bayesbayesstatsess.pdf#bayesbayesstatsess

34 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Example 1: Noninformative prior for the mean when variance is known

To fit a Bayesian model, we must specify the likelihood model and priors for all model parameters.
We have only one parameter in this model—the constant (or the mean) of mpg. We first consider a
noninformative prior for the constant: the prior distribution with a density equal to one.

To specify this model in bayesmh, we use the likelihood specification mpg, likeli-
hood(normal(36)) and the prior specification prior({mpg: cons}, flat), where suboption
flat requests a flat prior distribution with the density equal to one. This prior is an improper prior
for the constant—the prior distribution does not integrate to one. {mpg: cons}, the constant or the
mean of mpg, is the only model parameter and is declared automatically by bayesmh as a part of
the regression function. (For this reason, we also did not need to specify the mean of the normal()
distribution in the likelihood specification.) All other simulation and reporting options are left at
default.

Because bayesmh uses MCMC sampling, a stochastic procedure, to obtain results, we specify a
random-number seed (for example, 14) for reproducibility of results.

. set seed 14

. bayesmh mpg, likelihood(normal(36)) prior({mpg:_cons}, flat)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},36)

Prior:
{mpg:_cons} ~ 1 (flat)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4161

Log marginal likelihood = -233.96144 Efficiency = .2292

Equal-tailed
mpg Mean Std. Dev. MCSE Median [95% Cred. Interval]

_cons 21.29812 .703431 .014693 21.28049 19.93155 22.69867

bayesmh first reports the summary of the model. The likelihood model specified for mpg is normal
with mean {mpg: cons} and fixed variance of 36. The prior for {mpg: cons} is flat or completely
noninformative.

Our model is very simple, so its summary is very short. For other models, the model summary
may get very long. You can use the nomodelsummary option to suppress it from the output.
It is useful, however, to review the model summary before estimation for models with many
parameters and complicated specifications. You can use the dryrun option to see the model summary
without estimation. Once you verified the correctness of your model specification, you can specify
nomodelsummary during estimation.

Next, bayesmh reports the header including the title for the fitted model, the used MCMC
algorithm, and various numerical summaries of the sampling procedure. bayesmh performed 12,500
MCMC iterations, of which 2,500 were discarded as burn-in iterations and the next 10,000 iterations
were kept in the final MCMC sample. An overall AR is 0.42, meaning that 42% out of 10,000 proposal
parameter values were excepted by the algorithm. This is a good AR for the MH algorithm. Values

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 35

below 10% may be a cause for concern and may indicate problems with convergence of MCMC. Very
low ARs may also mean high autocorrelation. The efficiency is 0.23 and is also considered good for
the MH algorithm. Efficiencies below 1% should be investigated further and would require further
tuning of the algorithm and possibly revisiting the considered model.

Finally, bayesmh reports an estimation table that includes the posterior mean, posterior standard
deviation, MCMC standard error (MCSE), posterior median, and the 95% credible interval.

The estimated posterior mean for {mpg: cons} is 21.298 with a posterior standard deviation of
0.70. The efficiency of the estimator of the posterior mean is about 23%, which is relatively high
for the random-walk MH sampling. In general, you should expect to see lower efficiencies from this
algorithm for models with more parameters. The MCSE, which is an approximation of the error in
estimating the true posterior mean, is about 0.015. Therefore, provided that the MCMC simulation has
converged, the posterior mean of the constant is accurate to 1 decimal position, 21.3. If you want an
estimation precision of, say, 2 decimal positions, you may need to increase the MCMC sample size
101 times; that is, use mcmcsize(100000).

The estimated posterior mean and medians are very close, suggesting that the posterior distribution
of {mpg: cons} may be symmetric. In fact, the posterior distribution of a mean in this model is
known to be a normal distribution.

According to the reported 95% credible interval, the probability that the mean of mpg is between
19.9 and 22.7 is about 0.95. You can use the clevel() option to change the default credible level;
also see [BAYES] set clevel.

Because we used a completely noninformative prior, our results should be the same as frequentist
results. In this Bayesian model, the posterior distribution of the constant parameter is known to be
normal with a mean equal to the sample average. In the frequentist domain, the MLE of the constant
is also the sample average, so the posterior mean estimate and the MLE should be the same in this
model.

The sample average of mpg is 21.2973. Our posterior mean estimate is 21.298, which is very close.
The reason it is not exactly the same is because we estimated the posterior mean of the constant based
on an MCMC sample simulated from its posterior distribution instead of using the known formula.
Closed-form expressions for posterior mean estimators are available only for some Bayesian models.
In general, posterior distributions of parameters are unknown and posterior summaries may only be
estimated from the MCMC samples of parameters.

In practice, we must verify the convergence of MCMC before making any inferential conclusions
about the obtained results.

http://www.stata.com/manuals14/bayessetclevel.pdf#bayessetclevel

36 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

We start by looking at various graphical diagnostics as produced by bayesgraph diagnostics.

. bayesgraph diagnostics {mpg:_cons}

18

20

22

24

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
.2

.4
.6

18 20 22 24

Histogram

0.00

0.20

0.40

0.60

0 10 20 30 40
Lag

Autocorrelation
0

.2
.4

.6

18 20 22 24

all

1−half

2−half

Density

mpg:_cons

The trace plot represents a “perfect” trace plot. It does not exhibit any trends, and it traverses the
distribution quickly. The chain is centered around 21.3, but also explores the portions of the distribution
where the density is low, which is indicative of good mixing of the chain. The autocorrelation dies
off very quickly. The posterior distribution looks normal. The kernel density estimates based on the
first and second halves of the sample are very similar to each other and are close to the overall
density estimate. We can see that MCMC converged and mixes well. See [BAYES] bayesgraph for
details about this command.

See Graphical diagnostics using multiple chains for an example of using multiple chains to assess
convergence. Also see Convergence diagnostics of MCMC for more discussion about convergence of
MCMC.

Example 2: Informative prior for the mean when variance is known

In example 1, we used a noninformative prior for {mpg: cons}. Here, we consider a conjugate
normal prior for {mpg: cons}. A parameter is said to have a conjugate prior when the corresponding
posterior belongs to the same family as the prior. In our example, if we assume a normal prior for
the constant, its posterior is known to be normal too.

Suppose that based on previous studies, the distribution of the mean mileage was found to be

http://www.stata.com/manuals14/bayesbayesgraph.pdf#bayesbayesgraph
http://www.stata.com/manuals14/bayesintro.pdf#bayesintroRemarksandexamplesConvergencediagnosticsofMCMC

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 37

normal with mean of 25 and variance of 10. We change the flat prior in bayesmh’s prior() option
from example 1 with normal(25,10).

. set seed 14

. bayesmh mpg, likelihood(normal(36)) prior({mpg:_cons}, normal(25,10))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},36)

Prior:
{mpg:_cons} ~ normal(25,10)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4169

Log marginal likelihood = -236.71627 Efficiency = .2293

Equal-tailed
mpg Mean Std. Dev. MCSE Median [95% Cred. Interval]

_cons 21.47952 .6820238 .014243 21.47745 20.13141 22.82153

Compared with example 1, our results change only slightly: the estimates of posterior mean is 21.48
and of posterior standard deviation is 0.68. The 95% credible interval is [20.1, 22.82].

The reason we obtained such similar results is that our specified prior is in close agreement with
what we observed in this sample. The prior mean of 25 with a standard deviation of

√
10 = 3.16

overlaps greatly with what we observe for {mpg: cons} in the data.

If we place a very strong prior on the value for the mean by, for example, substantially decreasing
the variance of the normal prior distribution,

. set seed 14

. bayesmh mpg, likelihood(normal(36)) prior({mpg:_cons}, normal(25,0.1))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},36)

Prior:
{mpg:_cons} ~ normal(25,0.1)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4194

Log marginal likelihood = -246.2939 Efficiency = .2352

Equal-tailed
mpg Mean Std. Dev. MCSE Median [95% Cred. Interval]

_cons 24.37211 .292777 .006037 24.36588 23.79701 24.94403

38 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

we obtain very different results. Now the posterior mean and standard deviation estimates are very
close to their prior values, as one would expect with such strong prior information.

Which results are correct? The answer depends on how confident we are in our prior knowledge.
If we previously observed many samples in which the average mileage for the considered population
of cars was essentially 25, our last results are consistent with this and the information about the
mean of {mpg: cons} contained in the observed sample was not enough to counteract our belief.
If, on the other hand, we had no prior information about the mean mileage, then we would use a
noninformative or mildly informative prior in our Bayesian analysis. Also, if we believe that our
observed data should have more weight in our analysis, we would not specify a very strong prior.

Example 3: Noninformative normal prior for the mean when variance is known

In example 1, we used a completely noninformative, flat prior for {mpg: cons}. In example 2,
we considered a conjugate normal prior for {mpg: cons}. We also saw that by varying the variance
of the normal prior distribution, we could control the “informativeness” of our prior. The larger the
variance, the less informative the prior. In fact, if we let the variance approach infinity, we will arrive
at the same posterior distribution of the constant as with the flat prior.

For example, if we specify a very large variance in the normal prior,

. set seed 14

. bayesmh mpg, likelihood(normal(36)) prior({mpg:_cons}, normal(0,1000000))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},36)

Prior:
{mpg:_cons} ~ normal(0,1000000)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4161

Log marginal likelihood = -241.78836 Efficiency = .2292

Equal-tailed
mpg Mean Std. Dev. MCSE Median [95% Cred. Interval]

_cons 21.29812 .7034313 .014693 21.28049 19.93155 22.69868

we will obtain results that are very similar to the results from example 1 with the flat prior.

We do not need to use such an extreme value of the variance for the results to become less sensitive
to the prior specification. As we saw in example 2, using the variance of 10 in that example resulted
in very little impact of the prior on the results.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 39

Mean of a normal distribution with an unknown variance

Let’s now consider the case where both mean and variance of the normal distribution are unknown.

Example 4: Noninformative Jeffreys prior when mean and variance are unknown

A noninformative prior commonly used for the normal model with unknown mean and variance
is the Jeffreys prior, under which the prior for the mean is flat and the prior for the variance is
the reciprocal of the variance. We use the same flat prior for {mpg: cons} as in example 1 and
specify the jeffreys prior for {var} using a separate prior() statement.

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:_cons}, flat) prior({var}, jeffreys)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ 1 (flat)

{var} ~ jeffreys

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2668
Efficiency: min = .09718

avg = .1021
Log marginal likelihood = -234.645 max = .1071

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 21.29222 .6828864 .021906 21.27898 19.99152 22.61904

var 34.76572 5.91534 .180754 34.18391 24.9129 47.61286

Because we used a noninformative prior, our results should be similar to the frequentist results apart
from simulation uncertainty. Compared with example 1, the average efficiency of the MH algorithm
decreased to 10%, as is expected with more parameters, but is still considered a good efficiency for
the MH algorithm.

The posterior mean estimate of {mpg: cons} is close to the OLS estimate of 21.297, and the
posterior standard deviation is close to the standard error of the OLS estimate 0.673. MCSE is slightly
larger than in example 1 because we have lower efficiency. If we wanted to make MCSE smaller, we
could increase our MCMC sample size. The posterior mean estimate of {var} agrees with the MLE
of the variance 33.02, but we would not expect the two to be necessarily the same. We estimated the
posterior mean of {var}, not the posterior mode, and because posterior distribution of {var} is not
symmetric, the two estimates may not be the same.

40 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Again, as with any MCMC analysis, we must verify the convergence of our MCMC sample before
we can trust our results.

. bayesgraph diagnostics _all

19

20

21

22

23

24

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
.2

.4
.6

19 20 21 22 23 24

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0
.2

.4
.6

19 20 21 22 23 24

all

1−half

2−half

Density

mpg:_cons

20

30

40

50

60

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
.0

2
.0

4
.0

6
.0

8

20 30 40 50 60

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0
.0

2
.0

4
.0

6
.0

8

20 30 40 50 60 70

all

1−half

2−half

Density

var

Graphical diagnostic plots do not show any signs of nonconvergence for either of the parameters.

Recall that to access convergence of MCMC, we must explore convergence for all model parameters.

Example 5: Informative conjugate prior when mean and variance are unknown

For a normal distribution with unknown mean and variance, the informative conjugate prior is a
normal prior for the mean and an inverse-gamma prior for the variance. Specifically, if y ∼ N(µ, σ2),
then the informative conjugate prior for the parameters is

µ|σ2 ∼ N(µ0, σ
2)

σ2 ∼ InvGamma(ν0/2, ν0σ
2
0/2)

where µ0 is the prior mean of the normal distribution and ν0 and σ2
0 are the prior degrees of freedom

and prior variance for the inverse-gamma distribution. Let’s assume µ0 = 25, ν0 = 10, and σ2
0 = 30.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 41

Notice that in the specification of the prior for {mpg: cons}, we specify the parameter {var}
as the variance of the normal distribution. We use igamma(5,150) as the prior for the variance
parameter {var}.

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:_cons}, normal(25,{var}))
> prior({var}, igamma(5,150))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ normal(25,{var})

{var} ~ igamma(5,150)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .1971
Efficiency: min = .09822

avg = .09923
Log marginal likelihood = -237.77006 max = .1002

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 21.314 .6639278 .02097 21.29516 20.08292 22.63049

var 33.54699 5.382861 .171756 32.77635 24.88107 46.0248

Compared with example 4, the variance is slightly smaller, but the results are still very similar.

Example 6: Noninformative inverse-gamma prior when mean and variance are unknown

The Jeffreys prior for the variance from example 4 can be viewed as a limiting case of an
inverse-gamma distribution with the degrees of freedom approaching zero.

42 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Indeed, if we replace the jeffreys prior in example 4 with an inverse-gamma distribution with
very small degrees of freedom,

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:_cons}, flat)
> prior({var}, igamma(0.0001,0.0001))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ 1 (flat)

{var} ~ igamma(0.0001,0.0001)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2668
Efficiency: min = .09718

avg = .1021
Log marginal likelihood = -243.85656 max = .1071

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 21.29223 .6828811 .021905 21.27899 19.99154 22.61903

var 34.76569 5.915305 .180753 34.18389 24.91294 47.61275

we obtain results that are very close to the results from example 4.

Simple linear regression

In this example, we consider a simple linear regression with one independent variable. We continue
with auto.dta, but this time we regress mpg on a rescaled covariate weight.

. use http://www.stata-press.com/data/r14/auto

. replace weight = weight/100
variable weight was int now float

(74 real changes made)

We will have three model parameters: the slope and the intercept for the linear predictor and the
variance parameter for the error term. Regression parameters, {mpg:weight} and {mpg: cons},
will be declared implicitly by bayesmh, but we will need to explicitly specify the variance parameter
{var}. We will also need to assign appropriate priors for all parameters.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 43

Example 7: Noninformative prior for regression coefficients and variance

As in our earlier examples, we start with a noninformative prior. For this model, a common
noninformative prior for the parameters includes flat priors for {mpg:weight} and {mpg: cons}
and a Jeffreys prior for {var}.

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, flat) prior({var}, jeffreys)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ 1 (flat) (1)

{var} ~ jeffreys

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .1768
Efficiency: min = .04557

avg = .06624
Log marginal likelihood = -198.14389 max = .07961

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight -.6019838 .0512557 .001817 -.6018433 -.7015638 -.5021532
_cons 39.47227 1.589082 .058601 39.49735 36.26465 42.43594

var 12.22248 2.214665 .10374 11.92058 8.899955 17.47372

Our model summary shows the likelihood model for mpg, flat priors for the two regression coefficients,
and a Jeffreys prior for the variance parameter. Now that we have a covariate in the model, the mean
of the normal distribution is labeled as xb mpg to emphasize that it is now a linear combination of
independent variables. Regression coefficients involved in the linear predictor are marked with (1)
on the right.

The results are again very similar to the frequentist results. Posterior mean estimates of the
coefficients are very similar to the OLS estimates obtained by using regress below. Posterior
standard deviations are similar to the standard errors from regress.

44 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

. regress mpg weight

Source SS df MS Number of obs = 74
F(1, 72) = 134.62

Model 1591.99021 1 1591.99021 Prob > F = 0.0000
Residual 851.469254 72 11.8259619 R-squared = 0.6515

Adj R-squared = 0.6467
Total 2443.45946 73 33.4720474 Root MSE = 3.4389

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.6008687 .0517878 -11.60 0.000 -.7041058 -.4976315
_cons 39.44028 1.614003 24.44 0.000 36.22283 42.65774

Example 8: Conjugate prior for regression coefficients and variance

In this example, we use a conjugate prior for the parameters, which corresponds to normal priors
for {mpg:weight} and {mpg: cons} and an inverse-gamma prior for {var},

βweight|σ2 ∼ N(µweight, σ
2)

βcons|σ2 ∼ N(µcons, σ
2)

σ2 ∼ InvGamma(ν0/2, ν0σ
2
0/2)

where regression coefficients have different means but equal variances. µweight and µcons are the
prior means of the normal distributions, and ν0 and σ2

0 are the prior degrees of freedom and prior
variance for the inverse-gamma distribution. Let’s assume µweight = −0.5, µcons = 40, ν0 = 10,
and σ2

0 = 10.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 45

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:weight}, normal(-0.5,{var}))
> prior({mpg:_cons}, normal(40,{var}))
> prior({var}, igamma(5,50))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight} ~ normal(-0.5,{var}) (1)
{mpg:_cons} ~ normal(40,{var}) (1)

{var} ~ igamma(5,50)

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .1953
Efficiency: min = .05953

avg = .06394
Log marginal likelihood = -202.74075 max = .06932

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight -.6074375 .0480685 .001916 -.6078379 -.6991818 -.5119767
_cons 39.65274 1.499741 .05696 39.63501 36.59486 42.47547

var 11.696 1.929562 .079083 11.52554 8.570938 16.26954

For this mildly informative prior, our regression coefficients are still very similar to the results obtained
using the noninformative prior in example 7, but the variance estimate is slightly smaller.

Example 9: Zellner’s g prior for regression coefficients

In example 8, we assumed that {mpg:weight} and {mpg: cons} are independent a priori. We
can specify Zellner’s g prior (Zellner 1986), often used for regression coefficients in a multiple
regression, which allows correlation between the regression coefficients.

The prior for the coefficients can be written as

β|σ2 ∼ MVN(µ0, gσ
2(X ′X)−1)

where β is a vector of coefficients, µ0 is the vector of prior means, g is the prior degrees of freedom,
and X is the design matrix. Let’s, for example, use g = 30 and µ0 = (µweight, µcons) = (−0.5, 40).
Zellner’s g prior is not strictly a conventional Bayesian prior because it depends on the data.

In bayesmh, we can use prior zellnersg() to specify this prior. The first argument for this prior
is the dimension (2), the second argument is the degrees of freedom (30), the next parameters are
prior means (−0.5 and 40), and the last parameter is the name of the parameter corresponding to the
variance term ({var}).

46 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, zellnersg(2,30,-0.5,40,{var}))
> prior({var}, igamma(5,50))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ zellnersg(2,30,-0.5,40,{var}) (1)

{var} ~ igamma(5,50)

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2576
Efficiency: min = .05636

avg = .08661
Log marginal likelihood = -201.1662 max = .1025

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight -.6004123 .0510882 .001595 -.5998094 -.7040552 -.5058665
_cons 39.55017 1.590016 .050051 39.49377 36.56418 42.79701

var 12.18757 2.038488 .085865 11.90835 8.913695 16.88978

The results are now closer to the results using noninformative prior obtained in example 7, because
we are introducing some information from the observed data by using (X ′X)−1.

Example 10: Specifying expressions as distributional arguments

We can actually reproduce what prior zellnersg() does in example 9 manually.

First, we need to create a matrix that contains (X ′X)−1, S.

. matrix accum xTx = weight
(obs=74)

. matrix S = invsym(xTx)

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 47

Then, we can use the multivariate normal prior mvnormal() with the variance specified as an
expression 30*var*S.

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, mvnormal(2,-0.5,40,30*{var}*S))
> prior({var}, igamma(5,50))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ mvnormal(2,-0.5,40,30*{var}*S) (1)

{var} ~ igamma(5,50)

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2576
Efficiency: min = .05636

avg = .08661
Log marginal likelihood = -201.1662 max = .1025

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight -.6004123 .0510882 .001595 -.5998094 -.7040552 -.5058665
_cons 39.55017 1.590016 .050051 39.49377 36.56418 42.79701

var 12.18757 2.038488 .085865 11.90835 8.913695 16.88978

We obtain results identical to those from example 9.

Multiple linear regression

For a detailed example of a multiple linear regression, see Overview example in [BAYES] bayes.

Improving efficiency of MH sampling

In this section, we demonstrate how one can improve efficiency of the MH algorithm by using
blocking of parameters and Gibbs sampling, whenever available. We continue with our simple linear
regression of mpg on rescaled weight from Simple linear regression, but we use different values for
the parameters of prior distributions. We also assume that regression coefficients and the variance
parameter are independent a priori. We use the blocksummary option to include a summary about
each block.

http://www.stata.com/manuals14/bayesbayes.pdf#bayesbayesRemarksandexamplesOverviewexample
http://www.stata.com/manuals14/bayesbayes.pdf#bayesbayes

48 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Example 11: First simulation run

Our first simulation is performed using the default settings for the algorithm. Specifically, all three
model parameters are placed in one simulation block and are updated simultaneously, as our block
summary indicates.

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100))
> prior({var}, igamma(10,10)) blocksummary
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ normal(0,100) (1)

{var} ~ igamma(10,10)

(1) Parameters are elements of the linear form xb_mpg.

Block summary

1: {mpg:weight _cons} {var}

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2432
Efficiency: min = .06871

avg = .08318
Log marginal likelihood = -226.63723 max = .09063

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight -.5759855 .0471288 .001569 -.5750919 -.6676517 -.4868595
_cons 38.65481 1.468605 .048784 38.70029 35.88062 41.49839

var 9.758003 1.514112 .057762 9.601339 7.302504 13.13189

The mean estimates based on the simulated sample are {mpg:weight}= −0.58, {mpg: cons}=
38.65, and {var}= 9.8. The MH algorithm achieves an overall AR of 24% and an average efficiency
of about 8%.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 49

Our next step is to perform a visual inspection of the convergence of the chain.

