Description

The *Time-Series Reference Manual* organizes the commands alphabetically, making it easy to find individual command entries if you know the name of the command. This overview organizes and presents the commands conceptually, that is, according to the similarities in the functions that they perform. The table below lists the manual entries that you should see for additional information.

Data management tools and time-series operators.
These commands help you prepare your data for further analysis.

Univariate time series.
These commands are grouped together because they are either estimators or filters designed for univariate time series or preestimation or postestimation commands that are conceptually related to one or more univariate time-series estimators.

Multivariate time series.
These commands are similarly grouped together because they are either estimators designed for use with multivariate time series or preestimation or postestimation commands conceptually related to one or more multivariate time-series estimators.

Forecasting models.
These commands work as a group to provide the tools you need to create models by combining estimation results, identities, and other objects and to solve those models to obtain forecasts.

Within these three broad categories, similar commands have been grouped together.

Data management tools and time-series operators

- `[TS] tset` Declare data to be time-series data
- `[TS] tsfill` Fill in gaps in time variable
- `[TS] tsappend` Add observations to a time-series dataset
- `[TS] tsreport` Report time-series aspects of a dataset or estimation sample
- `[TS] tsrevar` Time-series operator programming command
- `[TS] rolling` Rolling-window and recursive estimation
- `[D] datetime business calendars` User-definable business calendars
Univariate time series

Estimators

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>arfima</code></td>
<td>Autoregressive fractionally integrated moving-average models</td>
</tr>
<tr>
<td><code>arfima postestimation</code></td>
<td>Postestimation tools for arfima</td>
</tr>
<tr>
<td><code>arima</code></td>
<td>ARIMA, ARMAX, and other dynamic regression models</td>
</tr>
<tr>
<td><code>arima postestimation</code></td>
<td>Postestimation tools for arima</td>
</tr>
<tr>
<td><code>arch</code></td>
<td>Autoregressive conditional heteroskedasticity (ARCH) family of estimators</td>
</tr>
<tr>
<td><code>arch postestimation</code></td>
<td>Postestimation tools for arch</td>
</tr>
<tr>
<td><code>newey</code></td>
<td>Regression with Newey–West standard errors</td>
</tr>
<tr>
<td><code>newey postestimation</code></td>
<td>Postestimation tools for newey</td>
</tr>
<tr>
<td><code>prais</code></td>
<td>Prais–Winsten and Cochrane–Orcutt regression</td>
</tr>
<tr>
<td><code>prais postestimation</code></td>
<td>Postestimation tools for prais</td>
</tr>
<tr>
<td><code>ucm</code></td>
<td>Unobserved-components model</td>
</tr>
<tr>
<td><code>ucm postestimation</code></td>
<td>Postestimation tools for ucm</td>
</tr>
</tbody>
</table>

Time-series smoothers and filters

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tsfilter bk</code></td>
<td>Baxter–King time-series filter</td>
</tr>
<tr>
<td><code>tsfilter bw</code></td>
<td>Butterworth time-series filter</td>
</tr>
<tr>
<td><code>tsfilter cf</code></td>
<td>Christiano–Fitzgerald time-series filter</td>
</tr>
<tr>
<td><code>tsfilter hp</code></td>
<td>Hodrick–Prescott time-series filter</td>
</tr>
<tr>
<td><code>tssmooth ma</code></td>
<td>Moving-average filter</td>
</tr>
<tr>
<td><code>tssmooth dexp</code></td>
<td>Double-exponential smoothing</td>
</tr>
<tr>
<td><code>tssmooth expo</code></td>
<td>Single-exponential smoothing</td>
</tr>
<tr>
<td><code>tssmooth hwinters</code></td>
<td>Holt–Winters nonseasonal smoothing</td>
</tr>
<tr>
<td><code>tssmooth shwinters</code></td>
<td>Holt–Winters seasonal smoothing</td>
</tr>
<tr>
<td><code>tssmooth nl</code></td>
<td>Nonlinear filter</td>
</tr>
</tbody>
</table>

