
Title stata.com

rolling — Rolling-window and recursive estimation

Syntax Menu Description Options
Remarks and examples Stored results Acknowledgment References
Also see

Syntax

rolling
[

exp list
] [

if
] [

in
] [

, options
]
: command

options Description

Main
∗window(#) number of consecutive data points in each sample
recursive use recursive samples
rrecursive use reverse recursive samples

Options

clear replace data in memory with results
saving(filename, . . .) save results to filename; save statistics in double precision;

save results to filename every # replications
stepsize(#) number of periods to advance window
start(time constant) period at which rolling is to start
end(time constant) period at which rolling is to end
keep(varname

[
, start

]
) save varname along with results; optionally, use value at

left edge of window

Reporting

nodots suppress replication dots
noisily display any output from command
trace trace command’s execution

Advanced

reject(exp) identify invalid results

∗ window(#) is required.
You must tsset your data before using rolling; see [TS] tsset.
aweights are allowed in command if command accepts aweights; see [U] 11.1.6 weight.

exp list contains (name: elist)
elist
eexp

elist contains newvar = (exp)
(exp)

eexp is specname
[eqno]specname

specname is b

1

http://stata.com
http://www.stata.com/manuals13/u11.pdf#u11.1.3ifexp
http://www.stata.com/manuals13/u11.pdf#u11.1.4inrange
http://www.stata.com/manuals13/u11.pdf#u11.6Filenamingconventions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals13/tstsset.pdf#tstsset
http://www.stata.com/manuals13/u11.pdf#u11.1.6weight

2 rolling — Rolling-window and recursive estimation

b[]

se

se[]

eqno is # #
name

exp is a standard Stata expression; see [U] 13 Functions and expressions.

Distinguish between [], which are to be typed, and
[]

, which indicate optional arguments.

Menu
Statistics > Time series > Rolling-window and recursive estimation

Description
rolling is a moving sampler that collects statistics from command after executing command on

subsets of the data in memory. Typing

. rolling exp list, window(50) clear: command

executes command on sample windows of span 50. That is, rolling will first execute command by
using periods 1–50 of the dataset, and then using periods 2–51, 3–52, and so on. rolling can also
perform recursive and reverse recursive analyses, in which the starting or ending period is held fixed
and the window size grows.

command defines the statistical command to be executed. Most Stata commands and user-written
programs can be used with rolling, as long as they follow standard Stata syntax and allow the if
qualifier; see [U] 11 Language syntax. The by prefix cannot be part of command.

exp list specifies the statistics to be collected from the execution of command. If no expressions
are given, exp list assumes a default of b if command stores results in e() and of all the scalars if
command stores results in r() and not in e(). Otherwise, not specifying an expression in exp list
is an error.

Options

� � �
Main �

window(#) defines the window size used each time command is executed. The window size refers to
calendar periods, not the number of observations. If there are missing data (for example, because
of weekends), the actual number of observations used by command may be less than window(#).
window(#) is required.

recursive specifies that a recursive analysis be done. The starting period is held fixed, the ending
period advances, and the window size grows.

rrecursive specifies that a reverse recursive analysis be done. Here the ending period is held fixed,
the starting period advances, and the window size shrinks.

http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
http://www.stata.com/manuals13/u11.pdf#u11Languagesyntax

rolling — Rolling-window and recursive estimation 3

� � �
Options �

clear specifies that Stata replace the data in memory with the collected statistics even though the
current data in memory have not been saved to disk.

saving(filename
[
, suboptions

]
) creates a Stata data file (.dta file) consisting of (for each statistic

in exp list) a variable containing the window replicates.

double specifies that the results for each replication be saved as doubles, meaning 8-byte reals.
By default, they are saved as floats, meaning 4-byte reals.

every(#) specifies that results be written to disk every #th replication. every() should be specified
in conjunction only with saving() when command takes a long time for each replication. This
will allow recovery of partial results should your computer crash. See [P] postfile.

stepsize(#) specifies the number of periods the window is to be advanced each time command is
executed.

start(time constant) specifies the date on which rolling is to start. start() may be specified
as an integer or as a date literal.

end(time constant) specifies the date on which rolling is to end. end() may be specified as an
integer or as a date literal.

keep(varname
[
, start

]
) specifies a variable to be posted along with the results. The value posted

is the value that corresponds to the right edge of the window. Specifying the start() option
requests that the value corresponding to the left edge of the window be posted instead. This option
is often used to record calendar dates.

� � �
Reporting �

nodots suppresses display of the replication dot for each window on which command is executed.
By default, one dot character is printed for each window. A red ‘x’ is printed if command returns
with an error or if any value in exp list is missing.

noisily causes the output of command to be displayed for each window on which command is
executed. This option implies the nodots option.

trace causes a trace of the execution of command to be displayed. This option implies the noisily
and nodots options.

