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Description

This entry provides a technical overview of treatment-effects estimators and their implementation
in Stata. Those who are new to treatment-effects estimation may want to instead see [TE] teffects
intro.

The teffects command estimates potential-outcome means (POMs), average treatment effects
(ATEs), and average treatment effects among treated subjects (ATETs) using observational data.

Treatment effects can be estimated using regression adjustment (RA), inverse-probability weights
(IPW), and “doubly robust” methods, including inverse-probability-weighted regression adjustment
(IPWRA) and augmented inverse-probability weights (AIPW), and via matching on the propensity score
or nearest neighbors.

The outcome models can be continuous, binary, count, or nonnegative. Continuous outcomes
can be modeled using linear regression; binary outcomes can be modeled using logit, probit, or
heteroskedastic probit regression; and count and nonnegative outcomes can be modeled using Poisson
regression. The treatment model can be binary or multinomial. Binary treatments can be modeled
using logit, probit, or heteroskedastic probit regression, while multinomial outcomes are modeled
using multinomial logit regression.

Remarks and examples stata.com

This entry presents a technical overview of treatment-effects estimators and their implementation
in Stata. Users who are new to treatment-effects estimators for observational data should instead read
[TE] teffects intro.

Remarks are presented under the following headings:

Introduction
Defining treatment effects
The potential-outcome model
Assumptions needed for estimation
Comparing the ATE and ATET
Overview of treatment-effect estimators
RA estimators
IPW estimators
AIPW estimators
IPWRA estimators
Nearest-neighbor matching estimators
Propensity-score matching estimators
Choosing among estimators
Model choice
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Introduction

The teffects commands estimate treatment effects from observed data. A treatment effect is the
change in an outcome caused by a subject, often an individual, getting one treatment instead of another.
We cannot estimate individual-level treatment effects, because we only observe each individual getting
one or another treatment.

Potential-outcome models provide a solution to this missing-data problem and allow us to estimate
the distribution of individual-level treatment effects. A potential-outcome model specifies the potential
outcomes that each individual would obtain under each treatment level, the treatment assignment
process, and the dependence of the potential outcomes on the treatment assignment process.

When the potential outcomes do not depend on the treatment levels, after conditioning on covariates,
regression estimators, inverse-probability-weighted estimators, and matching estimators are commonly
used.

What we call the potential-outcome model is also known as the Rubin causal model and the
counterfactual model. See Rubin (1974); Holland (1986); Robins (1986); Heckman (1997); Heckman
and Navarro-Lozano (2004); Imbens (2004); Cameron and Trivedi (2005, chap. 2.7); Imbens and
Wooldridge (2009); and Wooldridge (2010, chap. 21) for more detailed discussions.

Defining treatment effects

Three parameters are often used to measure treatment effects: the average treatment effect (ATE),
the average treatment effect on the treated (ATET), and the potential-outcome means (POMs). In this
section, we define each of these terms and introduce the notation and parameters used in the rest of
our discussion.

In the binary-treatment case, the two potential outcomes for each individual are y0i and y1i; y0i
is the outcome that would be obtained if i does not get the treatment, and y1i is the outcome that
would be obtained if i gets the treatment. y0i and y1i are realizations of the random variables y0
and y1. Throughout this entry, i subscripts denote realizations of the corresponding unsubscripted
random variables. We do not discuss multivalued treatments here, because doing so only increases the
number of parameters and notation required and detracts from the essential points; see [TE] teffects
multivalued for information about multivalued treatments.

The parameters of interest summarize the distribution of the unobservable individual-level treatment
effect y1 − y0. In defining the parameters, t denotes a random treatment, ti denotes the treatment
received by individual i, t = 1 is the treatment level, and t = 0 is the control level. Given this
notation, we can now define our parameters of interest.

