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Syntax

arch depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
arch(numlist) ARCH terms
garch(numlist) GARCH terms
saarch(numlist) simple asymmetric ARCH terms
tarch(numlist) threshold ARCH terms
aarch(numlist) asymmetric ARCH terms
narch(numlist) nonlinear ARCH terms
narchk(numlist) nonlinear ARCH terms with single shift
abarch(numlist) absolute value ARCH terms
atarch(numlist) absolute threshold ARCH terms
sdgarch(numlist) lags of σt
earch(numlist) news terms in Nelson’s (1991) EGARCH model
egarch(numlist) lags of ln(σ2

t )
parch(numlist) power ARCH terms
tparch(numlist) threshold power ARCH terms
aparch(numlist) asymmetric power ARCH terms
nparch(numlist) nonlinear power ARCH terms
nparchk(numlist) nonlinear power ARCH terms with single shift
pgarch(numlist) power GARCH terms
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

Model 2

archm include ARCH-in-mean term in the mean-equation specification
archmlags(numlist) include specified lags of conditional variance in mean equation
archmexp(exp) apply transformation in exp to any ARCH-in-mean terms
arima(#p,#d,#q) specify ARIMA(p, d, q) model for dependent variable
ar(numlist) autoregressive terms of the structural model disturbance
ma(numlist) moving-average terms of the structural model disturbances

Model 3

distribution(dist
[

#
]
) use dist distribution for errors (may be gaussian, normal, t,

or ged; default is gaussian)
het(varlist) include varlist in the specification of the conditional variance
savespace conserve memory during estimation
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Priming

arch0(xb) compute priming values on the basis of the expected unconditional
variance; the default

arch0(xb0) compute priming values on the basis of the estimated variance of the
residuals from OLS

arch0(xbwt) compute priming values on the basis of the weighted sum of squares
from OLS residuals

arch0(xb0wt) compute priming values on the basis of the weighted sum of squares
from OLS residuals, with more weight at earlier times

arch0(zero) set priming values of ARCH terms to zero
arch0(#) set priming values of ARCH terms to #
arma0(zero) set all priming values of ARMA terms to zero; the default
arma0(p) begin estimation after observation p, where p is the

maximum AR lag in model
arma0(q) begin estimation after observation q, where q is the

maximum MA lag in model
arma0(pq) begin estimation after observation (p+ q)
arma0(#) set priming values of ARMA terms to #
condobs(#) set conditioning observations at the start of the sample to #

SE/Robust

vce(vcetype) vcetype may be opg, robust, or oim

Reporting

level(#) set confidence level; default is level(95)

detail report list of gaps in time series
nocnsreport do not display constraints
display options control column formats, row spacing, and line width

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

You must tsset your data before using arch; see [TS] tsset.
depvar and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, fp, rolling, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
iweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

To fit an ARCH(#m) model with Gaussian errors, type

. arch depvar . . . , arch(1/#m)

To fit a GARCH(#m, #k) model assuming that the errors follow Student’s t distribution with 7 degrees
of freedom, type

. arch depvar . . . , arch(1/#m) garch(1/#k) distribution(t 7)

You can also fit many other models.

http://www.stata.com/manuals13/r.pdf#rvce_option
http://www.stata.com/manuals13/tstsset.pdf#tstsset
http://www.stata.com/manuals13/u11.pdf#u11.4.4Time-seriesvarlists
http://www.stata.com/manuals13/u11.pdf#u11.1.10Prefixcommands
http://www.stata.com/manuals13/u11.pdf#u11.1.6weight
http://www.stata.com/manuals13/u20.pdf#u20Estimationandpostestimationcommands
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Details of syntax

The basic model arch fits is

yt = xtβ+ εt

Var(εt) = σ2
t = γ0 +A(σ, ε) +B(σ, ε)2

(1)

The yt equation may optionally include ARCH-in-mean and ARMA terms:

yt = xtβ+
∑
i

ψig(σ2
t−i) + ARMA(p, q) + εt

If no options are specified, A() = B() = 0, and the model collapses to linear regression. The
following options add to A() (α, γ, and κ represent parameters to be estimated):

Option Terms added to A()

arch() A() = A()+α1,1ε
2
t−1 + α1,2ε

2
t−2 + · · ·

garch() A() = A()+α2,1σ
2
t−1 + α2,2σ

2
t−2 + · · ·

saarch() A() = A()+α3,1εt−1 + α3,2εt−2 + · · ·
tarch() A() = A()+α4,1ε

2
t−1(εt−1 > 0) + α4,2ε

2
t−2(εt−2 > 0) + · · ·

aarch() A() = A()+α5,1(|εt−1|+ γ5,1εt−1)2 + α5,2(|εt−2|+ γ5,2εt−2)2 + · · ·
narch() A() = A()+α6,1(εt−1 − κ6,1)2 + α6,2(εt−2 − κ6,2)2 + · · ·
narchk() A() = A()+α7,1(εt−1 − κ7)2 + α7,2(εt−2 − κ7)2 + · · ·

The following options add to B():

Option Terms added to B()

abarch() B() = B()+α8,1|εt−1|+ α8,2|εt−2|+ · · ·
atarch() B() = B()+α9,1|εt−1|(εt−1 > 0) + α9,2|εt−2|(εt−2 > 0) + · · ·
sdgarch() B() = B()+α10,1σt−1 + α10,2σt−2 + · · ·

Each option requires a numlist argument (see [U] 11.1.8 numlist), which determines the lagged
terms included. arch(1) specifies α1,1ε

2
t−1, arch(2) specifies α1,2ε

2
t−2, arch(1,2) specifies

α1,1ε
2
t−1 + α1,2ε

2
t−2, arch(1/3) specifies α1,1ε

2
t−1 + α1,2ε

2
t−2 + α1,3ε

2
t−3, etc.

If the earch() or egarch() option is specified, the basic model fit is

yt = xtβ+
∑
i

ψig(σ2
t−i) + ARMA(p, q) + εt

lnVar(εt) = lnσ2
t = γ0 + C( lnσ, z) +A(σ, ε) +B(σ, ε)2

(2)

where zt = εt/σt. A() and B() are given as above, but A() and B() now add to lnσ2
t rather than

σ2
t . (The options corresponding to A() and B() are rarely specified here.) C() is given by

http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
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Option Terms added to C()

earch() C() = C() +α11,1zt−1 + γ11,1(|zt−1| −
√

2/π)

+α11,2zt−2 + γ11,2(|zt−2| −
√

2/π) + · · ·
egarch() C() = C() +α12,1 lnσ2

t−1 + α12,2 lnσ2
t−2 + · · ·

Instead, if the parch(), tparch(), aparch(), nparch(), nparchk(), or pgarch() options are
specified, the basic model fit is

yt = xtβ+
∑
i

ψig(σ2
t−i) + ARMA(p, q) + εt

{Var(εt)}ϕ/2 = σϕt = γ0 +D(σ, ε) +A(σ, ε) +B(σ, ε)2
(3)

where ϕ is a parameter to be estimated. A() and B() are given as above, but A() and B() now add
to σϕt . (The options corresponding to A() and B() are rarely specified here.) D() is given by

Option Terms added to D()

parch() D() = D()+α13,1ε
ϕ
t−1 + α13,2ε

ϕ
t−2 + · · ·

tparch() D() = D()+α14,1ε
ϕ
t−1(εt−1 > 0) + α14,2ε

ϕ
t−2(εt−2 > 0) + · · ·

aparch() D() = D()+α15,1(|εt−1|+ γ15,1εt−1)ϕ + α15,2(|εt−2|+ γ15,2εt−2)ϕ + · · ·
nparch() D() = D()+α16,1|εt−1 − κ16,1|ϕ + α16,2|εt−2 − κ16,2|ϕ + · · ·
nparchk() D() = D()+α17,1|εt−1 − κ17|ϕ + α17,2|εt−2 − κ17|ϕ + · · ·
pgarch() D() = D()+α18,1σ

ϕ
t−1 + α18,2σ

ϕ
t−2 + · · ·

Common models

Common term Options to specify

ARCH (Engle 1982) arch()

GARCH (Bollerslev 1986) arch() garch()

ARCH-in-mean (Engle, Lilien, and Robins 1987) archm arch() [garch()]

GARCH with ARMA terms arch() garch() ar() ma()

EGARCH (Nelson 1991) earch() egarch()

TARCH, threshold ARCH (Zakoian 1994) abarch() atarch() sdgarch()

GJR, form of threshold ARCH (Glosten, Jagannathan, and Runkle 1993) arch() tarch() [garch()]

SAARCH, simple asymmetric ARCH (Engle 1990) arch() saarch() [garch()]

PARCH, power ARCH (Higgins and Bera 1992) parch() [pgarch()]

NARCH, nonlinear ARCH narch() [garch()]

NARCHK, nonlinear ARCH with one shift narchk() [garch()]

A-PARCH, asymmetric power ARCH (Ding, Granger, and Engle 1993) aparch() [pgarch()]

NPARCH, nonlinear power ARCH nparch() [pgarch()]
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In all cases, you type
arch depvar

[
indepvars

]
, options

where options are chosen from the table above. Each option requires that you specify as its argument
a numlist that specifies the lags to be included. For most ARCH models, that value will be 1. For
instance, to fit the classic first-order GARCH model on cpi, you would type

. arch cpi, arch(1) garch(1)

If you wanted to fit a first-order GARCH model of cpi on wage, you would type

. arch cpi wage, arch(1) garch(1)

If, for any of the options, you want first- and second-order terms, specify optionname(1/2). Specifying
garch(1) arch(1/2) would fit a GARCH model with first- and second-order ARCH terms. If you
specified arch(2), only the lag 2 term would be included.



