Description	Syntax for predict	Menu for predict	Options for predict
Remarks and examples	Also see		

Description

The following postestimation commands are available after arch:

arch postestimation — Postestimation tools for arch

Command	Description		
estat ic	Akaike's and Schwarz's Bayesian information criteria (AIC and BIC)		
estat summarize	summary statistics for the estimation sample		
estat vce	variance-covariance matrix of the estimators (VCE)		
estimates	cataloging estimation results		
forecast	dynamic forecasts and simulations		
lincom	point estimates, standard errors, testing, and inference for linear combinations of coefficients		
lrtest	likelihood-ratio test		
margins	marginal means, predictive margins, marginal effects, and average marginal effects		
marginsplot	graph the results from margins (profile plots, interaction plots, etc.)		
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients		
predict	predictions, residuals, influence statistics, and other diagnostic measures		
predictnl	point estimates, standard errors, testing, and inference for generalized predictions		
test	Wald tests of simple and composite linear hypotheses		
testnl	Wald tests of nonlinear hypotheses		

Syntax for predict

predict [type] newvar [if] [in] [, statistic options]

statistic	Description
Main	
xb	predicted values for mean equation-the differenced series; the default
У	predicted values for the mean equation in y —the undifferenced series
<u>v</u> ariance	predicted values for the conditional variance
<u>h</u> et	predicted values of the variance, considering only the multiplicative heteroskedasticity
<u>r</u> esiduals yresiduals	residuals or predicted innovations residuals or predicted innovations in y —the undifferenced series

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample.

options	Description	
Options		
<pre>dynamic(time_constant)</pre>	how to handle the lags of y_t	
$at(varname_{\epsilon} \#_{\epsilon} varname_{\sigma^2} \#_{\sigma^2})$	make static predictions	
t0(<i>time_constant</i>)	set starting point for the recursions to time_constant	
<u>str</u> uctural	calculate considering the structural component only	

time_constant is a # or a time literal, such as td(1jan1995) or tq(1995q1), etc.; see Conveniently typing SIF values in [D] datetime.

Menu for predict

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

Six statistics can be computed by using predict after arch: the predictions of the mean equation (option xb, the default), the undifferenced predictions of the mean equation (option y), the predictions of the conditional variance (option variance), the predictions of the multiplicative heteroskedasticity component of variance (option het), the predictions of residuals or innovations (option residuals), and the predictions of residuals or innovations in terms of y (option yresiduals). Given the dynamic nature of ARCH models and because the dependent variable might be differenced, there are other ways of computing each statistic. We can use all the data on the dependent variable available right up to the time of each prediction (the default, which is often called a one-step prediction), or we can use the data up to a particular time, after which the predicted value of the dependent variable is used recursively to make later predictions (option dynamic()). Either way, we can consider or ignore the ARMA disturbance component, which is considered by default and is ignored if you specify the structural option. We might also be interested in predictions at certain fixed points where we specify the prior values of ϵ_t and σ_t^2 (option at()).

Main

- xb, the default, calculates the predictions from the mean equation. If D. *depvar* is the dependent variable, these predictions are of D. *depvar* and not of *depvar* itself.
- y specifies that predictions of *depvar* are to be made even if the model was specified for, say, D.*depvar*.
- variance calculates predictions of the conditional variance $\hat{\sigma}_t^2$.
- het calculates predictions of the multiplicative heteroskedasticity component of variance.
- residuals calculates the residuals. If no other options are specified, these are the predicted innovations ϵ_t ; that is, they include any ARMA component. If the structural option is specified, these are the residuals from the mean equation, ignoring any ARMA terms; see structural below. The residuals are always from the estimated equation, which may have a differenced dependent variable; if *depvar* is differenced, they are not the residuals of the undifferenced *depvar*.
- yresiduals calculates the residuals for depvar, even if the model was specified for, say, D. depvar. As with residuals, the yresiduals are computed from the model, including any ARMA component. If the structural option is specified, any ARMA component is ignored and yresiduals are the residuals from the structural equation; see structural below.