ATE The ATE is the average effect of the treatment in the population:

ATE = E(y1 − y0)

POM The POM for treatment level t is the average potential outcome for that treatment level:

POMt = E(yt)

ATET The ATET is the average treatment effect among those that receive the treatment:

ATET = E(y1 − y0|t = 1)

For an illustration of these concepts, see Defining treatment effects in [TE] teffects intro.

http://www.stata.com/manuals13/teteffectsmultivalued.pdf#teteffectsmultivalued
http://www.stata.com/manuals13/teteffectsmultivalued.pdf#teteffectsmultivalued
http://www.stata.com/manuals13/teteffectsintro.pdf#teteffectsintroRemarksandexamplesDefiningtreatmenteffects
http://www.stata.com/manuals13/teteffectsintro.pdf#teteffectsintro
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The potential-outcome model

Next we specify a potential-outcome model that serves as a touchstone for the rest of our discussion.
The model described here generates data in which yi is the observed outcome variable, ti is the
treatment variable, xi is a vector of covariates that affect the outcome, and wi is a vector of covariates
that affect the treatment assignment. xi and wi may have elements in common.

This potential-outcome model specifies that the observed outcome variable y is y0 when t = 0
and that y is y1 when t = 1. Algebraically, we say that

y = (1− t)y0 + ty1

The functional forms for y0 and y1 are

y0 = x′β0 + ε0 (1)

y1 = x′β1 + ε1 (2)

where β0 and β1 are coefficients to be estimated, and ε0 and ε1 are error terms that are not related to
x or w. This potential-outcome model separates each potential outcome into a predictable component,
xβt, and an unobservable error term, εt.

The treatment assignment process is

t =

{
1 if w′γ+ η > 0

0 otherwise
(3)

where γ is a coefficient vector, and η is an unobservable error term that is not related to either x or
w. The treatment assignment process is also separated into a predictable component, w′γ, and an
unobservable error term, η.

We emphasize six points about this model:

1. The observed data from this model contain yi, ti, wi, and xi. The data do not reveal both y0i
and y1i for any given i.

2. The model for t determines how the data on y0 and y1 are missing.

3. The model separates the potential outcomes and treatment assignment into observable and
unobservable components.

4. Whether η is independent of the vector (ε0, ε1) is essential in specifying the set of available
estimators.

5. The coefficient vectors β0, β1, and γ are auxiliary parameters. We use estimates of these
coefficient vectors to estimate the ATE, the POMs, and the ATET.

6. For notational simplicity, we represented y0 and y1 as linear functions. In practice, we can use
other functional forms.

In specifying this potential-outcome model, we explicitly showed the functional forms for the
potential outcomes and the treatment assignment process. To ease subsequent discussions, we refer
to the set of functional forms for the potential outcomes as the “outcome model”, and we refer to
the treatment assignment process as the “treatment model”.
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Assumptions needed for estimation

As with any type of estimator, we must make some assumptions to use treatment-effects estimators.
The particular assumptions we need for each estimator implemented by teffects and for each effect
parameter vary, but some version of each of the following is required.

CI The conditional-independence CI assumption restricts the dependence between the treatment
model and the potential outcomes.

Overlap The overlap assumption ensures that each individual could receive any treatment level.

i.i.d. The independent and identically distributed (i.i.d.) sampling assumption ensures that the
potential outcomes and the treatment status of each individual are unrelated to the potential
outcomes and treatment statuses of all other individuals in the population.

We now discuss each assumption in detail.

The CI assumption

After conditioning on covariates, when no unobservable variable affects both treatment assignment
and the potential outcomes, the potential outcomes are conditionally independent of the treatment.
In epidemiological jargon, there are no unmeasured confounders. In econometric jargon, we have
selection on observables. If we observe enough covariates, the potential outcomes may indeed be
conditionally independent of the treatment.

Intuitively, the CI assumption says that only the covariates x affect both the treatment and the
potential outcomes. Any other factors that affect the treatment must be independent of the potential
outcomes, and any other factors that affect the potential outcomes must be independent of the treatment.
Formally, the CI assumption states that, conditional on covariates x, the treatment t is independent of
the vector of potential outcomes (y0, y1)

′.