6 arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators

Reading arch output

The regression table reported by arch when using the normal distribution for the errors will appear
as

op.depvar Coef. Std. Err. z P>|z| [95% Conf. Interval]

depvar
x1 # . . .
x2

L1. # . . .
L2. # . . .

_cons # . . .

ARCHM
sigma2 # . . .

ARMA
ar

L1. # . . .

ma
L1. # . . .

HET
z1 # . . .
z2

L1. # . . .
L2. # . . .

ARCH
arch
L1. # . . .

garch
L1. # . . .

aparch
L1. # . . .

etc.

_cons # . . .

POWER
power # . . .

Dividing lines separate “equations”.

The first one, two, or three equations report the mean model:

yt = xtβ+
∑
i

ψig(σ2
t−i) + ARMA(p, q) + εt

The first equation reports β, and the equation will be named [depvar]; if you fit a model on d.cpi,
the first equation would be named [cpi]. In Stata, the coefficient on x1 in the above example could
be referred to as [depvar] b[x1]. The coefficient on the lag 2 value of x2 would be referred to
as [depvar] b[L2.x2]. Such notation would be used, for instance, in a later test command; see
[R] test.

http://www.stata.com/manuals13/rtest.pdf#rtest
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The [ARCHM] equation reports the ψ coefficients if your model includes ARCH-in-mean terms;
see options discussed under the Model 2 tab below. Most ARCH-in-mean models include only a
contemporaneous variance term, so the term

∑
i ψig(σ2

t−i) becomes ψσ2
t . The coefficient ψ will

be [ARCHM] b[sigma2]. If your model includes lags of σ2
t , the additional coefficients will be

[ARCHM] b[L1.sigma2], and so on. If you specify a transformation g() (option archmexp()),
the coefficients will be [ARCHM] b[sigma2ex], [ARCHM] b[L1.sigma2ex], and so on. sigma2ex
refers to g(σ2

t ), the transformed value of the conditional variance.

The [ARMA] equation reports the ARMA coefficients if your model includes them; see options discussed
under the Model 2 tab below. This equation includes one or two “variables” named ar and ma. In
later test statements, you could refer to the coefficient on the first lag of the autoregressive term
by typing [ARMA] b[L1.ar] or simply [ARMA] b[L.ar] (the L operator is assumed to be lag 1 if
you do not specify otherwise). The second lag on the moving-average term, if there were one, could
be referred to by typing [ARMA] b[L2.ma].

The next one, two, or three equations report the variance model.

The [HET] equation reports the multiplicative heteroskedasticity if the model includes it. When
you fit such a model, you specify the variables (and their lags), determining the multiplicative
heteroskedasticity; after estimation, their coefficients are simply [HET] b[op.varname].

The [ARCH] equation reports the ARCH, GARCH, etc., terms by referring to “variables” arch,
garch, and so on. For instance, if you specified arch(1) garch(1) when you fit the model, the
conditional variance is given by σ2

t = γ0 + α1,1ε
2
t−1 + α2,1σ

2
t−1. The coefficients would be named

[ARCH] b[ cons] (γ0), [ARCH] b[L.arch] (α1,1), and [ARCH] b[L.garch] (α2,1).

The [POWER] equation appears only if you are fitting a variance model in the form of (3) above; the
estimated ϕ is the coefficient [POWER] b[power].

Also, if you use the distribution() option and specify either Student’s t or the generalized
error distribution but do not specify the degree-of-freedom or shape parameter, then you will see
two additional rows in the table. The final row contains the estimated degree-of-freedom or shape
parameter. Immediately preceding the final row is a transformed version of the parameter that arch
used during estimation to ensure that the degree-of-freedom parameter is greater than two or that the
shape parameter is positive.

The naming convention for estimated ARCH, GARCH, etc., parameters is as follows (definitions for
parameters αi, γi, and κi can be found in the tables for A(), B(), C(), and D() above):
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Option 1st parameter 2nd parameter Common parameter

arch() α1 = [ARCH] b[arch]
garch() α2 = [ARCH] b[garch]
saarch() α3 = [ARCH] b[saarch]
tarch() α4 = [ARCH] b[tarch]
aarch() α5 = [ARCH] b[aarch] γ5 = [ARCH] b[aarch e]
narch() α6 = [ARCH] b[narch] κ6 = [ARCH] b[narch k]
narchk() α7 = [ARCH] b[narch] κ7 = [ARCH] b[narch k]

abarch() α8 = [ARCH] b[abarch]
atarch() α9 = [ARCH] b[atarch]
sdgarch() α10 = [ARCH] b[sdgarch]

earch() α11 = [ARCH] b[earch] γ11 = [ARCH] b[earch a]
egarch() α12 = [ARCH] b[egarch]

parch() α13 = [ARCH] b[parch] ϕ = [POWER] b[power]
tparch() α14 = [ARCH] b[tparch] ϕ = [POWER] b[power]
aparch() α15 = [ARCH] b[aparch] γ15 = [ARCH] b[aparch e] ϕ = [POWER] b[power]
nparch() α16 = [ARCH] b[nparch] κ16 = [ARCH] b[nparch k] ϕ = [POWER] b[power]
nparchk() α17 = [ARCH] b[nparch] κ17 = [ARCH] b[nparch k] ϕ = [POWER] b[power]
pgarch() α18 = [ARCH] b[pgarch] ϕ = [POWER] b[power]

Menu
ARCH/GARCH

Statistics > Time series > ARCH/GARCH > ARCH and GARCH models

EARCH/EGARCH

Statistics > Time series > ARCH/GARCH > Nelson’s EGARCH model

ABARCH/ATARCH/SDGARCH

Statistics > Time series > ARCH/GARCH > Threshold ARCH model

ARCH/TARCH/GARCH

Statistics > Time series > ARCH/GARCH > GJR form of threshold ARCH model

ARCH/SAARCH/GARCH

Statistics > Time series > ARCH/GARCH > Simple asymmetric ARCH model

PARCH/PGARCH

Statistics > Time series > ARCH/GARCH > Power ARCH model

NARCH/GARCH

Statistics > Time series > ARCH/GARCH > Nonlinear ARCH model

NARCHK/GARCH

Statistics > Time series > ARCH/GARCH > Nonlinear ARCH model with one shift

APARCH/PGARCH

Statistics > Time series > ARCH/GARCH > Asymmetric power ARCH model
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NPARCH/PGARCH

Statistics > Time series > ARCH/GARCH > Nonlinear power ARCH model

Description
arch fits regression models in which the volatility of a series varies through time. Usually, periods

of high and low volatility are grouped together. ARCH models estimate future volatility as a function of
prior volatility. To accomplish this, arch fits models of autoregressive conditional heteroskedasticity
(ARCH) by using conditional maximum likelihood. In addition to ARCH terms, models may include
multiplicative heteroskedasticity. Gaussian (normal), Student’s t, and generalized error distributions
are supported.

Concerning the regression equation itself, models may also contain ARCH-in-mean and ARMA
terms.

Options

� � �
Model �

noconstant; see [R] estimation options.

arch(numlist) specifies the ARCH terms (lags of ε2t ).

Specify arch(1) to include first-order terms, arch(1/2) to specify first- and second-order terms,
arch(1/3) to specify first-, second-, and third-order terms, etc. Terms may be omitted. Specify
arch(1/3 5) to specify terms with lags 1, 2, 3, and 5. All the options work this way.

arch() may not be specified with aarch(), narch(), narchk(), nparchk(), or nparch(), as
this would result in collinear terms.

garch(numlist) specifies the GARCH terms (lags of σ2
t ).

saarch(numlist) specifies the simple asymmetric ARCH terms. Adding these terms is one way to
make the standard ARCH and GARCH models respond asymmetrically to positive and negative
innovations. Specifying saarch() with arch() and garch() corresponds to the SAARCH model
of Engle (1990).

saarch() may not be specified with narch(), narchk(), nparchk(), or nparch(), as this
would result in collinear terms.

tarch(numlist) specifies the threshold ARCH terms. Adding these is another way to make the
standard ARCH and GARCH models respond asymmetrically to positive and negative innovations.
Specifying tarch() with arch() and garch() corresponds to one form of the GJR model (Glosten,
Jagannathan, and Runkle 1993).

tarch() may not be specified with tparch() or aarch(), as this would result in collinear terms.

aarch(numlist) specifies the lags of the two-parameter term αi(|εt|+γiεt)
2. This term provides the

same underlying form of asymmetry as including arch() and tarch(), but it is expressed in a
different way.

aarch() may not be specified with arch() or tarch(), as this would result in collinear terms.

narch(numlist) specifies the lags of the two-parameter term αi(εt − κi)2. This term allows the
minimum conditional variance to occur at a value of lagged innovations other than zero. For any
term specified at lag L, the minimum contribution to conditional variance of that lag occurs when
ε2t−L = κL—the squared innovations at that lag are equal to the estimated constant κL.

http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
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narch() may not be specified with arch(), saarch(), narchk(), nparchk(), or nparch(),
as this would result in collinear terms.

narchk(numlist) specifies the lags of the two-parameter term αi(εt − κ)2; this is a variation of
narch() with κ held constant for all lags.

narchk() may not be specified with arch(), saarch(), narch(), nparchk(), or nparch(),
as this would result in collinear terms.

abarch(numlist) specifies lags of the term |εt|.
atarch(numlist) specifies lags of |εt|(εt > 0), where (εt > 0) represents the indicator function

returning 1 when true and 0 when false. Like the TARCH terms, these ATARCH terms allow the
effect of unanticipated innovations to be asymmetric about zero.

sdgarch(numlist) specifies lags of σt. Combining atarch(), abarch(), and sdgarch() produces
the model by Zakoian (1994) that the author called the TARCH model. The acronym TARCH,
however, refers to any model using thresholding to obtain asymmetry.

earch(numlist) specifies lags of the two-parameter term αzt+γ(|zt|−
√

2/π). These terms represent
the influence of news—lagged innovations—in Nelson’s (1991) EGARCH model. For these terms,
zt = εt/σt, and arch assumes zt ∼ N(0, 1). Nelson derived the general form of an EGARCH model
for any assumed distribution and performed estimation assuming a generalized error distribution
(GED). See Hamilton (1994) for a derivation where zt is assumed normal. The zt terms can be
parameterized in either of these two equivalent ways. arch uses Nelson’s original parameterization;
see Hamilton (1994) for an equivalent alternative.

egarch(numlist) specifies lags of ln(σ2
t ).