. bayesgraph diagnostics {var}

5

10

15

20

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
.1

.2
.3

5 10 15 20

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation
0

.1
.2

.3

5 10 15 20

all

1−half

2−half

Density

var

A graphical summary for the {var} parameter does not show any obvious problems. The trace plot
reveals a good coverage of the domain of the marginal distribution, while the histogram and kernel
density plots resemble the shape of an expected inverse-gamma distribution. The autocorrelation dies
off after about lag 20.

50 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Example 12: Second simulation run—blocking of variance

Next, we show how to improve the mixing of the MCMC chain by using more careful blocking
of model parameters. We can use the bayesgraph matrix command to view the scatterplots of the
simulated values for {mpg:weight}, {mpg: cons}, and {var}.

. bayesgraph matrix _all

mpg:weight

mpg:_cons

var

−.8

−.6

−.4

−.8 −.6 −.4

35

40

45

35 40 45

5

10

15

5 10 15

The scatterplots reveal high correlation between {mpg:weight} and {mpg: cons}. On the other
hand, there is no significant correlation between {var} and the other two parameters.

In cases like this, we can expect higher sampling efficiency if we place {var} in a separate block.
We can do this by including the option block({var}). The other two parameters, {mpg:weight}
and {mpg: cons}, will be automatically considered as a second block.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 51

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100))
> prior({var}, igamma(10,10))
> block({var}) blocksummary
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ normal(0,100) (1)

{var} ~ igamma(10,10)

(1) Parameters are elements of the linear form xb_mpg.

Block summary

1: {var}
2: {mpg:weight _cons}

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .3309
Efficiency: min = .09023

avg = .1202
Log marginal likelihood = -226.73992 max = .1784

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight -.5744536 .0450094 .001484 -.576579 -.663291 -.4853636
_cons 38.59206 1.397983 .04654 38.63252 35.80229 41.32773

var 9.721684 1.454193 .034432 9.570546 7.303129 12.95105

In this second run, we achieve higher simulation efficiency, about 12% on average. The MCSE for
{var} is 0.034 and is about half the value of 0.058 from example 11, which leads to twice as much
accuracy in the estimation of the posterior mean of {var}.

52 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Again, we can verify the convergence of the MCMC run for {var} by inspecting the bayesgraph
diagnostics plot.

. bayesgraph diagnostics {var}

5

10

15

20

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
.1

.2
.3

5 10 15 20

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation
0

.1
.2

.3

5 10 15 20

all

1−half

2−half

Density

var

The improved sampling efficiency for {var} is evident by observing that the autocorrelation becomes
negligible after about lag 10. The trace plot reveals more rapid traversing of the marginal posterior
domain as well.

Example 13: Third simulation run—Gibbs update of variance

Further improvement of the mixing can be achieved by requesting a Gibbs sampling for the variance
parameter. This is possible because {var} has an inverse-gamma prior, which is independent of the
mean and is a semiconjugate prior in this model.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 53

To request Gibbs sampling, we specify suboption gibbs within option block().

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100))
> prior({var}, igamma(10,10))
> block({var}, gibbs) blocksummary
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ normal(0,100) (1)

{var} ~ igamma(10,10)

(1) Parameters are elements of the linear form xb_mpg.

Block summary

1: {var} (Gibbs)
2: {mpg:weight _cons}

Bayesian normal regression MCMC iterations = 12,500
Metropolis-Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .6285
Efficiency: min = .1141

avg = .3259
Log marginal likelihood = -226.72192 max = .7441

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight -.5764752 .0457856 .001324 -.5764938 -.6654439 -.486788
_cons 38.64148 1.438705 .04259 38.6177 35.82136 41.38734

var 9.711499 1.454721 .016865 9.585728 7.236344 12.95503

The average efficiency is now 0.33 with the maximum of 0.74 corresponding to the variance parameter.

54 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

The diagnostics plot for {var} is an example of almost perfect mixing.

. bayesgraph diagnostics {var}

6

8

10

12

14

16

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
.1

.2
.3

6 8 10 12 14 16

Histogram

−0.02

−0.01

0.00

0.01

0.02

0 10 20 30 40
Lag

Autocorrelation
0

.1
.2

.3

5 10 15 20

all

1−half

2−half

Density

var

Example 14: Fourth simulation run—full Gibbs sampling

Continuing example 13, there is still room for improvement in our model in terms of sampling
efficiency. The efficiency of the regression coefficients is now low relative to the variance efficiency.

. bayesstats ess

Efficiency summaries MCMC sample size = 10,000

ESS Corr. time Efficiency

mpg
weight 1195.57 8.36 0.1196
_cons 1141.12 8.76 0.1141

var 7440.67 1.34 0.7441

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 55

For example, diagnostic plots for {weight: cons} do not look as good as diagnostic plots for
the variance parameter in example 13.

. bayesgraph diagnostics {mpg:weight}

−.8

−.7

−.6

−.5

−.4

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
2

4
6

8
1
0

−.8 −.7 −.6 −.5 −.4

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation
0

2
4

6
8

1
0

−.8 −.7 −.6 −.5 −.4

all

1−half

2−half

Density

mpg:weight

Further improvement of the mixing can be achieved by requesting Gibbs sampling for the two
blocks of parameters: regression coefficients and variance. Again, this is possible only because
{mpg:weight}, {mpg: cons}, and {var} have normal and an inverse-gamma priors, which are
independent and are semiconjugate in this model.

56 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

To request Gibbs sampling for the regression coefficients, we must place them in a separate block.

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100))
> prior({var}, igamma(10,10))
> block({var}, gibbs)
> block({mpg:}, gibbs) blocksummary
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ normal(0,100) (1)

{var} ~ igamma(10,10)

(1) Parameters are elements of the linear form xb_mpg.

Block summary

1: {var} (Gibbs)
2: {mpg:weight _cons} (Gibbs)

Bayesian normal regression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = 1
Efficiency: min = .9423

avg = .9808
Log marginal likelihood = -226.67227 max = 1

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight -.5751071 .0467837 .000468 -.5757037 -.6659412 -.4823263
_cons 38.61033 1.459511 .014595 38.61058 35.79156 41.45336

var 9.703432 1.460435 .015045 9.564502 7.216982 12.96369

Now we have perfect sampling efficiency (with an average of 0.98) with essentially no autocorrelation.
The estimators of posterior means have the lowest MCSEs among the four simulations.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 57

For example, diagnostic plots for {mpg:weight} now look noticeably better.

. bayesgraph diagnostics {mpg:weight}

−.8

−.7

−.6

−.5

−.4

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
2

4
6

8

−.8 −.7 −.6 −.5 −.4

Histogram

−0.02

−0.01

0.00

0.01

0.02

0 10 20 30 40
Lag

Autocorrelation
0

2
4

6
8

−.8 −.7 −.6 −.5 −.4

all

1−half

2−half

Density

mpg:weight

You can verify that the diagnostic plots of all parameters demonstrate almost perfect mixing as
well.

. bayesgraph diagnostics _all
(output omitted)

Graphical diagnostics using multiple chains

To assess the convergence of MCMC simulations of a Bayesian model, the literature often recommends
comparing the results of multiple simulation sequences; see, for example, chapter 11.4 in Gelman
et al. (2014). In this section, we show how one can perform multiple simulation runs using bayesmh
and visually compare the results using trace plots.

We use a Bayesian multiple linear regression model from example 11. For brevity, we simulate
only two MCMC chains, but the approach can be easily extended to more than two chains. It is essential
for the two chains to have different initial values dispersed over the range of model parameter values.
With bayesmh, you can provide fixed initial values by using the initial() option or when declaring
parameters in the likelihood() option, or you can request random initial values by specifying the
initrandom option.

58 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

We simulate two samples of size 5,000 and save the simulation results as sim1.dta and sim2.dta.
Below we show the bayesmh specifications and the estimation results.

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100)) prior({var}, igamma(10,10))
> mcmcsize(5000) nomodelsummary initrandom saving(sim1)
Burn-in ...
Simulation ...

Bayesian normal regression MCMC iterations = 7,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 74
Acceptance rate = .2597
Efficiency: min = .06487

avg = .07218
Log marginal likelihood = -226.83819 max = .07653

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight -.5779557 .0436132 .002422 -.5769825 -.6645717 -.4929187
_cons 38.66309 1.379251 .070509 38.61303 36.02204 41.29802

var 9.813336 1.439047 .074239 9.698644 7.313202 13.01305

file sim1.dta saved

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100)) prior({var}, igamma(10,10))
> mcmcsize(5000) nomodelsummary initrandom saving(sim2)
Burn-in ...
Simulation ...

Bayesian normal regression MCMC iterations = 7,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 74
Acceptance rate = .24
Efficiency: min = .09555

avg = .09985
Log marginal likelihood = -226.83719 max = .1048

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
weight -.5733346 .0462179 .002019 -.5763298 -.6637416 -.4810475
_cons 38.56422 1.426843 .065279 38.62277 35.72788 41.38445

var 9.60628 1.361131 .061125 9.47494 7.28224 12.59361

file sim2.dta saved

The average simulation efficiency of both runs is above 7% and seems adequate. There is no
indication of convergence problems. Nevertheless, inspecting the trace plots can provide additional
reassurance. In particular, by comparing the trace plots of a model parameter based on different
simulation sequences, we can detect convergence irregularities and assess the overlap of the simulated
marginal distributions for this parameter. If the MCMC chains have converged, we should not observe
substantial differences between the trace plots or between the sampled marginal distributions.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 59

To draw overlaid trace plots, we need to combine the two simulation datasets in one dataset in
the long form. We load the first simulation dataset and append the second simulation dataset to the
first one. We also generate an indicator variable chain. The variable chain equals 0 for the records
of the first chain and 1 for the records of the second chain.

. clear

. use sim1

. append using sim2, generate(chain)

In example 11, we rescaled variable weight of the auto dataset and thus modified the data in
memory. We used the clear option when we loaded the sim1 dataset to replace the data in memory,
even though the current data have not been saved to disk.

To avoid duplicates, we save the simulation results in a compressed form, recording unique values
and their frequencies. We need to expand the dataset and create a unique iteration number for each
chain. In the original simulation datasets, the index and duplicates are stored in the index and
frequency variables, respectively. We expand the combined dataset using the frequency variable

and sort it by using chain and index. Then, we generate the variable iter to index the records
in the two chains.

. expand _frequency
(7,500 observations created)

. sort chain _index

. by chain: generate iter = _n

Finally, we relabel the variables of interest to match the model parameter names. The scalar model
parameter names are stored in e(scparams), and their corresponding variable names in the simulation
dataset are stored in e(postvars).

. display e(scparams)
mpg:weight mpg:_cons var

. display e(postvars)
eq1_p1 eq1_p2 eq0_p1

. label variable eq1_p1 "mpg:weight"

. label variable eq1_p2 "mpg:_cons"

. label variable eq0_p1 "var"

. label variable iter "Iteration number"

We are now ready to draw the trace plots of the model parameters. For example, we can overlay
the two trace plots of the {var} parameter as follows. We use the xtset command to declare the
data to be panel data identified by the chain variable and specify iter as a time variable. We then
draw the trace plots using the time-series plotting command tsline.

. xtset chain iter
panel variable: chain (strongly balanced)
time variable: iter, 1 to 5000

delta: 1 unit

. twoway (tsline eq0_p1 if chain==0, lpattern(-))
> (tsline eq0_p1 if chain==1, lpattern(l)),
> legend(label(1 "Chain 1") label(2 "Chain 2"))

60 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

6
8

1
0

1
2

1
4

1
6

v
a
r

0 1000 2000 3000 4000 5000

Iteration number

Chain 1 Chain 2

The two trace plots of {var} look similar and seem to cover approximately the same marginal
posterior domain. However, the variability in the first chain does seem slightly greater, which is also
evident from the reported standard deviations of {var}, 1.44 in the first run and 1.36 in the second.
The estimated posterior means of {var} are somewhat different, 9.81 and 9.61, which suggests that
we should either run longer MCMC simulations or improve the sampling efficiency, as we demonstrated
in example 12, example 13, and example 14.

Overlaid density plots using kdensity provide another aspect of comparing multiple simulation
sequences.

. twoway (kdensity eq0_p1 if chain==0, lpattern(-))
> (kdensity eq0_p1 if chain==1, lpattern(l)),
> legend(label(1 "Chain 1") label(2 "Chain 2"))
> xtitle("var") ytitle("Density") title("Kernel density estimation")

0
.1

.2
.3

D
e
n
s
it
y

6 8 10 12 14 16
var

Chain 1 Chain 2

Kernel density estimation

The overlaid kdensity plots of {var} based on the two simulated chains clearly show that although
the domains of the simulated marginal distributions overlap, there are also noticeable differences in
the distribution of mass, which thus confirms the need for longer MCMC runs.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 61

Similarly, we can draw the overlaid trace plots for parameter {mpg: cons}.

. twoway (tsline eq1_p2 if chain==0, lpattern(-))
> (tsline eq1_p2 if chain==1, lpattern(l)),
> legend(label(1 "Chain 1") label(2 "Chain 2"))

3
0

3
5

4
0

4
5

m
p
g
:_

c
o
n
s

0 1000 2000 3000 4000 5000
Iteration number

Chain 1 Chain 2

The overlaid trace plots of the {mpg: cons} parameter do not show any substantial differences
or any convergence problems. However, increasing the MCMC sample sizes will further diminish the
difference between the estimated posterior means of {mpg: cons}, 38.66 and 38.56. Now, let’s draw
the overlaid plots for {mpg:weight}.

. twoway (tsline eq1_p1 if chain==0, lpattern(-))
> (tsline eq1_p1 if chain==1, lpattern(l)),
> legend(label(1 "Chain 1") label(2 "Chain 2"))

−
.8

−
.7

−
.6

−
.5

−
.4

m
p
g
:w

e
ig

h
t

0 1000 2000 3000 4000 5000
Iteration number

Chain 1 Chain 2

Again the overlaid trace plots of the {mpg:weight} parameter do not show any substantial
differences or any convergence problems.

62 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Logistic regression model: a case of nonidentifiable parameters

We use the heart disease dataset from the UCI Machine Learning Repository (Lichman 2013) and,
in particular, we consider a subset of the Switzerland data created by William Steinbrunn, M.D. of
University Hospital in Zurich, Switzerland, and by Matthias Pfisterer, M.D. of University Hospital in
Basel, Switzerland. The dataset is named heartswitz.dta and contains 6 variables, of which num
is the predicted attribute that takes values from 0 (no heart disease) to 4. We dichotomized num to
create a new binary variable disease as an indicator for the presence of a heart disease.

. use http://www.stata-press.com/data/r14/heartswitz
(Subset of Switzerland heart disease data from UCI Machine Learning Repository)

. describe

Contains data from http://www.stata-press.com/data/r14/heartswitz.dta
obs: 123 Subset of Switzerland heart

disease data from UCI Machine
Learning Repository

vars: 6 5 Feb 2015 16:55
size: 738 (_dta has notes)

storage display value
variable name type format label variable label

age byte %9.0g Age (in years)
male byte %9.0g malelab 1 = male, 0 = female
isfbs byte %9.0g fbslab Indicator for fasting blood sugar

> 120 mg/dl: 0 = no, 1 = yes
restecg byte %28.0g ecglab Resting electrocardiographic

results (3 categories)
num byte %9.0g Presence of heart disease: 0 =

absent and 1,2,3,4 = present
disease byte %9.0g dislab Indicator for heart disease: 0 =

absent, 1 = present (num>0)

Sorted by:

Our goal is to investigate the relationship between the presence of a heart disease and covariates
restecg, isfbs, age, and male.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 63

First, we fit a standard logistic regression model using the logit command.

. logit disease restecg isfbs age male

note: restecg != 0 predicts success perfectly
restecg dropped and 17 obs not used

note: isfbs != 0 predicts success perfectly
isfbs dropped and 3 obs not used

note: male != 1 predicts success perfectly
male dropped and 2 obs not used

Iteration 0: log likelihood = -4.2386144
Iteration 1: log likelihood = -4.2358116
Iteration 2: log likelihood = -4.2358076
Iteration 3: log likelihood = -4.2358076

Logistic regression Number of obs = 26
LR chi2(1) = 0.01
Prob > chi2 = 0.9403

Log likelihood = -4.2358076 Pseudo R2 = 0.0007

disease Coef. Std. Err. z P>|z| [95% Conf. Interval]

restecg 0 (omitted)
isfbs 0 (omitted)

age -.0097846 .1313502 -0.07 0.941 -.2672263 .2476572
male 0 (omitted)

_cons 3.763893 7.423076 0.51 0.612 -10.78507 18.31285

We encounter collinearity and dropping of observations because of perfect prediction. As a result, the
regression coefficients corresponding to restecg, isfbs, and male are essentially excluded from
the model. The standard logistic analysis is limited because of the small size of the dataset.

64 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Next we consider Bayesian analysis of the same data. We fit the same logistic regression model
using bayesmh and apply fairly noninformative normal priors N(0, 1e4) for all regression parameters.

. set seed 14

. bayesmh disease restecg isfbs age male, likelihood(logit)
> prior({disease:}, normal(0,10000))
Burn-in ...
Simulation ...

Model summary

Likelihood:
disease ~ logit(xb_disease)

Prior:
{disease:restecg isfbs age male _cons} ~ normal(0,10000) (1)

(1) Parameters are elements of the linear form xb_disease.

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 48
Acceptance rate = .2661
Efficiency: min = .01685

avg = .02389
Log marginal likelihood = -16.709588 max = .02966

Equal-tailed
disease Mean Std. Dev. MCSE Median [95% Cred. Interval]

restecg 81.22007 63.87998 4.29587 68.31417 2.518447 237.8033
isfbs 81.65967 60.07603 4.03945 70.37466 2.035696 229.4291

age -.0191681 .1777758 .013695 -.0154955 -.3833187 .3242438
male -53.69173 42.4866 2.50654 -44.93144 -154.439 .7090207

_cons 59.39037 43.5938 2.53139 51.31836 .1225503 161.2943

The estimated posterior means of {disease:restecg}, {disease:isfbs}, {disease:male}, and
{disease: cons} are fairly large, roughly on the same scale as the prior standard deviation of 100.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 65

Indeed, if we decrease the standard deviation of the priors to 10, we observe that the scale of the
estimates decreases by the same order of magnitude.

. set seed 14

. bayesmh disease restecg isfbs age male, likelihood(logit)
> prior({disease:}, normal(0,100))
Burn-in ...
Simulation ...

Model summary

Likelihood:
disease ~ logit(xb_disease)

Prior:
{disease:restecg isfbs age male _cons} ~ normal(0,100) (1)

(1) Parameters are elements of the linear form xb_disease.

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 48
Acceptance rate = .3161
Efficiency: min = .02287

avg = .0331
Log marginal likelihood = -12.418273 max = .05204

Equal-tailed
disease Mean Std. Dev. MCSE Median [95% Cred. Interval]

restecg 8.559131 6.71 .443681 7.447336 -.889714 23.93564
isfbs 6.322615 6.411998 .281084 5.504684 -3.85021 20.56641

age .0526448 .1226056 .00718 .0468937 -.1734675 .3050607
male -3.831954 5.31727 .279435 -3.048654 -15.77187 4.451594

_cons 5.624899 6.641158 .417961 5.181183 -6.408041 20.1234

We can, therefore, conclude that the regression parameters are highly sensitive to the choice of
priors and their scale cannot be determined by the data alone; that is, it cannot be determined by
the likelihood of the model. In other words, these model parameters are not identifiable from the
likelihood alone. This conclusion is in agreement with the results of the logit command.

We may consider applying an informative prior. We can use information from other heart disease
studies from Lichman (2013). For example, we use a subset of the Hungarian data created by Andras
Janosi, M.D. of Hungarian Institute of Cardiology in Budapest, Hungary. hearthungary.dta contains
the same attributes as in heartswitz.dta but from a Hungarian population.

66 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

We fit bayesmh with noninformative priors to hearthungary.dta and obtain the following
posterior mean estimates for the regression parameters:

. use http://www.stata-press.com/data/r14/hearthungary
(Subset of Hungarian heart disease data from UCI Machine Learning Repository)

. set seed 14

. bayesmh disease restecg isfbs age male, likelihood(logit)
> prior({disease:}, normal(0,1000))
Burn-in ...
Simulation ...

Model summary

Likelihood:
disease ~ logit(xb_disease)

Prior:
{disease:restecg isfbs age male _cons} ~ normal(0,1000) (1)

(1) Parameters are elements of the linear form xb_disease.

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 285
Acceptance rate = .2341
Efficiency: min = .03088

avg = .04524
Log marginal likelihood = -195.7454 max = .06362

Equal-tailed
disease Mean Std. Dev. MCSE Median [95% Cred. Interval]

restecg -.1076298 .2931371 .013664 -.1036111 -.6753464 .4471483
isfbs 1.182073 .541182 .030797 1.169921 .2267485 2.268314

age .042955 .0170492 .000676 .0432923 .0103757 .0763747
male 1.488844 .3612114 .018399 1.484816 .7847398 2.244648

_cons -3.866674 .8904101 .041022 -3.869567 -5.658726 -2.112237

With this additional information, we can form more informative priors for the 5 parameters of
interest—we center {restecg} and {age} at 0, {disease:isfbs} and {disease:male} at 1, and
{disease: cons} at −4, and we use a prior variance of 10 for all coefficients.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 67

. use http://www.stata-press.com/data/r14/heartswitz
(Subset of Switzerland heart disease data from UCI Machine Learning Repository)

. set seed 14

. bayesmh disease restecg isfbs age male, likelihood(logit)
> prior({disease:restecg age}, normal(0,10))
> prior({disease:isfbs male}, normal(1,10))
> prior({disease:_cons}, normal(-4,10))
Burn-in ...
Simulation ...

