Syntax

```
mgarch dvech eq [eq ... eq] [if] [in] [, options]
```

where each `eq` has the form

```
(depvars = [indepvars] [, noconstant])
```

options

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>arch(numlist)</code></td>
<td>ARCH terms</td>
</tr>
<tr>
<td><code>garch(numlist)</code></td>
<td>GARCH terms</td>
</tr>
<tr>
<td><code>distribution(dist [#])</code></td>
<td>use <code>dist</code> distribution for errors (may be <code>gaussian</code>, <code>normal</code>, or <code>t</code>; default is <code>gaussian</code>)</td>
</tr>
<tr>
<td><code>constraints(numlist)</code></td>
<td>apply linear constraints</td>
</tr>
</tbody>
</table>

SE/Robust

```
vce(vcetype)
```

`vcetype` may be `oim` or `robust`

Reporting

```
level(#)
```

set confidence level; default is `level(95)`

```
nocnsreport
```

do not display constraints

```
display_options
```

control column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling

Maximization

```
maximize_options
```

control the maximization process; seldom used

```
from(matname)
```

initial values for the coefficients; seldom used

```
svtechnique(algorithm_spec)
```

starting-value maximization algorithm

```
sviterate(#)
```

number of starting-value iterations; default is `sviterate(25)`

```
coeflegend
```

display legend instead of statistics

You must `tsset` your data before using `mgarch dvech`; see [TS] `tsset`.

`indepvars` may contain factor variables; see [U] 11.4.3 Factor variables.

`depvars` and `indepvars` may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by, fp, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

`coeflegend` does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
mgarch dvech estimates the parameters of diagonal vech (DVECH) multivariate generalized autoregressive conditionally heteroskedastic (MGARCH) models in which each element of the conditional correlation matrix is parameterized as a linear function of its own past and past shocks.

DVECH MGARCH models are less parsimonious than the conditional correlation models discussed in [TS] mgarch ccc, [TS] mgarch dcc, and [TS] mgarch vcc because the number of parameters in DVECH MGARCH models increases more rapidly with the number of series modeled.

Options

- `noconstant` suppresses the constant term(s).
- `arch(numlist)` specifies the ARCH terms in the model. By default, no ARCH terms are specified.
- `garch(numlist)` specifies the GARCH terms in the model. By default, no GARCH terms are specified.
- `distribution(dist [#])` specifies the assumed distribution for the errors. `dist` may be `gaussian`, `normal`, or `t`.
 - `gaussian` and `normal` are synonyms; each causes `mgarch dvech` to assume that the errors come from a multivariate normal distribution. `#` cannot be specified with either of them.
 - `t` causes `mgarch dvech` to assume that the errors follow a multivariate Student t distribution, and the degree-of-freedom parameter is estimated along with the other parameters of the model. If `distribution(t #)` is specified, then `mgarch dvech` uses a multivariate Student t distribution with `#` degrees of freedom. `#` must be greater than 2.
- `constraints(numlist)` specifies linear constraints to apply to the parameter estimates.

- `vce(vcetype)` specifies the estimator for the variance–covariance matrix of the estimator.
 - `vce(oim)`, the default, specifies to use the observed information matrix (OIM) estimator.
 - `vce(robust)` specifies to use the Huber/White/sandwich estimator.

Reporting

- `level(#); see [R] estimation options.`
- `nocnsreport; see [R] estimation options.`
- `display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nolabel, fvwrap(#), fvwrapon(style), cformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch; see [R] estimation options.`
maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(matname); see [R] maximize for all options except
from(), and see below for information on from(). These options are seldom used.

from(matname) specifies initial values for the coefficients. from(b0) causes mgarch dvech to begin
the optimization algorithm with the values in b0. b0 must be a row vector, and the number of
columns must equal the number of parameters in the model.

svtechnique(algorithm_spec) and sviterate(#) specify options for the starting-value search
process.

svtechnique(algorithm_spec) specifies the algorithm used to search for initial values. The
syntax for algorithm_spec is the same as for the technique() option; see [R] maximize.
svtechnique(bhhh 5 nr 16000) is the default. This option may not be specified with
from().

sviterate(#) specifies the maximum number of iterations that the search algorithm may
perform. The default is sviterate(25). This option may not be specified with from().