For the following options, the model is parameterized in terms of h(εt)
ϕ and σϕt . One ϕ is estimated,

even when more than one option is specified.

parch(numlist) specifies lags of |εt|ϕ. parch() combined with pgarch() corresponds to the class
of nonlinear models of conditional variance suggested by Higgins and Bera (1992).

tparch(numlist) specifies lags of (εt > 0)|εt|ϕ, where (εt > 0) represents the indicator function
returning 1 when true and 0 when false. As with tarch(), tparch() specifies terms that allow
for a differential impact of “good” (positive innovations) and “bad” (negative innovations) news
for lags specified by numlist.

tparch() may not be specified with tarch(), as this would result in collinear terms.

aparch(numlist) specifies lags of the two-parameter term α(|εt| + γεt)
ϕ. This asymmetric power

ARCH model, A-PARCH, was proposed by Ding, Granger, and Engle (1993) and corresponds to
a Box–Cox function in the lagged innovations. The authors fit the original A-PARCH model on
more than 16,000 daily observations of the Standard and Poor’s 500, and for good reason. As the
number of parameters and the flexibility of the specification increase, more data are required to
estimate the parameters of the conditional heteroskedasticity. See Ding, Granger, and Engle (1993)
for a discussion of how seven popular ARCH models nest within the A-PARCH model.

When γ goes to 1, the full term goes to zero for many observations and can then be numerically
unstable.

nparch(numlist) specifies lags of the two-parameter term α|εt − κi|ϕ.

nparch() may not be specified with arch(), saarch(), narch(), narchk(), or nparchk(),
as this would result in collinear terms.

nparchk(numlist) specifies lags of the two-parameter term α|εt−κ|ϕ; this is a variation of nparch()
with κ held constant for all lags. This is the direct analog of narchk(), except for the power
of ϕ. nparchk() corresponds to an extended form of the model of Higgins and Bera (1992) as

http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
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presented by Bollerslev, Engle, and Nelson (1994). nparchk() would typically be combined with
the pgarch() option.

nparchk() may not be specified with arch(), saarch(), narch(), narchk(), or nparch(),
as this would result in collinear terms.

pgarch(numlist) specifies lags of σϕt .

constraints(constraints), collinear; see [R] estimation options.

� � �
Model 2 �

archm specifies that an ARCH-in-mean term be included in the specification of the mean equation. This
term allows the expected value of depvar to depend on the conditional variance. ARCH-in-mean is
most commonly used in evaluating financial time series when a theory supports a tradeoff between
asset risk and return. By default, no ARCH-in-mean terms are included in the model.

archm specifies that the contemporaneous expected conditional variance be included in the mean
equation. For example, typing

. arch y x, archm arch(1)

specifies the model
yt = β0 + β1xt + ψσ2

t + εt

σ2
t = γ0 + γε2t−1

archmlags(numlist) is an expansion of archm that includes lags of the conditional variance σ2
t in

the mean equation. To specify a contemporaneous and once-lagged variance, specify either archm
archmlags(1) or archmlags(0/1).

archmexp(exp) applies the transformation in exp to any ARCH-in-mean terms in the model. The
expression should contain an X wherever a value of the conditional variance is to enter the expression.
This option can be used to produce the commonly used ARCH-in-mean of the conditional standard
deviation. With the example from archm, typing

. arch y x, archm arch(1) archmexp(sqrt(X))

specifies the mean equation yt = β0 + β1xt + ψσt + εt. Alternatively, typing

. arch y x, archm arch(1) archmexp(1/sqrt(X))

specifies yt = β0 + β1xt + ψ/σt + εt.

arima(#p,#d,#q) is an alternative, shorthand notation for specifying autoregressive models in the
dependent variable. The dependent variable and any independent variables are differenced #d times,
1 through #p lags of autocorrelations are included, and 1 through #q lags of moving averages are
included. For example, the specification

. arch y, arima(2,1,3)

is equivalent to

. arch D.y, ar(1/2) ma(1/3)

The former is easier to write for classic ARIMA models of the mean equation, but it is not nearly
as expressive as the latter. If gaps in the AR or MA lags are to be modeled, or if different operators
are to be applied to independent variables, the latter syntax is required.

http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals13/u13.pdf#u13Functionsandexpressions
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ar(numlist) specifies the autoregressive terms of the structural model disturbance to be included in
the model. For example, ar(1/3) specifies that lags 1, 2, and 3 of the structural disturbance be
included in the model. ar(1,4) specifies that lags 1 and 4 be included, possibly to account for
quarterly effects.

If the model does not contain regressors, these terms can also be considered autoregressive terms
for the dependent variable; see [TS] arima.

ma(numlist) specifies the moving-average terms to be included in the model. These are the terms for
the lagged innovations or white-noise disturbances.

� � �
Model 3 �

distribution(dist
[

#
]
) specifies the distribution to assume for the error term. dist may be

gaussian, normal, t, or ged. gaussian and normal are synonyms, and # cannot be specified
with them.

If distribution(t) is specified, arch assumes that the errors follow Student’s t distribution,
and the degree-of-freedom parameter is estimated along with the other parameters of the model.
If distribution(t #) is specified, then arch uses Student’s t distribution with # degrees of
freedom. # must be greater than 2.

If distribution(ged) is specified, arch assumes that the errors have a generalized error
distribution, and the shape parameter is estimated along with the other parameters of the model.
If distribution(ged #) is specified, then arch uses the generalized error distribution with
shape parameter #. # must be positive. The generalized error distribution is identical to the normal
distribution when the shape parameter equals 2.

het(varlist) specifies that varlist be included in the specification of the conditional variance. varlist
may contain time-series operators. This varlist enters the variance specification collectively as
multiplicative heteroskedasticity; see Judge et al. (1985). If het() is not specified, the model will
not contain multiplicative heteroskedasticity.

Assume that the conditional variance depends on variables x and w and has an ARCH(1) component.
We request this specification by using the het(x w) arch(1) options, and this corresponds to the
conditional-variance model

σ2
t = exp(λ0 + λ1xt + λ2wt) + αε2t−1

Multiplicative heteroskedasticity enters differently with an EGARCH model because the variance is
already specified in logs. For the het(x w) earch(1) egarch(1) options, the variance model is

ln(σ2
t ) = λ0 + λ1xt + λ2wt + αzt−1 + γ(|zt−1| −

√
2/π) + δ ln(σ2

t−1)

savespace conserves memory by retaining only those variables required for estimation. The original
dataset is restored after estimation. This option is rarely used and should be specified only if
there is insufficient memory to fit a model without the option. arch requires considerably more
temporary storage during estimation than most estimation commands in Stata.

� � �
Priming �

arch0(cond method) is a rarely used option that specifies how to compute the conditioning (presample
or priming) values for σ2

t and ε2t . In the presample period, it is assumed that σ2
t = ε2t and that this

value is constant. If arch0() is not specified, the priming values are computed as the expected
unconditional variance given the current estimates of the β coefficients and any ARMA parameters.

http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals13/tsarima.pdf#tsarima
http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
http://www.stata.com/manuals13/u11.pdf#u11.4varlists
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arch0(xb), the default, specifies that the priming values are the expected unconditional variance
of the model, which is

∑T
1 ε̂

2
t /T , where ε̂t is computed from the mean equation and any

ARMA terms.

arch0(xb0) specifies that the priming values are the estimated variance of the residuals from an
OLS estimate of the mean equation.

arch0(xbwt) specifies that the priming values are the weighted sum of the ε̂ 2t from the current
conditional mean equation (and ARMA terms) that places more weight on estimates of ε2t at the
beginning of the sample.

arch0(xb0wt) specifies that the priming values are the weighted sum of the ε̂ 2t from an OLS
estimate of the mean equation (and ARMA terms) that places more weight on estimates of ε2t
at the beginning of the sample.

arch0(zero) specifies that the priming values are 0. Unlike the priming values for ARIMA
models, 0 is generally not a consistent estimate of the presample conditional variance or squared
innovations.

arch0(#) specifies that σ2
t = ε2t = # for any specified nonnegative #. Thus arch0(0) is equivalent

to arch0(zero).

arma0(cond method) is a rarely used option that specifies how the εt values are initialized at the
beginning of the sample for the ARMA component, if the model has one. This option has an effect
only when AR or MA terms are included in the model (the ar(), ma(), or arima() options
specified).

arma0(zero), the default, specifies that all priming values of εt be taken as 0. This fits the model
over the entire requested sample and takes εt as its expected value of 0 for all lags required
by the ARMA terms; see Judge et al. (1985).

arma0(p), arma0(q), and arma0(pq) specify that estimation begin after priming the recursions
for a certain number of observations. p specifies that estimation begin after the pth observation
in the sample, where p is the maximum AR lag in the model; q specifies that estimation begin
after the qth observation in the sample, where q is the maximum MA lag in the model; and pq
specifies that estimation begin after the (p+ q)th observation in the sample.