Model summary

Likelihood:
disease ~ logit(xb_disease)

Priors:
{disease:restecg age} ~ normal(0,10) (1)
{disease:isfbs male} ~ normal(1,10) (1)

{disease:_cons} ~ normal(-4,10) (1)

(1) Parameters are elements of the linear form xb_disease.

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 48
Acceptance rate = .247
Efficiency: min = .03691

avg = .05447
Log marginal likelihood = -11.021903 max = .06737

Equal-tailed
disease Mean Std. Dev. MCSE Median [95% Cred. Interval]

restecg 1.74292 2.21888 .097001 1.385537 -2.065912 6.584702
isfbs 1.885653 2.792842 .145375 1.595679 -2.976167 7.976913

age .1221246 .0698409 .002691 .1174274 -.0078114 .2706446
male .2631 2.201574 .089281 .2667496 -4.125275 4.646742

_cons -2.304595 2.706482 .115472 -2.256248 -7.785531 3.098357

We now obtain more reasonable results that also agree with the Hungarian results. For the final
analysis, we may consider other heart disease datasets to verify the reasonableness of our prior
specifications and to check the sensitivity of the parameters to other prior specifications.

Ordered probit regression

Ordered probit and ordered logit regressions are appropriate for modeling ordinal response variables.
You can perform Bayesian analysis of an ordinal outcome by specifying the oprobit or ologit
likelihood function. In addition to regression coefficients in ordered models, bayesmh automatically
introduces parameters representing the cutpoints for the linear predictor. The cutpoint parameters are
declared as {depname: cut1}, {depname: cut2}, and so on, where depname is the name of the
response variable.

In the next example, we consider the full auto dataset and model the ordinal variable rep77, the
repair record, as a function of independent variables foreign, length, and mpg. The variable rep77
has 5 levels, so the cutpoint parameters are {rep77: cut1}, {rep77: cut2}, {rep77: cut3}, and
{rep77: cut4}. The independent variables are all positive, so it seems reasonable to use exponential
prior for the cutpoint parameters. The exponential prior is controlled by a hyperparameter {lambda}.
Based on the range of the independent predictors, we assign {lambda} a prior that is uniform in

68 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

the 10 to 40 range. We assign N(0, 1) prior for regression coefficients. To monitor the progress, we
specify dots to request that bayesmh displays dots every 100 iterations and iteration numbers every
1,000 iterations.

. use http://www.stata-press.com/data/r14/fullauto
(Automobile Models)

. replace length = length/10
variable length was int now float

(74 real changes made)

. set seed 14

. bayesmh rep77 foreign length mpg, likelihood(oprobit)
> prior({rep77: foreign length mpg}, normal(0,1))
> prior({rep77:_cut1 _cut2 _cut3 _cut4}, exponential({lambda=30}))
> prior({lambda}, uniform(10,40)) block(lambda) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 100001000.........2000.........3000.........4000.........5
> 000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
rep77 ~ oprobit(xb_rep77,{rep77:_cut1 ... _cut4})

Priors:
{rep77:foreign length mpg} ~ normal(0,1) (1)

{rep77:_cut1 ... _cut4} ~ exponential({lambda})

Hyperprior:
{lambda} ~ uniform(10,40)

(1) Parameters are elements of the linear form xb_rep77.

Bayesian ordered probit regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 66
Acceptance rate = .3422
Efficiency: min = .02171

avg = .0355
Log marginal likelihood = -102.82883 max = .1136

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

rep77
foreign 1.338071 .3750768 .022296 1.343838 .6331308 2.086062
length .3479392 .1193329 .00787 .3447806 .1277292 .5844067

mpg .1048089 .0356498 .002114 .1022382 .0373581 .1761636
_cut1 7.204502 2.910222 .197522 7.223413 1.90771 13.07034
_cut2 8.290923 2.926149 .197229 8.258871 2.983281 14.16535
_cut3 9.584845 2.956191 .197144 9.497836 4.23589 15.52108
_cut4 10.97314 3.003014 .192244 10.89227 5.544563 17.06189

lambda 18.52477 7.252342 .215137 16.40147 10.21155 36.44309

When we specify dots or dots(), bayesmh displays dots as simulation is performed. The burn-in and
simulation iterations are displayed separately. During the adaptation period, iterations are displayed
with a symbol a instead of a dot. This indicates the period during which the proposal distribution is
still changing and thus may not be suitable for sampling from yet. Typically, adaptation is performed
during the burn-in period, the iterations of which are discarded from the MCMC sample. You should
pay closer attention to your results if you see adaptive iterations during the simulation period. This
may happen, for example, if you increase adaptation(maxiter()) without increasing burnin()

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 69

correspondingly. In this case, you may need to perform additional checks to verify that the part of
the MCMC sample corresponding to the adaptation period is similar to the rest of the sample.

Posterior credible intervals suggest that foreign, length, and mpg are among the explanatory
factors for rep77. Based on MCSEs, their posterior mean estimates are fairly precise. The posterior
mean estimates of cutpoints, as expected, are not as precise. The estimated posterior mean for
{lambda} is 18.52.

We placed the hyperparameter {lambda} in a separate block because we wanted to sample this
nuisance parameter independently from the other model parameters. Based on the bivariate scatterplots,
this parameter does appear to be independent of other model parameters a posteriori.

. bayesgraph matrix {rep77:foreign} {rep77:length} {rep77:mpg} {lambda}

rep77:foreign

rep77:length

rep77:mpg

{lambda}

0

1

2

3

0 1 2 3

0

.5

1

0 .5 1

0

.1

.2

0 .1 .2

10

20

30

40

10 20 30 40

70 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

As with any MCMC analysis, we should verify convergence of all of our parameters. Here we show
diagnostic plots only for {lambda}.

. bayesgraph diagnostics {lambda}

10

20

30

40

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
.0

5
.1

10 20 30 40

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation
0

.0
2

.0
4

.0
6

.0
8

10 20 30 40

all

1−half

2−half

Density

lambda

The diagnostic plots for {lambda} do not cause any concern.

Beta-binomial model
bayesmh is a regression command, which models the mean of the outcome distribution as a

function of predictors. There are cases when we do not have any predictors and want to model the
outcome distribution directly. For example, we may want to fit a Poisson distribution or a binomial
distribution to our outcome. We can do this by specifying one of the four distributions supported
by bayesmh in the likelihood() option: dexponential(), dbernoulli(), dbinomial(), or
dpoisson().

Let’s revisit the example from What is Bayesian analysis? in [BAYES] intro, originally from Hoff
(2009, 3), of estimating the prevalence of a rare infectious disease in a small city. The outcome
variable y is the number of infected subjects in a city of 20 subjects, and our data consist of only
one observation, y = 0. We assume a binomial distribution for the outcome y, Binom(20,θ), where
the infection probability θ is a parameter of interest. Based on some previous studies, the model
parameter θ is assigned a Beta(2, 20) prior. For this model, the posterior distribution of θ is known
to be Beta(2, 40).

To fit a binomial distribution to y using bayesmh, we specify the option
likelihood(dbinomial({theta},20)). The infection probability θ is represented by {theta}.

http://www.stata.com/manuals14/bayesintro.pdf#bayesintroRemarksandexamplesWhatisBayesiananalysis?
http://www.stata.com/manuals14/bayesintro.pdf#bayesintro

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 71

. set obs 1
number of observations (_N) was 0, now 1

. generate y = 0

. set seed 14

. bayesmh y, likelihood(dbinomial({theta},20))
> prior({theta}, beta(2,20)) initial({theta} 0.01)
Burn-in ...
Simulation ...

Model summary

Likelihood:
y ~ binomial({theta},20)

Prior:
{theta} ~ beta(2,20)

Bayesian binomial model MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 1
Acceptance rate = .4527

Log marginal likelihood = -1.1658052 Efficiency = .1549

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

theta .0467973 .0317862 .000808 .039931 .0051255 .1277823

The estimated posterior mean for {theta} is 0.0468, which is close to the theoretical value of
2/(2 + 40) = 0.0476 and is within the range of the MCSE of 0.0008.

Multivariate regression

We consider a simple multivariate normal regression model without covariates. We use auto.dta,
and we fit a multivariate normal distribution to variables mpg, weight, and length.

We rescale these variables to have approximately equal ranges. Equalizing the range of model
variables is always recommended, because this makes the model computationally more stable.

. use http://www.stata-press.com/data/r14/auto, clear
(1978 Automobile Data)

. quietly replace weight = weight/1000

. quietly replace length = length/100

. quietly replace mpg = mpg/10

Example 15: Default MH sampling with inverse-Wishart prior for the covariance

For a multivariate normal distribution, an inverse-Wishart prior is commonly used as a prior for
the covariance matrix. Let’s fit our multivariate model using bayesmh.

We specify the multivariate normal likelihood likelihood(mvnormal({Sigma,m})) for the three
variables mpg, weight, and length, where {Sigma,m} is a matrix parameter for the covariance
matrix. We use vague normal priors normal(0,100) for all three means of the variables. For a
covariance matrix {Sigma,m}, which is of dimension three, we specify an inverse-Wishart prior with
the identity scale matrix. We also specify the mean parameters and the covariance parameter in two
separate blocks. To monitor the simulation process, we specify dots.

72 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

. set seed 14

. bayesmh (mpg) (weight) (length), likelihood(mvnormal({Sigma,m}))
> prior({mpg:_cons} {weight:_cons} {length:_cons}, normal(0,100))
> prior({Sigma,m}, iwishart(3,100,I(3)))
> block({mpg:_cons} {weight:_cons} {length:_cons})
> block({Sigma,m}) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 100001000.........2000.........3000.........4000.........5
> 000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
mpg weight length ~ mvnormal(3,{mpg:},{weight:},{length:},{Sigma,m})

Priors:
{mpg:_cons} ~ normal(0,100)

{weight:_cons} ~ normal(0,100)
{length:_cons} ~ normal(0,100)

{Sigma,m} ~ iwishart(3,100,I(3))

Bayesian multivariate normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .3255
Efficiency: min = .001396

avg = .04166
Log marginal likelihood = -254.88899 max = .1111

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 2.13089 .0455363 .001763 2.129007 2.04435 2.223358

weight
_cons 3.018691 .0671399 .00212 3.020777 2.880051 3.149828

length
_cons 1.879233 .0210167 .00063 1.879951 1.837007 1.920619

Sigma_1_1 .1571554 .0038157 .000183 .1570586 .1499028 .1648159
Sigma_2_1 -.1864936 .0024051 .000343 -.1864259 -.1912537 -.18194
Sigma_3_1 -.0533863 .0033667 .000199 -.053342 -.0601722 -.0468986
Sigma_2_2 .3293518 .0044948 .001203 .329703 .3193904 .3366703
Sigma_3_2 .0894404 .0040487 .000471 .0894156 .0816045 .0976702
Sigma_3_3 .0329253 .002521 .00024 .0328027 .0285211 .0383005

Note: There is a high autocorrelation after 500 lags.

In this first run, we do not achieve good mixing of the MCMC chain. bayesmh issues a note about
significant autocorrelation of the simulated parameters.

A closer inspection of the ESS table reveals very low sampling efficiencies for the elements of the
covariance matrix {Sigma}.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 73

. bayesstats ess

Efficiency summaries MCMC sample size = 10,000

ESS Corr. time Efficiency

mpg
_cons 667.48 14.98 0.0667

weight
_cons 1002.92 9.97 0.1003

length
_cons 1111.14 9.00 0.1111

Sigma_1_1 433.25 23.08 0.0433
Sigma_2_1 49.03 203.96 0.0049
Sigma_3_1 287.03 34.84 0.0287
Sigma_2_2 13.96 716.45 0.0014
Sigma_3_2 73.76 135.57 0.0074
Sigma_3_3 110.41 90.58 0.0110

For example, the diagnostic plots for {Sigma 2 2} provide visual confirmation of the convergence
issues—very poorly mixing trace plot, high autocorrelation, and a bimodal posterior distribution.

. bayesgraph diagnostics Sigma_2_2

.315

.32

.325

.33

.335

.34

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
2
0

4
0

6
0

8
0

1
0
0

.315 .32 .325 .33 .335 .34

Histogram

−0.50

0.00

0.50

1.00

0 10 20 30 40
Lag

Autocorrelation

0
5
0

1
0
0

1
5
0

2
0
0

.315 .32 .325 .33 .335 .34

all

1−half

2−half

Density

Sigma_2_2

What we see here is a general problem associated with the simulation of covariance matrices.
Random-walk MH algorithm is not well suited for sampling positive-definite matrices. This is why

74 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

even an adaptive version of the MH algorithm, as implemented in bayesmh, may not achieve good
mixing.

Example 16: Adaptation of MH sampling with inverse-Wishart prior for the covariance

Continuing example 15, we can specify longer adaptation and burn-in periods to improve conver-
gence.

. set seed 14

. bayesmh (mpg) (weight) (length), likelihood(mvnormal({Sigma,m}))
> prior({mpg:_cons} {weight:_cons} {length:_cons}, normal(0,100))
> prior({Sigma,m}, iwishart(3,100,I(3)))
> block({mpg:_cons} {weight:_cons} {length:_cons})
> block({Sigma,m}) dots burnin(5000) adaptation(maxiter(50))
Burn-in 5000 aaaaaaaaa1000aaaaaaaaa2000aaaaaaaaa3000aaaa.....4000.........5000
> done
Simulation 100001000.........2000.........3000.........4000.........5
> 000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
mpg weight length ~ mvnormal(3,{mpg:},{weight:},{length:},{Sigma,m})

Priors:
{mpg:_cons} ~ normal(0,100)

{weight:_cons} ~ normal(0,100)
{length:_cons} ~ normal(0,100)

{Sigma,m} ~ iwishart(3,100,I(3))

Bayesian multivariate normal regression MCMC iterations = 15,000
Random-walk Metropolis-Hastings sampling Burn-in = 5,000

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2382
Efficiency: min = .02927

avg = .05053
Log marginal likelihood = -245.83844 max = .07178

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 2.13051 .0475691 .001809 2.13263 2.038676 2.220953

weight
_cons 3.017943 .0626848 .00234 3.016794 2.898445 3.143252

length
_cons 1.878912 .019905 .000769 1.878518 1.840311 1.918476

Sigma_1_1 .1711394 .0089943 .000419 .1706437 .1548036 .1898535
Sigma_2_1 -.1852432 .002432 .000126 -.1852973 -.1898398 -.1803992
Sigma_3_1 -.0517404 .0035831 .000201 -.051688 -.058747 -.0449874
Sigma_2_2 .3054418 .0144859 .000551 .3055426 .2783409 .3340654
Sigma_3_2 .0809091 .0057474 .000314 .080709 .0698331 .0924053
Sigma_3_3 .030056 .002622 .000153 .0299169 .0251627 .0355171

There is no note about high autocorrelation, and the average efficiency increases slightly from 4% to
5%.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 75

Sampling efficiencies of the elements of the covariance matrix improved substantially.

. bayesstats ess

Efficiency summaries MCMC sample size = 10,000

ESS Corr. time Efficiency

mpg
_cons 691.54 14.46 0.0692

weight
_cons 717.82 13.93 0.0718

length
_cons 670.63 14.91 0.0671

Sigma_1_1 459.78 21.75 0.0460
Sigma_2_1 370.45 26.99 0.0370
Sigma_3_1 318.91 31.36 0.0319
Sigma_2_2 692.06 14.45 0.0692
Sigma_3_2 334.08 29.93 0.0334
Sigma_3_3 292.70 34.16 0.0293

The diagnostic plots for {Sigma 2 2} look much better.

. bayesgraph diagnostics Sigma_2_2

.26

.28

.3

.32

.34

.36

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
1
0

2
0

3
0

.26 .28 .3 .32 .34 .36

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0
1
0

2
0

3
0

.26 .28 .3 .32 .34 .36

all

1−half

2−half

Density

Sigma_2_2

76 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Example 17: Gibbs sampling of a covariance matrix

Continuing example 15, the convergence of the chain can be greatly improved if we use Gibbs
sampling for the covariance matrix parameter. For a multivariate normal model, inverse Wishart is
a conjugate prior, or more precisely semiconjugate prior, for the covariance matrix and thus Gibbs
sampling is available. To request Gibbs sampling, we only need to add the gibbs suboption to the
block specification of {Sigma,m}. The mean parameters are still updated by the random-walk MH
algorithm.

. set seed 14

. bayesmh (mpg) (weight) (length), likelihood(mvnormal({Sigma,m}))
> prior({mpg:_cons} {weight:_cons} {length:_cons}, normal(0,100))
> prior({Sigma,m}, iwishart(3,100,I(3)))
> block({mpg:_cons} {weight:_cons} {length:_cons})
> block({Sigma,m}, gibbs) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaa.. done
Simulation 100001000.........2000.........3000.........4000.........5
> 000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
mpg weight length ~ mvnormal(3,{mpg:},{weight:},{length:},{Sigma,m})

Priors:
{mpg:_cons} ~ normal(0,100)

{weight:_cons} ~ normal(0,100)
{length:_cons} ~ normal(0,100)

{Sigma,m} ~ iwishart(3,100,I(3))

Bayesian multivariate normal regression MCMC iterations = 12,500
Metropolis-Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .5942
Efficiency: min = .06842

avg = .6659
Log marginal likelihood = -240.48717 max = .9781

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 2.128801 .0457224 .00164 2.128105 2.041016 2.215

weight
_cons 3.020533 .0609036 .002328 3.021561 2.908383 3.143715

length
_cons 1.880409 .0197061 .000725 1.881133 1.843106 1.918875

Sigma_1_1 .150733 .0164464 .000166 .1495231 .1219304 .1869429
Sigma_2_1 -.1571622 .0196803 .000201 -.156005 -.1995812 -.1224243
Sigma_3_1 -.0443725 .0060229 .000061 -.0439466 -.0571876 -.0338685
Sigma_2_2 .2673525 .029205 .0003 .2654589 .2163041 .3305366
Sigma_3_2 .0708095 .0085435 .000087 .0702492 .0557448 .0893794
Sigma_3_3 .0273506 .0029932 .000031 .0271362 .0220723 .0337994

Compared with example 15, the results improved substantially. Compared with example 16, the
minimum efficiency increases from about 3% to 6% and the average efficiency from 5% to 66%.
MCSEs of posterior mean estimates, particularly for elements of {Sigma}, are lower.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 77

The diagnostic plots, for example, for Sigma 2 2 also indicate a very good convergence.

. bayesgraph diagnostics Sigma_2_2

.2

.25

.3

.35

.4

.45

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
5

1
0

1
5

.2 .25 .3 .35 .4 .45

Histogram

−0.02

−0.01

0.00

0.01

0.02

0 10 20 30 40
Lag

Autocorrelation
0

5
1
0

1
5

.2 .25 .3 .35 .4 .45

all

1−half

2−half

Density

Sigma_2_2

78 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Example 18: Gibbs sampling of a covariance matrix with the Jeffreys prior

In this example, we perform a sensitivity analysis of the model by replacing the inverse-Wishart
prior for the covariance matrix with a Jeffreys prior.

. set seed 14

. bayesmh (mpg) (weight) (length), likelihood(mvnormal({Sigma,m}))
> prior({mpg:} {weight:} {length:}, normal(0,100))
> prior({Sigma,m}, jeffreys(3))
> block({mpg:} {weight:} {length:})
> block({Sigma,m}, gibbs) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 100001000.........2000.........3000.........4000.........5
> 000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
mpg weight length ~ mvnormal(3,{mpg:},{weight:},{length:},{Sigma,m})

Priors:
{mpg:_cons} ~ normal(0,100)

{weight:_cons} ~ normal(0,100)
{length:_cons} ~ normal(0,100)

{Sigma,m} ~ jeffreys(3)

Bayesian multivariate normal regression MCMC iterations = 12,500
Metropolis-Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .6223
Efficiency: min = .08573

avg = .6886
Log marginal likelihood = -42.728723 max = 1

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mpg
_cons 2.130704 .0709095 .002185 2.129449 1.989191 2.267987

weight
_cons 3.019323 .0950116 .003245 3.019384 2.834254 3.208017

length
_cons 1.879658 .0271562 .000892 1.879859 1.827791 1.933834

Sigma_1_1 .3596673 .0628489 .000628 .3526325 .2575809 .5028854
Sigma_2_1 -.3905511 .0772356 .000772 -.3824458 -.5668251 -.2654059
Sigma_3_1 -.1103824 .0220164 .000223 -.1077659 -.1611913 -.0751177
Sigma_2_2 .6503219 .1141333 .001141 .6378476 .466738 .9140429
Sigma_3_2 .1763159 .0318394 .000323 .1725042 .1248434 .2507866
Sigma_3_3 .0533981 .0093631 .000095 .0522228 .0382405 .0748096

Note: Adaptation tolerance is not met in at least one of the blocks.

Compared with example 17, the estimates of the means of the multivariate distribution do not change
much, but the estimates of the elements of the covariance matrix do change. The estimates for
{Sigma,m} obtained using the Jeffreys prior are approximately twice as big as the estimates obtained
using the inverse-Wishart prior. If we compute correlation matrices corresponding to {Sigma,m} from
the two models, they will be similar. This can be explained by the fact that both the Jeffreys prior and
the inverse-Wishart prior with identity scale matrix are not informative for the correlation structure

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 79

because they only depend on the determinant and the trace of {Sigma,m} whereas the correlation
structure is determined by the data alone.

Technical note: Adaptation tolerance is not met

At the bottom of the table in the previous output, the note about the adaptation tolerance not being
met in one of the blocks is displayed. Adaptation is part of MH sampling, so the note refers to the block
of regression coefficients. This note does not necessarily indicate a problem. It simply notifies you that
the default target acceptance rate as specified in adaptation(tarate()) has not been reached within
the tolerance specified in adaptation(tolerance()). The used default for the target acceptance
rate corresponds to the theoretical asymptotically optimal acceptance rate of 0.44 for a block with
one parameter and 0.234 for a block with multiple parameters. The rate is derived for a specific
class of models and does not necessarily represent the optimal rate for all models. If your MCMC
converged, you can safely ignore this note. Otherwise, you need to investigate your model further.
One remedy is to increase the burn-in period, which automatically increases the adaptation period, or
more specifically, the number of adaptive iterations as controlled by adaptation(maxiter()). For
example, if we increase burn-in to 3,000 by specifying option burnin(3000) in the above example,
we will meet the adaptation tolerance.