The following option is available with mgarch dvech but is not shown in the dialog box:
coeflegend; see [R] estimation options.

Remarks and examples
stata.com

We assume that you have already read [TS] mgarch, which provides an introduction to MGARCH
models and the methods implemented in mgarch dvech.

MGARCH models are dynamic multivariate regression models in which the conditional variances
and covariances of the errors follow an autoregressive-moving-average structure. The DVECH MGARCH
model parameterizes each element of the current conditional covariance matrix as a linear function
of its own past and past shocks.

As discussed in [TS] mgarch, MGARCH models differ in the parsimony and flexibility of their
specifications for a time-varying conditional covariance matrix of the disturbances, denoted by H_t.
In a DVECH MGARCH model with one ARCH term and one GARCH term, the (i,j)th element of
the current conditional covariance matrix is modeled by

$$ h_{ij,t} = s_{ij} + a_{ij} \epsilon_{i,t-1} \epsilon_{j,t-1} + b_{ij} h_{ij,t-1} $$

where s_{ij}, a_{ij}, and b_{ij} are parameters and ϵ_{t-1} is the vector of errors from the previous period. This
expression shows the linear form in which each element of the current conditional covariance matrix
is a function of its own past and past shocks.

Technical note

The general vech MGARCH model developed by Bollerslev, Engle, and Wooldridge (1988) can be
written as

$$ y_t = Cx_t + \epsilon_t $$

$$ \epsilon_t = H_t^{1/2} \nu_t $$

$$ h_t = s + \sum_{i=1}^{p} A_i \text{vech}(\epsilon_{t-i}\epsilon_{t-i}') + \sum_{j=1}^{q} B_j h_{t-j} $$
where

- \(y_t \) is an \(m \times 1 \) vector of dependent variables;
- \(C \) is an \(m \times k \) matrix of parameters;
- \(x_t \) is a \(k \times 1 \) vector of independent variables, which may contain lags of \(y_t \);
- \(H_t^{1/2} \) is the Cholesky factor of the time-varying conditional covariance matrix \(H_t \);
- \(\nu_t \) is an \(m \times 1 \) vector of independent and identically distributed innovations;
- \(h_t = \text{vech}(H_t) \);
- the \(\text{vech}() \) function stacks the lower diagonal elements of a symmetric matrix into a column vector, for example,

\[
\text{vech}\left(\begin{array}{cc}1 & 2 \\ 2 & 3\end{array}\right) = (1, 2, 3)'
\]

- \(s \) is an \(m(m + 1)/2 \times 1 \) vector of parameters;
- each \(A_i \) is an \(\{m(m + 1)/2\} \times \{m(m + 1)/2\} \) matrix of parameters; and
- each \(B_j \) is an \(\{m(m + 1)/2\} \times \{m(m + 1)/2\} \) matrix of parameters.

Bollerslev, Engle, and Wooldridge (1988) argued that the general-vech MGARCH model in (1)–(3) was too flexible to fit to data, so they proposed restricting the matrices \(A_i \) and \(B_j \) to be diagonal matrices. It is for this restriction that the model is known as a diagonal vech MGARCH model. The diagonal vech MGARCH model can also be expressed by replacing (3) with

\[
H_t = S + \sum_{i=1}^{p} A_i \odot \epsilon_{t-i}' \epsilon_{t-i} + \sum_{j=1}^{q} B_j \odot H_{t-j} \tag{3'}
\]

where \(S \) is an \(m \times m \) symmetric parameter matrix; each \(A_i \) is an \(m \times m \) symmetric parameter matrix; \(\odot \) is the elementwise or Hadamard product; and each \(B_j \) is an \(m \times m \) symmetric parameter matrix. In (3\'), \(A \) and \(B \) are symmetric but not diagonal matrices because we used the Hadamard product. The matrices are diagonal in the vech representation of (3) but not in the Hadamard-product representation of (3\').