During the priming period, the recursions necessary to generate predicted disturbances are performed,
but results are used only to initialize preestimation values of εt. To understand the definition
of preestimation, say that you fit a model in 10/100. If the model is specified with ar(1,2),
preestimation refers to observations 10 and 11.

The ARCH terms σ2
t and ε2t are also updated over these observations. Any required lags of εt

before the priming period are taken to be their expected value of 0, and ε2t and σ2
t take the

values specified in arch0().

arma0(#) specifies that the presample values of εt are to be taken as # for all lags required by
the ARMA terms. Thus arma0(0) is equivalent to arma0(zero).

condobs(#) is a rarely used option that specifies a fixed number of conditioning observations at
the start of the sample. Over these priming observations, the recursions necessary to generate
predicted disturbances are performed, but only to initialize preestimation values of εt, ε2t , and σ2

t .
Any required lags of εt before the initialization period are taken to be their expected value of 0
(or the value specified in arma0()), and required values of ε2t and σ2

t assume the values specified
by arch0(). condobs() can be used if conditioning observations are desired for the lags in the
ARCH terms of the model. If arma() is also specified, the maximum number of conditioning
observations required by arma() and condobs(#) is used.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust) and that are derived from asymptotic theory (oim, opg);
see [R] vce option.

For ARCH models, the robust or quasi–maximum likelihood estimates (QMLE) of variance are robust
to symmetric nonnormality in the disturbances. The robust variance estimates generally are not
robust to functional misspecification of the mean equation; see Bollerslev and Wooldridge (1992).

The robust variance estimates computed by arch are based on the full Huber/White/sandwich
formulation, as discussed in [P] robust. Many other software packages report robust estimates
that set some terms to their expectations of zero (Bollerslev and Wooldridge 1992), which saves
them from calculating second derivatives of the log-likelihood function.

� � �
Reporting �

level(#); see [R] estimation options.

detail specifies that a detailed list of any gaps in the series be reported, including gaps due to
missing observations or missing data for the dependent variable or independent variables.

nocnsreport; see [R] estimation options.

display options: vsquish, cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch;
see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
gtolerance(#), nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize
for all options except gtolerance(), and see below for information on gtolerance().

These options are often more important for ARCH models than for other maximum likelihood
models because of convergence problems associated with ARCH models—ARCH model likelihoods
are notoriously difficult to maximize.

Setting technique() to something other than the default or BHHH changes the vcetype to vce(oim).

The following options are all related to maximization and are either particularly important in fitting
ARCH models or not available for most other estimators.

gtolerance(#) specifies the tolerance for the gradient relative to the coefficients. When
|gi bi| ≤ gtolerance() for all parameters bi and the corresponding elements of the
gradient gi, the gradient tolerance criterion is met. The default gradient tolerance for arch
is gtolerance(.05).

gtolerance(999) may be specified to disable the gradient criterion. If the optimizer becomes
stuck with repeated “(backed up)” messages, the gradient probably still contains substantial
values, but an uphill direction cannot be found for the likelihood. With this option, results can
often be obtained, but whether the global maximum likelihood has been found is unclear.

When the maximization is not going well, it is also possible to set the maximum number of
iterations (see [R] maximize) to the point where the optimizer appears to be stuck and to inspect
the estimation results at that point.

from(init specs) specifies the initial values of the coefficients. ARCH models may be sensitive
to initial values and may have coefficient values that correspond to local maximums. The
default starting values are obtained via a series of regressions, producing results that, on

http://www.stata.com/manuals13/rvce_option.pdf#rvce_option
http://www.stata.com/manuals13/p_robust.pdf#p_robust
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals13/d.pdf#dformat
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://www.stata.com/manuals13/rmaximize.pdf#rmaximizeSyntaxalgorithm_spec
http://www.stata.com/manuals13/rmaximize.pdf#rmaximize
http://www.stata.com/manuals13/rmaximize.pdf#rmaximize
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the basis of asymptotic theory, are consistent for the β and ARMA parameters and generally
reasonable for the rest. Nevertheless, these values may not always be feasible in that the
likelihood function cannot be evaluated at the initial values arch first chooses. In such cases,
the estimation is restarted with ARCH and ARMA parameters initialized to zero. It is possible,
but unlikely, that even these values will be infeasible and that you will have to supply initial
values yourself.

The standard syntax for from() accepts a matrix, a list of values, or coefficient name value
pairs; see [R] maximize. arch also allows the following:

from(archb0) sets the starting value for all the ARCH/GARCH/. . . parameters in the conditional-
variance equation to 0.

from(armab0) sets the starting value for all ARMA parameters in the model to 0.

from(archb0 armab0) sets the starting value for all ARCH/GARCH/. . . and ARMA parameters
to 0.

The following option is available with arch but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples stata.com

The volatility of a series is not constant through time; periods of relatively low volatility and periods
of relatively high volatility tend to be grouped together. This is a commonly observed characteristic
of economic time series and is even more pronounced in many frequently sampled financial series.
ARCH models seek to estimate this time-dependent volatility as a function of observed prior volatility.
Sometimes the model of volatility is of more interest than the model of the conditional mean. As
implemented in arch, the volatility model may also include regressors to account for a structural
component in the volatility—usually referred to as multiplicative heteroskedasticity.

ARCH models were introduced by Engle (1982) in a study of inflation rates, and there has since
been a barrage of proposed parametric and nonparametric specifications of autoregressive conditional
heteroskedasticity. Overviews of the literature can found in Bollerslev, Engle, and Nelson (1994) and
Bollerslev, Chou, and Kroner (1992). Introductions to basic ARCH models appear in many general
econometrics texts, including Davidson and MacKinnon (1993, 2004), Greene (2012), Kmenta (1997),
Stock and Watson (2011), and Wooldridge (2013). Harvey (1989) and Enders (2004) provide introduc-
tions to ARCH in the larger context of econometric time-series modeling, and Hamilton (1994) gives
considerably more detail in the same context. Becketti (2013, chap. 8) provides a simple introduction
to ARCH modeling with an emphasis on how to use Stata’s arch command.

arch fits models of autoregressive conditional heteroskedasticity (ARCH, GARCH, etc.) using con-
ditional maximum likelihood. By “conditional”, we mean that the likelihood is computed based on
an assumed or estimated set of priming values for the squared innovations ε2t and variances σ2

t prior
to the estimation sample; see Hamilton (1994) or Bollerslev (1986). Sometimes more conditioning is
done on the first a, g, or a+ g observations in the sample, where a is the maximum ARCH term lag
and g is the maximum GARCH term lag (or the maximum lags from the other ARCH family terms).

The original ARCH model proposed by Engle (1982) modeled the variance of a regression model’s
disturbances as a linear function of lagged values of the squared regression disturbances. We can
write an ARCH(m) model as

yt = xtβ+ εt (conditional mean)
σ2
t = γ0 + γ1ε

2
t−1 + γ2ε

2
t−2 + · · ·+ γmε

2
t−m (conditional variance)

http://www.stata.com/manuals13/rmaximize.pdf#rmaximize
http://www.stata.com/manuals13/restimationoptions.pdf#restimationoptions
http://stata.com
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where
ε2t is the squared residuals (or innovations)

γi are the ARCH parameters

The ARCH model has a specification for both the conditional mean and the conditional variance,
and the variance is a function of the size of prior unanticipated innovations—ε2t . This model was
generalized by Bollerslev (1986) to include lagged values of the conditional variance—a GARCH
model. The GARCH(m, k) model is written as

yt = xtβ+ εt

σ2
t = γ0 + γ1ε

2
t−1 + γ2ε

2
t−2 + · · ·+ γmε

2
t−m + δ1σ

2
t−1 + δ2σ

2
t−2 + · · ·+ δkσ

2
t−k

where
γi are the ARCH parameters

δi are the GARCH parameters

In his pioneering work, Engle (1982) assumed that the error term, εt, followed a Gaussian
(normal) distribution: εt ∼ N(0, σ2

t ). However, as Mandelbrot (1963) and many others have noted,
the distribution of stock returns appears to be leptokurtotic, meaning that extreme stock returns are
more frequent than would be expected if the returns were normally distributed. Researchers have
therefore assumed other distributions that can have fatter tails than the normal distribution; arch
allows you to fit models assuming the errors follow Student’s t distribution or the generalized error
distribution. The t distribution has fatter tails than the normal distribution; as the degree-of-freedom
parameter approaches infinity, the t distribution converges to the normal distribution. The generalized
error distribution’s tails are fatter than the normal distribution’s when the shape parameter is less than
two and are thinner than the normal distribution’s when the shape parameter is greater than two.

The GARCH model of conditional variance can be considered an ARMA process in the squared
innovations, although not in the variances as the equations might seem to suggest; see Hamilton (1994).
Specifically, the standard GARCH model implies that the squared innovations result from

ε2t = γ0 + (γ1 + δ1)ε2t−1 + (γ2 + δ2)ε2t−2 + · · ·+ (γk + δk)ε2t−k +wt− δ1wt−1− δ2wt−2− δ3wt−3

where
wt = ε2t − σ2

t

wt is a white-noise process that is fundamental for ε2t

One of the primary benefits of the GARCH specification is its parsimony in identifying the conditional
variance. As with ARIMA models, the ARMA specification in GARCH allows the conditional variance
to be modeled with fewer parameters than with an ARCH specification alone. Empirically, many series
with a conditionally heteroskedastic disturbance have been adequately modeled with a GARCH(1,1)
specification.