The diagnostic plots of Sigma 2 2 demonstrate excellent mixing properties.
. bayesgraph diagnostics Sigma_2_2

.4

.6

.8

1

1.2

1.4

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
1

2
3

4

.4 .6 .8 1 1.2 1.4

Histogram

−0.02

−0.01

0.00

0.01

0.02

0 10 20 30 40
Lag

Autocorrelation

0
1

2
3

4

.4 .6 .8 1 1.2 1.4

all

1−half

2−half

Density

Sigma_2_2

80 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Panel-data and multilevel models
Although the MH algorithm underlying bayesmh is not optimal for fitting Bayesian multilevel

models, you can use it to fit some multilevel models that do not have too many random effects. Below
we consider two-level random-intercept and random-coefficients models. A two-level random-effects
model is also known as a panel-data model.

Two-level random-intercept model or panel-data model

Ruppert, Wand, and Carroll (2003) and Diggle et al. (2002) analyzed a longitudinal dataset
consisting of weight measurements of 48 pigs on 9 successive weeks. Pigs were identified by the
group variable id.

The following two-level model was considered:

weightij = β0 + β1weekij + uj + εij

where uj is the random effect for pig j, j = 1, . . . , 48, and the counter i = 1, . . . , 9 identifies the
weeks.

We first use mixed to fit this model by using maximum likelihood for comparison purposes; see
[ME] mixed.

. use http://www.stata-press.com/data/r14/pig
(Longitudinal analysis of pig weights)

. mixed weight week || id:

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -1014.9268
Iteration 1: log likelihood = -1014.9268

Computing standard errors:

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 25337.49
Log likelihood = -1014.9268 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.209896 .0390124 159.18 0.000 6.133433 6.286359
_cons 19.35561 .5974059 32.40 0.000 18.18472 20.52651

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Identity
var(_cons) 14.81751 3.124226 9.801716 22.40002

var(Residual) 4.383264 .3163348 3.805112 5.04926

LR test vs. linear model: chibar2(01) = 472.65 Prob >= chibar2 = 0.0000

http://www.stata.com/manuals14/memixed.pdf#memixed

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 81

Consider the following Bayesian model for these data:

weightij = β0 + β1weekij + uj + εij = β1weekij + τj + εij ,

εij ∼ i.i.d. N(0, σ2
0)

τj ∼ i.i.d. N(β0, σ
2
id)

β0 ∼ N(0, 100)

β1 ∼ N(0, 100)

σ2
0 ∼ InvGamma(0.001, 0.001)

σ2
id ∼ InvGamma(0.001, 0.001)

The model has four main parameters of interest: regression coefficients β0 and β1 and variance
components σ2

0 and σ2
id. β0 is actually a hyperparameter in this example, because it is the mean

parameter of the prior distribution for random effects τj . The pig random effects τj are considered
nuisance parameters. We use normal priors for the regression coefficients and group levels identified
by the id variable and inverse-gamma priors for the variance parameters. The chosen priors are fairly
noninformative, so we would expect results to be similar to the frequentist results.

To fit this model using bayesmh, we need to include random effects for pig in our regression
model. This can be done by adding factor levels of the id variable to the regression by using the
factor-variable specification i.id. This specification, by default, will omit one of the id categories
as a base category. In our Bayesian model, we need to keep all categories of id, so we use fvset
to declare no base for the id variable.

. fvset base none id

In addition to two regression coefficients and two variance components, we have 48 random-effects
parameters. As for other models, bayesmh will automatically create parameters of the regression func-
tion: {weight:week} for the regression coefficient of week and {weight:1.id}, {weight:2.id},
. . ., {weight:48.id} for random effects. We do not include a constant in our regression function
because it is modeled as a mean of random effects in their prior. So, we need to define the three
remaining model parameters manually; we will use {weight: cons} for the mean of random effects,
{var id} for the variance of random effects, and {var 0} for the error variance.

We will perform five simulations for the specified Bayesian model to illustrate some common
difficulties in applying MH MCMC to multilevel models.

Example 19: First simulation—default MH settings

In the first simulation, we use default simulation settings of the MH algorithm. We have many
parameters in our model, so the simulation will take a few moments. For exploration purposes and
to expedite results, here we use a smaller MCMC size of 5,000 instead of the default of 10,000. To
monitor the progress of the simulation, we also specify dots.

82 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

. set seed 14

. bayesmh weight week i.id, likelihood(normal({var_0})) noconstant
> prior({weight:i.id}, normal({weight:_cons},{var_id}))
> prior({weight:_cons}, normal(0, 100))
> prior({weight:week}, normal(0, 100))
> prior({var_0}, igamma(0.001, 0.001))
> prior({var_id}, igamma(0.001, 0.001))
> mcmcsize(5000) dots
Burn-in 2500 aaaaaaaa.1000.........2000..... done
Simulation 50001000.........2000.........3000.........4000.........50
> 00 done

Model summary

Likelihood:
weight ~ normal(xb_weight,{var_0})

Priors:
{weight:i.id} ~ normal({weight:_cons},{var_id}) (1)
{weight:week} ~ normal(0,100) (1)

{var_0} ~ igamma(0.001,0.001)
{weight:_cons} ~ normal(0,100)

Hyperprior:
{var_id} ~ igamma(0.001,0.001)

(1) Parameters are elements of the linear form xb_weight.

Bayesian normal regression MCMC iterations = 7,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = .2382
Efficiency: min = .00136

avg = .004915
Log marginal likelihood = -1483.9819 max = .03084

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

weight
week 6.263434 .0264724 .002955 6.262433 6.214032 6.31423

id
1 16.24666 .2357628 .058097 16.2599 15.78635 16.67799
2 24.06862 .3243331 .06509 24.07464 23.37339 24.67859

(output omitted)
47 29.73823 .3734104 .07144 29.71473 29.04301 30.48604
48 20.82722 .4258745 .160651 20.78619 20.13018 21.71069

var_0 9.218097 .5679745 .174024 9.181747 8.218479 10.38655

weight
_cons 13.59053 .3519081 .028341 13.62244 12.88323 14.25594

var_id 12.49858 .3116721 .050076 12.50611 11.9335 13.12018

Note: There is a high autocorrelation after 500 lags.

bayesmh reports the presence of a high correlation after 500 lags. This and the low average efficiency
of 0.005 may indicate problems with MCMC convergence for some of the parameters.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 83

For convenience, we use bayesstats summary to show posterior summaries for parameters of
interest only. Alternatively, you can specify the noshow(i.id) option with bayesmh to suppress the
summaries for factor levels.

. bayesstats summary {weight:week _cons} {var_0} {var_id}

Posterior summary statistics MCMC sample size = 5,000

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

weight
week 6.263434 .0264724 .002955 6.262433 6.214032 6.31423

_cons 13.59053 .3519081 .028341 13.62244 12.88323 14.25594

var_0 9.218097 .5679745 .174024 9.181747 8.218479 10.38655
var_id 12.49858 .3116721 .050076 12.50611 11.9335 13.12018

The posterior mean estimates for {weight:week} and {weight: cons} are 6.26 and 13.59, respec-
tively. The estimate for the residual variance {var 0} is 9.22 with the standard deviation of 0.57,
and the estimate of the group-effect variance {var id} is 12.5 with the standard deviation of 0.31.

Because of the low efficiencies, we should be suspicious of these results. If we look at diagnostic
plots for, for example, {weight:week},

. bayesgraph diagnostics {weight:week}

6.2

6.25

6.3

6.35

0 1000 2000 3000 4000 5000

Iteration number

Trace

0
5

1
0

1
5

2
0

6.2 6.25 6.3 6.35

Histogram

−0.50

0.00

0.50

1.00

0 10 20 30 40
Lag

Autocorrelation

0
5

1
0

1
5

2
0

6.2 6.25 6.3 6.35

all

1−half

2−half

Density

weight:week

84 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

we see that the trace plot exhibits some trend and does not show good mixing and that the autocorrelation
is relatively high after at least lag 40. Our MCMC does not seem to converge and thus we cannot trust
the obtained results.

Example 20: Second simulation—blocking of parameters

Continuing example 19, we can improve efficiency of the MH algorithm by separating model
parameters into blocks to be sampled independently. We consider a separate block for each model
parameter with random-effects parameters sharing the same block. We also specify nomodelsummary
to suppress the model summary and notable to suppress the table output of bayesmh.

. set seed 14

. bayesmh weight week i.id, likelihood(normal({var_0})) noconstant
> prior({weight:i.id}, normal({weight:_cons},{var_id}))
> prior({weight:_cons},normal(0, 100))
> prior({weight:week}, normal(0, 100))
> prior({var_0}, igamma(0.001, 0.001))
> prior({var_id}, igamma(0.001, 0.001))
> block({var_0})
> block({var_id})
> block({weight:i.id})
> block({weight:week})
> block({weight:_cons})
> burnin(3000) mcmcsize(5000) dots notable nomodelsummary
Burn-in 3000 aaaaaaaaa1000aaaaaaaaa2000aaaaaaaaa3000 done
Simulation 50001000.........2000.........3000.........4000.........50
> 00 done

Bayesian normal regression MCMC iterations = 8,000
Random-walk Metropolis-Hastings sampling Burn-in = 3,000

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = .4194
Efficiency: min = .001727

avg = .01731
Log marginal likelihood = -1204.9586 max = .2403
Note: There is a high autocorrelation after 500 lags.

Blocking certainly improved efficiencies: the average efficiency is now 0.017, but we still have a note
about high autocorrelation.

We use bayesstats summary below to report summaries of only model parameters of interest.

. bayesstats summary {weight:week _cons} {var_0} {var_id}

Posterior summary statistics MCMC sample size = 5,000

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

weight
week 6.214099 .020815 .002059 6.214429 6.174678 6.255888

_cons 19.28371 .552023 .015925 19.28177 18.2078 20.35016

var_0 4.183143 .2908152 .009833 4.167876 3.669035 4.828092
var_id 15.53468 3.251813 .112054 15.16295 10.46451 23.19296

Here our estimates of variance components change noticeably: {var 0} is 4.18 and {var id} is
15.53.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 85

The diagnostic plots for {weight:week} are much better, but the mixing of MCMC is still not
great.

. bayesgraph diagnostics {weight:week}

6.15

6.2

6.25

6.3

0 1000 2000 3000 4000 5000

Iteration number

Trace

0
5

1
0

1
5

2
0

6.15 6.2 6.25 6.3

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation
0

5
1
0

1
5

2
0

6.1 6.15 6.2 6.25 6.3

all

1−half

2−half

Density

weight:week

Example 21: Third simulation—Gibbs sampling

The most efficient MCMC procedure for our Bayesian model is Gibbs sampling, which can be set
up as follows. To request a Gibbs sampling for a block of model parameters, we must first define
them in a separate prior() statement and then put them in a separate block() with the gibbs
suboption.

86 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

. set seed 14

. bayesmh weight week i.id, likelihood(normal({var_0})) noconstant
> prior({weight:i.id}, normal({weight:_cons},{var_id}))
> prior({weight:_cons},normal(0, 100))
> prior({weight:week}, normal(0, 100))
> prior({var_0}, igamma(0.001, 0.001))
> prior({var_id}, igamma(0.001, 0.001))
> block({var_0}, gibbs) block({var_id}, gibbs)
> block({weight:i.id}, gibbs) block({weight:week}, gibbs)
> block({weight:_cons},gibbs) mcmcsize(5000) dots notable nomodelsummary
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 50001000.........2000.........3000.........4000.........50
> 00 done

Bayesian normal regression MCMC iterations = 7,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = 1
Efficiency: min = .123

avg = .6764
Log marginal likelihood = -1051.4228 max = .857

There is no note about high autocorrelation in this run. The average efficiency increased dramatically
to 0.68. It appears that our MCMC has now converged.

If we again inspect the diagnostic plots of, for example, {weight:week}, we will now see a very
good mixing.

. bayesgraph diagnostics {weight:week}

6.1

6.15

6.2

6.25

6.3

6.35

0 1000 2000 3000 4000 5000

Iteration number

Trace

0
5

1
0

6.1 6.15 6.2 6.25 6.3 6.35

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0
2

4
6

8
1
0

6 6.1 6.2 6.3 6.4

all

1−half

2−half

Density

weight:week

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 87

We again use bayesstats summary to see posterior summaries of the model parameters of interest.

. bayesstats summary {weight:week _cons} {var_0} {var_id}

Posterior summary statistics MCMC sample size = 5,000

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

weight
week 6.209425 .0373593 .001507 6.209439 6.135128 6.282676

_cons 19.29971 .6097913 .012916 19.2999 18.11953 20.47267

var_0 4.414173 .3194018 .004992 4.396302 3.828712 5.099535
var_id 15.85026 3.45786 .052824 15.44261 10.34387 23.6678

With Gibbs sampling, our estimates change only slightly. For example, the estimates of variance
components are 4.41 for {var 0: cons} and 15.85 for {var id}.

All estimates are very close to the MLEs obtained earlier with the mixed command.

Example 22: Fourth simulation—splitting random-effects parameters

Gibbs sampling typically provides the most efficient sampling of parameters. Full Gibbs sampling
is not always available; see, for example, Mixed-effects logistic regression below.

In the absence of Gibbs sampling for random effects, block()’s suboption split provides the
next most efficient way of sampling the random-effects parameters in bayesmh. Taking into account
conditional independence of individual random effects, random-effects parameters associated with
levels of the grouping variable can be sampled sequentially (as separate blocks) instead of being
sampled jointly from a high-dimensional proposal distribution (as in example 20).

For example, instead of using Gibbs sampling for the random effects (as in example 21), we use
block()’s suboption split for the random-effects parameters {weight:i.id}.

. set seed 14

. bayesmh weight week i.id, likelihood(normal({var_0})) noconstant
> prior({weight:i.id}, normal({weight:_cons},{var_id}))
> prior({weight:_cons}, normal(0, 100))
> prior({weight:week}, normal(0, 100))
> prior({var_0}, igamma(0.001, 0.001))
> prior({var_id}, igamma(0.001, 0.001))
> block({weight:_cons}, gibbs) block({weight:week}, gibbs)
> block({var_0}, gibbs) block({var_id}, gibbs)
> block({weight:i.id}, split)
> mcmcsize(5000) dots notable nomodelsummary
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 50001000.........2000.........3000.........4000.........
> 5000 done

Bayesian normal regression MCMC iterations = 7,500
Metropolis-Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = .4823
Efficiency: min = .04123

avg = .1773
Log marginal likelihood = -1050.2963 max = .7524

88 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

We use bayesstats summary to see posterior summaries of the model parameters of interest.

. bayesstats summary {weight:week _cons} {var_0} {var_id}

Posterior summary statistics MCMC sample size = 5,000

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

weight
week 6.206316 .0399631 .002783 6.206429 6.127974 6.28349

_cons 19.31371 .6125276 .019648 19.31878 18.08646 20.52478

var_0 4.4213 .3205769 .006464 4.407209 3.825247 5.085138
var_id 15.74962 3.448178 .056218 15.32605 10.25279 23.57063

The estimated posterior means are close to those obtained with the full Gibbs sampler in example 21,
although the estimated MCMC standard errors are slightly higher. For example, the MCSE of {var 0}
rises from 0.0050 to 0.0065, or about 30%.

The average sampling efficiency, 18%, is not as high as with the full Gibbs sampling in example 21
but is still high enough for reliable estimation. The caveat with using the split option for sampling
the random-effects parameters is a significant decrease in speed. When speed is an issue or when the
number of random-effects parameters is large, the reffects() option may be a better alternative;
see example 23.

Example 23: Fifth simulation—using the reffects() option

The reffects() option supported by bayesmh can be used for specifying the two-level random-
intercept model considered in this series of examples. It allows for faster MCMC sampling of the
parameters associated with a random-effects variable compared with block()’s suboption split (see
example 22).

We modify the syntax from example 22 as follows. We exclude i.id from the list of inde-
pendent variables and add the reffects(id) option. We also omit the block({weight:i.id},
split) option because the blocking of the {weight:i.id} parameters is handled implicitly by the
reffects() option.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 89

. set seed 14

. bayesmh weight week, reffects(id) likelihood(normal({var_0})) noconstant
> prior({weight:i.id}, normal({weight:_cons},{var_id}))
> prior({weight:_cons}, normal(0, 100))
> prior({weight:week}, normal(0, 100))
> prior({var_0}, igamma(0.001, 0.001))
> prior({var_id}, igamma(0.001, 0.001))
> block({weight:_cons}, gibbs) block({weight:week}, gibbs)
> block({var_0}, gibbs) block({var_id}, gibbs)
> mcmcsize(5000) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 50001000.........2000.........3000.........4000.........
> 5000 done

Model summary

Likelihood:
weight ~ normal(xb_weight,{var_0})

Priors:
{weight:i.id} ~ normal({weight:_cons},{var_id}) (1)
{weight:week} ~ normal(0,100) (1)

{var_0} ~ igamma(0.001,0.001)
{weight:_cons} ~ normal(0,100)

Hyperprior:
{var_id} ~ igamma(0.001,0.001)

(1) Parameters are elements of the linear form xb_weight.

Bayesian normal regression MCMC iterations = 7,500
Metropolis-Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = .8475
Efficiency: min = .03221

avg = .3708
Log marginal likelihood = -1050.8235 max = .77

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

weight
week 6.209593 .040908 .003224 6.210008 6.127663 6.288345

var_0 4.412871 .3171205 .006625 4.406072 3.834571 5.067036

weight
_cons 19.29717 .634793 .01903 19.28847 18.0127 20.53934

var_id 15.89952 3.549986 .057213 15.46713 10.36942 24.02605

Our estimates of the variance components do not change noticeably from those in examples 21 and
22: {var 0} is 4.41 and {var id} is 15.90.

Although the average efficiency, 0.37, of the displayed parameters is lower than the corresponding
efficiency of the full Gibbs sampler in example 21, the application of the reffects() option results
in consuming about 35% less memory during simulation and a 25% improvement in speed. The
real benefit of the reffects() option, however, becomes apparent for models with many random-
effects levels and models for which full Gibbs samplers are not available; see Mixed-effects logistic
regression below.

90 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

When we use option reffects(), bayesmh suppresses the estimates of random-effects parameters
from the output. You can use the showreffects() option to display them.

Linear growth curve model—a random-coefficient model

Continuing our pig data example from Two-level random-intercept model or panel-data model, we
extend the random-intercept model to include random coefficients for week by using

weightij = β0 + β1weekij + u0j + u1jweekij + εij

where u0j is the random effect for pig and u1j is the pig-specific random coefficient on week for
j = 1, . . . , 48 and i = 1, . . . , 9.

Example 24: Independent covariance structure for the random effects

Let us first assume that the random effects u0j’s and u1j’s are independent. We can use mixed
to fit this model by using maximum likelihood.

. use http://www.stata-press.com/data/r14/pig
(Longitudinal analysis of pig weights)

. mixed weight week || id: week

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -869.03825
Iteration 1: log likelihood = -869.03825

Computing standard errors:

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4689.51
Log likelihood = -869.03825 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.209896 .0906819 68.48 0.000 6.032163 6.387629
_cons 19.35561 .3979159 48.64 0.000 18.57571 20.13551

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Independent
var(week) .3680668 .0801181 .2402389 .5639103

var(_cons) 6.756364 1.543503 4.317721 10.57235

var(Residual) 1.598811 .1233988 1.374358 1.85992

LR test vs. linear model: chi2(2) = 764.42 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 91

Consider the following Bayesian model for these data:

weightij = β0 + β1weekij + u0j + u1jweekij + εij = τ0j + τ1jweekij + εij ,

εij ∼ i.i.d. N(0, σ2
0)

τ0j ∼ i.i.d. N(β0, σ
2
id)

τ1j ∼ i.i.d. N(β1, σ
2
week)

β0 ∼ N(0, 100)

β1 ∼ N(0, 100)

σ2
0 ∼ InvGamma(0.001, 0.001)

σ2
id ∼ InvGamma(0.001, 0.001)

σ2
week ∼ InvGamma(0.001, 0.001)

The model has five main parameters of interest: regression coefficients β0 and β1 and variance
components σ2

0 , σ2
id, and σ2

week. β0 and β1 are hyperparameters because they are specified as mean
parameters of the prior distributions for random effects τ0j and τ1j , respectively. Random effects τ0j
and τ1j are considered nuisance parameters. We again use normal priors for the regression coefficients
and group levels identified by the id variable and their interactions with week and inverse-gamma
priors for the variance parameters. We specify fairly noninformative priors.

To fit this model using bayesmh, we include random effects for pig and their interaction with
week in our regression model. Following example 21, we add factor levels of the id variable to the
regression by using the factor-variable specification i.id. We include random coefficients on week
as i.id#c.week. By default, the specification will omit one of the id categories as a base category.
In our Bayesian model, we need to keep all categories of id:

. fvset base none id

We fit our model using bayesmh. Following example 21, we perform blocking of parameters and
use Gibbs sampling for the blocks. (We could have used the reffects() option as in example 23
to include random intercepts, but we want to use Gibbs sampling in this example; thus we use the
factor-variable specification instead.)

92 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

. set seed 14

. bayesmh weight i.id i.id#c.week, likelihood(normal({var_0})) noconstant
> prior({weight:i.id}, normal({weight:_cons},{var_id}))
> prior({weight:i.id#c.week}, normal({weight:week},{var_week}))
> prior({weight:_cons}, normal(0, 100))
> prior({weight:week}, normal(0, 100))
> prior({var_0}, igamma(0.001, 0.001))
> prior({var_id}, igamma(0.001, 0.001))
> prior({var_week}, igamma(0.001, 0.001))
> block({var_0}, gibbs)
> block({var_id}, gibbs)
> block({var_week}, gibbs)
> block({weight:i.id}, gibbs)
> block({weight:i.id#c.week}, gibbs)
> block({weight:week}, gibbs)
> block({weight:_cons}, gibbs)
> mcmcsize(5000) dots notable
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 50001000.........2000.........3000.........4000.........50
> 00 done

Model summary

Likelihood:
weight ~ normal(xb_weight,{var_0})

Priors:
{weight:i.id} ~ normal({weight:_cons},{var_id}) (1)

{weight:i.id#c.week} ~ normal({weight:week},{var_week}) (1)
{var_0} ~ igamma(0.001,0.001)

{weight:_cons week} ~ normal(0,100)

Hyperprior:
{var_id var_week} ~ igamma(0.001,0.001)

(1) Parameters are elements of the linear form xb_weight.