The Hadamard-product representation in (3\') clarifies that each element in \(H_t \) depends on its past values and the past values of the corresponding ARCH terms. Although this representation does not allow cross-covariance effects, it is still quite flexible. The rapid rate at which the number of parameters grows with \(m, p, \) or \(q \) is one aspect of the model’s flexibility.

Some examples

Example 1: Model with common covariates

We have data on a secondary market rate of a six-month U.S. Treasury bill, \(\text{tbill} \), and on Moody’s seasoned AAA corporate bond yield, \(\text{bond} \). We model the first-differences of \(\text{tbill} \) and the first-differences of \(\text{bond} \) as a VAR(1) with an ARCH(1) term.
. use http://www.stata-press.com/data/r13/irates4
(St. Louis Fed (FRED) financial data)
. mgarch dvech (D.bond D.tbill = LD.bond LD.tbill), arch(1)
Getting starting values
(setting technique to bhhh)
Iteration 0: log likelihood = 3569.2723
Iteration 1: log likelihood = 3708.4561
(output omitted)
Iteration 6: log likelihood = 4183.8853
Iteration 7: log likelihood = 4184.2424
(switching technique to nr)
Iteration 8: log likelihood = 4184.4141
Iteration 9: log likelihood = 4184.5973
Iteration 10: log likelihood = 4184.5975
Estimating parameters
(setting technique to bhhh)
Iteration 0: log likelihood = 4184.5975
Iteration 1: log likelihood = 4200.6303
Iteration 2: log likelihood = 4208.5342
Iteration 3: log likelihood = 4212.426
Iteration 4: log likelihood = 4215.2373
(switching technique to nr)
Iteration 5: log likelihood = 4217.0676
Iteration 6: log likelihood = 4221.5706
Iteration 7: log likelihood = 4221.6576
Iteration 8: log likelihood = 4221.6577
Diagonal vech MGARCH model
Sample: 3 - 2456 Number of obs = 2454
Distribution: Gaussian Wald chi2(4) = 1183.52
Log likelihood = 4221.658 Prob > chi2 = 0.0000

	Coef.	Std. Err.	z	P>	z		[95% Conf. Interval]	
		D.bond						
		bond LD.	.2967674	.0247149	12.01	0.000	.2483271	.3452077
		tbill LD.	.0947949	.0098683	9.61	0.000	.0754533	.1141364
		_cons	.0003991	.00143	0.28	0.780	-.0024036	.0032019
		D.tbill						
		bond LD.	.0108373	.0301501	0.36	0.719	-.0482558	.0699304
		tbill LD.	.4344747	.0176497	24.62	0.000	.3998819	.4690675
		_cons	.0011611	.0021033	0.55	0.581	-.0029612	.0052835
		Sigma0						
		1_1	.004894	.0002006	24.40	0.000	.0045008	.0052871
		2_1	.0040986	.0002396	17.10	0.000	.0036289	.0045683
		2_2	.0115149	.0005227	22.03	0.000	.0104904	.0125395
		L.Arch						
		1_1	.4514942	.0456835	9.88	0.000	.3619562	.5410323
		2_1	.2518879	.036736	6.86	0.000	.1798866	.3238939
		2_2	.843368	.060855	13.87	0.000	.7241914	.9625446
The output has three parts: an iteration log, a header, and an output table. The iteration log has two parts: the first part reports the iterations from the process of searching for starting values, and the second part reports the iterations from maximizing the log-likelihood function.

The header describes the estimation sample and reports a Wald test against the null hypothesis that all the coefficients on the independent variables in each equation are zero. Here the null hypothesis is rejected at all conventional levels.

The output table reports point estimates, standard errors, tests against zero, and confidence intervals for the estimated coefficients, the estimated elements of S, and any estimated elements of A or B. Here the output indicates that in the equation for $D.tbill$, neither the coefficient on $LD.bond$ nor the constant are statistically significant. The elements of S are reported in the Sigma0 equation. The estimate of $S[1,1]$ is 0.005, and the estimate of $S[2,1]$ is 0.004. The ARCH term results are reported in the L.ARCH equation. In the L.ARCH equation, 1_1 is the coefficient on the ARCH term for the conditional variance of the first dependent variable, 2_1 is the coefficient on the ARCH term for the conditional covariance between the first and second dependent variables, and 2_2 is the coefficient on the ARCH term for the conditional variance of the second dependent variable.