An ARMA process in the disturbances can easily be added to the mean equation. For example, the
mean equation can be written with an ARMA(1, 1) disturbance as

yt = xtβ+ ρ(yt−1 − xt−1β) + θεt−1 + εt

with an obvious generalization to ARMA(p, q) by adding terms; see [TS] arima for more discussion
of this specification. This change affects only the conditional-variance specification in that ε2t now
results from a different specification of the conditional mean.

http://www.stata.com/manuals13/tsarima.pdf#tsarima
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Much of the literature on ARCH models focuses on alternative specifications of the variance equation.
arch allows many of these specifications to be requested using the saarch() through pgarch()
options, which imply that one or more terms may be changed or added to the specification of the
variance equation.

These alternative specifications also address asymmetry. Both the ARCH and GARCH specifications
imply a symmetric impact of innovations. Whether an innovation ε2t is positive or negative makes
no difference to the expected variance σ2

t in the ensuing periods; only the size of the innovation
matters—good news and bad news have the same effect. Many theories, however, suggest that positive
and negative innovations should vary in their impact. For risk-averse investors, a large unanticipated
drop in the market is more likely to lead to higher volatility than a large unanticipated increase (see
Black [1976], Nelson [1991]). saarch(), tarch(), aarch(), abarch(), earch(), aparch(), and
tparch() allow various specifications of asymmetric effects.

narch(), narchk(), nparch(), and nparchk() imply an asymmetric impact of a specific form.
All the models considered so far have a minimum conditional variance when the lagged innovations
are all zero. “No news is good news” when it comes to keeping the conditional variance small.
narch(), narchk(), nparch(), and nparchk() also have a symmetric response to innovations,
but they are not centered at zero. The entire news-response function (response to innovations) is
shifted horizontally so that minimum variance lies at some specific positive or negative value for prior
innovations.

ARCH-in-mean models allow the conditional variance of the series to influence the conditional
mean. This is particularly convenient for modeling the risk–return relationship in financial series; the
riskier an investment, with all else equal, the lower its expected return. ARCH-in-mean models modify
the specification of the conditional mean equation to be

yt = xtβ+ ψσ2
t + εt (ARCH-in-mean)

Although this linear form in the current conditional variance has dominated the literature, arch allows
the conditional variance to enter the mean equation through a nonlinear transformation g() and for
this transformed term to be included contemporaneously or lagged.

yt = xtβ+ ψ0g(σ2
t ) + ψ1g(σ2

t−1) + ψ2g(σ2
t−2) + · · ·+ εt

Square root is the most commonly used g() transformation because researchers want to include a
linear term for the conditional standard deviation, but any transform g() is allowed.

Example 1: ARCH model

Consider a simple model of the U.S. Wholesale Price Index (WPI) (Enders 2004, 87–93), which
we also consider in [TS] arima. The data are quarterly over the period 1960q1 through 1990q4.

In [TS] arima, we fit a model of the continuously compounded rate of change in the WPI,
ln(WPIt)− ln(WPIt−1). The graph of the differenced series—see [TS] arima—clearly shows periods
of high volatility and other periods of relative tranquility. This makes the series a good candidate for
ARCH modeling. Indeed, price indices have been a common target of ARCH models. Engle (1982)
presented the original ARCH formulation in an analysis of U.K. inflation rates.

First, we fit a constant-only model by OLS and test ARCH effects by using Engle’s Lagrange
multiplier test (estat archlm).

http://www.stata.com/manuals13/tsarima.pdf#tsarima
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. use http://www.stata-press.com/data/r13/wpi1

. regress D.ln_wpi

Source SS df MS Number of obs = 123
F( 0, 122) = 0.00

Model 0 0 . Prob > F = .
Residual .02521709 122 .000206697 R-squared = 0.0000

Adj R-squared = 0.0000
Total .02521709 122 .000206697 Root MSE = .01438

D.ln_wpi Coef. Std. Err. t P>|t| [95% Conf. Interval]

_cons .0108215 .0012963 8.35 0.000 .0082553 .0133878

. estat archlm, lags(1)
LM test for autoregressive conditional heteroskedasticity (ARCH)

lags(p) chi2 df Prob > chi2

1 8.366 1 0.0038

H0: no ARCH effects vs. H1: ARCH(p) disturbance

Because the LM test shows a p-value of 0.0038, which is well below 0.05, we reject the null hypothesis
of no ARCH(1) effects. Thus we can further estimate the ARCH(1) parameter by specifying arch(1).
See [R] regress postestimation time series for more information on Engle’s LM test.

The first-order generalized ARCH model (GARCH, Bollerslev 1986) is the most commonly used
specification for the conditional variance in empirical work and is typically written GARCH(1, 1). We
can estimate a GARCH(1, 1) process for the log-differenced series by typing

. arch D.ln_wpi, arch(1) garch(1)

(setting optimization to BHHH)
Iteration 0: log likelihood = 355.23458
Iteration 1: log likelihood = 365.64586

(output omitted )
Iteration 10: log likelihood = 373.23397

ARCH family regression

Sample: 1960q2 - 1990q4 Number of obs = 123
Distribution: Gaussian Wald chi2(.) = .
Log likelihood = 373.234 Prob > chi2 = .

OPG
D.ln_wpi Coef. Std. Err. z P>|z| [95% Conf. Interval]

ln_wpi
_cons .0061167 .0010616 5.76 0.000 .0040361 .0081974

ARCH
arch
L1. .4364123 .2437428 1.79 0.073 -.0413147 .9141394

garch
L1. .4544606 .1866606 2.43 0.015 .0886127 .8203086

_cons .0000269 .0000122 2.20 0.028 2.97e-06 .0000508

We have estimated the ARCH(1) parameter to be 0.436 and the GARCH(1) parameter to be 0.454, so
our fitted GARCH(1, 1) model is

http://www.stata.com/manuals13/rregresspostestimationtimeseries.pdf#rregresspostestimationtimeseries
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yt = 0.0061 + εt

σ2
t = 0.436 ε2t−1 + 0.454σ2

t−1

where yt = ln(wpit)− ln(wpit−1).

The model Wald test and probability are both reported as missing (.). By convention, Stata reports
the model test for the mean equation. Here and fairly often for ARCH models, the mean equation
consists only of a constant, and there is nothing to test.

Example 2: ARCH model with ARMA process

We can retain the GARCH(1, 1) specification for the conditional variance and model the mean as
an ARMA process with AR(1) and MA(1) terms as well as a fourth-lag MA term to control for quarterly
seasonal effects by typing

. arch D.ln_wpi, ar(1) ma(1 4) arch(1) garch(1)

(setting optimization to BHHH)
Iteration 0: log likelihood = 380.9997
Iteration 1: log likelihood = 388.57823
Iteration 2: log likelihood = 391.34143
Iteration 3: log likelihood = 396.36991
Iteration 4: log likelihood = 398.01098
(switching optimization to BFGS)
Iteration 5: log likelihood = 398.23668
BFGS stepping has contracted, resetting BFGS Hessian (0)
Iteration 6: log likelihood = 399.21497
Iteration 7: log likelihood = 399.21537 (backed up)

(output omitted )
(switching optimization to BHHH)
Iteration 15: log likelihood = 399.51441
Iteration 16: log likelihood = 399.51443
Iteration 17: log likelihood = 399.51443

ARCH family regression -- ARMA disturbances

Sample: 1960q2 - 1990q4 Number of obs = 123
Distribution: Gaussian Wald chi2(3) = 153.56
Log likelihood = 399.5144 Prob > chi2 = 0.0000

OPG
D.ln_wpi Coef. Std. Err. z P>|z| [95% Conf. Interval]

ln_wpi
_cons .0069541 .0039517 1.76 0.078 -.000791 .0146992

ARMA
ar

L1. .7922674 .1072225 7.39 0.000 .5821153 1.00242

ma
L1. -.341774 .1499943 -2.28 0.023 -.6357574 -.0477905
L4. .2451724 .1251131 1.96 0.050 -.0000447 .4903896

ARCH
arch
L1. .2040449 .1244991 1.64 0.101 -.0399688 .4480586

garch
L1. .6949687 .1892176 3.67 0.000 .3241091 1.065828

_cons .0000119 .0000104 1.14 0.253 -8.52e-06 .0000324
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To clarify exactly what we have estimated, we could write our model as

yt = 0.007 + 0.792 (yt−1 − 0.007)− 0.342 εt−1 + 0.245 εt−4 + εt

σ2
t = 0.204 ε2t−1 + .695σ2

t−1

where yt = ln(wpit)− ln(wpit−1).

The ARCH(1) coefficient, 0.204, is not significantly different from zero, but the ARCH(1) and
GARCH(1) coefficients are significant collectively. If you doubt this, you can check with test.

. test [ARCH]L1.arch [ARCH]L1.garch

( 1) [ARCH]L.arch = 0
( 2) [ARCH]L.garch = 0

chi2( 2) = 84.92
Prob > chi2 = 0.0000

(For comparison, we fit the model over the same sample used in example 1 of [TS] arima; Enders
fits this GARCH model but over a slightly different sample.)

Technical note

The rather ugly iteration log on the previous result is typical, as difficulty in converging is common
in ARCH models. This is actually a fairly well-behaved likelihood for an ARCH model. The “switching
optimization to . . . ” messages are standard messages from the default optimization method for arch.
The “backed up” messages are typical of BFGS stepping as the BFGS Hessian is often overoptimistic,
particularly during early iterations. These messages are nothing to be concerned about.

Nevertheless, watch out for the messages “BFGS stepping has contracted, resetting BFGS Hessian”
and “backed up”, which can flag problems that may result in an iteration log that goes on and on.
Stata will never report convergence and will never report final results. The question is, when do you
give up and press Break, and if you do, what then?

If the “BFGS stepping has contracted” message occurs repeatedly (more than, say, five times), it
often indicates that convergence will never be achieved. Literally, it means that the BFGS algorithm
was stuck and reset its Hessian and take a steepest-descent step.

