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Syntax

Sample-size determination

stpower logrank
[

surv1

[
surv2

] ] [
, options

]
Power determination

stpower logrank
[

surv1

[
surv2

] ]
, n(numlist)

[
options

]
Effect-size determination

stpower logrank
[

surv1

]
, n(numlist) { power(numlist) | beta(numlist) }

[
options

]
where

surv1 is the survival probability in the control group at the end of the study t∗;

surv2 is the survival probability in the experimental group at the end of the study t∗.

surv1 and surv2 may each be specified either as one number or as a list of values (see [U] 11.1.8 num-
list) enclosed in parentheses.

options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) sample size; required to compute power or effect size
∗hratio(numlist) hazard ratio (effect size) of the experimental to the control

group; default is hratio(0.5)

onesided one-sided test; default is two sided
∗p1(numlist) proportion of subjects in the control group; default is

p1(0.5), meaning equal group sizes
∗nratio(numlist) ratio of sample sizes, N2/N1; default is nratio(1),

meaning equal group sizes
schoenfeld use the formula based on the log hazard-ratio

in calculations; default is to use the formula based
on the hazard ratio

parallel treat number lists in starred options as parallel (do not enumerate
all possible combinations of values) when multiple values per
option are specified
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2 stpower logrank — Sample size, power, and effect size for the log-rank test

Censoring

simpson(# # # |matname) survival probabilities in the control group at three
specific time points to compute the probability of an event
(failure), using Simpson’s rule under uniform accrual

st1(varnames varnamet) variables varnames, containing survival probabilities in
the control group, and varnamet, containing respective time
points, to compute the probability of an event (failure),
using numerical integration under uniform accrual

wdprob(#) the proportion of subjects anticipated to withdraw from the
study; default is wdprob(0)

Reporting

table display results in a table with default columns
columns(colnames) display results in a table with specified colnames columns
notitle suppress table title
nolegend suppress table legend
colwidth(#

[
# . . .

]
) column widths; default is colwidth(9)

separator(#) draw a horizontal separator line every # lines; default is
separator(0), meaning no separator lines

saving(filename
[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

noheader suppress table header; seldom used
continue draw a continuation border in the table output; seldom used
∗Starred options may be specified either as one number or as a list of values (see [U] 11.1.8 numlist).
noheader and continue are not shown in the dialog box.

colnames Description

alpha significance level
power power
beta type II error probability
n total number of subjects
n1 number of subjects in the control group
n2 number of subjects in the experimental group
e total number of events (failures)
hr hazard ratio
loghr log of the hazard ratio
s1 survival probability in the control group
s2 survival probability in the experimental group
p1 proportion of subjects in the control group
nratio ratio of sample sizes, experimental to control
w proportion of withdrawals
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stpower logrank — Sample size, power, and effect size for the log-rank test 3

By default, the following colnames are displayed:

power, n, n1, n2, e, and alpha are always displayed;

hr is displayed, unless the schoenfeld option is specified, in which case loghr is displayed;

s1 and s2 is displayed if survival probabilities are specified; and

w is displayed if withdrawal proportion (wdprob() option) is specified.

Menu
Statistics > Survival analysis > Power and sample size

Description

stpower logrank estimates required sample size, power, and effect size for survival analysis
comparing survivor functions in two groups by using the log-rank test. It also reports the number of
events (failures) required to be observed in a study. This command supports two methods to obtain
the estimates, those according to Freedman (1982) and Schoenfeld (1981). The command provides
options to take into account unequal allocation of subjects between the two groups and possible
withdrawal of subjects from the study (loss to follow-up). Optionally, the estimates can be adjusted
for uniform accrual of subjects into the study. Also the minimal effect size (minimal detectable value
of the hazard ratio or the log hazard-ratio) may be obtained for given power and sample size.

You can use stpower logrank to

• calculate required number of events and sample size when you know power and effect size
(expressed as a hazard ratio) for uncensored and censored survival data,

• calculate power when you know sample size (number of events) and effect size (expressed
as a hazard ratio) for uncensored and censored survival data, and

• calculate effect size (hazard ratio or log hazard-ratio if the schoenfeld option is specified)
when you know sample size (number of events) and power for uncensored and censored
survival data.

stpower logrank’s input parameters, surv1 and surv2, are the values of survival probabilities in
the control group (or the less favorable of the two groups), s1, and in the experimental group, s2, at
the end of the study t∗.

Options

� � �
Main �

alpha(numlist) sets the significance level of the test. The default is alpha(0.05).

power(numlist) sets the power of the test. The default is power(0.8). If beta() is specified, this
value is set to be 1−beta(). Only one of power() or beta() may be specified.

beta(numlist) sets the probability of a type II error of the test. The default is beta(0.2). If power()
is specified, this value is set to be 1−power(). Only one of beta() or power() may be specified.

n(numlist) specifies the number of subjects in the study to be used to compute the power of the
test or the minimal effect size (minimal detectable value of the hazard ratio or log hazard-ratio)
if power() or beta() is also specified.