Example 2: Model with covariates that differ by equation

We improve the previous example by removing the insignificant parameters from the model:

```plaintext
. mgarch dvech (D.bond = LD.bond LD.tbill, noconstant) > (D.tbill = LD.tbill, noconstant), arch(1)
```

Getting starting values
(setting technique to bhhh)
Iteration 0: log likelihood = 3566.8824
Iteration 1: log likelihood = 3701.6181
Iteration 2: log likelihood = 3952.8048
Iteration 3: log likelihood = 4076.5164
Iteration 4: log likelihood = 4166.6842
Iteration 5: log likelihood = 4180.2998
Iteration 6: log likelihood = 4182.4545
Iteration 7: log likelihood = 4182.9563
(switching technique to nr)
Iteration 8: log likelihood = 4183.0293
Iteration 9: log likelihood = 4183.1112
Iteration 10: log likelihood = 4183.1113
Estimating parameters
(setting technique to bhhh)
Iteration 0: log likelihood = 4183.1113
Iteration 1: log likelihood = 4202.0304
Iteration 2: log likelihood = 4210.2929
Iteration 3: log likelihood = 4215.7798
Iteration 4: log likelihood = 4217.7755
(switching technique to nr)
Iteration 5: log likelihood = 4219.0078
Iteration 6: log likelihood = 4221.4197
Iteration 7: log likelihood = 4221.433
Iteration 8: log likelihood = 4221.433
```
Diagonal vech MGARCH model

|        | Coef. | Std. Err. | z     | P>|z| | [95% Conf. Interval] |
|--------|-------|-----------|-------|------|---------------------|
| D.bond | bond  | 0.2941649 | 0.0234734 | 12.53 | 0.000 | 0.2481579, 0.3401718 |
|        | LD.   | 0.0953158 | 0.0098077 | 9.72  | 0.000 | 0.076093, 0.1145386  |
| D.tbill| tbill | 0.4385945 | 0.0136672 | 32.09 | 0.000 | 0.4118072, 0.4653817 |

We specified each equation separately to remove the insignificant parameters. All the parameter estimates are statistically significant.

Example 3: Model with constraints

Here we analyze some fictional weekly data on the percentages of bad widgets found in the factories of Acme Inc. and Anvil Inc. We model the levels as a first-order autoregressive process. We believe that the adaptive management style in these companies causes the variances to follow a diagonal vech MGARCH process with one ARCH term and one GARCH term. Furthermore, these close competitors follow essentially the same process, so we impose the constraints that the ARCH coefficients are the same for the two companies and that the GARCH coefficients are also the same.
Imposing these constraints yields:

```
. use http://www.stata-press.com/data/r13/acme
. constraint 1 [L.ARCH]1_1 = [L.ARCH]2_2
. constraint 2 [L.GARCH]1_1 = [L.GARCH]2_2
. mgarch dvech (acme = L.acme) (anvil = L.anvil), arch(1) garch(1) > constraints(1 2)
```

Getting starting values

(setting technique to bhhh)

Iteration 0: log likelihood = -6087.0665 (not concave)
Iteration 1: log likelihood = -6022.2046
Iteration 2: log likelihood = -5986.6152
Iteration 3: log likelihood = -5976.5739
Iteration 4: log likelihood = -5974.4342
Iteration 5: log likelihood = -5974.4046
Iteration 6: log likelihood = -5974.4036
Iteration 7: log likelihood = -5974.4035

Estimating parameters

(setting technique to bhhh)

Iteration 0: log likelihood = -5974.4035
Iteration 1: log likelihood = -5973.812
Iteration 2: log likelihood = -5973.8004
Iteration 3: log likelihood = -5973.7999
Iteration 4: log likelihood = -5973.7999

Diagonal vech MGARCH model

Sample: 1969w35 - 1998w25 Number of obs = 1499
Distribution: Gaussian Wald ch2(2) = 272.47
Log likelihood = -5973.8 Prob > ch2 = 0.0000

( 1) [L.ARCH]1_1 - [L.ARCH]2_2 = 0
( 2) [L.GARCH]1_1 - [L.GARCH]2_2 = 0

| Coef.     | Std. Err. | z     | P>|z|    | [95% Conf. Interval] |
|-----------|-----------|-------|--------|----------------------|
| acme      |           |       |        |                      |
| acme      |           |       |        |                      |
| L1.       | 0.3365278 | 0.0255134 | 13.19 | 0.000 | 0.2865225  | 0.3865331  |
| _cons     | 1.1246111 | 0.060085 | 18.72 | 0.000 | 1.006847   | 1.242376   |
| anvil     |           |       |        |                      |
| anvil     |           |       |        |                      |
| L1.       | 0.3151955 | 0.0263287 | 11.97 | 0.000 | 0.2635922  | 0.3667988  |
| _cons     | 1.215786  | 0.0642052 | 18.94 | 0.000 | 1.089947   | 1.341626   |
| Sigma0    |           |       |        |                      |
| 1_1       | 1.889237  | 0.2168733 | 8.71  | 0.000 | 1.464173   | 2.314301   |
| 2_1       | 0.4599576 | 0.1139843 | 4.04  | 0.000 | 0.2365525  | 0.6833626  |
| 2_2       | 2.063113  | 0.2454633 | 8.40  | 0.000 | 1.582014   | 2.544213   |
| L.ARCH    |           |       |        |                      |
| 1_1       | 0.2813443 | 0.0299124 | 9.41  | 0.000 | 0.222717   | 0.3399716  |
| 2_1       | 0.181877  | 0.0353393 | 5.42  | 0.000 | 0.1161412  | 0.2476128  |
| 2_2       | 0.2813443 | 0.0299124 | 9.41  | 0.000 | 0.222717   | 0.3399716  |
| L.GARCH   |           |       |        |                      |
| 1_1       | 0.1487581 | 0.0697531 | 2.13  | 0.033 | 0.0120445  | 0.2854716  |
| 2_1       | 0.085404  | 0.1446524 | 0.59  | 0.555 | -0.1981094 | 0.3689175  |
| 2_2       | 0.1487581 | 0.0697531 | 2.13  | 0.033 | 0.0120445  | 0.2854716  |
We could test our constraints by fitting the unconstrained model and performing either a Wald or a likelihood-ratio test. The results indicate that we might further restrict the time-invariant components of the conditional variances to be the same across companies.

**Example 4: Model with a GARCH term**

Some models of financial data include no covariates or constant terms. For example, in modeling fictional data on the stock returns of Acme Inc. and Anvil Inc., we found it best not to include any covariates or constant terms. We include two ARCH terms and one GARCH term to model the conditional variances.

```
. use http://www.stata-press.com/data/r13/aacmer
. mgarch dvech (acme anvil = , noconstant), arch(1/2) garch(1)

Getting starting values
(setting technique to bhhh)
Iteration 0: log likelihood = -18417.243 (not concave)
Iteration 1: log likelihood = -18215.005
Iteration 2: log likelihood = -18199.691
Iteration 3: log likelihood = -18084.256
Iteration 5: log likelihood = -17993.662
Iteration 6: log likelihood = -17731.1
Iteration 7: log likelihood = -17629.505
(switching technique to nr)
Iteration 8: log likelihood = -17548.172
Iteration 9: log likelihood = -17544.987
Iteration 10: log likelihood = -17544.937
Iteration 11: log likelihood = -17544.937

Estimating parameters
(setting technique to bhhh)
Iteration 0: log likelihood = -17544.937
Iteration 1: log likelihood = -17544.937

Diagonal vech MGARCH model
Sample: 1 - 5000 Number of obs = 5000
Distribution: Gaussian Wald chi2(.) = .
Log likelihood = -17544.94 Prob > chi2 = .