Bayesian normal regression MCMC iterations = 7,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = 1
Efficiency: min = .08386

avg = .1582
Log marginal likelihood = -929.94517 max = .7758

Our AR is good and efficiencies are high. We do not have a reason to suspect nonconvergence.
Nevertheless, it is important to perform graphical convergence diagnostics to confirm this.

Let’s look at diagnostic plots. We show only diagnostic plots for the mean of random coefficients
on week, but convergence should be established for all parameters before any inference can be made.
We leave it to you to verify convergence of the remaining parameters.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 93

. bayesgraph diagnostics {weight:week}

5.8

6

6.2

6.4

6.6

0 1000 2000 3000 4000 5000

Iteration number

Trace

0
1

2
3

4

5.8 6 6.2 6.4 6.6

Histogram

−0.04

−0.02

0.00

0.02

0.04

0.06

0 10 20 30 40
Lag

Autocorrelation

0
1

2
3

4

5.8 6 6.2 6.4 6.6

all

1−half

2−half

Density

weight:week

The diagnostic plots look good.

Our posterior mean estimates of the main model parameters are in agreement with maximum
likelihood results from mixed, as is expected with noninformative priors.

. bayesstats summary {weight:week _cons} {var_0} {var_id} {var_week}

Posterior summary statistics MCMC sample size = 5,000

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

weight
week 6.210054 .0948751 .001523 6.210372 6.029255 6.398015

_cons 19.32719 .4096827 .007805 19.32701 18.53177 20.14601

var_0 1.607193 .1224062 .002371 1.600899 1.384723 1.863646
var_id 7.253204 1.705803 .038343 7.034003 4.566251 11.32263

var_week .3940417 .0886511 .001723 .3822614 .2545719 .607737

94 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Example 25: Unstructured covariance structure for the random effects

In this example, we assume that the random effects τ0j’s and τ1j’s are correlated. Again we can
use the mixed command to fit this model by using maximum likelihood.

. set seed 14

. mixed weight week || id: week, cov(unstructured)

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -868.96185
Iteration 1: log likelihood = -868.96185

Computing standard errors:

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4649.17
Log likelihood = -868.96185 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

week 6.209896 .0910745 68.18 0.000 6.031393 6.388399
_cons 19.35561 .3996387 48.43 0.000 18.57234 20.13889

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Unstructured
var(week) .3715251 .0812958 .2419532 .570486

var(_cons) 6.823363 1.566194 4.351297 10.69986
cov(week,_cons) -.0984378 .2545767 -.5973991 .4005234

var(Residual) 1.596829 .123198 1.372735 1.857505

LR test vs. linear model: chi2(3) = 764.58 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We modify the previous Bayesian model to account for the correlation between the random effects:

(τ0j , τ1j) ∼ i.i.d. MVN(β0, β1,Σ)

Σ ∼ InvWishart{3, I(2)}

Σ =

[
σ2

id σ2
12

σ2
21 σ2

week

]
The elements σ2

id and σ2
week of Σ represent the variances of τ0j’s and τ1j’s, respectively, while

σ21 is the covariance between them. We apply weakly informative inverse-Wishart prior with degree
of freedom 3 and identity scale matrix.

Gibbs sampling is not available in bayesmh with unstructured covariance for the random effects.
We thus replace gibbs with reffects in the corresponding block() option. This is possible because
τ0j’s are conditionally independent given τ1j’s and vice versa. Using block()’s suboption reffects
results in a more efficient sampling.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 95

. set seed 14

. bayesmh weight i.id i.id#c.week, likelihood(normal({var_0})) noconstant
> prior({weight:i.id i.id#c.week},
> mvnormal(2, {weight:_cons}, {weight:week}, {Sigma,m}))
> prior({weight:week _cons}, normal(0, 1e2))
> prior({var_0}, igamma(0.001,0.001))
> prior({Sigma,m}, iwishart(2,3,I(2)))
> block({var_0}, gibbs) block({Sigma,m}, gibbs)
> block({weight:_cons}) block({weight:week})
> block({weight:i.id}, reffects)
> block({weight:i.id#c.week}, reffects)
> noshow({weight:i.id i.id#c.week})
> mcmcsize(5000) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 50001000.........2000.........3000.........4000.........
> 5000 done

Model summary

Likelihood:
weight ~ normal(xb_weight,{var_0})

Priors:
{weight:i.id i.id#c.week} ~ mvnormal(2,{weight:_cons},{weight:week},{Sigma,m

}) (1)
{var_0} ~ igamma(0.001,0.001)

{weight:week _cons} ~ normal(0,1e2)

Hyperprior:
{Sigma,m} ~ iwishart(2,3,I(2))

(1) Parameters are elements of the linear form xb_weight.

Bayesian normal regression MCMC iterations = 7,500
Metropolis-Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = .5581
Efficiency: min = .07112

avg = .1423
Log marginal likelihood = -926.22043 max = .2238

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

var_0 1.607509 .1249066 .00435 1.601815 1.38134 1.860937

weight
_cons 19.36808 .4017089 .021302 19.36764 18.52137 20.15876
week 6.201477 .0952501 .003317 6.199532 6.014793 6.389815

Sigma_1_1 6.850707 1.632765 .07773 6.60346 4.345719 10.66529
Sigma_2_1 -.0854197 .2652103 .010005 -.0803053 -.6326388 .4431884
Sigma_2_2 .400556 .0903881 .002702 .3889624 .260342 .6140122

The average sampling efficiency is about 14% with no indications for convergence problems. The
posterior mean estimates of the main model parameters are close to the maximum likelihood results
from mixed. For example, the estimates of variance components σ2

id, σ21, and σ2
week are 6.85, −0.85,

and 0.40, respectively, from bayesmh and 6.82, −0.98, and 0.37, respectively, from mixed.

96 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Mixed-effects logistic regression

Here we revisit example 1 [ME] melogit. The example analyzes data from the 1989 Bangladesh
fertility survey (Huq and Cleland 1990). A logistic regression model applied to the response variable
c use uses fixed-effects variables urban, age, and child* and a random-effects variable, district,
to account for the between-district variability.

A Bayesian analog of this two-level, random-intercept model using bayesmh is as follows. We use
the reffects() option to specify the random-effects variable district. The corresponding random-
effects parameters {c use:i.district} are assigned a zero-mean normal prior distribution with
variance {district:var}. A relatively weak normal(0,100) prior is applied to the fixed-effects
parameters {c use:urban}, {c use:age}, {c use:child*}, and {c use: cons}. The variance
parameter {district:var} is assigned a noninformative igamma(0.01,0.01) prior, and a Gibbs
sampler is used for it. We are not interested in the estimates of random effects in this example, so
we exclude the random-effects parameters {c use:i.district} from the output table.

. use http://www.stata-press.com/data/r14/bangladesh
(Bangladesh Fertility Survey, 1989)

. set seed 14

. bayesmh c_use urban age child*, likelihood(logit) reffects(district)
> prior({c_use:i.district}, normal(0,{district:var}))
> prior({c_use:urban age child* _cons}, normal(0, 100))
> prior({district:var}, igamma(0.01,0.01))
> block({district:var}, gibbs) noshow({c_use:i.district}) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 100001000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
c_use ~ logit(xb_c_use)

Priors:
{c_use:i.district} ~ normal(0,{district:var}) (1)

{c_use:urban age child1 child2 child3 _cons} ~ normal(0,100) (1)
{district:var} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_c_use.

Bayesian logistic regression MCMC iterations = 12,500
Metropolis-Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 1,934
Acceptance rate = .4913
Efficiency: min = .01728

avg = .02523
Log marginal likelihood = -1240.2644 max = .04155

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

c_use
urban .7252685 .1260246 .009454 .7216279 .4789413 .9849255

age -.0259076 .0076429 .000529 -.0259236 -.040793 -.0101205
child1 1.104812 .1540978 .008963 1.104046 .8012581 1.410451
child2 1.352477 .1890995 .014387 1.345373 .9832535 1.712931
child3 1.343504 .1793496 .012102 1.343257 .9941767 1.697041
_cons -1.687957 .1420537 .008543 -1.683849 -1.964436 -1.405009

district
var .2380246 .0857548 .004207 .2269953 .1034288 .4357797

http://www.stata.com/manuals14/memelogit.pdf#memelogitRemarksandexamplesex1
http://www.stata.com/manuals14/memelogit.pdf#memelogit

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 97

Although the average efficiency of 0.03 is not that high, there are no indications for convergence
problems. (We can verify this by looking at convergence diagnostics using bayesgraph diagnostics.)

Our estimates of the main regression parameters are close to those obtained with the melogit
command. The posterior mean estimate of variance parameter {district:var}, 0.24, is slightly
larger than the corresponding estimate of 0.22 from melogit.

This model has a fairly large number of parameters, 67, and the logistic likelihood does not allow
for efficient Gibbs sampling of regression parameters. If we do not use the reffects() option of
bayesmh (or block()’s suboption split with {c use:i.district}) and resort to the standard
MH algorithm, we may have problems drawing a well-mixed MCMC sample.

For comparison, we show a standard bayesmh specification in which the {c use:i.district}
parameters are placed in a separate block without using the reffects() option. Statistically, the
two model specifications are the same because they define one and the same posterior distribution.
However, they use different MCMC sampling procedures.

. set seed 14

. bayesmh c_use urban age child* ibn.district, likelihood(logit)
> prior({c_use:i.district}, normal(0,{district:var}))
> prior({c_use:urban age child* _cons}, normal(0, 100))
> prior({district:var}, igamma(0.01,0.01))
> block({district:var}, gibbs)
> block({c_use:i.district}) noshow({c_use:i.district}) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 100001000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
c_use ~ logit(xb_c_use)

Priors:
{c_use:i.district} ~ normal(0,{district:var}) (1)

{c_use:urban age child1 child2 child3 _cons} ~ normal(0,100) (1)
{district:var} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_c_use.

Bayesian logistic regression MCMC iterations = 12,500
Metropolis-Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 1,934
Acceptance rate = .53
Efficiency: min = .007367

avg = .0255
Log marginal likelihood = -1362.0681 max = .04817

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

c_use
urban .6929174 .119883 .013968 .6906259 .4664536 .9199054

age -.0280929 .0080467 .000375 -.0280689 -.0440295 -.0126579
child1 1.158416 .1697389 .011534 1.155004 .839977 1.490753
child2 1.442235 .1769685 .008064 1.439614 1.09767 1.796089
child3 1.447863 .1928966 .012707 1.448637 1.065645 1.836695
_cons -2.348392 .14138 .010016 -2.350597 -2.621669 -2.069296

district
var .7490145 .1557382 .014079 .7299348 .5026288 1.110885

Note: There is a high autocorrelation after 500 lags.

98 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

In this second run, we observe that the minimal sampling efficiency is less than 1% and that the MCMC
convergence is questionable. For example, the reported MCMC standard error for {district:var}
is about 0.014, or three times higher than the corresponding error of 0.004 in the previous run. The
results from this last run are not trustworthy.

Bayesian analysis of change-point problem

Change-point problems deal with stochastic data, usually time-series data, which undergoes some
abrupt change at some time point. It is of interest to localize the point of change and estimate the
properties of the stochastic process before and after the change.

Here we analyze the British coal mining disaster data for the years 1851 to 1962 as given in
table 5 in Carlin, Gelfand, and Smith (1992). The data are originally from Maguire, Pearson, and
Wynn (1952) with updates from Jarrett (1979).

coal.dta contains 112 observations, and it includes the variables id, which records observation
identifiers; count, which records the number of coal mining disasters involving 10 or more deaths;
and year, which records the years corresponding to the disasters.

. use http://www.stata-press.com/data/r14/coal
(British coal-mining disaster data, 1851-1962)

. describe

Contains data from http://www.stata-press.com/data/r14/coal.dta
obs: 112 British coal-mining disaster

data, 1851-1962
vars: 3 5 Feb 2015 18:03
size: 560 (_dta has notes)

storage display value
variable name type format label variable label

id int %9.0g Observation identifier
year int %9.0g Year of disasters
count byte %9.0g Number of disasters per year

Sorted by:

The figures below suggest a fairly abrupt decrease in the rate of disasters around the 1887–1895
period, possibly because of the decline in labor productivity in coal mining (Raftery and Akman 1986).
The line plot of count versus year is shown in the left pane and its smoothed version in the right
pane.

0
2

4
6

N
u
m

b
e
r

o
f
d
is

a
s
te

rs
 p

e
r

y
e
a
r

1860 1880 1900 1920 1940 1960
Year of disasters

0
1

2
3

4
M

e
d
ia

n
 s

p
lin

e

1860 1880 1900 1920 1940 1960
Year of disasters

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 99

To find the change-point parameter (cp) in the rate of disasters, we apply the following Bayesian
model with noninformative priors for the parameters (accounting for the restricted range of cp):

countsi ∼ Poisson(µ1), if yeari < cp

countsi ∼ Poisson(µ2), if yeari ≥ cp

µ1 ∼ 1

µ2 ∼ 1

cp ∼ Uniform(1851, 1962)

The model has three parameters: µ1, µ2, and cp, which we will declare as {mu1}, {mu2}, and
{cp} with bayesmh. One interesting feature of this model is the specification of a mixture distribution
for count. To accommodate this, we specify the substitutable expression

({mu1}*sign(year<{cp})+{mu2}*sign(year>={cp}))

as the mean of a Poisson distribution dpoisson(). To ensure the feasibility of the initial state,
we specify the desired initial values in option initial(). Because of high autocorrelation in the
MCMC chain, we increase the MCMC size to achieve higher precision of our estimates. We change
the default title to the title specific to our analysis. To monitor the progress of simulation, we request
that bayesmh displays a dot every 500 iterations and an iteration number every 5,000 iterations.

. set seed 14

. bayesmh count,
> likelihood(dpoisson({mu1}*sign(year<{cp})+{mu2}*sign(year>={cp})))
> prior({mu1} {mu2}, flat)
> prior({cp}, uniform(1851,1962))
> initial({mu1} 1 {mu2} 1 {cp} 1906)
> mcmcsize(40000) title(Change-point analysis) dots(500, every(5000))
Burn-in 2500 aa... done
Simulation 400005000.........10000.........15000.........20000.......
> ..25000.........30000.........35000.........40000 done

Model summary

Likelihood:
count ~ poisson({mu1}*sign(year<{cp})+{mu2}*sign(year>={cp}))

Priors:
{mu1 mu2} ~ 1 (flat)

{cp} ~ uniform(1851,1962)

Change-point analysis MCMC iterations = 42,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 40,000
Number of obs = 112
Acceptance rate = .2243
Efficiency: min = .03456

avg = .0678
Log marginal likelihood = -173.33996 max = .1256

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mu1 3.136251 .2942003 .007913 3.131459 2.599068 3.731112
cp 1890.358 2.424871 .034217 1890.554 1886.07 1896.303

mu2 .9410287 .1199134 .002882 .9370863 .7219138 1.189728

100 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

According to our results, the change occurred in the first half of 1890. The drop of the disaster rate
was significant, from an estimated average of 3.136 to 0.94.

The diagnostic plots, for example, for {cp} do not indicate any convergence problems. (This is
also true for other parameters.)

. bayesgraph diagnostics {cp}

1880

1885

1890

1895

1900

0 10000 20000 30000 40000

Iteration number

Trace

0
.0

5
.1

.1
5

.2
.2

5

1880 1885 1890 1895 1900

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0
.0

5
.1

.1
5

.2
.2

5

1880 1885 1890 1895 1900

all

1−half

2−half

Density

cp

The simulated marginal density of {cp} shown in the right bottom corner provides more details.
Apart from the main peak, there are two smaller bumps around the years 1886 and 1896, which
correspond to local peaks in the number of disasters at these years: 4 in 1886 and 3 in 1896.

We may be interested in estimating the ratio between the two means. We can use bayesstats
summary to estimate this ratio.

. bayesstats summary (ratio:{mu1}/{mu2})

Posterior summary statistics MCMC sample size = 40,000

ratio : {mu1}/{mu2}

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

ratio 3.386058 .532557 .014112 3.336782 2.471534 4.553885

The posterior mean estimate of the ratio and its 95% credible intervals confirm the change between
the two means. After 1890, the mean number of disasters decreased by a factor of about 3.4 with a
95% credible range of [2.47, 4.55].

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 101

Remember that convergence must be verified not only for all model parameters but also for the
functions of interest. The diagnostic plots for ratio look good.

. bayesgraph diagnostics (ratio:{mu1}/{mu2})

2

3

4

5

6

0 10000 20000 30000 40000

Iteration number

Trace

0
.2

.4
.6

.8

2 3 4 5 6

Histogram

0.00

0.20

0.40

0.60

0.80

1.00

0 10 20 30 40
Lag

Autocorrelation
0

.2
.4

.6
.8

2 3 4 5 6

all

1−half

2−half

Density

ratio: {mu1}/{mu2}

ratio

Bioequivalence in a crossover trial

Balanced crossover designs are widely used in the pharmaceutical industry for testing the efficacy
of new drugs. Gelfand et al. (1990) analyzed a two-treatment, two-period crossover trial comparing
two Carbamazepine tablets. The data consist of log-concentration measurements and are originally
described in Maas et al. (1987).

A random-effect two-treatment, two-period crossover design is given by

yi(jk) = µ+ (−1)j−1φ

2
+ (−1)k−1π

2
+ di + εi(jk) = µi(jk) + εi(jk)

εi(jk) ∼ i.i.d. N(0, σ2)

di ∼ i.i.d. N(0, τ2)

where i = 1, . . . , n is the subject index, j = 1, 2 is the treatment group, and k = 1, 2 is the period.

bioequiv.dta has four main variables: subject identifier id from 1 to 10, treatment identifier
treat containing values 1 or 2, period identifier period containing values 1 or 2, and outcome y
measuring log concentration for the two tablets.

102 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

. use http://www.stata-press.com/data/r14/bioequiv
(Bioequivalent study of Carbamazepine tablets)

. describe

Contains data from http://www.stata-press.com/data/r14/bioequiv.dta
obs: 20 Bioequivalent study of

Carbamazepine tablets
vars: 5 5 Feb 2015 23:45
size: 160 (_dta has notes)

storage display value
variable name type format label variable label

obsid byte %9.0g Observation identifier
id byte %9.0g Subject identifier
treat byte %9.0g Assigned treatment
period byte %9.0g Period identifier
y float %9.0g Log-concentration measurement

Sorted by: id period

Before fitting bayesmh, we request no base category for the id variable.

. fvset base none id

The outcome is assumed to be normally distributed with mean µi(jk) and variance σ2. To
accommodate the specific structure of the regression function, we use a nonlinear specification of
bayesmh. We specify the expression for the mean function µi(jk) as a nonlinear expression following
the outcome y. We use noninformative priors for parameters and separate parameters in blocks. To
improve convergence, we increase our adaptation and burn-in periods. (The command may take some
time to produce results, so we specify the dots() option.)

. set seed 14

. bayesmh y = ({mu}+(-1)^(treat-1)*{phi}/2+(-1)^(period-1)*{pi}/2+{y:i.id}),
> likelihood(normal({var}))
> prior({y:i.id}, normal(0,{tau}))
> prior({tau}, igamma(0.001,0.001))
> prior({var}, igamma(0.001,0.001))
> prior({mu} {phi} {pi}, normal(0,1e6))
> block({y:i.id}, split)
> block({tau}, gibbs) block({var}, gibbs)
> adaptation(every(200) maxiter(50)) burnin(10000) dots(250, every(2500))
Burn-in 10000 aaaaaaaaa2500aaaaaaaaa5000aaaaaaaaa7500aaaaaaaaa10000 done
Simulation 100002500.........5000.........7500.........10000 done

Model summary

Likelihood:
y ~ normal(<expr1>,{var})

Priors:
{var} ~ igamma(0.001,0.001)

{y:i.id} ~ normal(0,{tau})
{mu phi pi} ~ normal(0,1e6)

Hyperprior:
{tau} ~ igamma(0.001,0.001)

Expression:
expr1 : {mu}+(-1)^(treat-1)*{phi}/2+(-1)^(period-1)*{pi}/2+({y:1bn.id}*1bn.i

d+{y:2.id}*2.id+{y:3.id}*3.id+{y:4.id}*4.id+{y:5.id}*5.id+{y:6.id}*6
.id+{y:7.id}*7.id+{y:8.id}*8.id+{y:9.id}*9.id+{y:10.id}*10.id)

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 103

Bayesian normal regression MCMC iterations = 20,000
Metropolis-Hastings and Gibbs sampling Burn-in = 10,000

MCMC sample size = 10,000
Number of obs = 20
Acceptance rate = .5131
Efficiency: min = .01345

avg = .02821
Log marginal likelihood = -25.692825 max = .04365

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mu 1.43231 .0579197 .004993 1.434814 1.305574 1.545945
phi -.0093502 .050824 .00257 -.0104379 -.1039488 .1010855
pi -.1815055 .0542115 .003107 -.1821367 -.2963565 -.0702212

y
id
1 .0668345 .0834954 .005428 .0645855 -.0879197 .2407731
2 .1217473 .0895501 .005941 .1190309 -.037415 .308847
3 .0561551 .0812912 .005154 .0525818 -.0971676 .2344846
4 .0619807 .0827296 .005294 .0564789 -.0923602 .2365587
5 .1701813 .09874 .006345 .1685315 -.0149722 .3676389
6 -.1640241 .0917804 .005572 -.1690176 -.3443967 .0135562
7 -.1191101 .0864379 .005291 -.1168358 -.2894083 .0400566
8 -.0590061 .0803792 .004595 -.0572132 -.2217439 .0908653
9 -.0779055 .0814977 .00481 -.0769495 -.2428321 .0816219

10 -.014813 .0788845 .00452 -.0138628 -.1750312 .1463467

var .0134664 .0087676 .000482 .0109334 .0042003 .0370388
tau .0228884 .020285 .000971 .0182243 .0015547 .0725889

Sampling efficiencies look reasonable considering the number of model parameters. The diagnostic plots
of the main model parameters (not shown here) look reasonable except there is a high autocorrelation
in the MCMC for {mu}, so you may consider increasing the MCMC size or using thinning.