http://www.stata.com/manuals13/u11.pdf#u11.1.8numlist
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4 stpower logrank — Sample size, power, and effect size for the log-rank test

hratio(numlist) specifies the hazard ratio (effect size) of the experimental group to the control
group. The default is hratio(0.5). This value defines the clinically significant improvement of
the experimental procedure over the control desired to be detected by the log-rank test, with a
certain power specified in power(). If both arguments surv1 and surv2 are specified, hratio()
is not allowed and the hazard ratio is instead computed as ln(surv2)/ ln(surv1).

onesided indicates a one-sided test. The default is two sided.

p1(numlist) specifies the proportion of subjects in the control group. The default is p1(0.5),
meaning equal allocation of subjects to the control and the experimental groups. Only one of p1()
or nratio() may be specified.

nratio(numlist) specifies the sample-size ratio of the experimental group relative to the control
group, N2/N1. The default is nratio(1), meaning equal allocation between the two groups.
Only one of nratio() or p1() may be specified.

schoenfeld requests calculations using the formula based on the log hazard-ratio, according to
Schoenfeld (1981). The default is to use the formula based on the hazard ratio, according to
Freedman (1982).

parallel reports results sequentially (in parallel) over the list of numbers supplied to options allowing
numlist. By default, results are computed over all combinations of the number lists in the following
order of nesting: alpha(); p1() or nratio(); list of arguments surv1 and surv2; hratio();
power() or beta(); and n(). This option requires that options with multiple values each contain
the same number of elements.

� � �
Censoring �

simpson(# # # |matname) specifies survival probabilities in the control group at three specific time
points, to compute the probability of an event (failure) using Simpson’s rule, under the assumption
of uniform accrual. Either the actual values or a 1× 3 matrix, matname, containing these values
can be specified. By default, the probability of an event is approximated as an average of the failure
probabilities 1−s1 and 1−s2; see Methods and formulas. simpson() may not be combined with
st1() and may not be used if arguments surv1 or surv2 are specified.

st1(varnames varnamet) specifies variables varnames, containing survival probabilities in the control
group, and varnamet, containing respective time points, to compute the probability of an event
(failure) using numerical integration, under the assumption of uniform accrual; see [R] dydx. The
minimum and the maximum values of varnamet must be the length of the follow-up period and
the duration of the study, respectively. By default, the probability of an event is approximated as
an average of the failure probabilities 1−s1 and 1−s2; see Methods and formulas. st1() may
not be combined with simpson() and may not be used if arguments surv1 or surv2 are specified.

wdprob(#) specifies the proportion of subjects anticipated to withdraw from the study. The default
is wdprob(0). wdprob() may not be combined with n().

� � �
Reporting �

table displays results in a tabular format and is implied if any number list contains more than one
element. This option is useful if you are producing results one case at a time and wish to construct
your own custom table using a forvalues loop.

columns(colnames) specifies results in a table with specified colnames columns. The order of the
columns in the output table is the same as the order of colnames specified in columns(). Column
names in columns() must be space-separated.

notitle prevents the table title from displaying.
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nolegend prevents the table legend from displaying and column headers from being marked.

colwidth(#
[

# . . .
]
) specifies column widths. The default is 9 for all columns. The number of

specified values may not exceed the number of columns in the table. A missing value (.) may be
specified for any column to indicate the default width (9). If fewer widths are specified than the
number of columns in the table, the last width specified is used for the remaining columns.

separator(#) specifies how often separator lines should be drawn between rows of the table. The
default is separator(0), meaning that no separator lines should be displayed.

saving(filename
[
, replace

]
) creates a Stata data file (.dta file) containing the table values

with variable names corresponding to the displayed colnames. replace specifies that filename be
overwritten if it exists. saving() is only appropriate with tabular output.

The following options are available with stpower logrank but are not shown in the dialog box:

noheader prevents the table header from displaying. This option is useful when the command is
issued repeatedly, such as within a loop. noheader implies notitle.

continue draws a continuation border at the bottom of the table. This option is useful when the
command is issued repeatedly within a loop.

Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
Computing sample size in the absence of censoring
Computing sample size in the presence of censoring
Withdrawal of subjects from the study
Including information about subject accrual
Power and effect-size determination
Performing the analysis using the log-rank test

Introduction

Consider a survival study comparing the survivor functions in two groups using the log-rank
test. Let S1(t) and S2(t) denote the survivor functions of the control and the experimental groups,
respectively. The key assumption of the log-rank test is that the hazard functions are proportional.
That is, h2(t) = ∆h1(t) for any t or, equivalently, S2(t) = {S1(t)}∆, where ∆ is the hazard ratio.
If ∆ < 1, the survival in the experimental group is higher relative to the survival in the control
group; the new treatment is superior to the standard treatment. If ∆ > 1, then the standard treatment
is superior to the new treatment. Under the proportional-hazards assumption, the test of the equality
of the two survivor functions H0: S1(t) = S2(t) versus Ha: S1(t) 6= S2(t) is equivalent to the test
H0: ∆ = 1 versus Ha: ∆ 6= 1 or H0: ln(∆) = 0 versus Ha: ln(∆) 6= 0.