� � �
Advanced �

reject(exp) identifies an expression that indicates when results should be rejected. When exp is
true, the saved statistics are set to missing values.

Remarks and examples stata.com

rolling executes a command on each of a series of windows of observations and stores the
results. rolling can perform what are commonly called rolling regressions, recursive regressions,
and reverse recursive regressions. However, rolling is not limited to just linear regression analysis:
any command that stores results in e() or r() can be used with rolling.

Suppose that you have data collected at 100 consecutive points in time, numbered 1–100, and you
wish to perform a rolling regression with a window size of 20 periods. Typing

. rolling _b, window(20) clear: regress depvar indepvar

http://www.stata.com/manuals13/u11.pdf#u11.6Filenamingconventions
http://www.stata.com/manuals13/ppostfile.pdf#ppostfile
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
http://stata.com

4 rolling — Rolling-window and recursive estimation

causes Stata to regress depvar on indepvar using periods 1–20, store the regression coefficients
(b), run the regression using periods 2–21, and so on, finishing with a regression using periods
81–100 (the last 20 periods).

The stepsize() option specifies how far ahead the window is moved each time. For example,
if you specify step(2), then command is executed on periods 1–20, and then 3–22, 5–24, etc. By
default, rolling replaces the dataset in memory with the computed statistics unless the saving()
option is specified, in which case the computed statistics are saved in the filename specified. If the
dataset in memory has been changed since it was last saved and you do not specify saving(), you
must use clear.

rolling can also perform recursive and reverse recursive analyses. In a recursive analysis, the
starting date is held fixed, and the window size grows as the ending date is advanced. In a reverse
recursive analysis, the ending date is held fixed, and the window size shrinks as the starting date is
advanced.

Example 1

We have data on the daily returns to IBM stock (ibm), the S&P 500 (spx), and short-term interest
rates (irx), and we want to create a series containing the beta of IBM by using the previous 200 trading
days at each date. We will also record the standard errors, so that we can obtain 95% confidence
intervals for the betas. See, for example, Stock and Watson (2011, 118) for more information on
estimating betas. We type

. use http://www.stata-press.com/data/r13/ibm
(Source: Yahoo! Finance)

. tsset t
time variable: t, 1 to 494

delta: 1 unit

. generate ibmadj = ibm - irx
(1 missing value generated)

. generate spxadj = spx - irx
(1 missing value generated)

. rolling _b _se, window(200) saving(betas, replace) keep(date): regress ibmadj
> spxadj
(running regress on estimation sample)
(note: file betas.dta not found)
Rolling replications (295)

1 2 3 4 5
.. 50
.. 100
.. 150
.. 200
.. 250
...
file betas.dta saved

Our dataset has both a time variable t that runs consecutively and a date variable date that
measures the calendar date and therefore has gaps at weekends and holidays. Had we used the date
variable as our time variable, rolling would have used windows consisting of 200 calendar days
instead of 200 trading days, and each window would not have exactly 200 observations. We used
the keep(date) option so that we could refer to the date variable when working with the results
dataset.

rolling — Rolling-window and recursive estimation 5

We can list a portion of the dataset created by rolling to see what it contains:

. use betas, clear
(rolling: regress)

. sort date

. list in 1/3, abbrev(10)

start end date _b_spxadj _b_cons _se_spxadj _se_cons

1. 1 200 16oct2003 1.043422 -.0181504 .0658531 .0748295
2. 2 201 17oct2003 1.039024 -.0126876 .0656893 .074609
3. 3 202 20oct2003 1.038371 -.0235616 .0654591 .0743851

The variables start and end indicate the first and last observations used each time that rolling
called regress, and the date variable contains the calendar date corresponding the period represented
by end. The remaining variables are the estimated coefficients and standard errors from the regression.
In our example , b spxadj contains the estimated betas, and b cons contains the estimated alphas.
The variables se spxadj and se cons have the corresponding standard errors.

Finally, we compute the confidence intervals for the betas and examine how they have changed
over time:

. generate lower = _b_spxadj - 1.96*_se_spxadj

. generate upper = _b_spxadj + 1.96*_se_spxadj

. twoway (line _b_spxadj date) (rline lower upper date) if date>=td(1oct2003),
> ytitle("Beta")

.6
.8

1
1
.2

B
e
ta

01oct2003 01jan2004 01apr2004 01jul2004 01oct2004 01jan2005
date

_b[spxadj] lower/upper

As 2004 progressed, IBM’s stock returns were less influenced by returns in the broader market.
Beginning in June of 2004, IBM’s beta became significantly different from unity at the 95% confidence
level, as indicated by the fact that the confidence interval does not contain one from then onward.