Parameter θ = exp(φ) is commonly used as a measure of bioequivalence. Bioequivalence is
declared whenever θ lies in the interval (0.8, 1.2) with a high posterior probability.

We use bayesstats summary to calculate this probability and to also display other main parameters.
. bayesstats summary {mu} {phi} {pi} {tau} {var}
> (theta:exp({phi})) (equiv:exp({phi})>0.8 & exp({phi})<1.2)

Posterior summary statistics MCMC sample size = 10,000

theta : exp({phi})
equiv : exp({phi})>0.8 & exp({phi})<1.2

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

mu 1.43231 .0579197 .004993 1.434814 1.305574 1.545945
phi -.0093502 .050824 .00257 -.0104379 -.1039488 .1010855
pi -.1815055 .0542115 .003107 -.1821367 -.2963565 -.0702212

tau .0228884 .020285 .000971 .0182243 .0015547 .0725889
var .0134664 .0087676 .000482 .0109334 .0042003 .0370388

theta .9919787 .0507755 .002569 .9896164 .9012714 1.106371
equiv .9982 .0423903 .000892 1 1 1

We obtain an estimate of 0.998 for the posterior probability of bioequivalence specified as an expression
equiv. So we would conclude bioequivalence between the two tablets.

104 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Random-effects meta-analysis of clinical trials

In meta-analysis of clinical trials, one considers several distinct studies estimating an effect of
interest. It is convenient to consider the true effect as varying randomly between the studies. A detailed
description of the random-effects meta-analysis can be found in, for example, Carlin (1992).

We illustrate Bayesian random-effects meta-analysis of 2× 2 tables for the beta-blockers dataset
analyzed in Carlin (1992). These data are also analyzed in Yusuf, Simon, and Ellenberg (1987). The
data summarize the results of 22 clinical trials of beta-blockers used as postmyocardial infarction
treatment.

Example 26: Normal–normal analysis

Here we follow the approach of Carlin (1992) for the normal–normal analysis of the beta-blockers
data.

For our normal–normal analysis, we consider data in wide form and concentrate on modeling
estimates of log odds-ratios from 22 studies.

. use http://www.stata-press.com/data/r14/betablockers_wide
(Beta-blockers data in wide form)

. describe

Contains data from http://www.stata-press.com/data/r14/betablockers_wide.dta
obs: 22 Beta-blockers data in wide form

vars: 7 5 Feb 2015 19:02
size: 550 (_dta has notes)

storage display value
variable name type format label variable label

study byte %9.0g Study identifier
deaths0 int %9.0g Number of deaths in the control

group
total0 int %9.0g Number of subjects in the control

group
deaths1 int %9.0g Number of deaths in the treatment

group
total1 int %9.0g Number of subjects in the

treatment group
D double %10.0g Log odds-ratio (based on

empirical logits)
var double %10.0g Squared standard error of log

odds-ratio

Sorted by:

The estimates of log odds-ratios and their squared standard errors are recorded in variables D and var,
respectively. They are computed from variables deaths0, total0, deaths1, and total1 based on
empirical logits; see Carlin (1992, eq. (3) and (4)). The study variable records study identifiers.

In a normal–normal model, we assume a random-effects model for estimates of log odds-ratios
with normally distributed errors and normally distributed random effects. Specifically,

Di = d+ ui + εi = di + εi

where εi ∼ N(0, vari) and di ∼ N(d, σ2). Errors εi’s represent uncertainty about estimates of log
odds-ratios in each study i and are assumed to have known study-specific variances, vari’s. Random
effects di’s represent differences in estimates of log odds-ratios from study to study. The estimates

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 105

of their mean and variance are of interest in meta-analysis: d estimates a true effect and σ2 estimates
variation in estimating this effect across studies. Small values of σ2 imply that the estimates of a true
effect agree among studies.

In Bayesian analysis, we additionally specify prior distributions for d and σ2. Following Car-
lin (1992), we use noninformative priors for these parameters: normal with large variance for d and
inverse gamma with very small degrees of freedom for σ2.

d ∼ N(0, 1000)

σ2 ∼ InvGamma(0.001, 0.001)

In our data, random effects di is represented by a factor variable i.study. We use all levels of
study in our analysis, so we use fvset to request no base level for this variable.

. fvset base none study

We specify normal() likelihood with bayesmh and request observation-specific variances by
specifying variable var as normal()’s variance argument. We follow the above model formulation
for specifying prior distributions. To improve efficiency, we request that all parameters be placed
in separate blocks and use Gibbs sampling for the mean parameter {d} and the variance parameter
{sig2}. We also increase the burn-in period to 3,000 iterations and request more frequent adaptation
by specifying the adaptation(every(10)) option. The command will take a little longer to run,
so we request that a dot be displayed every 500 iterations and an iteration number be displayed every
2,500 iterations to monitor the progress of the simulation.

. set seed 14

. bayesmh D i.study, likelihood(normal(var)) noconstant
> prior({D:i.study}, normal({d},{sig2}))
> prior({d}, normal(0,1000))
> prior({sig2}, igamma(0.001,0.001))
> block({D:i.study}, split)
> block({sig2}, gibbs)
> block({d}, gibbs)
> burnin(3000) adaptation(every(10)) dots(500, every(2500))
Burn-in 3000 aaaa2500a done
Simulation 100002500....5000....7500....10000 done

Model summary

Likelihood:
D ~ normal(xb_D,var)

Prior:
{D:i.study} ~ normal({d},{sig2}) (1)

Hyperpriors:
{d} ~ normal(0,1000)

{sig2} ~ igamma(0.001,0.001)

(1) Parameters are elements of the linear form xb_D.

106 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Bayesian normal regression MCMC iterations = 13,000
Metropolis-Hastings and Gibbs sampling Burn-in = 3,000

MCMC sample size = 10,000
Number of obs = 22
Acceptance rate = .5315
Efficiency: min = .01845

avg = .04462
Log marginal likelihood = 14.38145 max = .06842

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

D
study

1 -.2357346 .1380931 .005394 -.2396019 -.5018659 .0564967
2 -.2701697 .135307 .006741 -.2585033 -.5760455 -.0174336
3 -.2538771 .1376569 .005263 -.2495234 -.5436489 .0222503
4 -.246526 .08904 .003506 -.2483908 -.4212739 -.0643877
5 -.1969971 .12748 .006635 -.2072718 -.4149274 .1014951
6 -.2527047 .1339466 .00647 -.2526702 -.5224128 .0229356
7 -.3377723 .1100308 .006646 -.3283355 -.5829385 -.1548902
8 -.2054826 .1130796 .005594 -.2121369 -.4051584 .0546629
9 -.2666327 .1215781 .005263 -.2630645 -.5206763 -.0297599

10 -.2803866 .0841634 .003593 -.2771339 -.4590086 -.1252279
11 -.2354098 .1049351 .004449 -.237795 -.4360951 -.0191799
12 -.202938 .1178808 .005967 -.209884 -.4105608 .0725293
13 -.2714193 .1288598 .006394 -.263365 -.564746 -.023963
14 -.1273999 .1468804 .009997 -.1553146 -.3495763 .2172828
15 -.2518538 .1249082 .005184 -.2502685 -.5090334 -.0021013
16 -.2245814 .1210757 .004998 -.231592 -.4488306 .0415657
17 -.2043954 .1357651 .007347 -.2164064 -.4321717 .1044344
18 -.2153688 .1423256 .006983 -.222428 -.4718119 .0991941
19 -.2242526 .1360964 .006098 -.2300817 -.4938685 .075416
20 -.2428998 .1151988 .005403 -.2424417 -.4723024 -.0126589
21 -.2972177 .1281401 .006041 -.2862546 -.5946982 -.0770212
22 -.2979427 .1266137 .00575 -.2885006 -.5953839 -.0816952

d -.2429052 .0611413 .004501 -.2426092 -.3623229 -.1261924
sig2 .0166923 .020771 .001488 .0095773 .0007359 .0753652

Our posterior mean estimates d and sig2 of mean d and variance σ2 are −0.24 and 0.017, respectively,
with posterior standard deviations of 0.06 and 0.02. The estimates are close to those reported by
Carlin (1992). Considering the number of parameters, the AR and efficiency summaries look good.

We can obtain the efficiencies for the main parameters by using bayesstats ess.

. bayesstats ess {d} {sig2}

Efficiency summaries MCMC sample size = 10,000

ESS Corr. time Efficiency

d 184.49 54.20 0.0184
sig2 194.88 51.31 0.0195

The efficiencies are acceptable, but based on the correlation times, the autocorrelation becomes small
only after lag 50 or so. The precision of the mean and variance estimates is comparable to those based
on 184 independent observations for the mean and 195 independent observations for the variance.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 107

We explore convergence visually.

. bayesgraph diagnostics {d} {sig2}

−.5

−.4

−.3

−.2

−.1

0

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
2

4
6

−.5 −.4 −.3 −.2 −.1 0

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0
2

4
6

−.5 −.4 −.3 −.2 −.1 0

all

1−half

2−half

Density

d

0

.1

.2

.3

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
2

0
4

0
6

0

0 .1 .2 .3

Histogram

−0.20

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0
2

0
4

0
6

0

0 .1 .2 .3

all

1−half

2−half

Density

sig2

The diagnostic plots look reasonable for both parameters, but autocorrelation is high. You may consider
increasing the default MCMC size to obtain more precise estimates of posterior means.

Example 27: Binomial-normal model

There is an alternative but equivalent way of formulating the meta-analysis model from example 23
as a binomial-normal model. Instead of modeling estimates of log odds-ratios directly, one can model
probabilities of success (an event of interest) in each group.

Let pTi and pCi be the probabilities of success for the treatment and control groups in the ith trial.
The random-effects meta-analysis model can be given as

logit(pCi) = µi

logit(pTi) = µi + di

where µi is log odds of success in the control group in study i and µi + di is log odds of success in
the treatment group. di’s are viewed as random effects and are assumed to be normally distributed as

di ∼ i.i.d. N(d, σ2)

where d is the population effect and σ2 is its variability across trials.

Suppose that we observe yCi successes out of nCi events in the control group and yTi successes
out of nTi events in the treatment group from the ith trial. Then,

yCi ∼ Binomial(pCi , n
C
i)

yTi ∼ Binomial(pTi , n
T
i)

The random effects are usually assumed to be normally distributed as

di ∼ i.i.d. N(d, σ2)

where d is the population effect and is the main parameter of interest in the model, and σ2 is its
variability across trials.

108 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

We can rewrite the model above assuming the data are in long form as

logit(pi) = µi + (Ti == 1)× di
yi ∼ Binomial(pi, ni)

di ∼ i.i.d. N(d, σ2)

where Ti is a binary treatment with Ti = 0 for the control group and Ti = 1 for the treatment group.

In Bayesian analysis, we additionally specify prior distributions for µi, d, and σ2. We use
noninformative priors.

µi ∼ 1

d ∼ N(0, 1000)

σ2 ∼ InvGamma(0.001, 0.001)

We continue our analysis of beta-blockers data. The analysis of these data using a binomial-normal
model is also provided as an example in OpenBUGS (Thomas et al. 2006).

For this analysis, we use the beta-blockers data in long form.

. use http://www.stata-press.com/data/r14/betablockers_long
(Beta-blockers data in long form)

. describe

Contains data from http://www.stata-press.com/data/r14/betablockers_long.dta
obs: 44 Beta-blockers data in long form

vars: 4 5 Feb 2015 19:02
size: 264 (_dta has notes)

storage display value
variable name type format label variable label

study byte %9.0g Study identifier
treat byte %9.0g treatlab Treatment group: 0 - control, 1 -

treatment
deaths int %9.0g Number of deaths in each group
total int %9.0g Number of subjects in each group

Sorted by: study treat

Variable treat records the binary treatment: treat==0 identifies the control group, and treat==1
identifies the treatment group.

To relate to the notation of our model, we create variable mu to contain identifiers for each study.
We also request that no base is set for our factor variables mu and study.

. generate mu = study

. fvset base none mu study

We use a binomial() likelihood model for the number of deaths. We split all parameters into
separate blocks and request Gibbs sampling for sig2 to improve efficiency of the algorithm. We also
specify burnin(3000) and perform more frequent adaptation using adaptation(every(10)).

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 109

. set seed 14

. bayesmh deaths i.mu 1.treat#i.study, likelihood(binomial(total)) noconstant
> prior({deaths:i.mu}, flat)
> prior({deaths:1.treat#i.study}, normal({d},{sig2}))
> prior({d}, normal(0,1000)) prior({sig2}, igamma(0.001,0.001))
> block({deaths:1.treat#i.study}, split)
> block({deaths:i.mu}, split) block({d}, gibbs)
> block({sig2}, gibbs)
> burnin(3000) adaptation(every(10)) dots(500, every(2500))
Burn-in 3000 aaaa2500a done
Simulation 100002500....5000....7500....10000 done

Model summary

Likelihood:
deaths ~ binlogit(xb_deaths,total)

Priors:
{deaths:i.mu} ~ 1 (flat) (1)

{deaths:i.treat#i.study} ~ normal({d},{sig2}) (1)

Hyperpriors:
{d} ~ normal(0,1000)

{sig2} ~ igamma(0.001,0.001)

(1) Parameters are elements of the linear form xb_deaths.

Bayesian binomial regression MCMC iterations = 13,000
Metropolis-Hastings and Gibbs sampling Burn-in = 3,000

MCMC sample size = 10,000
Number of obs = 44
Acceptance rate = .5136
Efficiency: min = .01331

avg = .08388
Log marginal likelihood = -131.25444 max = .2121

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

deaths
mu
1 -2.434128 .445865 .009682 -2.426842 -3.332509 -1.634211
2 -2.186034 .2348462 .005222 -2.1798 -2.654988 -1.741019
3 -2.121815 .2711186 .006175 -2.111274 -2.680885 -1.617358
4 -2.395562 .0809699 .002675 -2.396577 -2.549786 -2.237609
5 -2.401359 .1540556 .004839 -2.397723 -2.697435 -2.099078
6 -2.221807 .3487384 .009421 -2.19026 -2.966567 -1.591299
7 -1.71437 .0784958 .002737 -1.714861 -1.86485 -1.558509
8 -2.110073 .1178488 .003906 -2.107124 -2.342254 -1.88807
9 -1.959062 .1492379 .004604 -1.958407 -2.264319 -1.682202

10 -2.241497 .0699547 .002446 -2.240693 -2.38241 -2.107086
11 -2.308927 .1095127 .003416 -2.310487 -2.527959 -2.095512
12 -1.458926 .1263283 .003392 -1.457141 -1.709941 -1.207061
13 -2.993073 .2129428 .004776 -2.985876 -3.43956 -2.606033
14 -2.722014 .1239681 .004773 -2.718786 -2.973852 -2.490443
15 -1.355571 .1596962 .004102 -1.354465 -1.676543 -1.04002
16 -1.489021 .1416432 .004123 -1.483373 -1.764335 -1.223957
17 -1.993007 .1853341 .005607 -1.98668 -2.378721 -1.646472
18 -2.964669 .2847685 .006746 -2.947758 -3.571054 -2.455845
19 -3.433652 .3440502 .007869 -3.421849 -4.142976 -2.799305
20 -1.486827 .1357797 .003528 -1.486625 -1.756737 -1.218571
21 -2.141426 .1384291 .00422 -2.140922 -2.410842 -1.870514
22 -2.923959 .1412969 .004275 -2.925278 -3.19683 -2.656737

110 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

treat#study
1 1 -.2412583 .1366465 .005294 -.246471 -.5222947 .0360048
1 2 -.2805666 .1338706 .005662 -.2698089 -.5741051 -.0336747
1 3 -.2627764 .1328548 .008139 -.2548607 -.560451 -.0111309
1 4 -.2518226 .0939223 .004196 -.2503843 -.4532776 -.0673868
1 5 -.2017774 .1277379 .006441 -.2137416 -.4256577 .0927942
1 6 -.2586228 .1381994 .008395 -.2507483 -.5628148 .0127226
1 7 -.3472471 .1015792 .006818 -.3376469 -.5653234 -.1742163
1 8 -.2142745 .1108317 .005637 -.2186595 -.4201235 .0252865
1 9 -.278724 .1237785 .007732 -.2705361 -.5565986 -.048334
1 10 -.2895344 .0855712 .003741 -.2834565 -.4695875 -.1309819
1 11 -.2455467 .105304 .004622 -.2461274 -.4571545 -.0309278
1 12 -.2094773 .1127281 .005102 -.2184074 -.4059582 .0326186
1 13 -.2762859 .1352985 .007211 -.2669069 -.5767289 -.0217408
1 14 -.1279066 .1427634 .009247 -.1505654 -.3554016 .2047083
1 15 -.2617291 .1192822 .005606 -.2592285 -.5019967 -.0192021
1 16 -.2303032 .1178814 .005088 -.2340642 -.4559166 .0227396
1 17 -.2135575 .1312599 .006438 -.2233056 -.4489128 .0833568
1 18 -.2219846 .1455447 .006833 -.2345571 -.4844894 .1041897
1 19 -.2283609 .143887 .006233 -.2362389 -.4981321 .0853338
1 20 -.2433477 .116537 .00486 -.2461491 -.4661368 .0000666
1 21 -.3065246 .1182271 .007766 -.2933875 -.5769479 -.0992575
1 22 -.3038501 .1276486 .007902 -.2917561 -.6014336 -.0757054

d -.249726 .060338 .004671 -.2481786 -.3694177 -.1323805
sig2 .0167392 .0191965 .001664 .0103045 .0007443 .0674249

This model has 22 more parameters than the model in example 22. The posterior mean estimates
d and sig2 of mean d and variance σ2 are −0.25 and 0.017, respectively, with posterior standard
deviations of 0.06 and 0.02. The estimates of the mean and variance are again close to the ones
reported by Carlin (1992).

Compared with example 22, the efficiencies and other statistics for the main parameters are similar.

. bayesstats ess {d} {sig2}

Efficiency summaries MCMC sample size = 10,000

ESS Corr. time Efficiency

d 166.90 59.92 0.0167
sig2 133.14 75.11 0.0133

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 111

The diagnostic plots look similar to those shown in example 22.

. bayesgraph diagnostics {d} {sig2}

−.6

−.4

−.2

0

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
2

4
6

8
−.5 −.4 −.3 −.2 −.1 0

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0
2

4
6

−.6 −.4 −.2 0 .2

all

1−half

2−half

Density

d

0

.05

.1

.15

.2

.25

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
2

0
4

0
6

0

0 .05 .1 .15 .2 .25

Histogram

−0.20

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0
2

0
4

0
6

0

0 .05 .1 .15 .2 .25

all

1−half

2−half

Density

sig2

Item response theory

Example 28: 1PL IRT model—Rasch model

If you are not familiar with IRT, see [IRT] irt for an introduction to IRT concepts and terminology.
Here we revisit example 1 of [IRT] irt 1pl. The example analyzes student responses to nine test
questions and uses an abridged version of the mathematics and science data from De Boeck and
Wilson (2004). The goal of the analysis is to estimate the common discrimination of the questions
(items) and their individual difficulties.

An alternative formulation of the one-parameter IRT model is the Rasch (1960) model with logit
link; see, for example, Methods and formulas of [IRT] irt 1pl. A typical IRT dataset consists of
binary outcomes (success or failure) of J subjects, where each subject is tested on I items. Let the
observation yij represent the binary outcome for item i, where i = 1, . . . , I , and subject j, where
j = 1, . . . , J . Each item i is characterized by a level of difficulty bi. The difficulties are not observed
and must be estimated. Associated with each subject j is a latent trait level θj , which characterizes
the ability of the subject. The model likelihood has a generalized linear regression form

logit{Pr(yij = 1|bi, θj)} = a(θj − bi)

where a is a discrimination parameter. According to this likelihood model, the probability of success
increases with the subject ability and decreases with item difficulty. The discrimination parameter
a represents the slope of the item characteristic curves. The subject abilities are assumed to be
standardized so that

θj ∼ i.i.d. N(0, 1)

The discrimination parameter a can be absorbed into θj and bi so that the model is reparameterized
as

logit{Pr(yij = 1|̃bi, θ̃j)} = θ̃j + b̃i (1)

θ̃j ∼ i.i.d. N(0, σ2)

http://www.stata.com/manuals14/irtirt.pdf#irtirt
http://www.stata.com/manuals14/irtirt1pl.pdf#irtirt1plRemarksandexamplesex1
http://www.stata.com/manuals14/irtirt1pl.pdf#irtirt1pl
http://www.stata.com/manuals14/irtirt1pl.pdf#irtirt1plMethodsandformulas
http://www.stata.com/manuals14/irtirt1pl.pdf#irtirt1pl

112 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

where σ = a and b̃i = −abi. In addition to the above, a Bayesian formulation of the model requires,
prior specifications for parameters σ2 and b̃i. In the following example, we use

σ2 ∼ InvGamma(0.01, 0.01)

b̃i ∼ N(0, 10)

To fit this model using bayesmh, we first need to reshape the data from example 1 of [IRT] irt
1pl in long format so that the answers to the nine questions are represented by the response variable
y, while the item and id variables encode the questions and students, respectively.