The methods implemented in stpower logrank for sample-size or power determination relate
the power of the log-rank test directly to the number of events observed in the study. Depending on
whether censoring occurs in a study, the required number of subjects is either equal to the number
of events or is computed using the estimates of the number of events and the combined probability
of an event (failure). Thus, in the presence of censoring, in addition to the number of events, the
probability of a subject not being censored (failing) needs to be estimated to obtain the final estimate
of the required number of subjects in the study.

http://www.stata.com/manuals13/u11.pdf#u11.6Filenamingconventions
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6 stpower logrank — Sample size, power, and effect size for the log-rank test

To determine the required number of events, the investigator must specify the size or significance
level, α, and the clinically significant difference between the two treatments (effect size) to be
detected by the log-rank test, Ha: ∆ = ∆a, with prespecified power 1− β. The significance level,
α, represents the probability of a type I error, a rejection of the null hypothesis when it is true. β
represents the probability of a type II error, a failure to reject the null hypothesis when the alternative
hypothesis is true. The significance level is often set to 0.05, and values for power() usually vary
from 0.8 to 0.95. By default, stpower logrank uses power(0.8) (or, equivalently, beta(0.2))
and alpha(0.05). The effect size, a difference between the two treatments, is usually expressed as
a hazard ratio, ∆a, using the hratio() option. Under an unequal allocation of subjects between the
two groups, the proportion of subjects in the control group may be specified in p1(), or the ratio of
sample sizes may be supplied to nratio(). Optionally, results for the one-sided log-rank test may
be requested by using onesided.

When all subjects fail by the end of the study (no censoring), a type I study, the information
above is sufficient to obtain the number of subjects required in the study. Often, in practice, not all
subjects fail by the end of the study, in which case censoring of subjects occurs (a type II study).
Here the estimates of the survival probabilities in the control and experimental groups are necessary
to estimate the probability of an event and, then, the required sample size.

By default, stpower logrank performs computations for the uncensored data (a type I study). It
uses the hazard ratio specified in hratio() or the default hazard ratio of 0.5 to obtain required sample
size or power. For censored data (a type II study), under administrative censoring, the value of the
survival probability in the control group (supplied as argument surv1 or, in the presence of an accrual
period, in the simpson() or st1()) option must be specified. If the value of the survival probability
in the experimental group, surv2, is omitted, surv1 and the value of the hazard ratio in hratio() are
used to compute the survival probability in the experimental group, s2. If both arguments surv1 and
surv2 are specified, the hazard ratio, ∆a, is computed using these values and the hratio() option
is not allowed.

If power determination is desired, sample size n() must be specified. If both n() and power() (or
beta()) are specified, the minimal effect size (minimal value of the hazard ratio or log hazard-ratio)
that can be detected by the log-rank test with requested power and fixed sample size is computed.

stpower logrank supports two methods, those of Freedman (1982) and Schoenfeld (1981), to
obtain the estimates of the number of events or power (see also Marubini and Valsecchi [1997, 127,
134] and Collett [2003b, 301, 306]). The latter is used if option schoenfeld is specified. The final
estimates of the sample size are based on the approximation of the probability of an event due to
Freedman (1982), the default, or, for uniform accrual, due to Schoenfeld (1983) (see also Collett
2003b) if option simpson() is specified.

Optionally, the results may be displayed in a table by using table or columns(), as demonstrated
in [ST] stpower. Refer to [ST] stpower and to example 7 in Power and effect-size determination to
see how to obtain a graph of a power curve.

Computing sample size in the absence of censoring

We demonstrate several examples of how to use stpower logrank to obtain the estimates of sample
size and number of events using Freedman (1982) and Schoenfeld (1981) methods for uncensored
data, a type I study (when no censoring of subjects occurs).

Example 1: Number of events (failures)

Consider a survival study to be conducted to compare the survivor function of subjects receiving a
treatment (the experimental group) to the survivor function of those receiving a placebo or no treatment

http://www.stata.com/manuals13/ststpower.pdf#ststpower
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(the control group) using the log-rank test. Suppose that the study continues until all subjects fail
(no censoring). The investigator wants to know how many events need to be observed in the study
to achieve a power of 80% of a two-sided log-rank test with α = 0.05, to detect a 50% reduction in
the hazard of the experimental group (∆a = 0.5). Because the default settings of stpower logrank
are power(0.8), alpha(0.05), and hratio(0.5), to obtain the estimate of the required number
of events for the above study using the Freedman method (the default), we simply type

. stpower logrank

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
Ho: S1(t) = S2(t)

Input parameters:

alpha = 0.0500 (two sided)
hratio = 0.5000
power = 0.8000

p1 = 0.5000

Estimated number of events and sample sizes:

E = 72
N = 72

N1 = 36
N2 = 36

From the output, a total of 72 events (failures) must be observed to achieve the required power
of 80%. Because all subjects experience an event by the end of the study, the number of subjects
required to be recruited to the study is equal to the number of events. That is, the investigator needs
to recruit a total of 72 subjects (36 per group) to the study.

We can request the Schoenfeld method by specifying the schoenfeld option:

. stpower logrank, schoenfeld

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Schoenfeld method
Ho: S1(t) = S2(t)

Input parameters:

alpha = 0.0500 (two sided)
ln(hratio) = -0.6931

power = 0.8000
p1 = 0.5000

Estimated number of events and sample sizes:

E = 66
N = 66

N1 = 33
N2 = 33

We obtain a slightly smaller estimate, 66, of the total number of events.

