teffects ra — Regression adjustment

Syntax

```
teffects ra (ovar omvarlist [ , omodel noconstant ]) (tvar) [if] [in] [weight]
[ , stat options]
```

omodel

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear</td>
</tr>
<tr>
<td>logit</td>
</tr>
<tr>
<td>probit</td>
</tr>
<tr>
<td>hetprobit(varlist)</td>
</tr>
<tr>
<td>poisson</td>
</tr>
</tbody>
</table>

`omodel` specifies the model for the outcome variable.

stat

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ate</td>
</tr>
<tr>
<td>atet</td>
</tr>
<tr>
<td>pomeans</td>
</tr>
</tbody>
</table>

stat options

- `ate` estimate average treatment effect in population; the default
- `atet` estimate average treatment effect on the treated
- `pomeans` estimate potential-outcome means

Options

- **SE/Robust**
 - `vce(vcetype)`
 - `vcetype` may be `robust`, `bootstrap`, or `jackknife`

- **Reporting**
 - `level(#)`
 - set confidence level; default is `level(95)`
 - `aequations` display auxiliary-equation results
 - `display_options` control column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling

- **Maximization**
 - `maximize_options` control the maximization process; seldom used

- **Advanced**
 - `control(# | label)` specify the level of `tvar` that is the control
 - `tlevel(# | label)` specify the level of `tvar` that is the treatment
 - `coeflegend` display legend instead of statistics
teffects ra — Regression adjustment

`tvar` must contain integer values representing the treatment levels.
`omvarlist` may contain factor variables; see [U] 11.4.3 Factor variables.
`bootstrap`, `by`, `jackknife`, and `statsby` are allowed; see [U] 11.10 Prefix commands.
`fweights` and `iweights` are allowed; see [U] 11.6 weight.
`coeflegend` does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Treatment effects > Regression adjustment

Description

teffects ra estimates treatment effects from observational data via regression adjustment (RA).
RA uses contrasts of averages of treatment-specific predicted outcomes to estimate treatment effects.
teffects ra offers the choice of several different functional forms to facilitate continuous, binary, count, and nonnegative outcomes.

Options

Model

noconstant; see [R] estimation options.

Stat

`stat` is one of three statistics: `ate`, `atet`, or `pomeans`. `ate` is the default.

- `ate` specifies that the average treatment effect be estimated.
- `atet` specifies that the average treatment effect on the treated be estimated.
- `pomeans` specifies that the potential-outcome means for each treatment level be estimated.

SE/Robust

`vce(vcetype)` specifies the type of standard error reported, which includes types that are robust to some kinds of misspecification (`robust`) and that use bootstrap or jackknife methods (`bootstrap, jackknife`); see [R] `vce_option`.

Reporting

`level(#)`; see [R] estimation options.

`aequations` specifies that the results for the outcome-model or the treatment-model parameters be displayed. By default, the results for these auxiliary parameters are not displayed.

`display_options`: `noomitted`, `vsquish`, `noemptycells`, `baselevels`, `allbaselevels`, `nofvlabel`, `fvwrap(#)`, `fwrapon(style)`, `cformat(%fmt)`, `pformat(%fmt)`, `sformat(%fmt)`, and `nolstretch`; see [R] estimation options.
teffects ra — Regression adjustment

`maximize_options: iterate(#), [no]log, and from(init_spec); see [R] maximize. These options are seldom used.

* init_spec is one of
 - matname [, skip copy]
 - # [, # ...], copy

Advanced

control(# | label) specifies the level of tvar that is the control. The default is the first treatment level. You may specify the numeric level # (a nonnegative integer) or the label associated with the numeric level. control() may not be specified with statistic pomeans. control() and tlevel() may not specify the same treatment level.

* tlevel(# | label) specifies the level of tvar that is the treatment for the statistic atet. The default is the second treatment level. You may specify the numeric level # (a nonnegative integer) or the label associated with the numeric level. tlevel() may only be specified with statistic atet. tlevel() and control() may not specify the same treatment level.

The following option is available with teffects ra but is not shown in the dialog box:

* coeflegend; see [R] estimation options.

Remarks and examples

stata.com

Remarks are presented under the following headings:

* Overview
* Video example

Overview

Regression adjustment (RA) estimators use the contrasts of the averages of treatment-specific predicted outcomes to estimate treatment effects. RA estimators use a two-step approach to estimating treatment effects:

1. They fit separate regression models of the outcome on a set of covariates for each treatment level.
2. They compute the averages of the predicted outcomes for each subject and treatment level. These averages reflect the POMs. The contrasts of these averages provide estimates of the ATEs. By restricting the computations of the means to the subset of treated subjects, we obtain the ATETs.

RA estimators are consistent as long as the treatment is independent of the potential outcomes after conditioning on the covariates. In fact, teffects ra uses an estimation technique that implements both steps at once so that we do not need to correct the standard errors in the second step to reflect the uncertainty surrounding the predicted outcomes.