Diagnostic tools

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>corrgram</code></td>
<td>Tabulate and graph autocorrelations</td>
</tr>
<tr>
<td><code>xcorr</code></td>
<td>Cross-correlogram for bivariate time series</td>
</tr>
<tr>
<td><code>cump</code></td>
<td>Cumulative spectral distribution</td>
</tr>
<tr>
<td><code>pergram</code></td>
<td>Periodogram</td>
</tr>
<tr>
<td><code>psdensity</code></td>
<td>Parametric spectral density estimation</td>
</tr>
<tr>
<td><code>estat acplot</code></td>
<td>Plot parametric autocorrelation and autocovariance functions</td>
</tr>
<tr>
<td><code>estat aroots</code></td>
<td>Check the stability condition of ARIMA estimates</td>
</tr>
<tr>
<td><code>dfgls</code></td>
<td>DF-GLS unit-root test</td>
</tr>
<tr>
<td><code>dfuller</code></td>
<td>Augmented Dickey–Fuller unit-root test</td>
</tr>
<tr>
<td><code>pperron</code></td>
<td>Phillips–Perron unit-root test</td>
</tr>
<tr>
<td><code>regress postestimation time series</code></td>
<td>Postestimation tools for regress with time series</td>
</tr>
<tr>
<td><code>wntestb</code></td>
<td>Bartlett’s periodogram-based test for white noise</td>
</tr>
<tr>
<td><code>wntestq</code></td>
<td>Portmanteau (Q) test for white noise</td>
</tr>
</tbody>
</table>
Multivariate time series

Estimators

- **TS dfactor**
 Dynamic-factor models

- **TS dfactor postestimation**
 Postestimation tools for dfactor

- **TS mgarch ccc**
 Constant conditional correlation multivariate GARCH models

- **TS mgarch ccc postestimation**
 Postestimation tools for mgarch ccc

- **TS mgarch dce**
 Dynamic conditional correlation multivariate GARCH models

- **TS mgarch dce postestimation**
 Postestimation tools for mgarch dce

- **TS mgarch dvech**
 Diagonal vech multivariate GARCH models

- **TS mgarch dvech postestimation**
 Postestimation tools for mgarch dvech

- **TS mgarch vcc**
 Varying conditional correlation multivariate GARCH models

- **TS mgarch vcc postestimation**
 Postestimation tools for mgarch vcc

- **TS sspace**
 State-space models

- **TS sspace postestimation**
 Postestimation tools for sspace

- **TS var**
 Vector autoregressive models

- **TS var postestimation**
 Postestimation tools for var

- **TS var svar**
 Structural vector autoregressive models

- **TS var svar postestimation**
 Postestimation tools for svar

- **TS varbasic**
 Fit a simple VAR and graph IRFs or FEVDs

- **TS varbasic postestimation**
 Postestimation tools for varbasic

- **TS vec**
 Vector error-correction models

- **TS vec postestimation**
 Postestimation tools for vec

Diagnostic tools

- **TS varlmar**
 Perform LM test for residual autocorrelation

- **TS varnorm**
 Test for normally distributed disturbances

- **TS varsoc**
 Obtain lag-order selection statistics for VARs and VECMs

- **TS varstable**
 Check the stability condition of VAR or SVAR estimates

- **TS varwle**
 Obtain Wald lag-exclusion statistics

- **TS veclmar**
 Perform LM test for residual autocorrelation

- **TS vecnorm**
 Test for normally distributed disturbances

- **TS vecrank**
 Estimate the cointegrating rank of a VECM

- **TS vectorable**
 Check the stability condition of VECM estimates

Forecasting, inference, and interpretation

- **TS irf create**
 Obtain IRFs, dynamic-multiplier functions, and FEVDs

- **TS fcast compute**
 Compute dynamic forecasts after var, svar, or vec

- **TS vargranger**
 Perform pairwise Granger causality tests
Graphs and tables

[TS] corrgram Tabulate and graph autocorrelations
[TS] xcorr Cross-correlogram for bivariate time series
[TS] pergram Periodogram
[TS] irf graph Graphs of IRFs, dynamic-multiplier functions, and FEVDs
[TS] irf cgraph Combined graphs of IRFs, dynamic-multiplier functions, and FEVDs
[TS] irf ograph Overlaid graphs of IRFs, dynamic-multiplier functions, and FEVDs
[TS] irf table Tables of IRFs, dynamic-multiplier functions, and FEVDs
[TS] irf ctable Combined tables of IRFs, dynamic-multiplier functions, and FEVDs
[TS] fcast graph Graph forecasts after fcast compute
[TS] tsline Plot time-series data
[TS] varstable Check the stability condition of VAR or SVAR estimates
[TS] vecstable Check the stability condition of VECM estimates
[TS] wntestb Bartlett’s periodogram-based test for white noise