Technical note
Freedman (1982) and Schoenfeld (1981) derive the formulas for the number of events based on

the asymptotic distribution of the log-rank test statistic. Freedman (1982) uses the asymptotic mean
and variance of the log-rank test statistic expressed as a function of the true hazard ratio, ∆, whereas
Schoenfeld (1981) (see also Collett [2003b, 302]) bases the derivation on the asymptotic mean of the
log-rank test statistic as a function of the true log hazard-ratio, ln(∆). We label the corresponding
approaches as “Freedman method” and “Schoenfeld method” in the output.
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For values of the hazard ratio close to one, the two methods tend to give similar results. In general,
the Freedman method gives higher estimates than the Schoenfeld method. The performance of the
Freedman method was studied by Lakatos and Lan (1992) and was found to slightly overestimate the
sample size under the assumption of proportional hazards. Hsieh (1992) investigates the performance
of the two methods under the unequal allocation and concludes that Freedman’s formula predicts the
highest power for the log-rank test when the sample-size ratio of the two groups equals the reciprocal
of the hazard ratio. Schoenfeld’s formula predicts highest powers when sample sizes in the two groups
are equal.

Computing sample size in the presence of censoring

Because of limited costs and time, it is often infeasible to continue the study until all subjects
experience an event. Instead, the study terminates at some prespecified point in time. As a result,
some subjects may not experience an event by the end of the study; that is, administrative censoring
of subjects occurs. This increases the requirement on the number of subjects in the study to ensure
that a certain number of events is observed.

In the presence of censoring (for a type II study), Freedman (1982) assumes the following. The
analysis occurs at a fixed time, t∗, after the last patient was accrued, and all information about subject
follow-up beyond time, t∗, is excluded. To minimize an overestimation of the sample size because
of neglecting this information, the author suggests choosing t∗ as the minimum follow-up time, f ,
beyond which the frequency of occurrence of events is low (the time at which, say, 85% of the
total events expected are observed). Under this assumption, the number of required subjects does not
depend on the rates of accrual and occurrence of events but only on the proportions of patients in
the two treatment groups, s1 and s2, surviving after the minimum follow-up time, f . See Including
information about subject accrual about how to compute the sample size in the presence of a long
accrual.

If censoring of subjects occurs, the probability of a subject not being censored needs to be estimated
to obtain an accurate estimate of the required sample size. The assumption above justifies a simple
procedure, suggested by Freedman (1982) and used by default by stpower logrank, to compute
this probability using the estimates of survival probabilities at the end of the study in the control
and the experimental groups. Therefore, for a type II study (under administrative censoring), these
probabilities must be supplied to stpower logrank.

There are three ways of providing the information about survival of subjects in two groups. The
first way is to supply both survival probabilities as arguments surv1 and surv2. The second way is
to specify the survival probability in the control group as surv1 and a hazard ratio in hratio().
Finally, the third way is to supply survival in the control group surv1 only and rely on the default
hratio(0.5). Below we demonstrate the first way.

Example 2: Sample size in the presence of censoring

Consider an example from Machin et al. (2009, 91) of a study of patients with resectable colon
cancer. The goal of the study was to compare the efficacy of the drug levamisole against a placebo
with respect to relapse-free survival, using a one-sided log-rank test with a significance level of 5%.
The investigators anticipated a 10% increase (from 50% to 60%, with a respective hazard ratio of
0.737) in the survival of the experimental group with respect to the survival of the control (placebo)
group at the end of the study. They wanted to detect this increase with a power of 80%. To obtain
the required sample size, we enter the survival probabilities 0.5 and 0.6 as arguments and specify the
onesided option to request a one-sided test.



stpower logrank — Sample size, power, and effect size for the log-rank test 9

. stpower logrank 0.5 0.6, onesided

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
Ho: S1(t) = S2(t)

Input parameters:

alpha = 0.0500 (one sided)
s1 = 0.5000
s2 = 0.6000

hratio = 0.7370
power = 0.8000

p1 = 0.5000

Estimated number of events and sample sizes:

E = 270
N = 600

N1 = 300
N2 = 300

From the above output, the investigators would have to observe a total of 270 events (relapses) to
detect a 26% decrease in the hazard (∆a = 0.737) of the experimental group relative to the hazard of
the control group with a power of 80% using a one-sided log-rank test with α = 0.05. They would
have to recruit a total of 600 patients (300 per group) to observe that many events. In the absence of
censoring, only 270 subjects would have been required to detect a decrease in hazard corresponding
to ∆a = 0.737:

. stpower logrank, hratio(0.737) onesided

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
Ho: S1(t) = S2(t)

Input parameters:

alpha = 0.0500 (one sided)
hratio = 0.7370
power = 0.8000

p1 = 0.5000

Estimated number of events and sample sizes:

E = 270
N = 270

N1 = 135
N2 = 135

Similarly, using the Schoenfeld method,

. stpower logrank 0.5 0.6, onesided schoenfeld
(output omitted )

we find that 590 subjects are required in the study to observe a total of 266 events to ensure a power
of a test of 80%.