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------------|---------|-----------|--------|----------|---------------------|
| Sigma0 | | | | | |
| 1_1 | 1.026283| .0823348 | 12.46 | 0.000 | .8649096 1.187656 |
| 2_1 | .4300997| .0590294 | 7.29 | 0.000 | .3144042 .5457952 |
| 2_2 | 1.019753| .0837146 | 12.18 | 0.000 | .8556751 1.18383 |
| L.ARCH | | | | | |
| 1_1 | .2878739| .02157 | 13.35 | 0.000 | .2455975 .3301504 |
| 2_1 | .1036685| .0161446 | 6.42 | 0.000 | .0720256 .1353114 |
| 2_2 | .2034196| .019855 | 10.25 | 0.000 | .1645044 .2423347 |
| L2.ARCH | | | | | |
| 1_1 | .1837825| .0274555 | 6.69 | 0.000 | .1299706 .2375943 |
| 2_1 | .0884425| .02208 | 4.01 | 0.000 | .0451665 .1317185 |
| 2_2 | .2025718| .0272639 | 7.43 | 0.000 | .1491355 .256008 |
| L.GARCH | | | | | |
| 1_1 | .0782467| .053944 | 1.45 | 0.147 | -.0274816 .183975 |
| 2_1 | .2888104| .0818303 | 3.53 | 0.000 | .1284261 .4491948 |
| 2_2 | .201618 | .0470584 | 4.28 | 0.000 | .1093853 .2938508 |
The model test is omitted from the output, because there are no covariates in the model. The univariate tests indicate that the included parameters fit the data well. In [TS] mgarch dvech postestimation, we discuss prediction from models without covariates.

Stored results

mgarch dvech stores the following in e():

Scalars
- `e(N)` number of observations
- `e(k)` number of parameters
- `e(k_extra)` number of extra estimates added to _b
- `e(k_eq)` number of equations in e(b)
- `e(k_dv)` number of dependent variables
- `e(df_m)` model degrees of freedom
- `e(ll)` log likelihood
- `e(chi2)` \(\chi^2 \) test
- `e(p)` significance
- `e(estdf)` 1 if distribution parameter was estimated, 0 otherwise
- `e(user)` user-provided distribution parameter
- `e(tmin)` minimum time in sample
- `e(tmax)` maximum time in sample
- `e(N_gaps)` number of gaps
- `e(rank)` rank of e(V)
- `e(ic)` number of iterations
- `e(rc)` return code
- `e(converged)` 1 if converged, 0 otherwise

Macros
- `e(cmd)` mgarch
- `e(model)` dvech
- `e(cmdline)` command as typed
- `e(depvar)` names of dependent variables
- `e(covariates)` list of covariates
- `e(dv_eqs)` dependent variables with mean equations
- `e(indeps)` independent variables in each equation
- `e(tvar)` time variable
- `e(title)` title in estimation output
- `e(chi2type)` Wald; type of model \(\chi^2 \) test
- `e(vce)` vcetype specified in vce()
- `e(vcetype)` title used to label Std. Err.
- `e(tmins)` formatted minimum time
- `e(tmaxs)` formatted maximum time
- `e(dist)` distribution for error term: gaussian or t
- `e(arch)` specified ARCH terms
- `e(garch)` specified GARCH terms
- `e(svtechnique)` maximization technique(s) for starting values
- `e(technique)` maximization technique
- `e(properties)` b V
- `e(estat_cmd)` program used to implement estat
- `e(predict)` program used to implement predict
- `e(marginsok)` predictions allowed by margins
- `e(marginsnotok)` predictions disallowed by margins
Matrices

- `e(b)` coefficient vector
- `e(Cns)` constraints matrix
- `e(i/log)` iteration log (up to 20 iterations)
- `e(gradient)` gradient vector
- `e(hessian)` Hessian matrix
- `e(A)` estimates of A matrices
- `e(B)` estimates of B matrices
- `e(S)` estimates of Σ_0 matrix
- `e(Sigma)` Σ hat
- `e(V)` variance–covariance matrix of the estimators
- `e(pinfo)` parameter information, used by `predict`