Results management tools

[TS] irf add Add results from an IRF file to the active IRF file
[TS] irf describe Describe an IRF file
[TS] irf drop Drop IRF results from the active IRF file
[TS] irf rename Rename an IRF result in an IRF file
[TS] irf set Set the active IRF file

Forecasting models

[TS] forecast Econometric model forecasting
[TS] forecast adjust Adjust a variable by add factoring, replacing, etc.
[TS] forecast clear Clear current model from memory
[TS] forecast coefvector Specify an equation via a coefficient vector
[TS] forecast create Create a new forecast model
[TS] forecast describe Describe features of the forecast model
[TS] forecast drop Drop forecast variables
[TS] forecast estimates Add estimation results to a forecast model
[TS] forecast exogenous Declare exogenous variables
[TS] forecast identity Add an identity to a forecast model
[TS] forecast list List forecast commands composing current model
[TS] forecast query Check whether a forecast model has been started
[TS] forecast solve Obtain static and dynamic forecasts

Remarks and examples

Remarks are presented under the following headings:

Data management tools and time-series operators
Univariate time series
 Estimators
 Time-series smoothers and filters
 Diagnostic tools
Multivariate time series
 Estimators
 Diagnostic tools
Forecasting models
We also offer a NetCourse on Stata’s time-series capabilities; see http://www.stata.com/netcourse/nc461.html.

Data management tools and time-series operators

Because time-series estimators are, by definition, a function of the temporal ordering of the observations in the estimation sample, Stata’s time-series commands require the data to be sorted and indexed by time, using the \texttt{tsset} command, before they can be used. \texttt{tsset} is simply a way for you to tell Stata which variable in your dataset represents time; \texttt{tsset} then sorts and indexes the data appropriately for use with the time-series commands. Once your dataset has been \texttt{tsset}, you can use Stata’s time-series operators in data manipulation or programming using that dataset and when specifying the syntax for most time-series commands. Stata has time-series operators for representing the lags, leads, differences, and seasonal differences of a variable. The time-series operators are documented in [TS] \texttt{tsset}.

You can also define a business-day calendar so that Stata’s time-series operators respect the structure of missing observations in your data. The most common example is having Monday come after Friday in market data. [D] \texttt{datetime business calendars} provides a discussion and examples.

\texttt{tsset} can also be used to declare that your dataset contains cross-sectional time-series data, often referred to as panel data. When you use \texttt{tsset} to declare your dataset to contain panel data, you specify a variable that identifies the panels and a variable that identifies the time periods. Once your dataset has been \texttt{tsset} as panel data, the time-series operators work appropriately for the data.

\texttt{tsfill}, which is documented in [TS] \texttt{tsfill}, can be used after \texttt{tsset} to fill in missing times with missing observations. \texttt{tsset} will report any gaps in your data, and \texttt{tsreport} will provide more details about the gaps. \texttt{tsappend} adds observations to a time-series dataset by using the information set by \texttt{tsset}. This function can be particularly useful when you wish to predict out of sample after fitting a model with a time-series estimator. \texttt{tsrevar} is a programmer’s command that provides a way to use \texttt{varlists} that contain time-series operators with commands that do not otherwise support time-series operators.

\texttt{rolling} performs rolling regressions, recursive regressions, and reverse recursive regressions. Any command that stores results in \texttt{e()} or \texttt{r()} can be used with \texttt{rolling}.

Univariate time series

Estimators

The six univariate time-series estimators currently available in Stata are \texttt{arfima}, \texttt{arima}, \texttt{arch}, \texttt{newey}, \texttt{prais}, and \texttt{ucm}. \texttt{newey} and \texttt{prais} are really just extensions to ordinary linear regression. When you fit a linear regression on time-series data via ordinary least squares (OLS), if the disturbances are autocorrelated, the parameter estimates are usually consistent, but the estimated standard errors tend to be underestimated. Several estimators have been developed to deal with this problem. One strategy is to use OLS for estimating the regression parameters and use a different estimator for the variances, one that is consistent in the presence of autocorrelated disturbances, such as the Newey–West estimator implemented in \texttt{newey}. Another strategy is to model the dynamics of the disturbances. The estimators found in \texttt{prais}, \texttt{arima}, \texttt{arch}, \texttt{arfima}, and \texttt{ucm} are based on such a strategy.