Although all examples demonstrated above assume equal group sizes, the information about the
unequal allocation of subjects between the two groups may be provided by using p1() or nratio().
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Withdrawal of subjects from the study

Under administrative censoring, the subject is known to have experienced either of the two outcomes
by the end of the study: survival or failure. Often, in practice, subjects may withdraw from the study
before it terminates and therefore may not experience an event by the end of the study (or be censored),
but for reasons other than administrative. Withdrawal of subjects from a study may greatly affect the
estimate of the sample size and must be accounted for in the computations. Refer to [ST] stpower
and [ST] Glossary for a formal definition of withdrawal.

Freedman (1982) suggests a conservative adjustment for the estimate of the sample size in the
presence of withdrawal. Withdrawal is assumed to be independent of failure (event) times and
administrative censoring.

The proportion of subjects anticipated to withdraw from a study may be specified by using
wdprob().

Example 3: Withdrawal of subjects from the study

Continuing example 2, suppose that a withdrawal rate of 10% is expected in the study of colon
cancer patients. To account for this, we also specify wdprob(0.1):

. stpower logrank 0.5 0.6, onesided wdprob(0.1)

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
Ho: S1(t) = S2(t)

Input parameters:

alpha = 0.0500 (one sided)
s1 = 0.5000
s2 = 0.6000

hratio = 0.7370
power = 0.8000

p1 = 0.5000
withdrawal = 10.00%

Estimated number of events and sample sizes:

E = 270
N = 666

N1 = 333
N2 = 333

The estimate of the total sample size using the Freedman method increases from 600 to 666 when
the withdrawal rate is assumed to be 10%. The adjustment of the estimate of the sample size for the
withdrawal of subjects is conservative. It assumes equal withdrawals from each group; that is, 10%
of subjects are lost by the end of the study in each group. This adjustment affects only the estimates
of the sample sizes but not the number of events. The reasons for this are the following: withdrawal
is assumed to be independent of event times, and the ratio of subjects surviving until the end of the
study in the two groups does not change under equal withdrawals.

We could use the alternative syntax and specify the survival probability in the control group,
0.5, with the value of the hazard ratio 0.737 in hratio() instead of supplying the two survival
probabilities:

. stpower logrank 0.5, hratio(0.737) onesided wdprob(0.1)

(output omitted )

http://www.stata.com/manuals13/ststpower.pdf#ststpower
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Including information about subject accrual

Many clinical studies have an accrual period of R, during which the subjects are recruited to the
study, and a follow-up period of f = T − R, during which the subjects are followed up until the
end of the study, T , and no new subjects enter the study. The information about the duration of an
accrual and a follow-up period affects the probability of a subject failing during the study.

Freedman (1982) suggests approximating the combined event-free probability as an average of
the survival probabilities in the control and the experimental groups at the minimum follow-up time,
t∗ = f (the default approach used in stpower logrank). However, for a long accrual of subjects, this
approach may overestimate the required number of subjects, often seriously, because it does not take
into account the information about subject follow-up beyond time f . Here Freedman (1982) proposes
to use the survival probabilities at the average follow-up time, defined as t∗ = (f+T )/2 = f+0.5R,
instead of the minimum follow-up time, f .

Alternatively, Schoenfeld (1983) (see also Collett [2003b, 306]) presents a formula for the required
number of subjects allowing for uniform entry (accrual, recruitment) over [0, R] and a follow-up
period, f . This information is incorporated into the formula for the probability of a failure. The
formula involves the integrals of the survivor functions of the control and the experimental groups.
Schoenfeld (1983) suggests approximating the integral by using Simpson’s rule, which requires the
estimates of the survivor function at three specific time points, f , 0.5R + f , and T = R + f . It is
sufficient to provide the estimates of these three survival probabilities, S1(f), S1(0.5R+f), and S1(T ),
for the control group only. The corresponding survival probabilities of the experimental group are
automatically computed using the value of the hazard ratio in hratio() and the proportional-hazards
assumption.

The three estimates of the survival probabilities of the control group may be supplied by using
the simpson() option to adjust the estimates of the sample size or power for uniform entry and
a follow-up period. If the estimate of the survivor function over an array of values in the range
[f, T ] is available from a previous study, it can be supplied using the st1() option to form a more
accurate approximation of the probability of an event using numerical integration (see [R] dydx).
Here the value of the length of the accrual period is needed for the computation. It is computed as the
difference between the maximum and the minimum values of the time variable varnamet, supplied
using st1(), that is, R = T − f = max(varnamet)−min(varnamet).

For more information, see Cleves et al. (2010, sec. 16.2).

Example 4: Sample size in the presence of accrual and follow-up periods

Consider an example described in Collett (2003b, 309) of a survival study of chronic active hepatitis.
A new treatment is to be compared with a standard treatment with respect to the survival times of
the patients with this disease. The investigators desire to detect a change in a hazard ratio of 0.57
with 90% power and a 5% two-sided significance level. Also subjects are to be entered into the study
uniformly over a period of 18 months and then followed up for 24 months. From the Kaplan–Meier
estimate of the survivor function available for the control group, the survival probabilities at f = 24,
0.5R+ f = 33, and T = 42 months are 0.70, 0.57, and 0.45, respectively.

http://www.stata.com/manuals13/rdydx.pdf#rdydx
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. stpower logrank, hratio(0.57) power(0.9) schoenfeld simpson(0.7 0.57 0.45)
Note: probability of an event is computed using Simpson’s rule with