Functions

- `e(sample)` marks estimation sample

Methods and formulas

Recall that the diagonal vech MGARCH model can be written as

$$
\begin{align*}
\mathbf{y}_t &= \mathbf{C}\mathbf{x}_t + \epsilon_t \\
\epsilon_t &= \mathbf{H}_t^{1/2}\nu_t \\
\mathbf{H}_t &= \mathbf{S} + \sum_{i=1}^{p} \mathbf{A}_i \odot \epsilon_{t-i}\epsilon'_{t-i} + \sum_{j=1}^{q} \mathbf{B}_j \odot \mathbf{H}_{t-j}
\end{align*}
$$

where

- \mathbf{y}_t is an $m \times 1$ vector of dependent variables;
- \mathbf{C} is an $m \times k$ matrix of parameters;
- \mathbf{x}_t is a $k \times 1$ vector of independent variables, which may contain lags of \mathbf{y}_t;
- $\mathbf{H}_t^{1/2}$ is the Cholesky factor of the time-varying conditional covariance matrix \mathbf{H}_t;
- $\mathbf{\nu}_t$ is an $m \times 1$ vector of normal, independent, and identically distributed innovations;
- \mathbf{S} is an $m \times m$ symmetric matrix of parameters;
- each \mathbf{A}_i is an $m \times m$ symmetric matrix of parameters;
- \odot is the elementwise or Hadamard product; and
- each \mathbf{B}_j is an $m \times m$ symmetric matrix of parameters.

`mgarch dvech` estimates the parameters by maximum likelihood. The log-likelihood function based on the multivariate normal distribution for observation t is

$$
l_t = -0.5m \log(2\pi) - 0.5\log \left| \mathbf{H}_t \right| - 0.5\epsilon_t\mathbf{H}_t^{-1}\epsilon'_t
$$

where $\epsilon_t = \mathbf{y}_t - \mathbf{C}\mathbf{x}_t$. The log-likelihood function is $\sum_{t=1}^{T} l_t$.

If we assume that \(\nu_t \) follow a multivariate \(t \) distribution with degrees of freedom (df) greater than 2, then the log-likelihood function for observation \(t \) is

\[
l_t = \log \Gamma \left(\frac{\text{df} + m}{2} \right) - \log \Gamma \left(\frac{\text{df}}{2} \right) - \frac{m}{2} \log \{(\text{df} - 2)\pi\}
\]

\[-0.5\log \{\text{det}(H_t)\} - \frac{\text{df} + m}{2} \log \left(1 + \frac{\hat{\epsilon}_t H_t^{-1} \epsilon'_t}{\text{df} - 2} \right) \]

\text{mgarch dvech} ensures that \(H_t \) is positive definite for each \(t \).

By default, \text{mgarch dvech} performs an iterative search for starting values. \text{mgarch dvech} estimates starting values for \(C \) by seemingly unrelated regression, uses these estimates to compute residuals \(\hat{\epsilon}_t \), plugs \(\hat{\epsilon}_t \) into the above log-likelihood function, and optimizes this log-likelihood function over the parameters in \(H_t \). This starting-value method plugs in consistent estimates of the parameters for the conditional means of the dependent variables and then iteratively searches for the variance parameters that maximize the log-likelihood function. Lütkepohl (2005, chap. 16) discusses this method as an estimator for the variance parameters.

GARCH estimators require initial values that can be plugged in for \(\epsilon_{t-i} \epsilon'_{t-i} \) and \(H_{t-j} \) when \(t - i < 1 \) and \(t - j < 1 \). \text{mgarch dvech} substitutes an estimator of the unconditional covariance of the disturbances,

\[
\hat{\Sigma} = T^{-1} \sum_{t=1}^{T} \hat{\epsilon}_t \hat{\epsilon}'_t
\]

for \(\epsilon_{t-i} \epsilon'_{t-i} \) when \(t - i < 1 \) and for \(H_{t-j} \) when \(t - j < 1 \), where \(\hat{\epsilon}_t \) is the vector of residuals calculated using the estimated parameters.

\text{mgarch dvech} uses analytic first and second derivatives in maximizing the log-likelihood function based on the multivariate normal distribution. \text{mgarch dvech} uses numerical derivatives in maximizing the log-likelihood function based on the multivariate \(t \) distribution.

References

Also see

\text{mgarch dvech postestimation} — Postestimation tools for mgarch dvech

\text{mgarch} — Multivariate GARCH models

\text{tsset} — Declare data to be time-series data

\text{arch} — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

\text{var} — Vector autoregressive models

\text{20 Estimation and postestimation commands}