The CI assumption allows us to estimate the effects by regression adjustment (RA) methods, inverse-
probability-weighting (IPW) methods, methods that combine RA and IPW concepts, and matching
methods. The data only reveal information about E(y0|x,w, t = 0) and E(y1|x,w, t = 1), but we
are interested in an average of E(y0|x,w) and E(y1|x,w), where x represents the outcome covariates
and w the treatment-assignment covariates. The CI assumption allows us to estimate E(y0|x,w)
and E(y1|x,w) directly from the observations for which E(y0|x,w, t = 0) and E(y1|x,w, t = 1),
respectively.

For our potential-outcome model presented in (1) through (3), the CI assumption can be viewed as a
set of restrictions on the covariance matrix of the error terms. Suppose that the vector of unobservables
(ε0, ε1, η) is normally distributed ε0

ε1

η

 ∼ N

 0

0

0

 ,

 σ2
0 ρ01σ0σ1 ρη0σ0

ρ01σ0σ1 σ2
1 ρη1σ1

ρη0σ0 ρη1σ1 1


 (4)

where σ0 is the standard deviation of ε0, ρ01 is the correlation between ε0 and ε1, σ1 is the standard
deviation of ε1, ρη0 is the correlation between εη and ε0, and ρη1 is the correlation between εη
and ε1. As is standard in the normally distributed latent-variable specification of a binary-dependent
variable, we normalize the variance of εη to 1.
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CI specifies that ρη0 = ρη1 = 0 so that we can write (4) as ε0

ε1

η

 ∼ N

 0

0

0

 ,

 σ2
0 ρ01σ0σ1 0

ρ01σ0σ1 σ2
1 0

0 0 1




Writing the covariance matrix this way makes clear what we mean by conditional independence:
unobserved shocks that affect whether a subject is treated do not have any effect on the potential
outcomes, and unobserved shocks that affect a potential outcome do not affect treatment.

The command teffects implements estimators that require the CI assumption. See [TE] etregress
and [TE] etpoisson for commands that handle two cases in which the CI assumption is replaced by
precise specifications of the joint dependence among the unobservables. Brown and Mergoupis (2011)
discuss the itreatreg command that extends [TE] etregress.

The CI assumption is also known as unconfoundedness and selection-on-observables in the literature.
See Rosenbaum and Rubin (1983); Heckman (1997); Heckman and Navarro-Lozano (2004); Cameron
and Trivedi (2005, sec. 25.2.1); Tsiatis (2006, sec. 13.3); Angrist and Pischke (2009, chap. 3); Imbens
and Wooldridge (2009); and Wooldridge (2010, sec. 21.3). Some discussions with Stata commands can
be found in Becker and Caliendo (2007), Nichols (2007), and Daniel, De Stavola, and Cousens (2011).

Technical note

In fact, full CI is stronger than what we need to estimate the ATE, the ATET, or the POMs.
For the estimators implemented in teffects, we only need a conditional mean independence
(CMI) assumption. Intuitively, the CMI assumption says that after accounting for the covariates xi,
the treatment does not affect the conditional mean of each potential outcome. Formally, the CMI
requires that E(y0|x, t) = E(y0|x) and that E(y1|x, t) = E(y1|x). The CMI assumption allows the
conditional variance to depend on the treatment, while the CI assumption does not.

The CI assumption implies the CMI assumption, but not vice versa.

See Wooldridge (2010, sec. 21.2 and 21.3) for an excellent introduction to this topic, and see
Cattaneo, Drukker, and Holland (2013) for some discussion of the multiple treatment case.

The overlap assumption

The overlap assumption requires that each individual have a positive probability of receiving each
treatment level. Formally, the overlap assumption requires that for each possible x in the population
and each treatment level t̃, 0 < Pr(t = t̃|x) < 1. Rosenbaum and Rubin (1983) call the combination
of the CI and overlap assumptions strong ignorability; see also Abadie and Imbens (2006, 237–238)
and Imbens and Wooldridge (2009).