S1(f) = 0.70, S1(f+R/2) = 0.57, S1(T) = 0.45
S2(f) = 0.82, S2(f+R/2) = 0.73, S2(T) = 0.63

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Schoenfeld method
Ho: S1(t) = S2(t)

Input parameters:

alpha = 0.0500 (two sided)
ln(hratio) = -0.5621

power = 0.9000
p1 = 0.5000

Estimated number of events and sample sizes:

E = 134
N = 380

N1 = 190
N2 = 190

Collett (2003b, 305) reports the required number of events to be 133, which, apart from roundoff
errors, agrees with our estimate of 134. In a later example, Collett (2003, 309) uses the number of
events, rounded to 140, to compute the required sample size as 140/0.35 = 400, where 0.35 is the
estimate of the combined probability of an event. By hand, without rounding the number of events,
we compute the required sample size as 133/0.35 = 380 and obtain the same estimate of the total
sample size as in the output.

Using the average follow-up time suggested by Freedman (1982), we obtain the following:

. stpower logrank 0.57, hratio(0.57) power(0.9) schoenfeld

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Schoenfeld method
Ho: S1(t) = S2(t)

Input parameters:

alpha = 0.0500 (two sided)
s1 = 0.5700
s2 = 0.7259

ln(hratio) = -0.5621
power = 0.9000

p1 = 0.5000

Estimated number of events and sample sizes:

E = 134
N = 378

N1 = 189
N2 = 189

We specify the survival probability in the control group at t∗ = 0.5R+ f = 0.5× 18 + 24 = 33
as S1(33) = 0.57 and the hazard ratio of 0.57 (coincidentally). The respective survival probability
in the experimental group is S2(33) = S1(33)∆ = 0.570.57 = 0.726. Here we obtain the estimate,
378, of the sample size, which is close to the estimate of 380 computed using the more complicated
approximation. In this example, the two approximations produce similar results, but this may not
always be the case.
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Technical note
The approximation suggested by Schoenfeld (1983) and Collett (2003b) is considered to be more

accurate because it takes into account information about the patient survival beyond the average
follow-up time. In general, the Freedman and Schoenfeld approximations will tend to give similar
results when {S̃(f) + S̃(T )}/2 ≈ S̃(0.5R + f); see Methods and formulas for a formal definition
of S̃(·).

If we use the survival probability in the control group, S1(24) = 0.7, at a follow-up time
t∗ = f = 24 instead of the average follow-up time t∗ = 33 in the presence of an accrual period,

. stpower logrank 0.7, hratio(0.57) power(0.9) schoenfeld
(output omitted )

we obtain the estimate of the total sample size of 550, which is significantly greater than the previously
estimated sample sizes of 380 and 378.

Power and effect-size determination
Sometimes the number of subjects available for the enrollment into the study is limited. In such

cases, the researchers may want to investigate with what power they can detect a desired treatment
effect for a given sample size.

Example 5: Using stpower logrank to compute power

Recall the colon cancer study described in example 2. Suppose that only 100 subjects are available
to be recruited to the study. We find out how this affects the power to detect a hazard ratio of 0.737.

. stpower logrank 0.5, hratio(0.737) onesided n(100)

Estimated power for two-sample comparison of survivor functions
Log-rank test, Freedman method
Ho: S1(t) = S2(t)

Input parameters:

alpha = 0.0500 (one sided)
s1 = 0.5000
s2 = 0.6000

hratio = 0.7370
N = 100

p1 = 0.5000

Estimated number of events and power:

E = 46
power = 0.2646

The power to detect an alternative Ha: ∆ = 0.737 decreased from 0.8 to 0.2646 when the sample
size decreased from 600 to 100 (the number of events decreased from 270 to 46).

Example 6: Using stpower logrank to compute effect size

Continuing the above example, we can find that the value of the hazard ratio that can be detected
for a fixed sample size of 100 with 80% power is approximately 0.42, corresponding to an increase
in survival probability from 0.5 to roughly 0.75.
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. stpower logrank 0.5, n(100) power(0.8) onesided

Estimated hazard ratio for two-sample comparison of survivor functions
Log-rank test, Freedman method
Ho: S1(t) = S2(t)

Input parameters:

alpha = 0.0500 (one sided)
s1 = 0.5000
s2 = 0.7455
N = 100

power = 0.8000
p1 = 0.5000

Estimated number of events and hazard ratio:

E = 38
hratio = 0.4237

Example 7: Plotting power curves

Here we demonstrate how to produce a graph of power curves over a range of hazard-ratio values.
Continuing example 5, we visualize the effect of reducing the sample size from 600 to 100 on a
power of the log-rank test to detect a hazard ratio of 0.737 by plotting two power curves for the
sample sizes N = 100 and N = 600.

First, we generate a dataset named mypower containing the table values by using the saving()
option. We request to compute the power for each of the two sample sizes over 100 values of the hazard
ratio from 0.01 to 0.99 with 0.01 step size by supplying number lists 100, 600, and 0.01(0.01)0.99 to
the n() and hratio() options, respectively. The values of hazard ratios, sample sizes, and powers
are saved in variables hr, n, and power, respectively.