We will illustrate the use of teffects ra by using data from a study of the effect of a mother’s smoking status during pregnancy (mbsmoke) on infant birthweight (bweight) as reported by Cattaneo (2010). This dataset also contains information about each mother’s age (mage), education level (medu), marital status (mmarried), whether the first prenatal exam occurred in the first trimester (prenatal1), and whether this baby was the mother’s first birth (fbaby).
Example 1: Estimating the ATE

We begin by using `teffects ra` to estimate the average treatment effect of smoking, controlling for first-trimester exam status, marital status, mother’s age, and first-birth status. In Stata, we type

```
use http://www.stata-press.com/data/r13/cattaneo2
tffects ra (bweight prenatal1 mmarried mage fbaby) (mbsmoke)
```

```
Iteration 0:   EE criterion =  5.288e-25
Iteration 1:   EE criterion =  4.495e-26

Treatment-effects estimation                     Number of obs =  4642
Estimator : regression adjustment
Outcome model : linear
Treatment model: none

|                | Coef. | Std. Err. | z    | P>|z|  | [95% Conf. Interval] |
|----------------|-------|-----------|------|------|----------------------|
| ATE mbsmoke    |       |           |      |      |                      |
| (smoker vs nonsmoker) | -239.6392 | 23.82402  | -10.06 | 0.000 | -286.3334 -192.945 |
| POmean mbsmoke |       |           |      |      |                      |
| nonsmoker      | 3403.242 | 9.525207  | 357.29 | 0.000 | 3384.573 3421.911   |
```

Smoking causes infants’ birthweights to be reduced by an average of 240 grams from the average of 3,403 grams for infants of mothers who do not smoke.

The previous results showed us the average amount by which infants’ weights are affected by their mothers’ decision to smoke. We may instead be interested in knowing the average amount by which the weight of babies born to smoking mothers was decreased as a result of smoking. The ATET provides us with the answer.
Example 2: Estimating the ATET

To obtain the ATET rather than the ATE, we use the atet option:

```
. teffects ra (bweight prenatal1 mmarried mage fbaby) (mbsmoke), atet
```

```
Iteration 0:  EE criterion = 4.528e-25
Iteration 1:  EE criterion = 4.047e-26
```

Treatment-effects estimation Number of obs = 4642
Estimator : regression adjustment
Outcome model : linear
Treatment model : none

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------|--------|-----------|------|-------|------------------|
| bweight | | | | | |
| ATET | | | | | |
| mbsmoke (smoker vs nonsmoker) | -223.3017 | 22.7422 | -9.82| 0.000 | -267.8755 -178.7278 |
| POmean | | | | | |
| mbsmoke | 3360.961 | 12.75749 | 263.45| 0.000 | 3335.957 3385.966 |
| nonsmoker | | | | | |

The ATET differs from the ATE because the distribution of the covariates among mothers who smoke differs from the distribution for nonsmoking mothers. For example, in [TE] teffects intro, we remarked that in our sample, mothers who smoked tended to be older than those who did not. The differing distributions of covariates also affect the estimated POMs.

By default, teffects ra reports the ATE, which is the difference between the two POMs in the case of a binary treatment variable. Sometimes, we want to know the estimated POMs themselves. We might also want to see the actual regression equations used to estimate the POMs. Obtaining this information is easy, as the next example illustrates.
Example 3: Estimating the POMs

Here we use the `pomeans` option to display the POMs and the `aequations` option to display the estimated regression coefficients for the treated and untreated subjects.

```
. teffects ra (bweight prenatal1 mmarried mage fbaby) (mbsmoke), > pomeans aequations
```

```
Iteration 0:  EE criterion = 5.288e-25
Iteration 1:  EE criterion = 5.204e-26
```

```
Treatment-effects estimation Number of obs = 4642
Estimator : regression adjustment
Outcome model : linear
Treatment model: none