\texttt{prais} implements two such estimators: the Prais–Winsten and the Cochrane–Orcutt generalized least-squares (GLS) estimators. These estimators are GLS estimators, but they are fairly restrictive in that they permit only first-order autocorrelation in the disturbances. Although they have certain pedagogical and historical value, they are somewhat obsolete. Faster computers with more memory...
6 time series — Introduction to time-series commands

have made it possible to implement full information maximum likelihood (FIML) estimators, such as Stata’s arima command. These estimators permit much greater flexibility when modeling the disturbances and are more efficient estimators.

arima provides the means to fit linear models with autoregressive moving-average (ARMA) disturbances, or in the absence of linear predictors, autoregressive integrated moving-average (ARIMA) models. This means that, whether you think that your data are best represented as a distributed-lag model, a transfer-function model, or a stochastic difference equation, or you simply wish to apply a Box–Jenkins filter to your data, the model can be fit using arima. arch, a conditional maximum likelihood estimator, has similar modeling capabilities for the mean of the time series but can also model autoregressive conditional heteroskedasticity in the disturbances with a wide variety of specifications for the variance equation.

arfima estimates the parameters of autoregressive fractionally integrated moving-average (ARFIMA) models, which handle higher degrees of dependence than ARIMA models. ARFIMA models allow the autocorrelations to decay at the slower hyperbolic rate, whereas ARIMA models handle processes whose autocorrelations decay at an exponential rate.

Unobserved-components models (UCMs) decompose a time series into trend, seasonal, cyclical, and idiosyncratic components and allow for exogenous variables. ucm estimates the parameters of UCMs by maximum likelihood. UCMs can also model the stationary cyclical component using the stochastic-cycle parameterization that has an intuitive frequency-domain interpretation.

Time-series smoothers and filters

In addition to the estimators mentioned above, Stata also provides time-series filters and smoothers. The Baxter–King and Christiano–Fitzgerald band-pass filters and the Butterworth and Hodrick–Prescott high-pass filters are implemented in tsfilter; see [TS] tsfilter for an overview.

Also included are a simple, uniformly weighted, moving-average filter with unit weights; a weighted moving-average filter in which you can specify the weights; single- and double-exponential smoothers; Holt–Winters seasonal and nonseasonal smoothers; and a nonlinear smoother. Most of these smoothers were originally developed as ad hoc procedures and are used for reducing the noise in a time series (smoothing) or forecasting. Although they have limited application for signal extraction, these smoothers have all been found to be optimal for some underlying modern time-series models; see [TS] tssmooth.

Diagnostic tools

Stata’s time-series commands also include several preestimation and postestimation diagnostic and interpretation commands. corrgram estimates the autocorrelation function and partial autocorrelation function of a univariate time series, as well as Q statistics. These functions and statistics are often used to determine the appropriate model specification before fitting ARIMA models. corrgram can also be used with wntestb and wntestq to examine the residuals after fitting a model for evidence of model misspecification. Stata’s time-series commands also include the commands pergram and cumsp, which provide the log-standardized periodogram and the cumulative-sample spectral distribution, respectively, for time-series analysts who prefer to estimate in the frequency domain rather than the time domain.

psdensity computes the spectral density implied by the parameters estimated by arfima, arima, or ucm. The estimated spectral density shows the relative importance of components at different frequencies. estat acplot computes the autocorrelation and autocovariance functions implied by the parameters estimated by arima. These functions provide a measure of the dependence structure in the time domain.
xcorr estimates the cross-correlogram for bivariate time series and can similarly be used for both preestimation and postestimation. For example, the cross-correlogram can be used before fitting a transfer-function model to produce initial estimates of the IRF. This estimate can then be used to determine the optimal lag length of the input series to include in the model specification. It can also be used as a postestimation tool after fitting a transfer function. The cross-correlogram between the residual from a transfer-function model and the prewhitened input series of the model can be examined for evidence of model misspecification.

When you fit ARMA or ARIMA models, the dependent variable being modeled must be covariance stationary (ARMA models), or the order of integration must be known (ARIMA models). Stata has three commands that can test for the presence of a unit root in a time-series variable: \texttt{dfuller} performs the augmented Dickey–Fuller test, \texttt{pperron} performs the Phillips–Perron test, and \texttt{dfgls} performs a modified Dickey–Fuller test. \texttt{arfima} can also be used to investigate the order of integration. After estimation, you can use \texttt{estat aroots} to check the stationarity of an ARMA process.