. quietly stpower logrank 0.5, hratio(0.01(0.01)0.99) n(100 600) onesided
> saving(mypower)
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Next we generate the graph:

. use mypower

. twoway (line power hr if n==100) (line power hr if n==600),
> yline( .8, lstyle(foreground) lwidth(vvthin))
> xline(.42, lstyle(foreground) lwidth(vvthin))
> yline(.26, lstyle(foreground) lwidth(vvthin))
> xline(.74, lstyle(foreground) lwidth(vvthin))
> legend(label(1 "N = 100") label(2 "N = 600"))
> text(.85 .5 "(.42, .8)" .3 .81 "(.74, .26)" .85 .81 "(.74, .8)")
> title("Power curves") note("s1 = .5, alpha = .05 (one sided)")
> xtitle("Hazard ratio") ytitle("Power")
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Technical note
The decrease in sample size reduces the number of events observed in the study and therefore

changes the estimates of the power. If the number of events were fixed, power would have been
independent of the sample size, provided that all other parameters were held constant, because the
formulas relate power directly to the number of events and not the number of subjects.

Examples 5 and 7 demonstrate that a significant reduction in a sample size (a number of events)
greatly reduces the power of the log-rank test to detect a desired change in survival of the two groups.
Indeed, we examine this further in the next section.

Performing the analysis using the log-rank test

Example 8: Using the log-rank test to detect a change in survival for a fixed sample size

Continuing example 5, consider the generated dataset drug.dta, consisting of variables drug, a
drug type, and failtime, a time to failure.
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. use http://www.stata-press.com/data/r13/drug
(Patient Survival in Drug Trial)

. tabulate drug

Treatment
type Freq. Percent Cum.

Placebo 50 33.33 33.33
Drug A 50 33.33 66.67
Drug B 50 33.33 100.00

Total 150 100.00

. by drug, sort: summarize failtime

-> drug = Placebo

Variable Obs Mean Std. Dev. Min Max

failtime 50 1.03876 .5535538 .1687701 2.382302

-> drug = Drug A

Variable Obs Mean Std. Dev. Min Max

failtime 50 1.191802 .5927507 .2366922 2.277536

-> drug = Drug B

Variable Obs Mean Std. Dev. Min Max

failtime 50 1.717314 .8350659 .5511715 3.796102

Failure times of the control group (Placebo) were generated from the Weibull distribution with
λw = 0.693 and p = 2 (see [ST] streg); failure times of the two experimental groups, Drug A and
Drug B, were generated from Weibull distributions with hazard functions proportional to the hazard of
the control group in ratios 0.737 and 0.42, respectively. The Weibull family of survival distributions is
chosen arbitrarily, and the Weibull parameter, λw, is chosen such that the survival at 1 year, t = 1, is
roughly equal to 0.5. Subjects are randomly allocated to one of the three groups in equal proportions.
Subjects with failure times greater than t = 1 will be censored at t = 1.

Before analyzing these survival data, we need to set it up using stset. After that, we can use
sts test, logrank to test the survivor functions separately for Drug A against Placebo and Drug
B against Placebo by using the log-rank test. See [ST] stset and [ST] sts test for more information
about these two commands.

. stset failtime, exit(time 1)

failure event: (assumed to fail at time=failtime)
obs. time interval: (0, failtime]
exit on or before: time 1

150 total observations
0 exclusions

150 observations remaining, representing
59 failures in single-record/single-failure data

128.9845 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 1

http://www.stata.com/manuals13/ststreg.pdf#ststreg
http://www.stata.com/manuals13/ststset.pdf#ststset
http://www.stata.com/manuals13/stststest.pdf#stststest
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. sts test drug if drug!=2, logrank

failure _d: 1 (meaning all fail)
analysis time _t: failtime

exit on or before: time 1

Log-rank test for equality of survivor functions

Events Events
drug observed expected

Placebo 25 22.17
Drug A 21 23.83

Total 46 46.00

chi2(1) = 0.70
Pr>chi2 = 0.4028

. sts test drug if drug!=1, logrank

failure _d: 1 (meaning all fail)
analysis time _t: failtime

exit on or before: time 1

Log-rank test for equality of survivor functions

Events Events
drug observed expected

Placebo 25 16.61
Drug B 13 21.39

Total 38 38.00

chi2(1) = 7.55
Pr>chi2 = 0.0060

From the results from sts test for the Drug A group, we fail to reject the null hypothesis of no
difference between the survivor functions in the two groups; the test made a type II error. On the
other hand, for the Drug B group the one-sided p-value of 0.003, computed as 0.006/2 = 0.003,
suggests that the null hypothesis of nonsuperiority of the experimental treatment be rejected at the
0.005 significance level. We correctly conclude that the data provide the evidence that Drug B is
superior to the Placebo.

Results from sts test, logrank for the two experimental groups agree with findings from
examples 5 and 7. For the sample size of 100, the power of the log-rank test to detect the hazard
ratio of 0.737 (10% increase in survival) is low (26%), whereas this sample size is sufficient for the
test to detect a change in a hazard of 0.42 (25% increase in survival) with approximately 80% power.