```

| | Robust Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------------|--------------|-----------|----|------|----------------------|
| | | | | | |
| bweight | | | | | |
| POMmeans | | | | | |
| nonsmoker | 3403.242 | 9.525207 | 357.29 | 0.000 | 3384.573 3421.911 |
| smoker | 3163.603 | 21.86351 | 144.70 | 0.000 | 3120.751 3206.455 |
| OME0 | | | | | |
| prenatal1 | 64.40859 | 27.52699 | 2.34 | 0.019 | 10.45669 118.3605 |
| mmarried | 160.9513 | 26.6162 | 6.05 | 0.000 | 108.7845 213.1181 |
| mage | 2.546828 | 2.084324 | 1.22 | 0.222 | -1.538373 6.632028 |
| fbaby | -71.3286 | 19.64701 | -3.63 | 0.000 | -109.836 -32.82117 |
| _cons | 3202.746 | 54.01082 | 59.30 | 0.000 | 3096.886 3308.605 |
| OME1 | | | | | |
| prenatal1 | 25.11133 | 40.37541 | 0.62 | 0.534 | -54.02302 104.2457 |
| mmarried | 133.6617 | 40.86443 | 3.27 | 0.001 | 53.5689 213.7545 |
| mage | -7.370881 | 4.21817 | -1.75 | 0.081 | -15.63834 .8965804 |
| fbaby | 41.43991 | 39.70712 | 1.04 | 0.297 | -36.38461 119.2644 |
| _cons | 3227.169 | 104.4059 | 30.91 | 0.000 | 3022.537 3431.801 |
```

The nonsmoker POM for infant birthweight is 3,403 grams; that means that if none of the women in our sample smoked during pregnancy, the expected average birthweight would be 3,403 grams. The POM if all mothers did smoke during pregnancy is 3,164 grams, a difference of 240 grams, as we established in example 1. The coefficients for the equation labeled OME0 represent the linear equation used to estimate the nontreated POM, and the coefficients for the equation labeled OME1 represent the linear equation used to estimate the treated POM. The coefficients are identical to those we would obtain using `regress`, but the standard errors differ slightly because `teffects ra` does not make the small-sample adjustment that `regress` does.

We often express statistics as percentages to alleviate scaling issues and aid interpretation. In the present context, we may wish to express an ATE as a percentage of the untreated POM to gain a more intuitive measure of efficacy.

Example 4: Reporting the ATE as a percentage

Sometimes, we are interested in reporting the estimated treatment effect as a percentage of the untreated POM. We continue to use the same model as in the previous examples, but we specify the `coeflegend` option so that `teffects ra` reports the names of the parameters. Knowing the correct names to use, we can then use `nlincom` to obtain the percentage change along with its delta-method-based standard error. We type
We find that smoking during pregnancy reduces birthweight by about 7% on average, a statistically significant amount.

Birthweights cannot be negative, though it is possible for a linear regression model to make negative predictions. A common way to enforce nonnegative predictions is to use an exponential conditional-mean model, which is commonly fitted using the Poisson quasimaximum-likelihood estimator, as discussed in Cameron and Trivedi (2005, sec. 5.7), Wooldridge (2010, sec. 18.2), and Pawitan (2001, chap. 14). teffects ra provides an option to use this model rather than linear regression for the outcomes.

Example 5: Modeling nonnegative outcomes

Now we refit our model of smoking behavior on birthweight, but we specify the poisson option in the outcome-model equation so that teffects ra uses the Poisson exponential model rather than linear regression:
. teffects ra (bweight prenatal1 mmarried mage fbaby, poisson) (mbsmoke)

Iteration 0:  EE criterion =  3.949e-17
Iteration 1:  EE criterion =  1.246e-23

Treatment-effects estimation                   Number of obs    =     4642
Estimator         : regression adjustment     
Outcome model      : Poisson                     
Treatment model: none

<table>
<thead>
<tr>
<th>bweight</th>
<th>Robust</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coef.</td>
<td>Std. Err.</td>
<td>z</td>
<td>P&gt;</td>
</tr>
<tr>
<td>ATE</td>
<td>mbsmoke (smoker vs nonsmoker)</td>
<td>-239.6669</td>
<td>23.83757</td>
<td>-10.05</td>
</tr>
<tr>
<td></td>
<td>POmean mbsmoke nonsmoker</td>
<td>3403.178</td>
<td>9.526006</td>
<td>357.25</td>
</tr>
</tbody>
</table>

In this case, using a model that forces outcomes to be nonnegative did not make any substantive difference. In this dataset, nearly 90% of babies weigh at least 2,700 grams, and even the smallest baby weighs 340 grams. When the dependent variable is so large, the predictions from Poisson and linear regression models are remarkably similar.

Video example

Treatment effects: Regression adjustment
Stored results

tffects ra stores the following in e():

Scalars
- e(N): number of observations
- e(nj): number of observations for treatment level j
- e(k_eq): number of equations in e(b)
- e(k_levels): number of levels in treatment variable
- e(treated): level of treatment variable defined as treated
- e(control): level of treatment variable defined as control
- e(converged): 1 if converged, 0 otherwise

Macros
- e(cmd): teffects
- e(cmdline): command as typed
- e(depvar): name of outcome variable
- e(tvar): name of treatment variable
- e(subcmd): ra
- e(omodel): linear, logit, probit, hetprobit, or poisson
- e(stat): statistic estimated, ate, atet, or pomeans
- e(vtype): weight type
- e(vexp): weight expression
- e(tlevels): levels of treatment variable
- e(vctype): vcetype specified in vce()
- e(properties): b V
- e(estat_cmd): program used to implement estat
- e(predict): program used to implement predict
- e(marginsnotok): predictions disallowed by margins

Matrices
- e(b): coefficient vector
- e(V): variance–covariance matrix of the estimators

Functions
- e(sample): marks estimation sample

Methods and formulas

tffects ra implements a smooth treatment-effects estimator. All smooth treatment-effects estimators are documented in [TE] teffects aipw.

References


Also see

[TE] teffects postestimation — Postestimation tools for teffects
[TE] `teffects` — Treatment-effects estimation for observational data

[R] `hetprobit` — Heteroskedastic probit model

[R] `logit` — Logistic regression, reporting coefficients

[R] `poisson` — Poisson regression

[R] `probit` — Probit regression

[R] `regress` — Linear regression

[U] 20 Estimation and postestimation commands