. use http://www.stata-press.com/data/r14/masc1
(Data from De Boeck & Wilson (2004))

. generate id = _n

. quietly reshape long q, i(id) j(item)

. rename q y

The Rasch likelihood model can be specified with bayesmh using y as a dependent variable, item
as an independent factor variable, and id as a random-effects variable. We suppress the base levels
of item and id and use the noconstant option in the likelihood specification. The random-effects
parameters {y:i.id} are assigned a zero-mean normal prior with variance {var} [σ2 in model
specification (1)]. The parameter {var} is assigned a noninformative inverse-gamma prior with shape
0.01 and scale 0.01, whereas the parameters {y:i.item} [̃bi’s in model (1)] are applied ad hoc
informative normal(0,10) priors. Because there are many random-effects parameters {y:i.id}, we
exclude them from the simulation results and the output table by specifying the exclude() option.

. fvset base none id item

. set seed 14

. bayesmh y i.item, noconstant reffects(id) likelihood(logit)
> prior({y:i.id}, normal(0, {var}))
> prior({y:i.item}, normal(0, 10))
> prior({var}, igamma(0.01,0.01))
> block({var}) block({y:i.item}, reffects) exclude({y:i.id}) dots
Burn-in 2500 aaaaaaaaa1000.........2000..... done
Simulation 100001000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
y ~ logit(xb_y)

Priors:
{y:i.id} ~ normal(0,{var}) (1)

{y:i.item} ~ normal(0,10) (1)

Hyperprior:
{var} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_y.

http://www.stata.com/manuals14/irtirt1pl.pdf#irtirt1plRemarksandexamplesex1
http://www.stata.com/manuals14/irtirt1pl.pdf#irtirt1pl
http://www.stata.com/manuals14/irtirt1pl.pdf#irtirt1pl

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 113

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 7,200
Acceptance rate = .3031
Efficiency: min = .02233

avg = .09591
Log marginal likelihood = . max = .1139

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

y
item

1 .6015542 .0820766 .00258 .6053092 .438748 .7659896
2 .1025364 .0832577 .00262 .1027404 -.0551544 .2644014
3 1.547352 .0985834 .003041 1.548773 1.352163 1.737668
4 -.2704933 .081763 .002509 -.269603 -.4330444 -.1116137
5 -1.410691 .0947962 .002899 -1.41001 -1.60001 -1.232148
6 -.5911439 .0837508 .002742 -.5907655 -.756948 -.4301115
7 -1.128951 .0906917 .00292 -1.125747 -1.31619 -.9531386
8 2.060501 .1102492 .003284 2.059005 1.851561 2.277273
9 1.015636 .0875144 .002593 1.015847 .8486233 1.190524

var .726955 .079031 .005289 .7234471 .576551 .8930412

In the simulation summary, bayesmh reports a modest average efficiency of about 10% with no
indications for convergence problems. The log marginal likelihood is reported as missing because we
used the exclude() option. The Laplace–Metropolis approximation of the log marginal likelihood
requires that simulation results be available for all model parameters, including random-effects
parameters.

To match the discrimination and question difficulty parameters of the irt 1pl command, we can
apply the following transformation to the bayesmh model parameters. The common discrimination
parameter equals the square-root of {var}, and the individual question difficulties equal the negative
{y:i.id}’s parameters, normalized by their common discrimination. We can obtain estimates of
these parameters using the bayesstats summary command.

114 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

. bayesstats summary (discr:sqrt({var}))
> (diff1:-{y:1bn.item}/sqrt({var}))
> (diff2:-{y:2.item}/sqrt({var}))
> (diff3:-{y:3.item}/sqrt({var}))
> (diff4:-{y:4.item}/sqrt({var}))
> (diff5:-{y:5.item}/sqrt({var}))
> (diff6:-{y:6.item}/sqrt({var}))
> (diff7:-{y:7.item}/sqrt({var}))
> (diff8:-{y:8.item}/sqrt({var}))
> (diff9:-{y:9.item}/sqrt({var})), nolegend

Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

discr .8513548 .0463711 .003113 .8505569 .7593095 .9450085
diff1 -.7082469 .1011861 .003508 -.7061776 -.9055634 -.5127043
diff2 -.1208126 .0983803 .003111 -.1213543 -.3106128 .066497
diff3 -1.821986 .1412775 .005966 -1.817721 -2.107488 -1.558985
diff4 .3184996 .0975893 .003082 .3153589 .1316555 .5159253
diff5 1.66113 .1341472 .005662 1.658582 1.414426 1.931525
diff6 .696008 .1030643 .003547 .6927263 .4945615 .9064106
diff7 1.329158 .1199949 .004557 1.325713 1.112063 1.582109
diff8 -2.426495 .1725481 .00809 -2.41446 -2.779606 -2.115298
diff9 -1.195812 .1148938 .004121 -1.19502 -1.429396 -.9759188

We observe that the reported posterior means for the common discrimination and question difficulties
are close to those obtained with irt 1pl. For example, the estimated posterior mean for the
discrimination is about 0.851, whereas the one reported by irt 1pl is 0.852, which is within the
limits of the MCMC standard error of 0.003.

In this example, we fit the Rasch model using the reffects() option and used transformation
to estimate parameters of the corresponding 1PL IRT model. To avoid reparameterization, we could
have fit the 1PL model directly using a nonlinear specification of bayesmh, as we demonstrate in
example 29 for the 2PL IRT model. The shortcoming of the nonlinear specification, which precludes
the use of the reffects() option, is slower execution.

Example 29: 2PL IRT model

A more comprehensive IRT model is the 2PL model introduced by Birnbaum (1968), which allows
the discrimination and difficulty parameters to vary between items. For a detailed description and
examples of the model, see [IRT] irt 2pl.

A Bayesian formulation of the 2PL model allows the item-specific discrimination and difficulty
parameters as well as the subject abilities to be modeled, either individually or as groups, using prior
distributions.

The 2PL model likelihood has the following form,

Pr(Yij = 1) =
exp{ai(θj − bi)}

1 + exp{ai(θj − bi)}

where ai’s and bi’s are discrimination and difficulty parameters and θj’s are subject abilities. This
is a logistic regression model with probability of success modeled using the linear form ai(θj − bi).
We assume that the probability of success increases with subject ability, which implies ai > 0.

http://www.stata.com/manuals14/irtirt2pl.pdf#irtirt2pl

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 115

Subject ability parameters are assumed independent and distributed according to the standard normal
distribution

θj ∼ N(0, 1)

For Bayesian modeling, we additionally assume the following prior specifications:

ln(ai) ∼ N(µa, σ
2
a)

bi ∼ N(µb, σ
2
b)

µa, µb ∼ N(0, 1)

σ2
a, σ

2
b ∼ Gamma(1, 1)

In the absence of prior knowledge about parameters ai’s and bi’s, we want to specify proper
priors that are not subjective. Because ai’s must be positive, a common choice is to assume that
ln(ai)’s are normally distributed with mean µa and variance σ2

a. We assume that bi’s are normally
distributed with mean µb and variance σ2

b . Our prior assumption is that the questions in the study are
fairly balanced in terms of discrimination and difficulty and we express this expectation by specifying
N(0, 1) hyperpriors for µa and µb; that is, we assume that µa and µb are not that different from zero.
We also put a slight prior constraint on the variability of the discrimination and difficulty parameters
by assigning a gamma distribution with shape 1 and scale 1 as hyperprior distributions for σ2

a and
σ2
b . To demonstrate a Bayesian 2PL model, we use again the mathematics and science dataset masc1,

reshaped in long format as in example 28.

bayesmh y = ({discr:}*({subj:}-{diff:})), likelihood(logit) ///
redefine(discr:i.item) ///
redefine(diff:i.item) ///
redefine(subj:i.id) ///
prior({subj:i.id}, normal(0, 1)) ///
prior({discr:i.item}, lognormal({mua}, {vara})) ///
prior({diff:i.item}, normal({mub}, {varb})) ///
prior({vara varb}, gamma(1, 1)) ///
prior({mua mub}, normal(0, 1)) ///
...

To specify the 2PL model likelihood in bayesmh, we need to use a nonlinear specifica-
tion to accommodate the varying coefficients ai’s. For masc1.dta, we have 9 items, where
i = 1, . . . , 9, and 800 subjects, where j = 1, . . . , 800. A straightforward nonlinear specification
is ({discr:i.item}*({subj:i.id}-{diff:i.item})). Given the large number of subjects, it
may be computationally prohibitive to use this substitutable expression. A more computationally
efficient way is to use the redefine() option to specify the random effects associated with item
discrimination, item difficulty, and student ability. For example, redefine(subj:i.id) introduces
subject random-effects parameters, one for each subject, and represents the parameters θj’s. Similarly,
we use redefine(discr:i.item) and redefine(diff:i.item) to introduce the item-specific
discrimination and difficulty parameters ai’s and bi’s, respectively. The probability of success is then
modeled using the expression ({discr:}({subj:}-{diff:})).

To achieve better sampling efficiency, we place the hyperparameters {mua}, {mub}, {vara},
and {varb} into separate blocks using the block()’s suboption split. We also initialize the
discrimination and difficulty random effects with 1, because the default zeros result in an invalid
initial state. We have many random-effects parameters {subj:i.id}, so we exclude them from the
simulation results and the output table by specifying the exclude() option.

116 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

. fvset base none id item

. set seed 14

. bayesmh y = ({discr:}*({subj:}-{diff:})), likelihood(logit)
> redefine(discr:i.item) redefine(diff:i.item) redefine(subj:i.id)
> prior({subj:i.id}, normal(0, 1))
> prior({discr:i.item}, lognormal({mua}, {vara}))
> prior({diff:i.item}, normal({mub}, {varb}))
> prior({vara varb}, gamma(1, 1)) prior({mua mub}, normal(0, 1))
> block({vara varb mua mub}, split) init({discr:i.item} 1 {diff:i.item} 1)
> exclude({subj:i.id}) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 100001000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
y ~ logit(xb_discr*(xb_subj-xb_diff))

Priors:
{discr:i.item} ~ lognormal({mua},{vara}) (1)
{diff:i.item} ~ normal({mub},{varb}) (2)

{subj:i.id} ~ normal(0,1) (3)

Hyperpriors:
{vara varb} ~ gamma(1,1)

{mua mub} ~ normal(0,1)

(1) Parameters are elements of the linear form xb_discr.
(2) Parameters are elements of the linear form xb_diff.
(3) Parameters are elements of the linear form xb_subj.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 117

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 7,200
Acceptance rate = .3657
Efficiency: min = .01027

avg = .04499
Log marginal likelihood = . max = .1762

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

discr
item

1 1.498385 .2400297 .017729 1.475542 1.077856 2.016152
2 .666128 .1119997 .005344 .6649249 .4541802 .886375
3 .9383295 .1477952 .01186 .9204028 .6765889 1.266951
4 .7994094 .1238608 .005473 .7962891 .5688815 1.059357
5 .9051624 .1482122 .011637 .9043871 .6396924 1.205136
6 .958388 .142267 .009086 .9504636 .7001779 1.252891
7 .4792205 .0899554 .008877 .4741658 .3261732 .6680243
8 1.297704 .221223 .017263 1.295304 .8673528 1.758576
9 .6670617 .1104876 .009091 .6625288 .4666832 .8896693

diff
item

1 -.4989148 .0830179 .005137 -.4993581 -.6742972 -.3519269
2 -.1502021 .1239443 .003577 -.1458722 -.4059771 .0751602
3 -1.710592 .2234976 .016935 -1.692729 -2.214283 -1.328619
4 .3466566 .114595 .004388 .3434778 .1346476 .5714364
5 1.605012 .2387544 .018704 1.57642 1.229628 2.138817
6 .6442216 .1147523 .006181 .6396185 .4391379 .8736935
7 2.190372 .4265088 .041367 2.130899 1.530794 3.148253
8 -1.830477 .2345021 .019047 -1.795231 -2.420293 -1.46107
9 -1.472878 .2480988 .01968 -1.446161 -2.045008 -1.072642

mua -.157914 .1768629 .004552 -.1556469 -.5143239 .188628
vara .2516064 .1808929 .007705 .1996404 .0597163 .7334286
mub -.078763 .4360087 .010388 -.0791598 -.945727 .7879737

varb 1.953467 .8047981 .029965 1.806903 .8319104 3.947983

bayesmh reports an acceptable average efficiency of about 4%. A close inspection of the estimation
table shows that the posterior mean estimates for item discrimination and difficulty are not much
different from the MLE estimates obtained with the irt 2pl command; see example 1 in [IRT] irt
2pl.

http://www.stata.com/manuals14/irtirt2pl.pdf#irtirt2plRemarksandexamplesex1
http://www.stata.com/manuals14/irtirt2pl.pdf#irtirt2pl
http://www.stata.com/manuals14/irtirt2pl.pdf#irtirt2pl

118 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Stored results
bayesmh stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k sc) number of scalar parameters
e(k mat) number of matrix parameters
e(n eq) number of equations
e(mcmcsize) MCMC sample size
e(burnin) number of burn-in iterations
e(mcmciter) total number of MCMC iterations
e(thinning) thinning interval
e(arate) overall AR
e(eff min) minimum efficiency
e(eff avg) average efficiency
e(eff max) maximum efficiency
e(clevel) credible interval level
e(hpd) 1 if hpd is specified; 0 otherwise
e(batch) batch length for batch-means calculations
e(corrlag) maximum autocorrelation lag
e(corrtol) autocorrelation tolerance
e(dic) deviation information criterion
e(lml lm) log marginal-likelihood using Laplace–Metropolis method
e(scale) initial multiplier for scale factor; scale()
e(block# gibbs) 1 if Gibbs sampling is used in #th block; 0 otherwise
e(block# reffects) 1 if the parameters in #th block are random effects; 0 otherwise
e(block# scale) #th block initial multiplier for scale factor
e(block# tarate) #th block target adaptation rate
e(block# arate last) #th block AR from the last adaptive iteration
e(block# tolerance) #th block adaptation tolerance
e(adapt every) adaptation iterations adaptation(every())
e(adapt maxiter) maximum number of adaptive iterations adaptation(maxiter())
e(adapt miniter) minimum number of adaptive iterations adaptation(miniter())
e(adapt alpha) adaptation parameter adaptation(alpha())
e(adapt beta) adaptation parameter adaptation(beta())
e(adapt gamma) adaptation parameter adaptation(gamma())
e(adapt tolerance) adaptation tolerance adaptation(tolerance())
e(repeat) number of attempts used to find feasible initial values

Macros
e(cmd) bayesmh
e(cmdline) command as typed
e(method) sampling method
e(depvars) names of dependent variables
e(eqnames) names of equations
e(likelihood) likelihood distribution (one equation)
e(likelihood#) likelihood distribution for #th equation
e(prior) prior distribution
e(prior#) prior distribution, if more than one prior() is specified
e(priorparams) parameter specification in prior()
e(priorparams#) parameter specification from #th prior(), if more than one prior() is specified
e(parnames) names of model parameters except exclude()
e(postvars) variable names corresponding to model parameters in e(parnames)
e(subexpr) substitutable expression
e(subexpr#) substitutable expression, if more than one
e(wtype) weight type (one equation)
e(wtype#) weight type for #th equation
e(wexp) weight expression (one equation)
e(wexp#) weight expression for #th equation
e(block# names) parameter names from #th block
e(exclude) names of excluded parameters

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 119

e(filename) name of the file with simulation results
e(scparams) scalar model parameters
e(matparams) matrix model parameters
e(pareqmap) model parameters in display order
e(title) title in estimation output
e(rngstate) random-number state at the time of simulation
e(search) on, repeat(), or off

Matrices
e(mean) posterior means
e(sd) posterior standard deviations
e(mcse) MCSE
e(median) posterior medians
e(cri) credible intervals
e(Cov) variance–covariance matrix of parameters
e(ess) effective sample sizes
e(init) initial values vector

Functions
e(sample) mark estimation sample

Methods and formulas
Methods and formulas are presented under the following headings:

Adaptive MH algorithm
Adaptive MH algorithm for random effects
Gibbs sampling for some likelihood-prior and prior-hyperprior configurations

Likelihood-prior configurations
Prior-hyperprior configurations

Marginal likelihood

Adaptive MH algorithm

The bayesmh command implements an adaptive random-walk Metropolis–Hastings algorithm with
optional blocking of parameters. Providing an efficient MH procedure for simulating from a general
posterior distribution is a difficult task, and various adaptive methods have been proposed (Haario,
Saksman, and Tamminen 2001; Giordani and Kohn 2010; Roberts and Rosenthal 2009; Andrieu and
Thoms 2008). The essence of the problem is in choosing an optimal proposal covariance matrix and
a scale for parameter updates. Below we describe the implemented adaptation algorithm, assuming
one block of parameters. In the presence of multiple blocks, the adaptation is applied to each block
independently. The adaptation() option of bayesmh controls all the tuning parameters for the
adaptation algorithm.

Let θ be a vector of d scalar model parameters. Let T0 be the length of a burn-in period
(iterations that are discarded) as specified in burnin() and T be the size of the MCMC sample
(iterations that are retained) as specified in mcmcsize(). The total number of MCMC iterations is
then Ttotal = T0 + (T − 1) × thinning() + 1. Also, let ALEN be the length of the adaptation
interval (option adaptation(every())) and AMAX be the maximum number of adaptations (option
adaptation(maxiter())).

The steps of the adaptive MH algorithm are the following. At t = 0, we initialize θt = θ
f
0 , where

θ
f
0 is the initial feasible state, and we set adaptation counter k = 1 and initialize ρ0 = 2.38/

√
d,

where d is the number of considered parameters. Σ0 is the identity matrix. For t = 1, . . . , Ttotal, do
the following:

120 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

1. Generate proposal parameters: θ∗ = θt−1 + e, e ∼ N(0, ρ2
kΣk), where ρk and Σk are current

values of the proposal scale and covariance for adaptation iteration k.

2. Calculate the acceptance probability using

α(θ∗|θt−1) = min
{

p(θ∗|y)

p(θt−1|y)
, 1

}
where p(θ|y) = f(y|θ)p(θ) is the posterior distribution of θ corresponding to the likelihood
function f(y|θ) and prior p(θ).

3. Draw u ∼ Uniform(0, 1) and set θt = θ∗ if u < α(θ∗|θt−1) or θt = θt−1, otherwise.

4. Perform adaptive iteration k. This step is performed only if k ≤ AMAX and t mod ALEN = 0.
Update ρk according to (2), update Σk according to (3), and set k = k + 1.

5. Repeat steps 1–4. Note that the adaptation in step 4 is not performed at every MCMC iteration.

The output is the MCMC sequence {θt}Ttotal

t=T0+1 or θ1, θ1+l, θ1+2l, . . . , where l is the thinning
interval as specified in the thinning() option.

If the parameter vector θ is split into B blocks θ1, θ2, . . . , θB , then steps 1 through 3 are repeated
for each θb, b = 1, . . . , B sequentially. The adaptation in step 4 is then applied sequentially to each
block b = 1, 2, . . . , B. See Blocking of parameters in [BAYES] intro for details about blocking.

Initialization. We recommend that you carefully choose starting values for model parameters, θ0,
to be within the domain of the posterior distribution; see the initial() option. By default, MLEs
are used as initial values, whenever available. If MLEs are not available, parameters with positive
support are initialized with 1, probabilities are initialized with 0.5, and the remaining parameters are
initialized with 0. Matrix parameters are initialized as identity matrices. If specified initial values θ0

are within the domain of the posterior, then θ
f
0 = θ0. Otherwise, bayesmh performs 500 attempts

(or as specified in search(repeat())) to find a feasible state θ
f
0 , which is used as the initial state

in the algorithm. If the command cannot find feasible values, it exits with an error.

You can specify the initrandom option to request random initial values for all model parameters.
In this case, bayesmh generates random initial values from the corresponding prior distributions of
the parameters, except for those that are assigned improper priors such as flat and jeffreys() or
user-defined priors using the density() and logdensity() prior options. You must specify fixed
initial values for all model parameters for which random initial values cannot be generated.

Adaptation. The adaptation step is performed as follows. At each adaptive iteration k of the
tth MCMC iteration, the proposal covariance Σk and scale ρk are tuned to achieve an optimal AR.
Some asymptotic results (for example, Gelman, Gilks, and Roberts [1997]) show that the optimal
AR, hereafter referred to as a TAR, for a single model parameter is 0.44 and is 0.234 for a block of
multiple parameters.

Adaptation is performed periodically after a constant number of iterations as specified by the adap-
tation(every()) option. At least adaptation(miniter()) adaptive iterations are performed not
to exceed adaptation(maxiter()). bayesmh does not perform adaptation if the absolute difference
between the current AR and TAR is within the tolerance given by adaptation(tolerance()).

The bayesmh command allows you to control the calculation of AR through the adapta-
tion(alpha()) option with the default of 0.75, as follows,

ARk = (1− α)ARk−1 + αÂRk

where ÂRk is the expected acceptance probability, which is computed as the average of the acceptance
probabilities, α(θ∗|θt−1), since the last adaptive iteration (for example, Andrieu and Thoms [2008]),

http://www.stata.com/manuals14/bayesintro.pdf#bayesintroRemarksandexamplesBlockingofparameters
http://www.stata.com/manuals14/bayesintro.pdf#bayesintro

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 121

and AR0 is defined as described in the adaptation(tarate()) option. Choosing α ∈ (0, 1) allows
for smoother change in the current AR between adaptive iterations.

The tuning of the proposal scale ρ is based on results in Gelman, Gilks, and Roberts (1997),
Roberts and Rosenthal (2001), and Andrieu and Thoms (2008). The initial ρ0 is set to 2.38/

√
d,

where d is the number of parameters in the considered block. Then, ρk is updated according to

ρk = ρk−1e
βk{Φ−1(ARk/2)−Φ−1(TAR/2)} (2)

where Φ(·) is the standard normal cumulative distribution function and βk is defined below.

The adaptation of the covariance matrix is performed when multiple parameters are in the block
and is based on Andrieu and Thoms (2008). You may specify an initial proposal covariance matrix Σ0

in covariance() or use the identity matrix by default. Then, at time of adaptation k, the proposal
covariance Σk is recomputed according to the formula

Σk = (1− βk)Σk−1 + βkΣ̂k, βk =
β0

kγ
(3)

where Σ̂k = (Θtk − µk−1)(Θtk − µk−1)′/(tk − tk−1) is the empirical covariance of the recent
MCMC sample Θtk = {θs}tks=tk−1

and tk−1 is the MCMC iteration corresponding to the adaptive
iteration k − 1 or 0 if adaptation did not take place. µk is defined as

µk = µk−1 + βk(Θtk − µk−1), k > 1

and µ1 = Θtk , where Θtk is the sample mean of Θtk .