Here we simulated our data from the alternative hypothesis and therefore can determine whether
the correct decision or a type II error was made by the test. In practice, however, there is no way of
determining the accuracy of the decision from the test. All we know is that in a long series of trials,
there is a 5% chance that a particular test will incorrectly reject the null hypothesis and a 74% and a
20% chance that the test will miss the alternatives Ha: ∆ = 0.737 and Ha: ∆ = 0.42, respectively.
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Stored results
stpower logrank stores the following in r():

Scalars
r(E) total number of events (failures)
r(power) power of test
r(alpha) significance level of test
r(hratio) hazard ratio
r(onesided) type of test (0 if two-sided test, 1 if one-sided test)
r(s1) survival probability in the control group (if specified)
r(s2) survival probability in the experimental group (if specified)
r(p1) proportion of subjects in the control group
r(w) proportion of withdrawals (if specified)
r(Pr E) probability of an event (failure) (when computed)

Macros
r(method) type of method (Freedman or Schoenfeld)

Matrices
r(N) 1×3 matrix of required sample sizes

Methods and formulas
Let S1(t) and S2(t) denote the survivor functions of the control and the experimental groups and

∆(t) = ln{S2(t)}/ ln{S1(t)} denote the hazard ratio at time t of the experimental to the control
groups. Thus, for a given constant hazard ratio ∆, the survivor function of the experimental group at
any time t > 0 may be computed as S2(t) = {S1(t)}∆ under the assumption of proportional hazards.
Define E and N to be the total number of events and the total number of subjects required for the
study; w to be the proportion of subjects withdrawn from the study (lost to follow-up); z(1−α/k) and
z(1−β) to be the (1− α/k)th and the (1− β)th quantiles of the standard normal distribution, with
k = 1 for the one-sided test and k = 2 for the two-sided test. Let λ be the allocation ratio to the
experimental group with respect to the control group, that is, N2 = λN1. If π1 is the proportion of
subjects allocated to the control group, then λ = (1− π1)/π1.

The total number of events required to be observed in a study to ensure a power of 1− β of the
log-rank test to detect the hazard ratio ∆ with significance level α, according to Freedman (1982), is

E =
1

λ
(z1−α/k + z1−β)2

(
λ∆ + 1

∆− 1

)2

and, according to Schoenfeld (1983) and Collett (2003a, 301), is

E =
(z1−α/k + z1−β)2

π1(1− π1) ln2(∆)
=

1

λ
(z1−α/k + z1−β)2

{
1 + λ

ln(∆)

}2

Both formulas are approximations and rely on a set of assumptions such as distinct failure times, all
subjects completing the course of the study (no withdrawal), and a constant ratio, λ, of subjects at
risk in two groups at each failure time.

The total sample size required to observe the total number of events, E, is given by

N =
E

pE
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The estimate of the sample size is rounded up to the nearest even integer, for an equal allocation,
or rounded up to the nearest integer otherwise. The number of subjects required to be recruited in
each group is obtained as N1 = π1N and N2 = N −N1, where N1 is rounded down to the nearest
integer.

By default, the probability of an event (failure), pE, is approximated as suggested by Freed-
man (1982):

pE = 1− S1(t∗) + λS2(t∗)

1 + λ

where t∗ is the minimum follow-up time, f , or, in the presence of an accrual period, the average
follow-up time, (f + T )/2 = f + 0.5R.

If simpson() is specified, the probability of an event is approximated using Simpson’s rule as
suggested by Schoenfeld (1983):

pE = 1− 1

6

{
S̃(f) + 4S̃(0.5R+ f) + S̃(T )

}
where S̃(t) = {S1(t) + λS2(t)}/(1 + λ) and f , R, and T = f + R are the follow-up period, the
accrual period, and the total duration of the study, respectively.

The methods do not incorporate time explicitly but rather use it to determine values of the survival
probabilities S1(t) and S2(t) used in the computations.

If st1() is used, the integral in the expression for the probability of an event

pE = 1− 1

R

∫ T

f

S̃(t)dt

is computed numerically using cubic splines ([R] dydx). The value of R is computed as the difference
between the maximum and the minimum values of varnamet in st1(),R = T−f = max(varnamet)−
min(varnamet).

To account for the proportion of subjects, w, withdrawn from the study (lost to follow-up), a
conservative adjustment to the total sample size is applied as follows:

Nw =
N

1− w

Equal withdrawal rates are assumed in the adjustment of the group sample sizes for the withdrawal
of subjects. Equal withdrawals do not affect the estimates of the number of events, provided that
withdrawal is independent of event times and the ratio of subjects at risk in two groups remains
constant at each failure time.

The power for each method is estimated using the formula

1− β = Φ{|ψ|−1(λNpE)1/2 − z1−α/k}

where Φ(·) is the standard normal cumulative distribution function; ψ = (λ∆ + 1)/(∆ − 1) or
ψ = (1 + λ)/ ln(∆) if the schoenfeld option is specified.

http://www.stata.com/manuals13/rdydx.pdf#rdydx
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The estimate of the hazard ratio (or log hazard-ratio) for fixed power and sample size is computed
(iteratively for censoring) using the formulas for the sample size given above. The value of the hazard
ratio (log hazard-ratio) corresponding to the reduction in a hazard of the experimental group relative
to the control group is reported.
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