The i.i.d. assumption

The third of the three assumptions listed above is the i.i.d. assumption; it is the standard assumption
of having an i.i.d. sample from the population. In potential-outcome models, i.i.d. sampling implies
that the potential outcomes and treatment status of each individual are unrelated to the potential
outcomes and treatment statuses of all the other individuals in the population. I.i.d. sampling rules out
interactions among the individuals. For instance, models of vaccinations in epidemiology and general

http://www.stata.com/manuals13/teetregress.pdf#teetregress
http://www.stata.com/manuals13/teetpoisson.pdf#teetpoisson
http://www.stata.com/manuals13/teetregress.pdf#teetregress
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equilibrium effects in economics violate the independence assumption. This third assumption is a part
of what is known as the stable unit treatment value assumption (SUTVA); see Wooldridge (2010, 905)
and Imbens and Wooldridge (2009).

Comparing the ATE and ATET

When comparing the ATE and the ATET, two points should be mentioned.

First, the assumptions required to estimate the ATET are less restrictive than the assumptions
required to estimate the ATE. Estimating the ATET requires a weaker form of the CI assumption and
a weaker version of the overlap assumption.

To estimate the ATE under CI, we require that the unobservables in the treatment model be
conditionally independent of the unobservables in both potential outcomes. In contrast, we can estimate
the ATET under CI when the unobservables in the treatment model are conditionally independent of
just the control-level potential outcome; see Wooldridge (2010, 906–912).

Although the ATE version of overlap requires that all covariate patterns have a positive probability
of being allocated to each treatment state, we can estimate the ATET when only the covariate patterns
for which someone is treated have a positive probability of being allocated to each treatment state.
This weaker overlap assumption can be important in some studies. For example, Heckman (1997)
discusses how the ATET makes sense in job-training programs for which many types of individuals
have zero chance of signing up. See also Wooldridge (2010, 911–913).

Second, the ATET reduces to the ATE when the mean of the covariates among the treated is the
same as the mean of the covariates in the population and when the average contribution from the
unobservables for the participants is zero.

Overview of treatment-effect estimators
We can classify the estimators implemented by teffects into five categories: 1) estimators

based on a model for the outcome variable; 2) estimators based on a model for treatment assignment;
3) estimators based on models for both the outcome variable and the treatment assignment; 4) estimators
that match on covariates; and 5) estimators that match on predicted probabilities of treatment. Within
each category of estimator, there is a variety of choices about the functional forms for the models.

Because there are several categories of estimators, the user must decide whether to model the
outcomes, the probability of treatment, or both. Ironically, some of the estimators that use both models
only require that one of the two be correctly specified to consistently estimate the effects of interest,
a property known as the double-robust property.

With the exception of using a matching estimator with a single continuous covariate, some choice
of functional forms is required. There are two aspects one must consider when choosing the functional
form for the outcome or treatment assignment. First, one must select the functional form for the
conditional mean or conditional probability; depending on the variable being modeled, a linear, a binary
choice, or an exponential model may be appropriate. Second, one must determine the appropriate
polynomials of the covariates to include in the model. teffects offers a wide variety of options
to specify different functional form choices for the conditional mean and conditional probability
models. The factor variable notation in Stata allows us to easily specify the desired polynomial in
the covariates.

We now provide some intuition behind each type of estimator.
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RA estimators
RA estimators use means of predicted outcomes for each treatment level to estimate each POM.

ATEs and ATETs are differences in estimated POMs.

The CI assumption implies that we can estimateE(y0|x) andE(y1|x) directly from the observations
for which t = 0 and t = 1, respectively. Regression adjustment fits separate regressions for each
treatment level and uses averages of the predicted outcomes over all the data to estimate the POMs.
The estimated ATEs are differences in the estimated POMs. The estimated ATETs are averages of the
predicted outcomes over the treated observations.