The “backed up” message, if it occurs repeatedly, also indicates problems, but only if the likelihood
value is simultaneously not changing. If the message occurs repeatedly but the likelihood value is
changing, as it did above, all is going well; it is just going slowly.

If you have convergence problems, you can specify options to assist the current maximization
method or try a different method. Or, your model specification and data may simply lead to a likelihood
that is not concave in the allowable region and thus cannot be maximized.

If you see the “backed up” message with no change in the likelihood, you can reset the gradient
tolerance to a larger value. Specifying the gtolerance(999) option disables gradient checking,
allowing convergence to be declared more easily. This does not guarantee that convergence will be
declared, and even if it is, the global maximum likelihood may not have been found.

You can also try to specify initial values.

Finally, you can try a different maximization method; see options discussed under the Maximization
tab above.

http://www.stata.com/manuals13/tsarima.pdf#tsarimaRemarksandexamplesex1
http://www.stata.com/manuals13/tsarima.pdf#tsarima
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ARCH models are notorious for having convergence difficulties. Unlike in most estimators in Stata,
it is common for convergence to require many steps or even to fail. This is particularly true of the
explicitly nonlinear terms such as aarch(), narch(), aparch(), or archm (ARCH-in-mean), and of
any model with several lags in the ARCH terms. There is not always a solution. You can try other
maximization methods or different starting values, but if your data do not support your assumed ARCH
structure, convergence simply may not be possible.

ARCH models can be susceptible to irrelevant regressors or unnecessary lags, whether in the
specification of the conditional mean or in the conditional variance. In these situations, arch will
often continue to iterate, making little to no improvement in the likelihood. We view this conservative
approach as better than declaring convergence prematurely when the likelihood has not been fully
maximized. arch is estimating the conditional form of second sample moments, often with flexible
functions, and that is asking much of the data.

Technical note
if exp and in range are interpreted differently with commands accepting time-series operators.

The time-series operators are resolved before the conditions are tested, which may lead to some
confusion. Note the results of the following list commands:

. use http://www.stata-press.com/data/r13/archxmpl

. list t y l.y in 5/10

L.
t y y

5. 1961q1 30.8 30.7
6. 1961q2 30.5 30.8
7. 1961q3 30.5 30.5
8. 1961q4 30.6 30.5
9. 1962q1 30.7 30.6

10. 1962q2 30.6 30.7

. keep in 5/10
(118 observations deleted)

. list t y l.y

L.
t y y

1. 1961q1 30.8 .
2. 1961q2 30.5 30.8
3. 1961q3 30.5 30.5
4. 1961q4 30.6 30.5
5. 1962q1 30.7 30.6

6. 1962q2 30.6 30.7

We have one more lagged observation for y in the first case: l.y was resolved before the in
restriction was applied. In the second case, the dataset no longer contains the value of y to compute
the first lag. This means that

. use http://www.stata-press.com/data/r13/archxmpl, clear

. arch y l.x if twithin(1962q2, 1990q3), arch(1)
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is not the same as
. keep if twithin(1962q2, 1990q3)

. arch y l.x, arch(1)

Example 3: Asymmetric effects—EGARCH model

Continuing with the WPI data, we might be concerned that the economy as a whole responds
differently to unanticipated increases in wholesale prices than it does to unanticipated decreases.
Perhaps unanticipated increases lead to cash flow issues that affect inventories and lead to more
volatility. We can see if the data support this supposition by specifying an ARCH model that allows an
asymmetric effect of “news”—innovations or unanticipated changes. One of the most popular such
models is EGARCH (Nelson 1991). The full first-order EGARCH model for the WPI can be specified
as follows:

. use http://www.stata-press.com/data/r13/wpi1, clear

. arch D.ln_wpi, ar(1) ma(1 4) earch(1) egarch(1)

(setting optimization to BHHH)
Iteration 0: log likelihood = 227.5251
Iteration 1: log likelihood = 381.68426

(output omitted )
Iteration 23: log likelihood = 405.31453

ARCH family regression -- ARMA disturbances

Sample: 1960q2 - 1990q4 Number of obs = 123
Distribution: Gaussian Wald chi2(3) = 156.02
Log likelihood = 405.3145 Prob > chi2 = 0.0000

OPG
D.ln_wpi Coef. Std. Err. z P>|z| [95% Conf. Interval]

ln_wpi
_cons .0087342 .0034004 2.57 0.010 .0020696 .0153989

ARMA
ar

L1. .769212 .0968396 7.94 0.000 .5794099 .959014

ma
L1. -.3554617 .1265725 -2.81 0.005 -.6035393 -.1073841
L4. .241463 .0863832 2.80 0.005 .072155 .4107711

ARCH
earch

L1. .4064007 .116351 3.49 0.000 .178357 .6344445

earch_a
L1. .2467351 .1233365 2.00 0.045 .0049999 .4884702

egarch
L1. .8417291 .0704079 11.96 0.000 .7037322 .9797261

_cons -1.488402 .6604397 -2.25 0.024 -2.78284 -.1939643

Our result for the variance is

ln(σ2
t ) = −1.49 + .406 zt−1 + .247 (

∣∣zt−1

∣∣−√2/π ) + .842 ln(σ2
t−1)

where zt = εt/σt, which is distributed as N(0, 1).
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This is a strong indication for a leverage effect. The positive L1.earch coefficient implies that
positive innovations (unanticipated price increases) are more destabilizing than negative innovations.
The effect appears strong (0.406) and is substantially larger than the symmetric effect (0.247). In fact,
the relative scales of the two coefficients imply that the positive leverage completely dominates the
symmetric effect.

This can readily be seen if we plot what is often referred to as the news-response or news-impact
function. This curve shows the resulting conditional variance as a function of unanticipated news,
in the form of innovations, that is, the conditional variance σ2

t as a function of εt. Thus we must
evaluate σ2

t for various values of εt—say, −4 to 4—and then graph the result.

Example 4: Asymmetric power ARCH model

As an example of a frequently sampled, long-run series, consider the daily closing indices of the
Dow Jones Industrial Average, variable dowclose. To avoid the first half of the century, when the
New York Stock Exchange was open for Saturday trading, only data after 1jan1953 are used. The
compound return of the series is used as the dependent variable and is graphed below.

−
.3

−
.2

−
.1

0
.1

01jan1950 01jan1960 01jan1970 01jan1980 01jan1990
date

DOW, compound return on DJIA

We formed this difference by referring to D.ln dow, but only after playing a trick. The series is
daily, and each observation represents the Dow closing index for the day. Our data included a time
variable recorded as a daily date. We wanted, however, to model the log differences in the series,
and we wanted the span from Friday to Monday to appear as a single-period difference. That is, the
day before Monday is Friday. Because our dataset was tsset with date, the span from Friday to
Monday was 3 days. The solution was to create a second variable that sequentially numbered the
observations. By tsseting the data with this new variable, we obtained the desired differences.

. generate t = _n

. tsset t
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Now our data look like this:

. use http://www.stata-press.com/data/r13/dow1, clear

. generate dayofwk = dow(date)

. list date dayofwk t ln_dow D.ln_dow in 1/8

D.
date dayofwk t ln_dow ln_dow

1. 02jan1953 5 1 5.677096 .
2. 05jan1953 1 2 5.682899 .0058026
3. 06jan1953 2 3 5.677439 -.0054603
4. 07jan1953 3 4 5.672636 -.0048032
5. 08jan1953 4 5 5.671259 -.0013762

6. 09jan1953 5 6 5.661223 -.0100365
7. 12jan1953 1 7 5.653191 -.0080323
8. 13jan1953 2 8 5.659134 .0059433

. list date dayofwk t ln_dow D.ln_dow in -8/l

D.
date dayofwk t ln_dow ln_dow

9334. 08feb1990 4 9334 7.880188 .0016198
9335. 09feb1990 5 9335 7.881635 .0014472
9336. 12feb1990 1 9336 7.870601 -.011034
9337. 13feb1990 2 9337 7.872665 .0020638
9338. 14feb1990 3 9338 7.872577 -.0000877

9339. 15feb1990 4 9339 7.88213 .009553
9340. 16feb1990 5 9340 7.876863 -.0052676
9341. 20feb1990 2 9341 7.862054 -.0148082

The difference operator D spans weekends because the specified time variable, t, is not a true date
and has a difference of 1 for all observations. We must leave this contrived time variable in place
during estimation, or arch will be convinced that our dataset has gaps. If we were using calendar
dates, we would indeed have gaps.

Ding, Granger, and Engle (1993) fit an A-PARCH model of daily returns of the Standard and Poor’s
500 (S&P 500) for 3jan1928–30aug1991. We will fit the same model for the Dow data shown above.
The model includes an AR(1) term as well as the A-PARCH specification of conditional variance.
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. arch D.ln_dow, ar(1) aparch(1) pgarch(1)

(setting optimization to BHHH)
Iteration 0: log likelihood = 31139.547
Iteration 1: log likelihood = 31350.751

(output omitted )
Iteration 68: log likelihood = 32273.555 (backed up)
Iteration 69: log likelihood = 32273.555

ARCH family regression -- AR disturbances

Sample: 2 - 9341 Number of obs = 9340
Distribution: Gaussian Wald chi2(1) = 175.46
Log likelihood = 32273.56 Prob > chi2 = 0.0000

OPG
D.ln_dow Coef. Std. Err. z P>|z| [95% Conf. Interval]

ln_dow
_cons .0001786 .0000875 2.04 0.041 7.15e-06 .00035

ARMA
ar

L1. .1410944 .0106519 13.25 0.000 .1202171 .1619716

ARCH
aparch

L1. .0626323 .0034307 18.26 0.000 .0559082 .0693564

aparch_e
L1. -.3645093 .0378485 -9.63 0.000 -.4386909 -.2903277

pgarch
L1. .9299015 .0030998 299.99 0.000 .923826 .935977

_cons 7.19e-06 2.53e-06 2.84 0.004 2.23e-06 .0000121

POWER
power 1.585187 .0629186 25.19 0.000 1.461868 1.708505

In the iteration log, the final iteration reports the message “backed up”. For most estimators,
ending on a “backed up” message would be a cause for great concern, but not with arch or, for that
matter, arima, as long as you do not specify the gtolerance() option. arch and arima, by default,
monitor the gradient and declare convergence only if, in addition to everything else, the gradient is
small enough.