Options

dynamic(*time_constant*) specifies how lags of y_t in the model are to be handled. If dynamic() is not specified, actual values are used everywhere lagged values of y_t appear in the model to produce one-step-ahead forecasts.

dynamic (time_constant) produces dynamic (also known as recursive) forecasts. time_constant specifies when the forecast is to switch from one step ahead to dynamic. In dynamic forecasts, references to y_t evaluate to the prediction of y_t for all periods at or after time_constant; they evaluate to the actual value of y_t for all prior periods.

dynamic(10), for example, would calculate predictions where any reference to y_t with t < 10 evaluates to the actual value of y_t and any reference to y_t with $t \ge 10$ evaluates to the prediction of y_t . This means that one-step-ahead predictions would be calculated for t < 10 and dynamic predictions would be calculated thereafter. Depending on the lag structure of the model, the dynamic predictions might still refer to some actual values of y_t .

You may also specify dynamic(.) to have predict automatically switch from one-step-ahead to dynamic predictions at p + q, where p is the maximum AR lag and q is the maximum MA lag.

at(*varname*_{ϵ} | $\#_{\epsilon}$ *varname*_{σ^2} | $\#_{\sigma^2}$) makes static predictions. at() and dynamic() may not be specified together.

Specifying at () allows static evaluation of results for a given set of disturbances. This is useful, for instance, in generating the news response function. at () specifies two sets of values to be used for ϵ_t and σ_t^2 , the dynamic components in the model. These specified values are treated as given. Also, any lagged values of *depvar* in the model are obtained from the real values of the dependent variable. All computations are based on actual data and the given values.

at () requires that you specify two arguments, which can be either a variable name or a number. The first argument supplies the values to be used for ϵ_t ; the second supplies the values to be used for σ_t^2 . If σ_t^2 plays no role in your model, the second argument may be specified as '.' to indicate missing.

 $t0(time_constant)$ specifies the starting point for the recursions to compute the predicted statistics; disturbances are assumed to be 0 for t < t0(). The default is to set t0() to the minimum t observed in the estimation sample, meaning that observations before that are assumed to have disturbances of 0.

to() is irrelevant if structural is specified because then all observations are assumed to have disturbances of 0.

t0(5), for example, would begin recursions at t = 5. If your data were quarterly, you might instead type t0(tq(1961q2)) to obtain the same result.

Any ARMA component in the mean equation or GARCH term in the conditional-variance equation makes arch recursive and dependent on the starting point of the predictions. This includes one-step-ahead predictions.

structural makes the calculation considering the structural component only, ignoring any ARMA terms, and producing the steady-state equilibrium predictions.

Remarks and examples

Example 1

Continuing with our EGARCH model example (example 3) in [TS] arch, we can see that predict, at () calculates σ_t^2 given a set of specified innovations ($\epsilon_t, \epsilon_{t-1}, \ldots$) and prior conditional variances ($\sigma_{t-1}^2, \sigma_{t-2}^2, \ldots$). The syntax is

. predict newvar, variance at(epsilon sigma2)

epsilon and sigma2 are either variables or numbers. Using sigma2 is a little tricky because you specify values of σ_t^2 , which predict is supposed to predict. predict does not simply copy variable sigma2 into newvar but uses the lagged values contained in sigma2 to produce the predicted value of σ_t^2 . It does this for all t, and those results are saved in newvar. (If you are interested in dynamic predictions of σ_t^2 , see Options for predict.)

We will generate predictions for σ_t^2 , assuming that the lagged values of σ_t^2 are 1, and we will vary ϵ_t from -4 to 4. First, we will create variable et containing ϵ_t , and then we will create and graph the predictions:

```
. generate et = (_n-64)/15
```

- . predict sigma2, variance at(et 1)
- . line sigma2 et in 2/1, m(i) c(1) title(News response function)

The positive asymmetry does indeed dominate the shape of the news response function. In fact, the response is a monotonically increasing function of news. The form of the response function shows that, for our simple model, only positive, unanticipated price increases have the destabilizing effect that we observe as larger conditional variances.

4

▷ Example 2

Continuing with our ARCH model with constraints example (example 6) in [TS] arch, using lincom we can recover the α parameter from the original specification.

. lincom [ARCH (1) 2.5*[AH	H]l1.arch/.4 RCH]L.arch = (D				
D.ln_wpi	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
(1)	.5450344	.1844468	2.95	0.003	.1835253	.9065436

Any arch parameter could be used to produce an identical estimate.

Also see

[TS] arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

[U] 20 Estimation and postestimation commands