The remaining diagnostic tools for univariate time series are for use after fitting a linear model via OLS with Stata’s \texttt{regress} command. They are documented collectively in \texttt{[R] regress postestimation time series}. They include \texttt{estat dwatson}, \texttt{estat durbinalt}, \texttt{estat bgodfrey}, and \texttt{estat archlm}. \texttt{estat dwatson} computes the Durbin–Watson \(d\) statistic to test for the presence of first-order autocorrelation in the OLS residuals. \texttt{estat durbinalt} likewise tests for the presence of autocorrelation in the residuals. By comparison, however, Durbin’s alternative test is more general and easier to use than the Durbin–Watson test. With \texttt{estat durbinalt}, you can test for higher orders of autocorrelation, the assumption that the covariates in the model are strictly exogenous is relaxed, and there is no need to consult tables to compute rejection regions, as you must with the Durbin–Watson test. \texttt{estat bgodfrey} computes the Breusch–Godfrey test for autocorrelation in the residuals, and although the computations are different, the test in \texttt{estat bgodfrey} is asymptotically equivalent to the test in \texttt{estat durbinalt}. Finally, \texttt{estat archlm} performs Engle’s LM test for the presence of autoregressive conditional heteroskedasticity.

Multivariate time series

Estimators

Stata provides commands for fitting the most widely applied multivariate time-series models. \texttt{var} and \texttt{svar} fit vector autoregressive and structural vector autoregressive models to stationary data. \texttt{vec} fits cointegrating vector error-correction models. \texttt{dfactor} fits dynamic-factor models. \texttt{mgarch ccc}, \texttt{mgarch dcc}, \texttt{mgarch dvech}, and \texttt{mgarch vcc} fit multivariate GARCH models. \texttt{sspace} fits state-space models. Many linear time-series models, including vector autoregressive moving-average (VARMA) models and structural time-series models, can be cast as state-space models and fit by \texttt{sspace}.

Diagnostic tools

Before fitting a multivariate time-series model, you must specify the number of lags of the dependent variable to include. \texttt{varsoc} produces statistics for determining the order of a VAR or VECM.

Several postestimation commands perform the most common specification analysis on a previously fitted VAR or SVAR. You can use \texttt{varlm} to check for serial correlation in the residuals, \texttt{varnorm} to test the null hypothesis that the disturbances come from a multivariate normal distribution, and \texttt{varstable} to see if the fitted VAR or SVAR is stable. Two common types of inference about VAR models are whether one variable Granger-causes another and whether a set of lags can be excluded from the model. \texttt{vargranger} reports Wald tests of Granger causation, and \texttt{varwle} reports Wald lag exclusion tests.
Similarly, several postestimation commands perform the most common specification analysis on a previously fitted VECM. You can use vecmar to check for serial correlation in the residuals, vecnorm to test the null hypothesis that the disturbances come from a multivariate normal distribution, and vectable to analyze the stability of the previously fitted VECM.

VARs and VECMs are often fit to produce baseline forecasts. fcast produces dynamic forecasts from previously fitted VARs and VECMs.

Many researchers fit VARs, SVARs, and VECMs because they want to analyze how unexpected shocks affect the dynamic paths of the variables. Stata has a suite of irf commands for estimating IRF functions and interpreting, presenting, and managing these estimates; see [TS] irf.

Forecasting models

Stata provides a set of commands for obtaining forecasts by solving models, collections of equations that jointly determine the outcomes of one or more variables. You use Stata estimation commands such as regress, reg3, var, and vec to fit stochastic equations and store the results using estimates store. Then you create a forecast model using forecast create and use commands, including forecast estimates and forecast identity, to build models consisting of estimation results, nonstochastic relationships (identities), and other model features. Models can be as simple as a single linear regression for which you want to obtain dynamic forecasts, or they can be complicated systems consisting of dozens of estimation results and identities representing a complete macroeconometric model.

The forecast solve command allows you to obtain both stochastic and dynamic forecasts. Confidence intervals for forecasts can be obtained via stochastic simulation incorporating both parameter uncertainty and additive random shocks. By using forecast adjust, you can incorporate outside information and specify different paths for some of the model’s variables to obtain forecasts under alternative scenarios.

References

Becketti, S. 2013. Introduction to Time Series Using Stata. College Station, TX: Stata Press.

Also see

[U] 1.3 What’s new
[R] intro — Introduction to base reference manual