The constants β0 ∈ [0, 1] and γ ∈ [0, 1] in (3) are specified in the options adaptation(beta())
and adaptation(gamma()), respectively. The default values are 0.8 and 0, respectively. When
γ > 0, we have a diminishing adaptation regime, which means that Σk is not changing much from
one adaptive iteration to another. Random-walk Metropolis–Hastings algorithms with diminishing
adaptation are shown to preserve the ergodicity of the Markov chain (Roberts and Rosenthal 2007;
Andrieu and Moulines 2006; Atchadé and Rosenthal 2005).

The above algorithm is also used for discrete parameters, but discretization is used to obtain
samples of discrete values. The default initial scale factor ρ0 is set to 2.38/d for a block of d
discrete parameters. The default TAR for discrete parameters with priors bernoulli() and index()
is max{0.1353, 1/nmaxbins}, where nmaxbins is the maximum number of discrete values a parameter
can take among all the parameters specified in the same block. Blocks containing a mixture of
continuous and discrete parameters are not allowed.

Adaptive MH algorithm for random effects

Suppose that u is a random-effects variable that takes discrete values 1, . . . ,m. For an independent
sample Y = {yij}, where j = 1, . . . ,m and where i = 1, . . . , nj , we assume that u takes value j
for all yij , where i = 1, . . . , nj . Consider a two-level Bayesian model that includes random-effect
parameters ηj , where j = 1, . . . ,m, one for each level of u, and additional parameter vector θ. We
assume that, with respect to the posterior distribution of the model, the random-effects parameters
ηj are conditionally independent given θ and the data sample Y . The latter can be ensured the prior
distribution of ηj’s satisfies the conditional independence condition

π(η1, . . . , ηm|θ) =

m∏
j=1

π(ηj |θ)

122 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

In this case, the posterior distribution admits the following factorization,

Pr(η1, . . . , ηm, θ|Y) = π(θ)

{ m∏
j=1

π(ηj |θ)

nj∏
i=1

Pr(yij |ηj , θ)

}

where π(θ) is the prior distribution of θ. This form of the posterior allows the parameters ηj’s to be
placed in one block and steps 1, 2, and 3 of the adaptive MH algorithm to be performed for all of
them simultaneously in a vector form, as if they were a single scalar parameter.

To request the random-effects MH algorithm in bayesmh, use block’s suboption reffects. The
same algorithm is used if one specifies the reffects() option. A random-effects block of parameters
has a default acceptance rate of 0.44, performs adaptation of the scale ρk according to (2), but uses
a fixed identity matrix for the proposal covariance Σk.

Gibbs sampling for some likelihood-prior and prior-hyperprior configurations

In some cases, when a block of parameters θb has a conjugate prior, or more appropriately,
a semiconjugate prior, with respect to the respective likelihood distribution for this block, you can
request Gibbs sampling instead of random-walk MH sampling. Then, steps 1 through 4 of the algorithm
described in Adaptive MH algorithm are replaced with just one step of Gibbs sampling as follows:

1’. Simulate proposal parameters: θb∗ ∼ Fb(θb|θ1
∗, . . . , θ

b−1
∗ , θb+1

∗ , . . . , θB∗ ,y)

Here Fb(·|·) is the full conditional distribution of θb with respect to the rest of the parameters.

Below we list the full conditional distributions for the likelihood-prior specifications for which
bayesmh provides Gibbs sampling. All priors except Jeffreys priors are semiconjugate, meaning that
full conditional distributions belong to the same family as the specified prior distributions for the
chosen data model. This contrasts with a concept of conjugacy under which the posterior distribution
of all parameters belongs to the same family as the joint prior distribution. All the combinations
below assume prior independence; that is, all parameters are independent a priori. Thus their joint
prior distribution is simply the product of the individual prior distributions.

Likelihood-prior configurations

Let y = (y1, y2, . . . , yn)′ be a data sample of size n. For multivariate data, Y =

(y1,y2, . . . ,yn)′ = {yij}n,di,j=1 is an n× d data matrix.

1. Normal–normal model: θb is a mean of a normal distribution of yi’s with a variance σ2; mean
and variance are independent a priori,

yi|θb, σ2 ∼ N(θb, σ2), i = 1, 2, . . . , n

θb ∼ N(µ0, τ
2
0)

θb|σ2,y ∼ Fb = N(µn, τ
2
n)

where µ0 and τ2
0 are hyperparameters (prior mean and prior variance) of a normal prior distribution

for θb and
µn =

(
µ0τ

−2
0 +

∑
yiσ
−2
)
τ2
n

τ2
n = (τ−2

0 + nσ−2)−1

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 123

2. Normal–normal regression: θb is a p1×1 subvector of a p×1 vector of regression coefficients β
from a normal linear regression model for y with an n× p design matrix X = (x′1,x

′
2, . . . ,x

′
n)′

and with a variance σ2; regression coefficients and variance are independent a priori,

yi|θb, σ2 ∼ N(x′iβ, σ
2), i = 1, 2, . . . , n

θbk ∼ i.i.d. N(β0, τ
2
0), k = 1, 2, . . . , p1

θb|σ2,y ∼ Fb = MVN(µn,Λn)

where β0 and τ2
0 are hyperparameters (prior regression coefficient and prior variance) of normal

prior distributions for θbk and

µn = (β0τ
−2
0 +X ′byσ

−2)Λn

Λn = (τ−2
0 Ip1 + σ−2X ′bXb)

−1

In the above, Ip1 is a p1 × p1 identity matrix, and Xb = (x′1b,x
′
2b, . . . ,x

′
nb)
′ is an n × p1

submatrix of X corresponding to the regression coefficients θb.

3. Normal–inverse-gamma model: θb is a variance of a normal distribution of yi’s with a mean µ;
mean and variance are independent a priori,

yi|µ, θb ∼ N(µ, θb), i = 1, 2, . . . , n

θb ∼ InvGamma(α, β)

θb|µ,y ∼ Fb = InvGamma(α+ n/2, β +

n∑
i=1

(yi − µ)2/2)

where α and β are hyperparameters (prior shape and prior scale) of an inverse-gamma prior
distribution for θb.

4. Multivariate-normal–multivariate-normal model: θb is a mean vector of a multivariate normal
distribution of ys with a d×d covariance matrix Σ; mean and covariance are independent a priori,

yi|θb,Σ ∼ MVN(θb,Σ), i = 1, 2, . . . , n

θb ∼ MVN(µ0,Λ0)

θb|Σ, Y ∼ Fb = MVN(µn,Λn)

where µ0 and Λ0 are hyperparameters (prior mean vector and prior covariance) of a multivariate
normal prior distribution for θb and

µn = ΛnΛ−1
0 µ0 + ΛnΣ−1

(
n∑
i=1

yi

)
Λn = (Λ−1

0 + nΣ−1)−1

124 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

5. Multivariate-normal–inverse-Wishart model: Θb is a d× d covariance matrix of a multivariate
normal distribution of ys with a mean vector µ; mean and covariance are independent a priori,

yi|µ,Θb ∼ MVN(µ,Θb), i = 1, 2, . . . , n

Θb ∼ InvWishart(ν,Ψ)

Θb|µ, Y ∼ Fb = InvWishart(n+ ν,Ψ +

n∑
i=1

(yi − µ)(yi − µ)′)

where ν and Ψ are hyperparameters (prior degrees of freedom and prior scale matrix) of an
inverse-Wishart prior distribution for Θb.

6. Multivariate-normal–Jeffreys model: Θb is a d× d covariance matrix of a multivariate normal
distribution of ys with a mean vector µ; mean and covariance are independent a priori,

yi|µ,Θb ∼ MVN(µ,Θb), i = 1, 2, . . . , n

Θb ∼ |Θb|−
d+1
2 (multivariate Jeffreys)

Θb|µ, Y ∼ Fb = InvWishart(n− 1,

n∑
i=1

(yi − µ)(yi − µ)′)

where | · | denotes the determinant of a matrix.

Prior-hyperprior configurations

Suppose that a prior distribution of a parameter of interest θ has hyperparameters θh for which a
prior distribution is specified. We refer to the former prior distribution as a hyperprior. You can also
request Gibbs sampling for the following prior-hyperprior combinations.

We use θbh and θbh to refer to the hyperparameters from the block b.

1. Normal–normal model: θbh is a mean of a normal prior distribution of θ with a variance σ2
h;

mean and variance are independent a priori,

θ|θbh, σ2
h ∼ N(θbh, σ

2
h)

θbh ∼ N(µ0, τ
2
0)

θbh|σ2
h, θ ∼ Fb = N(µ1, τ

2
1)

where µ0 and τ2
0 are the prior mean and prior variance of a normal hyperprior distribution for θbh

and
µ1 =

(
µ0τ

−2
0 + θσ−2

h

)
τ2
1

τ2
1 = (τ−2

0 + σ−2
h)−1

2. Normal–inverse-gamma model: θbh is a variance of a normal prior distribution of θ with a mean
µh; mean and variance are independent a priori,

θ|µh, θbh ∼ N(µh, θ
b
h)

θbh ∼ InvGamma(α, β)

θbh|µh, θ ∼ Fb = InvGamma(α+ 0.5, β + (θ − µ)2/2)

where α and β are the prior shape and prior scale, respectively, of an inverse-gamma hyperprior
distribution for θbh.

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 125

3. Bernoulli–beta model: θbh is a probability of success of a Bernoulli prior distribution of θ,

θ|θbh ∼ Bernoulli(θbh)

θbh ∼ Beta(α, β)

θbh|θ ∼ Fb = Beta(α+ θ, β + 1− θ)

where α and β are the prior shape and prior scale, respectively, of a beta hyperprior distribution
for θbh.

4. Poisson–gamma model: θbh is a mean of a Poisson prior distribution of θ,

θ|θbh ∼ Poisson(θbh)

θbh ∼ Gamma(α, β)

θbh|θ ∼ Fb = Gamma(α+ θ, β/(β + 1))

where α and β are the prior shape and prior scale, respectively, of a gamma hyperprior distribution
for θbh.

5. Multivariate-normal–multivariate-normal model: θbh is a mean vector of a multivariate normal
prior distribution of θ with a d× d covariance matrix Σh; mean and covariance are independent
a priori,

θ|θbh,Σh ∼ MVN(θbh,Σh)

θbh ∼ MVN(µ0,Λ0)

θbh|Σh, θ ∼ Fb = MVN(µ1,Λ1)

where µ0 and Λ0 are the prior mean vector and prior covariance of a multivariate normal hyperprior
distribution for θbh and

µ1 = Λ1Λ−1
0 µ0 + Λ1Σ−1

h θ

Λ1 = (Λ−1
0 + Σ−1

h)−1

6. Multivariate-normal–inverse-Wishart model: Θb
h is a d× d covariance matrix of a multivariate

normal prior distribution of θ with a mean vector µh; mean and covariance are independent a
priori,

θ|µh,Θb
h ∼ MVN(µh,Θ

b
h)

Θb
h ∼ InvWishart(ν,Ψ)

Θb
h|µh, θ ∼ Fb = InvWishart(ν + 1,Ψ + (θ− µh)(θ− µh)′)

where ν and Ψ are the prior degrees of freedom and prior scale matrix of an inverse-Wishart
hyperprior distribution for Θb

h.

126 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Marginal likelihood

The marginal likelihood is defined as

m(y) =

∫
p(y|θ)π(θ)dθ

where p(y|θ) is the probability density of data y given θ and π(θ) is the density of the prior
distribution for θ.

Marginal likelihood m(y), being the denominator term in the posterior distribution, has a major
role in Bayesian analysis. It is sometimes referred to as “model evidence”, and it is used as a
goodness-of-fit criterion. For example, marginal likelihoods are used in calculating Bayes factors for
the purpose of model comparison; see Methods and formulas in [BAYES] bayesstats ic.

The simplest approximation to m(y) is provided by the Monte Carlo integration,

m̂p =
1

M

M∑
s=1

p(y|θs)

where {θs}Ms=1 is an independent sample from the prior distribution π(θ). This estimation is very
inefficient, however, because of the high variance of the likelihood function. MCMC samples are not
independent and cannot be used directly for calculating m̂p.

An improved estimation of the marginal likelihood can be obtained by using importance sampling.
For a sample {θt}Tt=1, not necessarily independent, from the posterior distribution, the harmonic
mean of the likelihood values,

m̂h =

{
1

T

T∑
t=1

p(y|θt)−1

}−1

approximates m(y) (Geweke 1989).

Another method for estimating m(y) uses the Laplace approximation,

m̂l = (2π)p/2| − H̃|−1/2p(y|θ̃)π(θ̃)

where p is the number of parameters (or dimension of θ), θ̃ is the posterior mode, and H̃ is the
Hessian matrix of l(θ) = p(y|θ)π(θ) calculated at the mode θ̃.

Using the fact that the posterior sample covariance matrix, which we denote as Σ̂, is asymptot-
ically equal to (−H̃)−1, Raftery (1996) proposed what he called the Laplace–Metropolis estimator
(implemented by bayesmh):

m̂lm = (2π)p/2|Σ̂|1/2p(y|θ̃)π(θ̃)

Raftery (1996) recommends that a robust and consistent estimator be used for the posterior covariance
matrix.

Estimation of the log marginal likelihood becomes unstable for high-dimensional models such as
multilevel models and may result in a missing value.

http://www.stata.com/manuals14/bayesbayesstatsic.pdf#bayesbayesstatsicMethodsandformulas
http://www.stata.com/manuals14/bayesbayesstatsic.pdf#bayesbayesstatsic

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 127� �
Nicholas Constantine Metropolis (1915–1999) was born in Chicago, where he received BSc and
PhD degrees in physics at the University of Chicago. He oscillated through his career between
posts there and at what later became the Los Alamos National Laboratory in New Mexico.
Metropolis is best known for his contributions to Monte Carlo methods, algorithms based on
repeated random sampling. He was the first author on an outstanding paper about a Monte
Carlo algorithm (Metropolis et al. 1953), with Arianna W. Rosenbluth, Marshall N. Rosenbluth
(1927–2003), Augusta H. Teller (1909–2000), and Edward Teller (1908–2003). However, the
relative contributions of these authors have been much disputed, and general and specific credit
for the method should also be given to others, including John von Neumann (1903–1957),
Stanisław M. Ulam (1909–1984), and Enrico Fermi (1901–1954). According to Google Scholar,
Metropolis et al. (1953) has been cited over 28,000 times.

W. Keith Hastings (1930–) was born in Toronto, Ontario. He received BA, MA, and PhD degrees
in applied mathematics and statistics from the University of Toronto; his doctoral thesis was on
invariant fiducial distributions. Hastings worked as a consultant in computer applications for a
Toronto firm, at the University of Canterbury in New Zealand, and at Bell Labs in New Jersey
before returning from 1966 to 1971 to his alma mater. In this period, he wrote a famous paper
(Hastings 1970) generalizing the work of Metropolis et al. (1953) to produce what is now often
called the Metropolis–Hastings algorithm. It is the most common Markov chain Monte Carlo
method, widely used throughout statistical science to sample from high-dimensional distributions.
According to Google Scholar, Hastings (1970) has been cited over 8,000 times. Hastings worked
at the University of Victoria in British Columbia from 1971 to 1992, when he retired.

Harold Jeffreys (1891–1989) was born near Durham, England, and spent more than 75 years
studying and working at the University of Cambridge, principally on theoretical and observational
problems in geophysics, astronomy, mathematics, and statistics. He developed a systematic
Bayesian approach to inference in his monograph Theory of Probability.� �

References
Andrieu, C., and É. Moulines. 2006. On the ergodicity properties of some adaptive MCMC algorithms. Annals of

Applied Probability 16: 1462–1505.

Andrieu, C., and J. Thoms. 2008. A tutorial on adaptive MCMC. Statistics and Computing 18: 343–373.

Atchadé, Y. F., and J. S. Rosenthal. 2005. On adaptive Markov chain Monte Carlo algorithms. Bernoulli 11: 815–828.

Birnbaum, A. 1968. Some latent trait models and their use in inferring an examinee’s ability. In Statistical Theories
of Mental Test Scores, ed. F. M. Lord and M. R. Novick, 395–479. Reading, MA: Addison–Wesley.

Carlin, B. P., A. E. Gelfand, and A. F. M. Smith. 1992. Hierarchical Bayesian analysis of changepoint problems.
Journal of the Royal Statistical Society, Series C 41: 389–405.

Carlin, J. B. 1992. Meta-analysis for 2×2 tables: A Bayesian approach. Statistics in Medicine 11: 141–158.

De Boeck, P., and M. Wilson, ed. 2004. Explanatory Item Response Models: A Generalized Linear and Nonlinear
Approach. New York: Springer.

Diggle, P. J., P. J. Heagerty, K.-Y. Liang, and S. L. Zeger. 2002. Analysis of Longitudinal Data. 2nd ed. Oxford:
Oxford University Press.

Gelfand, A. E., S. E. Hills, A. Racine-Poon, and A. F. M. Smith. 1990. Illustration of Bayesian inference in normal
data models using Gibbs sampling. Journal of the American Statistical Association 85: 972–985.

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. 2014. Bayesian Data Analysis.
3rd ed. Boca Raton, FL: Chapman & Hall/CRC.

128 bayesmh — Bayesian regression using Metropolis–Hastings algorithm

Gelman, A., W. R. Gilks, and G. O. Roberts. 1997. Weak convergence and optimal scaling of random walk Metropolis
algorithms. Annals of Applied Probability 7: 110–120.

Geweke, J. 1989. Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57:
1317–1339.

Geyer, C. J. 2011. Introduction to Markov chain Monte Carlo. In Handbook of Markov Chain Monte Carlo, ed.
S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng, 3–48. Boca Raton, FL: Chapman & Hall/CRC.

Giordani, P., and R. J. Kohn. 2010. Adaptive independent Metropolis–Hastings by fast estimation of mixtures of
normals. Journal of Computational and Graphical Statistics 19: 243–259.

Haario, H., E. Saksman, and J. Tamminen. 2001. An adaptive Metropolis algorithm. Bernoulli 7: 223–242.

Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:
97–109.

Hoff, P. D. 2009. A First Course in Bayesian Statistical Methods. New York: Springer.

Huq, N. M., and J. Cleland. 1990. Bangladesh Fertility Survey 1989 (Main Report). National Institute of Population
Research and Training.

Jarrett, R. G. 1979. A note on the intervals between coal-mining disasters. Biometrika 66: 191–193.

Jeffreys, H. 1946. An invariant form for the prior probability in estimation problems. Proceedings of the Royal Society
of London, Series A 186: 453–461.

Lichman, M. 2013. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml.

Maas, B., W. R. Garnett, I. M. Pellock, and T. J. Comstock. 1987. A comparative bioavailability study of Carbamazepine
tablets and chewable formulation. Therapeutic Drug Monitoring 9: 28–33.

Maguire, B. A., E. S. Pearson, and A. H. A. Wynn. 1952. The time intervals between industrial accidents. Biometrika
39: 168–180.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. 1953. Equation of state calculations
by fast computing machines. Journal of Chemical Physics 21: 1087–1092.

Raftery, A. E. 1996. Hypothesis testing and model selection. In Markov Chain Monte Carlo in Practice, ed. W. R.
Gilks, S. Richardson, and D. J. Spiegelhalter, 163–187. Boca Raton, FL: Chapman and Hall.

Raftery, A. E., and V. E. Akman. 1986. Bayesian analysis of a Poisson process with a change-point. Biometrika 73:
85–89.

Rasch, G. 1960. Probabilistic Models for Some Intelligence and Attainment Tests. Copenhagen: Danish Institute of
Educational Research.

Roberts, G. O., and J. S. Rosenthal. 2001. Optimal scaling for various Metropolis–Hastings algorithms. Statistical
Science 16: 351–367.

. 2007. Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. Journal of Applied Probability
44: 458–475.

. 2009. Examples of adaptive MCMC. Journal of Computational and Graphical Statistics 18: 349–367.

Ruppert, D., M. P. Wand, and R. J. Carroll. 2003. Semiparametric Regression. Cambridge: Cambridge University
Press.

Thomas, A., B. O’Hara, U. Ligges, and S. Sturtz. 2006. Making BUGS Open. R News 6: 12–17.

Thompson, J. 2014. Bayesian Analysis with Stata. College Station, TX: Stata Press.

Yusuf, S., R. Simon, and S. S. Ellenberg. 1987. Proceedings of the workshop on methodological issues in overviews
of randomized clinical trials, May 1986. In Statistics in Medicine, vol. 6.

Zellner, A. 1986. On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In
Vol. 6 of Bayesian Inference and Decision Techniques: Essays in Honor of Bruno De Finetti (Studies in Bayesian
Econometrics and Statistics), ed. P. K. Goel and A. Zellner, 233–343. Amsterdam: North-Holland.

Zellner, A., and N. S. Revankar. 1969. Generalized production functions. Review of Economic Studies 36: 241–250.

http://archive.ics.uci.edu/ml
http://www.stata-press.com/books/bayesian-analysis-with-stata/

bayesmh — Bayesian regression using Metropolis–Hastings algorithm 129

Also see
[BAYES] bayesmh postestimation — Postestimation tools for bayesmh

[BAYES] bayesmh evaluators — User-defined evaluators with bayesmh

[BAYES] bayes — Introduction to commands for Bayesian analysis

[BAYES] intro — Introduction to Bayesian analysis

[BAYES] Glossary

http://www.stata.com/manuals14/bayesbayesmhpostestimation.pdf#bayesbayesmhpostestimation
http://www.stata.com/manuals14/bayesbayesmhevaluators.pdf#bayesbayesmhevaluators
http://www.stata.com/manuals14/bayesbayes.pdf#bayesbayes
http://www.stata.com/manuals14/bayesintro.pdf#bayesintro
http://www.stata.com/manuals14/bayesglossary.pdf#bayesGlossary