The fitted model demonstrates substantial asymmetry, with the large negative L1.aparch e
coefficient indicating that the market responds with much more volatility to unexpected drops in
returns (bad news) than it does to increases in returns (good news).

Example 5: ARCH model with nonnormal errors

Stock returns tend to be leptokurtotic, meaning that large returns (either positive or negative) occur
more frequently than one would expect if returns were in fact normally distributed. Here we refit the
previous A-PARCH model assuming the errors follow the generalized error distribution, and we let
arch estimate the shape parameter of the distribution.
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. use http://www.stata-press.com/data/r13/dow1, clear

. arch D.ln_dow, ar(1) aparch(1) pgarch(1) distribution(ged)

(setting optimization to BHHH)
Iteration 0: log likelihood = 31139.547
Iteration 1: log likelihood = 31348.13

(output omitted )
Iteration 60: log likelihood = 32486.461

ARCH family regression -- AR disturbances

Sample: 2 - 9341 Number of obs = 9340
Distribution: GED Wald chi2(1) = 178.22
Log likelihood = 32486.46 Prob > chi2 = 0.0000

OPG
D.ln_dow Coef. Std. Err. z P>|z| [95% Conf. Interval]

ln_dow
_cons .0002735 .000078 3.51 0.000 .0001207 .0004264

ARMA
ar

L1. .1337473 .0100187 13.35 0.000 .1141109 .1533836

ARCH
aparch

L1. .0641762 .0049401 12.99 0.000 .0544938 .0738587

aparch_e
L1. -.4052109 .0573054 -7.07 0.000 -.5175273 -.2928944

pgarch
L1. .9341738 .0045668 204.56 0.000 .925223 .9431246

_cons .0000216 .0000117 1.84 0.066 -1.39e-06 .0000446

POWER
power 1.325313 .1030748 12.86 0.000 1.12329 1.527336

/lnshape .3527009 .009482 37.20 0.000 .3341166 .3712853

shape 1.422906 .013492 1.396706 1.449597

The ARMA and ARCH coefficients are similar to those we obtained when we assumed normally
distributed errors, though we do note that the power term is now closer to 1. The estimated shape
parameter for the generalized error distribution is shown at the bottom of the output. Here the shape
parameter is 1.42; because it is less than 2, the distribution of the errors has tails that are fatter than
they would be if the errors were normally distributed.

Example 6: ARCH model with constraints

Engle’s (1982) original model, which sparked the interest in ARCH, provides an example requiring
constraints. Most current ARCH specifications use GARCH terms to provide flexible dynamic properties
without estimating an excessive number of parameters. The original model was limited to ARCH
terms, and to help cope with the collinearity of the terms, a declining lag structure was imposed in
the parameters. The conditional variance equation was specified as
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σ2
t = α0 + α(.4 εt−1 + .3 εt−2 + .2 εt−3 + .1 εt−4)

= α0 + .4αεt−1 + .3αεt−2 + .2αεt−3 + .1αεt−4

From the earlier arch output, we know how the coefficients will be named. In Stata, the formula is

σ2
t = [ARCH] cons + .4 [ARCH]L1.arch εt−1 + .3 [ARCH]L2.arch εt−2

+ .2 [ARCH]L3.arch εt−3 + .1 [ARCH]L4.arch εt−4

We could specify these linear constraints many ways, but the following seems fairly intuitive; see
[R] constraint for syntax.

. use http://www.stata-press.com/data/r13/wpi1, clear

. constraint 1 (3/4)*[ARCH]l1.arch = [ARCH]l2.arch

. constraint 2 (2/4)*[ARCH]l1.arch = [ARCH]l3.arch

. constraint 3 (1/4)*[ARCH]l1.arch = [ARCH]l4.arch

The original model was fit on U.K. inflation; we will again use the WPI data and retain our earlier
specification of the mean equation, which differs from Engle’s U.K. inflation model. With our
constraints, we type

. arch D.ln_wpi, ar(1) ma(1 4) arch(1/4) constraints(1/3)

(setting optimization to BHHH)
Iteration 0: log likelihood = 396.80198
Iteration 1: log likelihood = 399.07809

(output omitted )
Iteration 9: log likelihood = 399.46243

ARCH family regression -- ARMA disturbances

Sample: 1960q2 - 1990q4 Number of obs = 123
Distribution: Gaussian Wald chi2(3) = 123.32
Log likelihood = 399.4624 Prob > chi2 = 0.0000

( 1) .75*[ARCH]L.arch - [ARCH]L2.arch = 0
( 2) .5*[ARCH]L.arch - [ARCH]L3.arch = 0
( 3) .25*[ARCH]L.arch - [ARCH]L4.arch = 0

OPG
D.ln_wpi Coef. Std. Err. z P>|z| [95% Conf. Interval]

ln_wpi
_cons .0077204 .0034531 2.24 0.025 .0009525 .0144883

ARMA
ar

L1. .7388168 .1126811 6.56 0.000 .5179659 .9596676

ma
L1. -.2559691 .1442861 -1.77 0.076 -.5387646 .0268264
L4. .2528923 .1140185 2.22 0.027 .02942 .4763645

ARCH
arch
L1. .2180138 .0737787 2.95 0.003 .0734101 .3626174
L2. .1635103 .055334 2.95 0.003 .0550576 .2719631
L3. .1090069 .0368894 2.95 0.003 .0367051 .1813087
L4. .0545034 .0184447 2.95 0.003 .0183525 .0906544

_cons .0000483 7.66e-06 6.30 0.000 .0000333 .0000633

http://www.stata.com/manuals13/rconstraint.pdf#rconstraint
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L1.arch, L2.arch, L3.arch, and L4.arch coefficients have the constrained relative sizes.

Stored results
arch stores the following in e():

Scalars
e(N) number of observations
e(N gaps) number of gaps
e(condobs) number of conditioning observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(k aux) number of auxiliary parameters
e(df m) model degrees of freedom
e(ll) log likelihood
e(chi2) χ2

e(p) significance
e(archi) σ2

0=ε
2
0, priming values

e(archany) 1 if model contains ARCH terms, 0 otherwise
e(tdf) degrees of freedom for Student’s t distribution
e(shape) shape parameter for generalized error distribution
e(tmin) minimum time
e(tmax) maximum time
e(power) ϕ for power ARCH terms
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise
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Macros
e(cmd) arch
e(cmdline) command as typed
e(depvar) name of dependent variable
e(covariates) list of covariates
e(eqnames) names of equations
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(tmins) formatted minimum time
e(tmaxs) formatted maximum time
e(dist) distribution for error term: gaussian, t, or ged
e(mhet) 1 if multiplicative heteroskedasticity
e(dfopt) yes if degrees of freedom for t distribution or shape parameter for GED distribution

was estimated; no otherwise
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(ma) lags for moving-average terms
e(ar) lags for autoregressive terms
e(arch) lags for ARCH terms
e(archm) ARCH-in-mean lags
e(archmexp) ARCH-in-mean exp
e(earch) lags for EARCH terms
e(egarch) lags for EGARCH terms
e(aarch) lags for AARCH terms
e(narch) lags for NARCH terms
e(aparch) lags for A-PARCH terms
e(nparch) lags for NPARCH terms
e(saarch) lags for SAARCH terms
e(parch) lags for PARCH terms
e(tparch) lags for TPARCH terms
e(abarch) lags for ABARCH terms
e(tarch) lags for TARCH terms
e(atarch) lags for ATARCH terms
e(sdgarch) lags for SDGARCH terms
e(pgarch) lags for PGARCH terms
e(garch) lags for GARCH terms
e(opt) type of optimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(tech) maximization technique, including number of iterations
e(tech steps) number of iterations performed before switching techniques
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
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Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
The mean equation for the model fit by arch and with ARMA terms can be written as

yt = xtβ+

p∑
i=1

ψig(σ2
t−i) +

p∑
j=1

ρj

{
yt−j − xt−jβ−

p∑
i=1

ψig(σ2
t−j−i)

}

+

q∑
k=1

θkεt−k + εt (conditional mean)

where
β are the regression parameters,

ψ are the ARCH-in-mean parameters,

ρ are the autoregression parameters,

θ are the moving-average parameters, and

g() is a general function, see the archmexp() option.

Any of the parameters in this full specification of the conditional mean may be zero. For example,
the model need not have moving-average parameters (θ = 0) or ARCH-in-mean parameters (ψ = 0).

The variance equation will be one of the following:

σ2 = γ0 +A(σ, ε) +B(σ, ε)2 (1)

lnσ2
t = γ0 + C( lnσ, z) +A(σ, ε) +B(σ, ε)2 (2)

σϕt = γ0 +D(σ, ε) +A(σ, ε) +B(σ, ε)2 (3)

where A(σ, ε), B(σ, ε), C( lnσ, z), and D(σ, ε) are linear sums of the appropriate ARCH terms; see
Details of syntax for more information. Equation (1) is used if no EGARCH or power ARCH terms
are included in the model, (2) if EGARCH terms are included, and (3) if any power ARCH terms are
included; see Details of syntax.