RA is a venerable estimator. See Lane and Nelder (1982); Cameron and Trivedi (2005, chap. 25);
Wooldridge (2010, chap. 21); and Vittinghoff, Glidden, Shiboski, and McCulloch (2012, chap. 9).
The usefulness of RA has been periodically questioned in the literature because it relies on specifying
functional forms for the conditional means and because it requires having sufficient observations of
each covariate pattern in each treatment level; see Rubin (1973) for an early salvo. Our experience
is that RA is an exceptionally useful base-case estimator. We describe its relative advantages and
disadvantages in the course of covering other estimators.

IPW estimators
IPW estimators use weighted averages of the observed outcome variable to estimate means of

the potential outcomes. The weights account for the missing data inherent in the potential-outcome
framework. Each weight is the inverse of the estimated probability that an individual receives a
treatment level. Outcomes of individuals who receive a likely treatment get a weight close to one.
Outcomes of individuals who receive an unlikely treatment get a weight larger than one, potentially
much larger.

IPW estimators model the probability of treatment without any assumptions about the functional
form for the outcome model. In contrast, RA estimators model the outcome without any assumptions
about the functional form for the probability of treatment model.

IPW estimators become extremely unstable as the overlap assumption gets close to being violated.
When the overlap assumption is nearly violated, some of the inverse-probability weights become very
large, IPW estimators produce erratic estimates, and the large-sample distribution provides a poor
approximation to the finite-sample distribution of IPW estimators. This instability occurs even though
the functional form for the treatment model is correctly specified.

In contrast, when the overlap assumption is nearly violated, there are very few observations in a
treatment level for some covariate patterns, so RA estimators use the model to predict in regions in
which there are very little data. If the model is well specified and there are “enough” observations,
an RA estimator will not become unstable as quickly as an IPW estimator, and the large-sample
distribution of the RA estimator still provides a good approximation to the finite-sample distribution.
However, in real situations in which “all models are approximate”, relying on a correctly specified
outcome model with little data is extremely risky.

IPW estimators are a general approach to missing-data problems that obey some CI assumptions.
While IPW is an old idea in statistics that dates back to Horvitz and Thompson (1952), biostatisticians
and econometricians have been actively working on extending it to handle modern problems and
estimation methods. See Robins and Rotnitzky (1995); Robins, Rotnitzky, and Zhao (1994, 1995); and
Wooldridge (2002, 2007). IPW has been used extensively in the modern treatment-effect estimation
literature. See Imbens (2000); Hirano, Imbens, and Ridder (2003); Tan (2010); Wooldridge (2010,
chap. 19); van der Laan and Robins (2003); and Tsiatis (2006, chap. 6).

To see the intuition behind IPW, consider a study with observed outcome variable y, treatment
variable t ∈ {0, 1}, and potential outcomes y0 and y1. As part of this process, we need to estimate
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the POM for treatment t = 1, E(y1). Using the observed data, yiti is y1i when t = 1, but y1i is
unobserved when t = 0. An IPW estimator for E(y1) is 1/N

∑N
i=1 yiti/p(xi), where p(xi) is the

probability that ti = 1 and is a function of the covariates xi. If y1i were always observed, the weights
would all equal 1. This IPW estimator places a larger weight on those observations for which y1i is
observed even though its observation was not likely.

AIPW estimators
Instead of modeling either the outcome, like RA, or the treatment probability, like IPW, augmented

inverse-probability-weighted (AIPW) estimators model both the outcome and the treatment probability.
A surprising fact is that only one of the two models must be correctly specified to consistently
estimate the treatment effects, a property of the AIPW estimators known as being “doubly robust”.
Given that two models instead of one are used, it is less surprising that the AIPW estimators can be
more efficient than either the RA or the IPW estimators, though deriving this result is rather technical
and relies on the theory of semiparametric estimators.

Intuitively, the AIPW estimator is an IPW that includes an augmentation term that corrects the
estimator when the treatment model is misspecified. When the treatment is correctly specified, the
augmentation term vanishes as the sample size becomes large. Like the IPW, the AIPW does not
perform well when the predicted treatment probabilities are too close to zero or one.