In addition to rolling-window analyses, rolling can also perform recursive ones. Suppose again
that you have data collected at 100 consecutive points in time, and now you type

. rolling _b, window(20) recursive clear: regress depvar indepvar

6 rolling — Rolling-window and recursive estimation

Stata will first regress depvar on indepvar by using observations 1–20, store the coefficients, run
the regression using observations 1–21, observations 1–22, and so on, finishing with a regression
using all 100 observations. Unlike a rolling regression, in which case the number of observations is
held constant and the starting and ending points are shifted, a recursive regression holds the starting
point fixed and increases the number of observations. Recursive analyses are often used in forecasting
situations. As time goes by, more information becomes available that can be used in making forecasts.
See Kmenta (1997, 423–424).

Example 2

Using the same dataset, we type
. use http://www.stata-press.com/data/r13/ibm, clear
(Source: Yahoo! Finance)

. tsset t
time variable: t, 1 to 494

delta: 1 unit

. generate ibmadj = ibm - irx
(1 missing value generated)

. generate spxadj = spx - irx
(1 missing value generated)

. rolling _b _se, recursive window(200) clear: regress ibmadj spxadj
(output omitted)

. list in 1/3, abbrev(10)

start end _b_spxadj _b_cons _se_spxadj _se_cons

1. 1 200 1.043422 -.0181504 .0658531 .0748295
2. 1 201 1.039024 -.0126876 .0656893 .074609
3. 1 202 1.037687 -.016475 .0655896 .0743481

Here the starting period remains fixed and the window grows larger.

In a reverse recursive analysis, the ending date is held fixed, and the window size becomes smaller
as the starting date is advanced. For example, with a dataset that has observations numbered 1–100,
typing

. rolling _b, window(20) reverse recursive clear: regress depvar indepvar

creates a dataset in which the first observation has the results based on periods 1–100, the second
observation has the results based on 2–100, the third having 3–100, and so on, up to the last
observation having results based on periods 81–100 (the last 20 observations).

Example 3

Using the data on stock returns, we want to build a model in which we predict today’s IBM stock
return on the basis of yesterday’s returns on IBM and the S&P 500. That is, letting it and st denote
the returns to IBM and the S&P 500 on date t, we want to fit the regression model

it = β0 + β1it−1 + β2st−1 + εt

where εt is a regression error term, and then compute

ît+1 = β̂0 + β̂1it + β̂2st

rolling — Rolling-window and recursive estimation 7

We will use recursive regression because we suspect that the more data we have to fit the regression
model, the better the model will predict returns. We will use at least 20 periods in fitting the regression.

. use http://www.stata-press.com/data/r13/ibm, clear
(Source: Yahoo! Finance)

. tsset t
time variable: t, 1 to 494
delta: 1 unit

One alternative would be to use rolling with the recursive option to fit the regressions, collect
the coefficients, and then compute the predicted values afterward. However, we will instead write a
short program that computes the forecasts automatically and then use rolling, recursive on that
program. The program must accept an if expression so that rolling can indicate to the program
which observations are to be used. Our program is

program myforecast, rclass

syntax [if]

regress ibm L.ibm L.spx ‘if’

// Find last time period of estimation sample and
// make forecast for period just after that
summ t if e(sample)
local last = r(max)
local fcast = _b[_cons] + _b[L.ibm]*ibm[‘last’] + ///

_b[L.spx]*spx[‘last’]
return scalar forecast = ‘fcast’
// Next period’s actual return
// Will return missing value for final period
return scalar actual = ibm[‘last’+1]

end

Now we call rolling:

. rolling actual=r(actual) forecast=r(forecast), recursive window(20): myforecast
(output omitted)

. corr actual forecast
(obs=474)

actual forecast

actual 1.0000
forecast -0.0957 1.0000

Our model does not work too well—the correlation between actual returns and our forecasts is
negative.

Stored results
rolling sets no r- or e-class macros. The results from the command used with rolling, depending

on the last window of data used, are available after rolling has finished.

Acknowledgment
We thank Christopher F. Baum of the Department of Economics at Boston College and author of

the Stata Press books An Introduction to Modern Econometrics Using Stata and An Introduction to
Stata Programming for an earlier rolling regression command.

http://www.stata-press.com/books/imeus.html
http://www.stata-press.com/books/isp.html
http://www.stata-press.com/books/isp.html

8 rolling — Rolling-window and recursive estimation

References
Kmenta, J. 1997. Elements of Econometrics. 2nd ed. Ann Arbor: University of Michigan Press.

Stock, J. H., and M. W. Watson. 2011. Introduction to Econometrics. 3rd ed. Boston: Addison–Wesley.

Also see
[D] statsby — Collect statistics for a command across a by list

[R] stored results — Stored results

http://www.stata.com/bookstore/ite.html
http://www.stata.com/manuals13/dstatsby.pdf#dstatsby
http://www.stata.com/manuals13/rstoredresults.pdf#rstoredresults