Methods and formulas are presented under the following headings:

Priming values
Likelihood from prediction error decomposition
Missing data
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Priming values

The above model is recursive with potentially long memory. It is necessary to assume preestimation
sample values for εt, ε2t , and σ2

t to begin the recursions, and the remaining computations are therefore
conditioned on these priming values, which can be controlled using the arch0() and arma0()
options. See options discussed under the Priming tab above.

The arch0(xb0wt) and arch0(xbwt) options compute a weighted sum of estimated disturbances
with more weight on the early observations. With either of these options,

σ2
t0−i = ε2t0−i = (1− .7)

T−1∑
t=0

.7T−t−1 ε2T−t ∀i

where t0 is the first observation for which the likelihood is computed; see options discussed under the
Priming tab above. The ε2t are all computed from the conditional mean equation. If arch0(xb0wt)
is specified, β, ψi, ρj , and θk are taken from initial regression estimates and held constant during
optimization. If arch0(xbwt) is specified, the current estimates of β, ψi, ρj , and θk are used to
compute ε2t on every iteration. If any ψi is in the mean equation (ARCH-in-mean is specified), the
estimates of ε2t from the initial regression estimates are not consistent.

Likelihood from prediction error decomposition

The likelihood function for ARCH has a particularly simple form. Given priming (or conditioning)
values of εt, ε2t , and σ2

t , the mean equation above can be solved recursively for every εt (prediction error
decomposition). Likewise, the conditional variance can be computed recursively for each observation
by using the variance equation. Using these predicted errors, their associated variances, and the
assumption that εt ∼ N(0, σ2

t ), we find that the log likelihood for each observation t is

lnLt = −1

2

{
ln(2πσ2

t ) +
ε2t
σ2
t

}

If we assume that εt ∼ t(df), then as given in Hamilton (1994, 662),

lnLt = ln Γ

(
df + 1

2

)
− ln Γ

(
df

2

)
− 1

2

[
ln
{

(df − 2)πσ2
t

}
+ (df + 1) ln

{
1 +

ε2t
(df − 2)σ2

t

}]
The likelihood is not defined for df ≤ 2, so instead of estimating df directly, we estimate m =
ln(df − 2). Then df = exp(m) + 2 > 2 for any m.

Following Bollerslev, Engle, and Nelson (1994, 2978), the log likelihood for the tth observation,
assuming εt ∼ GED(s), is

lnLt = ln s− lnλ− s+ 1

s
ln 2− ln Γ

(
s−1
)
− 1

2

∣∣∣∣ εtλσt
∣∣∣∣s

where

λ =

{
Γ
(
s−1
)

22/sΓ (3s−1)

}1/2

To enforce the restriction that s > 0, we estimate r = ln s.
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This command supports the Huber/White/sandwich estimator of the variance using vce(robust).
See [P] robust, particularly Maximum likelihood estimators and Methods and formulas.

Missing data

ARCH allows missing data or missing observations but does not attempt to condition on the
surrounding data. If a dynamic component cannot be computed—εt, ε2t , and/or σ2

t —its priming
value is substituted. If a covariate, the dependent variable, or the entire observation is missing, the
observation does not enter the likelihood, and its dynamic components are set to their priming values
for that observation. This is acceptable only asymptotically and should not be used with a great deal
of missing data.

� �
Robert Fry Engle (1942– ) was born in Syracuse, New York. He earned degrees in physics
and economics at Williams College and Cornell and then worked at MIT and the University of
California, San Diego, before moving to New York University Stern School of Business in 2000.
He was awarded the 2003 Nobel Prize in Economics for research on autoregressive conditional
heteroskedasticity and is a leading expert in time-series analysis, especially the analysis of
financial markets.� �

References
Adkins, L. C., and R. C. Hill. 2011. Using Stata for Principles of Econometrics. 4th ed. Hoboken, NJ: Wiley.

Baum, C. F. 2000. sts15: Tests for stationarity of a time series. Stata Technical Bulletin 57: 36–39. Reprinted in
Stata Technical Bulletin Reprints, vol. 10, pp. 356–360. College Station, TX: Stata Press.

Baum, C. F., and R. I. Sperling. 2000. sts15.1: Tests for stationarity of a time series: Update. Stata Technical Bulletin
58: 35–36. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 360–362. College Station, TX: Stata Press.

Baum, C. F., and V. L. Wiggins. 2000. sts16: Tests for long memory in a time series. Stata Technical Bulletin 57:
39–44. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 362–368. College Station, TX: Stata Press.

Becketti, S. 2013. Introduction to Time Series Using Stata. College Station, TX: Stata Press.

Berndt, E. K., B. H. Hall, R. E. Hall, and J. A. Hausman. 1974. Estimation and inference in nonlinear structural
models. Annals of Economic and Social Measurement 3/4: 653–665.

Black, F. 1976. Studies of stock price volatility changes. Proceedings of the American Statistical Association, Business
and Economics Statistics 177–181.

Bollerslev, T. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31: 307–327.

Bollerslev, T., R. Y. Chou, and K. F. Kroner. 1992. ARCH modeling in finance. Journal of Econometrics 52: 5–59.

Bollerslev, T., R. F. Engle, and D. B. Nelson. 1994. ARCH models. In Vol. 4 of Handbook of Econometrics, ed.
R. F. Engle and D. L. McFadden. Amsterdam: Elsevier.

Bollerslev, T., and J. M. Wooldridge. 1992. Quasi-maximum likelihood estimation and inference in dynamic models
with time-varying covariances. Econometric Reviews 11: 143–172.

Davidson, R., and J. G. MacKinnon. 1993. Estimation and Inference in Econometrics. New York: Oxford University
Press.

. 2004. Econometric Theory and Methods. New York: Oxford University Press.

Diebold, F. X. 2003. The ET Interview: Professor Robert F. Engle. Econometric Theory 19: 1159–1193.

Ding, Z., C. W. J. Granger, and R. F. Engle. 1993. A long memory property of stock market returns and a new
model. Journal of Empirical Finance 1: 83–106.

Enders, W. 2004. Applied Econometric Time Series. 2nd ed. New York: Wiley.

http://www.stata.com/manuals13/p_robust.pdf#p_robust
http://www.stata.com/manuals13/p_robust.pdf#p_robustRemarksandexamplesMaximumlikelihoodestimators
http://www.stata.com/manuals13/p_robust.pdf#p_robustMethodsandformulas
http://www.stata.com/bookstore/uspe.html
http://www.stata.com/products/stb/journals/stb57.pdf
http://www.stata.com/products/stb/journals/stb58.pdf
http://www.stata.com/products/stb/journals/stb57.pdf
http://www.stata-press.com/books/introduction-to-time-series-using-stata/
http://www.stata.com/bookstore/eie.html


arch — Autoregressive conditional heteroskedasticity (ARCH) family of estimators 33

Engle, R. F. 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom
inflation. Econometrica 50: 987–1007.

. 1990. Discussion: Stock volatility and the crash of ’87. Review of Financial Studies 3: 103–106.

Engle, R. F., D. M. Lilien, and R. P. Robins. 1987. Estimating time varying risk premia in the term structure: The
ARCH-M model. Econometrica 55: 391–407.

Glosten, L. R., R. Jagannathan, and D. E. Runkle. 1993. On the relation between the expected value and the volatility
of the nominal excess return on stocks. Journal of Finance 48: 1779–1801.

Greene, W. H. 2012. Econometric Analysis. 7th ed. Upper Saddle River, NJ: Prentice Hall.

Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Harvey, A. C. 1989. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge: Cambridge
University Press.

. 1990. The Econometric Analysis of Time Series. 2nd ed. Cambridge, MA: MIT Press.

Higgins, M. L., and A. K. Bera. 1992. A class of nonlinear ARCH models. International Economic Review 33:
137–158.

Hill, R. C., W. E. Griffiths, and G. C. Lim. 2011. Principles of Econometrics. 4th ed. Hoboken, NJ: Wiley.

Judge, G. G., W. E. Griffiths, R. C. Hill, H. Lütkepohl, and T.-C. Lee. 1985. The Theory and Practice of Econometrics.
2nd ed. New York: Wiley.

Kmenta, J. 1997. Elements of Econometrics. 2nd ed. Ann Arbor: University of Michigan Press.

Mandelbrot, B. B. 1963. The variation of certain speculative prices. Journal of Business 36: 394–419.

Nelson, D. B. 1991. Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59: 347–370.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 2007. Numerical Recipes: The Art of Scientific
Computing. 3rd ed. New York: Cambridge University Press.

Stock, J. H., and M. W. Watson. 2011. Introduction to Econometrics. 3rd ed. Boston: Addison–Wesley.

Wooldridge, J. M. 2013. Introductory Econometrics: A Modern Approach. 5th ed. Mason, OH: South-Western.

Zakoian, J. M. 1994. Threshold heteroskedastic models. Journal of Economic Dynamics and Control 18: 931–955.

Also see
[TS] arch postestimation — Postestimation tools for arch

[TS] tsset — Declare data to be time-series data

[TS] arima — ARIMA, ARMAX, and other dynamic regression models

[TS] mgarch — Multivariate GARCH models

[R] regress — Linear regression

[U] 20 Estimation and postestimation commands

http://www.stata.com/bookstore/ea.html
http://www.stata.com/bookstore/poe.html
http://www.stata.com/bookstore/ite.html
http://www.stata.com/bookstore/ie.html
http://www.stata.com/manuals13/tsarchpostestimation.pdf#tsarchpostestimation
http://www.stata.com/manuals13/tstsset.pdf#tstsset
http://www.stata.com/manuals13/tsarima.pdf#tsarima
http://www.stata.com/manuals13/tsmgarch.pdf#tsmgarch
http://www.stata.com/manuals13/rregress.pdf#rregress
http://www.stata.com/manuals13/u20.pdf#u20Estimationandpostestimationcommands