AIPW estimators emerge naturally from a technique of producing more efficient estimators from
estimators that have a few main parameters of interest and some auxiliary, or nuisance, parameters
used in estimating the few main parameters. This method constructs efficient estimating equations
for the main parameters that are orthogonal to the auxiliary parameters. The estimators produced by
this method are known as efficient-influence function (EIF) estimators.

To gain some intuition, consider finding an EIF estimator from an IPW estimator for two POMs.
Note that we only care about the two POM parameters and not about the many auxiliary parameters
used to estimate the treatment probabilities. EIF estimators project the equations that yield the POM
parameters onto the equations that yield the auxiliary treatment-model parameters and then use the
residuals from this projection to estimate the POM parameters.

We refer to these estimators as “AIPW estimators” instead of “EIF estimators” because the former is
commonly used in the biostatistical literature for some of the binary-treatment estimators and because
the term “augmented inverse-probability-weighted” tells more about how these estimators relate to
the other implemented estimators; see Tsiatis (2006) and Tan (2010). The estimators implemented in
teffects aipw with the wnls option are based on those of Rubin and van der Laan (2008), which
did well in simulations reported by Tan (2010), and denoted as α̃RV (π̂) in Tan (2010, 663).

When either the outcome model or the treatment model is well specified, the AIPW estimators
implemented in teffects aipw are more robust than either the RA or the IPW estimators because the
AIPW estimators are doubly robust but the RA and IPW estimators are not. When both the outcome
and the treatment model are misspecified, which estimator is more robust is a matter of debate in the
literature; see Kang and Schafer (2007) and Robins et al. (2007) for some debate, and see Tan (2010)
for a more recent discussion.

To the best of our knowledge, there is no general solution to the question of which estimator
performs best when both the outcome and the treatment models are misspecified. We suspect that
the answer depends on the true models, the implemented specifications, and the polynomials in the
covariates used. To help users through this process, the estimators implemented in teffects offer
many functional forms to approximate either the outcome process or the treatment process. In addition,
Stata’s factor-variable notation makes it easy to include polynomials in the covariates. Both of these
approximation methods rely on having enough data. teffects also makes it easy to compare the
results produced by different estimators.
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The literature on these methods is vast and growing. For double-robust results and explanations, see
Robins and Rotnitzky (1995); Robins, Rotnitzky, and Zhao (1995); van der Laan and Robins (2003,
chap. 6); Bang and Robins (2005); Tsiatis (2006, chap. 13); Wooldridge (2007; 2010, sec. 21.3.4);
and Tan (2010).

IPWRA estimators

Like AIPW estimators, inverse-probability-weighted regression-adjustment (IPWRA) estimators com-
bine models for the outcome and treatment status; also like AIPW estimators, IPWRA estimators are
doubly robust. IPWRA estimators emerge naturally from a robust approach to missing-data meth-
ods. IPWRA estimators use the inverse of the estimated treatment-probability weights to estimate
missing-data-corrected regression coefficients that are subsequently used to compute the POMs.

As far as we know, there is no literature that compares the relative efficiency of AIPW estimators,
which emerge from a general approach to creating efficient estimators, and the IPWRA estimators,
which emerge from a robust-correction approach to missing-data analysis.

The IPWRA estimators are also know as “Wooldridge’s double-robust” estimators because they
were derived in Wooldridge (2007) and discussed at length in Wooldridge (2010, section 21.3.4).

Nearest-neighbor matching estimators

Matching estimators use an average of the outcomes of the nearest individuals to impute the missing
potential outcome for each sampled individual. The difference between the observed outcome and
the imputed potential outcome is an estimate of the individual-level treatment effect. These estimated
individual-level treatment effects are averaged to estimate the ATE or the ATET.

teffects nnmatch determines the “nearest” by using a weighted function of the covariates for
each observation. This type of matching is known as nearest-neighbor matching (NNM). teffects
psmatch determines the “nearest” by using the estimated treatment probabilities, which are known
as the propensity scores. This second type of matching is known as propensity-score matching (PSM).

NNM is nonparametric in that no explicit functional form for either the outcome model or the
treatment model is specified. This flexibility comes at a price; the estimator needs more data to get
to the true value than an estimator that imposes a functional form. More formally, the NNM estimator
converges to the true value at a rate slower than the parametric rate, which is the square root of the
sample size, when matching on more than one continuous covariate. teffects nnmatch uses bias
correction to fix this problem. PSM provides an alternative to bias correction because it matches on
a single continuous covariate, the estimated treatment probabilities.

Abadie and Imbens (2006, 2011) derived the rate of convergence of the NNM estimator and the
bias-corrected NNM estimator and the large-sample distributions of the NNM and the bias-corrected
NNM estimators. These articles provided the formal results that built on methods suggested in Rubin
(1973, 1977).

teffects nnmatch is based on the results in Abadie and Imbens (2006, 2011) and a previous
implementation in Abadie et al. (2004).
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Propensity-score matching estimators

Instead of performing bias correction to handle the case of more than one continuous covariate, a
common solution is to combine all the covariate information into estimated treatment probabilities,
known as propensity scores, and use this single continuous covariate as the matching variable.

The term “propensity score” is widely used, but we continue to refer to it as the “treatment
probability” to be consistent with the other estimators. We call the estimator that matches on the
estimated treatment probabilities the “propensity-score matching (PSM) estimator” because the latter
term is ubiquitous.

In effect, the PSM estimator parameterizes the bias-correction term in the treatment probability
model. One advantage of matching on the estimated treatment probabilities over the bias-correction
method is that one can explore the fit of different treatment probability models using standard methods
before performing the nonparametric matching. For example, one can select the treatment model by
minimizing an information criterion under i.i.d. sampling. We know of no counterpart for selecting
the proper order of the bias-correction term for the NNM estimator.

Matching on estimated treatment probability models has been very popular since Rosenbaum
and Rubin (1983) showed that if adjusting for covariates xi is sufficient to estimate the effects,
then one can use the probability of treatment to perform the adjustment. Abadie and Imbens (2012)
derived a method to estimate the standard errors of the estimator that matches on estimated treatment
probabilities, and this method is implemented in teffects psmatch.

Choosing among estimators

There is no definitive way to select one of the estimators implemented in teffects over the
others. We offer three observations about the tradeoffs among the estimators.

First, if the outcome model is correctly specified, the RA estimator will break down more slowly
than the IPW, AIPW, IPWRA, or PSM estimators as the overlap assumption begins to fail. This result
depends critically on the ability of the RA estimator to predict into regions in which there are little
data.

Second, if the overlap assumption holds, the AIPW and IPWRA estimators have the double-robust
property for some functional form combinations. The double-robust property says that if either the
outcome model or the treatment model is correctly specified, we can consistently estimate the effects.
The properties of double-robust estimators when both models are misspecified are not known, although
there is some discussion in the literature about the properties of the AIPW estimators; see Kang and
Schafer (2007), Robins et al. (2007), and Tan (2010).

Third, all the estimators require the same assumptions, so if each is correctly specified, they should
all produce similar results. Of course, just because they produce similar results does not mean that
they are correctly specified; it is possible that they are just behaving similarly in response to some
underlying problem.

Model choice
teffects offers a broad selection of functional form combinations so that you can choose a

combination that fits your data. Picking a functional form that respects the values of the observed
outcomes is usually best. Select linear for continuous outcomes over the real line; logit, probit,
or hetprobit for binary outcomes; and poisson for counts or nonnegative outcomes.

For binary treatments, you can select among logit, probit, or hetprobitmodels. For multivalued
treatments, only the multinomial logit is available to model the treatment probabilities.
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Selecting a functional form of a given set of covariates is a famously difficult problem in statistics.
In the treatment-effects context, Cattaneo, Drukker, and Holland (2013) found that model selection
by minimizing an information criterion worked well. Cattaneo, Drukker, and Holland (2013) discuss
a method and a user-written command to facilitate the process.
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